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Abstract
Transferring data between ICs accounts for a growing pro-
portion of system power in wearable and mobile systems.
Reducing signal transitions reduces the dynamic power dis-
sipated in this data transfer, but traditional approaches can-
not be applied when the transfer interfaces are serial buses.
To address this challenge, we present a family of opti-
mal value-deviation-bounded approximate serial encoders
(VDBS encoders) that significantly reduce signal transitions
(and hence, dynamic power) for bit-serial communication in-
terfaces. When the data in transfer are from sensors, VDBS
encoding enables a tradeoff between power efficiency and
application fidelity, by exploiting the tolerance of many of
the typical algorithms consuming sensor data to deviations
in values.

We derive analytic formulations for the family of VDBS
encoders and introduce an efficient algorithm that performs
close to the Pareto-optimal encoders. We evaluate the algo-
rithm in two applications: Encoding data between a camera
and processor in a text-recognition system, and between an
accelerometer and processor in a pedometer system. For the
text recognizer, the algorithm reduces signal transitions by
55 % on average, while maintaining OCR accuracy at over
90 % for previously-correctly-recognized text. For the pe-
dometer, the algorithm reduces signal transitions by an aver-
age of 54 % in exchange for step count errors of under 5 %.

1. Introduction
Computation is not the dominant source of instantaneous
power dissipation in many wearable and mobile systems.
These systems are often organized around sensors, whose
power dissipation when active is often larger than that of
many of the embedded processors (microcontrollers) with
which they are typically paired. The sensors are typically
sampled whenever computation is active and as a result the
fraction of overall energy usage over time attributable to
computation, relative to sensors, is also often small.

Figure 1 shows the average power dissipation when ac-
tive, for a collection of components. The components in-
clude an implementation of the lowest-power variant of the
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Figure 1. Sector plot of the power dissipation for several
state-of-the-art system components typical of wearable and
sensor-driven systems. The sectors are shown scaled loga-
rithmically to simplify visualization of the large range of val-
ues: Clearly, not all systems will contain a gyroscope (which
dominates the power breakdown in this collection of system
components).

ARM architecture currently available (Cortex-M0+1 [6]),
several state-of-the-art sensors [1, 15, 16, 20, 21] and a Blue-
tooth Low-Energy (Bluetooth LE) radio2 [19]. In addition to
computation and sensors, many wearable systems have or-
ganic light-emitting diode (OLED) displays, whose power
dissipation is proportional to the number of pixels which
are lit and to their color (there is no backlight). We have
therefore included, for reference, the power dissipation of a
20×20 pixel subset of an OLED display, based on measure-
ments we performed on one such display panel [10].

From Figure 1, it is clear that the processor dissipates less
power when active than almost all the other components.
Since most wearable systems sample their sensors period-
ically, the energy usage over time is also likely to still be
dominated by components other than the processor.

1 Running a while(1) loop from its on-chip SRAM at 2 MHz and 3.0 V.
2 In advertising/discoverable mode.
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Figure 2. Single-ended serial interfaces such as SPI, I2C,
and I2S are the dominant method for interconnecting pro-
cessors with sensors in low-power wearable platforms.

1.1 Data transfer is a growing fraction of system power
Processors in wearable, embedded, and mobile platforms are
often connected to many sensor integrated circuits (ICs).
Despite packaging advances such as 3D-stacked dies and
package-on-package bonding, the power dissipated in inter-
IC data transfer has not scaled with semiconductor process
technology advances as it has for the individual system com-
ponents.

The cost for data movement is estimated to range from
18 fJ/bit-mm on-die, to 2 pJ/bit for printed circuit board
(PCB) traces [11]. At data rates of just 10 Mb/s, and aggre-
gated over several sensor interfaces, data transfer power be-
comes a significant fraction of system power. Since package
and circuit board capacitances do not improve with semi-
conductor process advances, the relative proportion of sys-
tem power attributed to data transfer will only grow relative
to components such as processors as semiconductor tech-
nologies improve.

Figure 2 illustrates how, in a typical sensor-driven system,
the processor interfaces with the system’s sensors through
bit-serial interfaces, rather than parallel buses. Serial inter-
faces enable packages with low pin counts and low PCB
area. Given the speeds at which they operate, they typically
do not employ any of the channel modulation techniques
used in high-speed serial links.

By taking a holistic view of how the transferred data
will be used by the system, we can formulate encodings
that significantly reduce signal transitions on serial links.
Since dynamic power dissipation is directly proportional to
the number of signal transitions, such encodings, if efficient,
reduce overall power dissipation.

1.2 VDBS encoders and Rake
Most of the data transferred on the serial interconnects of
energy-constrained wearable platforms are from sensors.
But, since the data are often generated by a process with
some innate noise, the algorithms that consume them, even
when requiring high-resolution data, are usually robust to
small or occasional aberrations.

We exploit this observation to design a family of value-
deviation-bounded serial encoders (VDBS encoders), for
reducing signal transitions on serial interfaces. VDBS en-

coders permit a selectable amount of deviation of the trans-
mitted data from their original values. Applied at only one
end of a serial communication channel, they need no decod-
ing and are not reversible.

For small bit widths (e.g., 8-bit values) and single values
of tolerable deviation, VDBS encoders can be implemented
using lookup tables. This is however not practical for word
sizes of 10 to 24 bits which are common for the outputs of
many sensors and ADCs; it is even more impractical when
a system must support several different levels of encoding
aggressiveness (amounts of tolerable deviation). To address
this challenge, we present a practical algorithm for VDBS
encoding, Rake, that is linear in the width of words to be
encoded.

1.3 Contributions and outline
We introduce a new class of techniques for reducing the
power dissipation in energy-constrained systems such as
wearable and head-mounted systems. The techniques exploit
the tolerance of many algorithms deployed in these contexts
to deviations in their input values. We make the following
contributions:

• Formal definition of properties of the family of possible
value-deviation-bounded serial (VDBS) encoders (Sec-
tion 2).

• A practical algorithm, Rake, for VDBS encoding (Sec-
tion 3). For a maximum value deviation of 10 % in 8-bit
values (i.e., a deviation of absolute value 25 on values
that range from 0 to 255), Rake reduces signal transitions
by 67 % on average. For maximum value deviations of
0.12 % of the full-scale range for 16-bit values, Rake re-
duces signal transitions by 41 %.

• Numerical evaluation of properties of optimal VDBS
encoders and of Rake (Section 4). We show, empirically,
that Rake reduces signal transitions almost as much as
the optimal transition-reducing VDBS encoder, and in-
duces almost as little deviation in values as the optimal
deviation-minimizing VDBS encoder. We also show that
VDBS encoders reduce transitions more than simply rep-
resenting values with shorter words of equivalent effec-
tive number of bits.

• End-to-end evaluation of Rake deployed within two ap-
plications: We evaluate Rake in encoding data between a
camera and processor in a text-recognition application,
and between an accelerometer and processor in a pe-
dometer application (Section 5). For the text recognizer,
Rake reduces signal transitions by an average of 55 %
while maintaining an OCR accuracy of over 90 % for
previously-correctly-recognized text. For the pedometer
system, Rake reduces signal transitions by 54 % on aver-
age, while leading to errors of less than 5 % in the number
of reported steps.
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Figure 3. The maximum serial transition counts occur when
words have alternating 0s and 1s in their binary representa-
tions.
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(b) With VDBS: fewer transitions.

Figure 4. In this example, the tolerable deviation, m, is
13 (i.e., 5 % of 255). VDBS encoding halves the number
of transitions while incurring a value deviation, |s − t|, of
just 0.39 % of the full-scale range. All bits except the most-
significant bit are modified, not just the lower dlog2(m)e.

• An overview of analytic properties of VDBS encoders.
These provide insight into how VDBS encoding could
be used to explore further directions beyond this work
(Appendix A).

• Formulation of bounds on best-case effectiveness of
VDBS encoders (Appendix B).

• Detailed numerical studies of the behavior of VDBS en-
coders across various word sizes and input distributions
(Appendix C).

2. Value-Deviation-Bounded Serial Encoding
We consider serial communication interfaces, where the bits
of a word are transmitted one at a time. For reasons of design
size and cost, such communication interfaces are the norm
in space-constrained embedded systems. For reasons related
to crosstalk, they are also the norm in most state-of-the-art
high-performance communication interfaces.

Because the dynamic power dissipation of electrical com-
munication interfaces is proportional to the number of sig-
nal transitions (and to the square of the interface voltage),
our goal is to reduce these transitions. For serial interfaces,
these transitions occur between subsequent transmitted bits
of the same word. In what follows, we will therefore refer to
the number of such transitions as the serial transition count
(STC). The maximum serial transition counts for l-bit val-
ues occur when they have alternating 0s and 1s in their bi-
nary representations (Figure 3). Figure 4 illustrates how, by
permitting the transmitted values to differ from their original
values, value-deviation-bounded serial encodings reduce the

number of signal transitions when a value is transmitted over
a serial interface.

There are three essential ingredients in the formulation of
VDBS encoders3: Ê The number of serial transitions when
a value s is transmitted over a serial link (two transitions
in Figure 4(a)), Ë the difference in serial transition counts
between two words (a difference of one between s and t in
Figure 4), and Ì the possible constraints under which serial
transitions in a word may be minimized.

Definition 1 (Serial transition count function, #δ(s)).
Let s be an l-bit unsigned integer with bits s0, s1, . . . , sl−1,
from least- to most-significant bit. Then, we define #δ(s),
the number of signal transitions in the serialization of s, as

#δ(s) =
l−2∑
i=0

si ⊕ si+1. �

Definition 2 (Serial transition count difference, ∆s,t ).
Let s and t be two l-bit words. Then, we define ∆s,t, as the
absolute value of their difference in serial transition counts:

∆s,t = |#δ(s)−#δ(t)|. �

With the definitions of #δ(s) and ∆s,t, we now define the
family of possible VDBS encoder functions. These functions
solve the following problem: For an unsigned integer s, find
a proximal value, t, such that #δ(t) ≤ #δ(s) and |s−t| ≤ m,
for some tolerable deviation, m.

Definition 3 (Family of optimal VDBS encoders).
Let s and t be two l-bit integers, and let m be an integer
representing the difference in numeric value between s and
t. We define a Boolean predicate Ps,t,m such that

Ps,t,m = (|s− t| ≤ m) ∧ ((#δ(s)−#δ(t)) ≥ 0) .

There are four possible functions that reduce or maintain
the serial transition count while ensuring that their output
is within m of their input:

e1(s,m) =
(
τ s.t. Ps,τ,m ∧

(
|s− τ | = min

0<i<2l−1
|s− i|

))
,

e2(s,m) =
(
τ s.t. Ps,τ,m ∧

(
|s− τ | = max

0<i<2l−1
|s− i|

))
,

e3(s,m) =
(
τ s.t. Ps,τ,m ∧

(
∆s,τ = min

0<i<2l−1
∆s,i

))
,

e4(s,m) =
(
τ s.t. Ps,τ,m ∧

(
∆s,τ = max

0<i<2l−1
∆s,i

))
. �

2.1 Properties of the optimal VDBS encoders
The properties of the four functions are important because
they bound the behavior of all possible VDBS encoders:

3 In what follows, we restrict our treatment to unsigned integers for clarity
of exposition; many real-world use cases are of this type. The analysis easily
extends to two’s-complement, fixed-, and floating-point representations.
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Figure 5. Illustration of relationships between the four
classes of encoders, e1, e2, e3, and e4, across values of m.

À e1(s,m): smallest value difference withinm of s that has
same or smaller transition count.

Á e2(s,m): largest value difference within m of s that has
same or smaller transition count.

Â e3(s,m): smallest reduction in transition count from s,
among all values within m of s.

Ã e4(s,m): largest reduction in transition count from s,
among all values within m of s.

Our objective is to obtain a method for VDBS encoding
whose behavior encompasses the best of the properties of
all the ideal encoders: Value deviations close to those of
e1(s,m), and transition reduction close to that of e4(s,m).

Figure 5 pictorially illustrates the relationships between
e1, e2, e3, and e4 across values of the tolerable deviation
m. The function e2(s,m) maximizes the deviation from s of
the value it returns, with no constraint on maximally reduc-
ing transitions. Similarly, e3(s,m) minimizes the reduction
in transition count, but does not attempt to minimize the de-
viation from s.

The subset of three encoder types e1, e3, and e4 are
Pareto-optimal when considering both reduction in serial
transitions and actual deviations for a given tolerable devia-
tion. Because it is strictly dominated by e4, the function e2

is not in the Pareto set. As we shall see in Section 4, the be-
havior of the basic VDBS encoder that removes transitions
from only the lower dlog2(m)e bits is similar to e2(s,m) for
many practical word sizes and tolerable deviations.

2.2 Practical implications of tolerable deviation, m
Because different applications will tolerate differing amounts
of deviation, it is useful to have the tolerable deviation m as
a parameter of the encoding. For example, sensor values
used to guide a control system may tolerate only small m,
whereas values representing pixels of a captured image in
a text-recognition application can tolerate modest deviation.
As we will show in Section 4, even small values of tolerable
deviation can lead to significant transition reductions.

The need to dynamically control m makes the use of
lookup tables (LUTs) impractical because a set of LUTs
would be needed for each m. It is however possible to con-

struct an efficient encoder that approaches the Pareto-optima
in transition reduction and deviation minimization.

3. Rake: Practical VDBS Encoding
Given a value s and tolerable deviation m, the family of en-
coders described in the preceding section identify the possi-
ble optimum ways in which serial transitions can be reduced.
Exact algorithms for these optimal encoders must select a
value out of a set whose size is exponential in the length
of words; they are therefore impractical in practice. On the
other hand, the basic heuristic of simply removing transi-
tions from the lower-order dlog2(m)e bits misses opportuni-
ties to reduce transitions at minimal cost. In the example of
Figure 4, it cannot halve transitions at minimal value devia-
tion of 1, like optimal VDBS encoders can.

3.1 The Rake algorithm
To address these shortcomings, we present an efficient al-
gorithm that is linear in word size. The algorithm reduces
transitions more than the basic approach and almost as much
as the optimum VDBS encoder, e4, that prioritizes transition
reduction. At the same time, on average, it incurs deviations
smaller than all optimum encoders except e1 (the optimum
VDBS encoder that prioritizes minimizing deviation). We
call the algorithm Rake, because it operates in two sweeps
of a word, accumulating values in the first sweep and level-
ing out transitions in the second. The algorithm (Figure 6)
operates as follows.

First, moving across the l-bit input word s from least-
significant bit (LSB) to most-significant bit (MSB), the tran-
sition count register, nt, stores the number of transitions
seen to-date. The indices of these transitions are stored in the
transition indices array, tr. For each transition, the length of
the run of 0s or 1s leading to the transition is stored in the
run length temporary register, rl. Each such run of 0s or 1s
could be bit-wise negated to either increase or decrease the
value of s; the change in value that such a negation would
contribute is stored in the cumulative run contribution ar-
rays, cr0c, for runs of 0s, and cr1c for runs of ones.

Second, the algorithm moves across the input in the op-
posite direction, from MSB to LSB, inspecting only the nt
bit positions that have transitions; these locations were pre-
viously stored in tr. For each of the nt transition locations in
tr, it checks whether the deviation incurred by negating the
bits that constitute a transition could be offset by the runs
of lower-order bits of opposite polarity, as captured by the
contents of cr0c and cr1c. It removes the first transition that
passes this check, and completes. The algorithm takes l steps
as it traverses from the LSB to the MSB, followed by at most
nt − 2 steps in the opposite direction. The maximum value
of nt is l − 1, thus Rake takes a maximum of 2l − 3 steps.

3.2 Efficient implementation and use of Rake
The linear-time behavior of the Rake algorithm means that,
for example, for 24-bit values it requires only 2l − 3 steps
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RAKEVDBSENCODER(s, m)

1 � First phase, from LSB to MSB (l steps), the transition
2 � count register, nt, stores the number of transitions seen.
3 for nt← 0; i← 0, i < l, i← i + 1
4 � If two adjacent bits differ, store transition location in tr[].
5 do if ((i < l − 1) ∧ (si 6= si+1))
6 then tr[nt]← i
7 if ((nt > 0))
8 � Determine the length of the run of 0s or
9 � 1s that the transition demarcates, storing

10 � the length in rl, and contribution in rc.
11 then rl← tr[nt]− tr[nt− 1]

12 rc← (2rl − 1) << tr[nt− 1]
13 if ((nt > 0) ∧ (si = 0))
14 � For run of 0s, store contribution in cr0c.
15 then cr0c[i]← rc
16 if ((nt > 0) ∧ (si = 1))
17 � For run of 1s, store contribution in cr1c.
18 then cr1c[i]← rc
19 nt← nt + 1
20 elseif (i > 0)
21 � Pad the cumulative count arrays when there is
22 � no transition.
23 then cr0c[i]← cr0c[i− 1]
24 cr1c[i]← cr1c[i− 1]
25 � Second phase, from MSB to LSB, taking nt (less than l − 1)
26 � steps, inspect only the nt bit positions that have transitions.
27 while nt > 0
28 � rl is the run length and rc is its contribution if all bits in the
29 � run were flipped to remove the corresponding transition:
30 do rl← tr[nt]− tr[nt− 1]

31 rc← (2rl − 1) << tr[nt− 1]
32 � Check whether deviation incurred by negating the
33 � bits that constitute a transition could be offset by
34 � the runs of lower-order bits of opposite polarity,
35 � as captured by the contents of cr0c and cr1c:
36 if ((str[nt−1] = 0) ∧ ((rc− cr1c[nt− 1]) ≤ m))
37 then return (s + rc− cr1c[nt− 1])
38 if ((str[nt−1] = 1) ∧ ((rc− cr0c[nt− 1]) ≤ m))
39 then return (s− rc + cr0c[nt− 1])
40 nt← nt− 1
41 return s

Figure 6. Rake algorithm for VDBS encoding. Most of the
operations in the software pseudocode above can be imple-
mented efficiently (and reused across the two phases) in a
hardware implementation, without a need for the branching
that the illustrative pseudocode implies.

(i.e., 45 steps), compared to having to explore a space of 16
million values for the exact optimal solution.

In practice, the Rake algorithm will be invoked once
whenever a system is configured for a new tolerable devi-
ation. The Rake value mappings may then either all be pre-
computed (at very low cost) and stored in a lookup table,
computed as needed and cached, or obtained by a hardware
implementation of Rake.
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Figure 7. Mean serial transition count (STC) reduction and
actual deviation, across all basis values, versus tolerable de-
viation expressed as a fraction of the full-scale range (FSR),
for 8-bit values (top row), and 16-bit values (bottom row).

We are currently exploring efficient hardware implemen-
tations of Rake. The insight that enables efficient hardware
implementations is that most of the operations in the Rake
algorithm (Figure 6) can be implemented with compara-
tors and multiplexers (for the if() statements), without the
branching that the pseudocode implies. Furthermore, these
circuits may be reused between the two phases of Rake.
Given the fact that the power dissipation for many sensors
far exceeds the power dissipation of a state-of-the-art ARM
Cortex-M0+ microcontroller implementation (Figure 1), we
expect the power overheads for a hardware Rake implemen-
tation to be yet lower than the already low overhead for a
configuration-time software implementation of Rake.

4. Numerical Evaluation
We are interested in two objective measures of the efficacy
of VDBS encoders: Ê the serial transition count reduction,
across all possible values for a given word length l and
maximum tolerable deviation, m, and Ë the average actual
deviation that is incurred by encoders. The behavior of both
of these properties is bounded by the family of encoders
previously illustrated in Figure 5.

We evaluate both the ideal encoders of Section 2 as well
as our Rake encoder of Section 3 under these two measures,
by applying them to unsigned words with sizes of 8 and
16 bits. We pick these sizes because, as we shall see in
Section 5, they are representative of the range of word widths
for sensor and ADC values used in real-world systems.
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4.1 Behavior across all possible basis values
Rake reduces transitions almost as much as the optimal
encoder that prioritizes transition reduction, while inducing
deviations smaller than all the optimal encoders except the
one that prioritizes minimizing deviation. Even at moderate
tolerable deviations of 5 %, the savings are almost twice
those reported in the context of low-power deviation-free
parallel and serial buses [2, 5].

The top row of Figure 7 shows the results of exhaustive
numeric evaluation for all possible 8-bit values. For a max-
imum deviation of 10 % (i.e., a deviation of absolute value
25 on values that range from 0 to 255), Rake reduces signal
transitions by 67 %. For this maximum tolerable deviation,
the mean actual deviation is 10 (i.e., 4 %). Rake’s reduction
of serial transitions is greater than two of the three Pareto-
optimal encoders and it is only 5 percentage points smaller
than that of the optimal encoder that targets maximizing se-
rial transition reduction (e4). The observed mean deviation
is also better than all but one of the Pareto-optimal encoders:
It is less than 4 percentage points worse than the optimal
encoder (e1) that prioritizes minimizing deviation.

The results across all possible 16-bit values follow a simi-
lar trend (bottom row of Figure 7). For a maximum tolerable
deviation of 0.12 % (i.e., a deviation of absolute value 79 on
values that range from 0 to 65535), Rake reduces signal tran-
sitions by 41 %, with an accompanying mean deviation of 30
(0.05 % of the full-scale range).

4.2 Effective number of bits of encoded values
The effective number of bits (ENOB) captures the number
of unique levels representable by encoded values, and is
computed as log2 (|{unique encoder output values}|). Rep-
resenting values with fewer bits reduces the number of signal
transitions within transmitted words and in the clock signal.
However, for the same ENOB (controlled by the tolerable
deviation, m), VDBS encoders are more effective than sim-
ply employing shorter word sizes.

Figure 8 shows how, for the same ENOB, Rake applied to
baseline 8-bit values reduces transitions 60 % more than sim-
ply employing shorter words. Furthermore, when consider-
ing the amount of control that can be exerted over transition
reduction, Rake provides 7.4 times finer-grained control, as
it enables fractional steps in the ENOB (controlled through
m).

5. Application-Based Evaluation
In practice, the amount by which VDBS encoders can re-
duce transitions (and hence power dissipation), will depend
on the distribution of values encountered. Likewise, the use-
fulness of VDBS encoding will depend on whether large re-
ductions in signal transitions can be obtained for small de-
viations in encoded values, and whether these deviations do
not adversely affect the application within which the encod-
ing is deployed. To study the effect of VDBS encoding in
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Figure 8. VDBS encoding provides finer-grained control of
ENOB than the use of shorter word sizes (7.4 times more
distinct values of effective ENOB in plots). The reduction
in transitions achieved by VDBS encoding does not require
changes to the datapath of applications consuming the mod-
ified data (e.g., changing algorithms to use 5-bit data instead
of 8-bit data), as word sizes remain the same. Furthermore,
the Rake VDBS encoder (◦) reduces transitions by up to 24
percentage points (i.e., a 60% improvement in the percent-
age of transitions removed) more than using shorter words
of equivalent ENOB (M), both considering only intra-word
transitions (left), as well as total intra-word and clock tran-
sitions (right).

Imaging Sensor

data

Imaging Sensor Controller

Processor

Serial Communication Interface

VDBS Encoder

clock

OCR
Algorithm

Optics

Figure 9. Illustration of an VDBS encoder in an optical
character recognition application, as might be incorporated
into an augmented-reality wearable system.

end-to-end application settings, we evaluate Rake in two ap-
plication implementations.

5.1 Encoding camera data in a text-recognition system
We apply Rake to images in transfer between an image
sensor and processor in a text-recognition system, such as
that illustrated in Figure 9, and evaluate both the reduction in
data transfer signal transitions as well as the effect on optical
character recognition (OCR) errors.

We use version 3.02 of the Tesseract OCR system [14],
widely regarded to be the most accurate open-source OCR
package. For input, we use the test set from the ICDAR text
image dataset [24], and select as our baseline the 392 images
for which Tesseract returns the same recognition text as the
benchmark’s ground truth. We then apply Rake to each of
these 392 text images, with degrees of tolerable deviation
ranging from 0 % to 20 % of the full-scale range of the 8-
bit per-color-channel pixel values. We quantify the errors
in text recognition using the standard edit-distance-based
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Figure 10. Effect on OCR accuracy of serial-transition-
reducing encoding as a function of tolerable deviation
(first column), for two different images (second and third
columns). At higher tolerable deviation, there is greater tran-
sition reduction but this comes at the cost of OCR errors.
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Figure 11. Averaged across the 392 text image inputs, Rake
reduces transitions by 55 %, maintaining OCR accuracy of
previously-correctly-recognized text at over 90 %.

metric used in the text-recognition literature [12]. Figure 10
presents an example of the effect of Rake on two input
text images, as well as the effect on OCR accuracy and on
transitions in the serialized image data.

Rake reduces transitions significantly with minimal effect
on OCR error. As shown in Figure 11, with a target tolerable
deviation of 5 %, Rake reduces serial transitions by over
55 %, while maintaining an OCR accuracy of over 90 % for
previously-correctly-recognized text.

5.2 Encoding accelerometer data in a pedometer system
As a second evaluation of the effect of VDBS encoding in
an end-to-end system, we apply Rake to accelerometer data
in a pedometer (step counting) system (Figure 12).
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Figure 12. A VDBS encoder within a pedometer system.
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(d) Average pedometer accuracy.
  Legend:    ◒ : Minimum    ◓ : Maximum    ● : Mean    (Error bars: Standard Deviation)

Figure 13. Rake reduces transitions by 54 % on average,
while inducing step count errors of less than 5 % on average.

We use 3-axis accelerometer data sampled at 20 Hz,
a total of 334377 samples or 4.6 hours worth of walk-
ing. The samples are taken from 12 different users in the
publicly-available WISDM activity recognition dataset [9].
The WISDM dataset provides real-valued samples. In prac-
tice, however, actual accelerometer sensors provide a fixed
number of bits of resolution, either directly or through the
use of an ADC. We therefore convert the samples to 13-
bit values to match the resolution of a state-of-the-art ac-
celerometer [25]. We then apply Rake to the 13-bit data,
with degrees of tolerable deviation ranging from 0 % to 5 %
of the full-scale range of values, before passing the encoded
data to a step counting algorithm [25]. As shown in Fig-
ure 13, at target tolerable deviations of 4 %, Rake reduces
transitions by up to 63 % with a mean of 54 %, inducing step
counting errors of less than 5 % on average.

6. Related Research
Power dissipation on communication buses has been a con-
cern for many years, but the buses studied were parallel
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buses, typically between processors and memories [2, 17].
On these buses, the data must be transferred correctly; sub-
stitution codes which exploit the ordering-distribution of
values seen on the bus were thus used. Modern systems,
whether high-performance, or energy-sensitive wearable
platforms, predominantly use serial communication inter-
faces [8]. But, since serial interfaces transmit or receive only
one bit at a time, they can’t benefit from prior work on low-
power encodings for parallel buses.

Encodings for serial video data [3, 13] exploit tonal local-
ity in images to reduce transitions in exchange for represen-
tation overheads. Unlike VDBS encoders, they are specific
to image data, and are not generally-applicable. General-
purpose approaches to transition reduction include repre-
senting values with fewer bits [18], or using transition en-
coding [5]; as we show in this work, these are not as effective
as our proposal. When the data transferred are from sensors
however, many signal processing [7] and recognition, min-
ing, and synthesis [4, 22] applications can tolerate errors in
the data. VDBS encoders exploit this tolerance.

7. Conclusion
Wearable and health-tracking devices dissipate ever-larger
fractions of their energy on sensor activation and data trans-
fer. Since package and circuit board capacitances do not
improve with semiconductor process advances, the fraction
will continue to grow relative to components such as proces-
sors. For reasons of space and cost however, the data transfer
happens over serial interfaces, not over parallel buses. This
precludes encodings such as Gray codes.

VDBS encoders, introduced in this paper, reduce the dy-
namic power dissipation of serial buses when deviations in
the values being transmitted are tolerable. We derived opti-
mal VDBS encoders and presented an efficient VDBS en-
coder, Rake, that is close to optimal. We evaluated Rake
through numerical studies as well as in two real-world end-
to-end systems: OCR and a pedometer.

For the OCR system, Rake reduces signal transitions (and
hence dynamic power for data transfer) by 55 % on average;
it does so while maintaining OCR accuracy at over 90 %
for previously-correctly-recognized text. For the pedometer
system, Rake reduces signal transitions by 54 % on average,
while leading to errors in the number of reported steps that
are on average less than 5 %.

VDBS encoding is an exciting new direction for improv-
ing the energy-efficiency of communication and computing
systems. There are many research avenues yet to be ex-
plored, ranging from hardware implementations of encoders
to compute architectures that employ similar principles.

Appendix A Properties of Function #δ(n)

Properties of the serial transition count (STC) function
#δ(n), which we explore next, give insights into efficiency
limits of VDBS encoders.

17010 =

101010102

000000002 111111112
m = 17010 m = 8510

8510 =

010101012

111111112 000000002
m = 17010 m = 8510Induced error, m:

All transitions removed:

Figure 14. The maximum serial transition counts for l-bit
values occur when they have alternating 0s and 1s in their
binary representations.

Proposition 1 (Maximum serial transition count pattern).
When l is even, the maximum serial transition count occurs
when the l-bit word has l

2 0s and the same number of 1s. �
Proof (Maximum serial transition count pattern).
To maximize the serial transition count, there should be a
transition in moving between every neighboring pair of bit
positions. Thus, words with maximum serial transition count
have l

2 0s and the same number of 1s. �
Corollary 1 (Maximum serial transition count basis values).
There are two values with maximum serial transition count.
When l is even, these values are

b̂1 =

l
2−1∑
i=0

22i = 1
3 (2l − 1) (1)

and

b̂2 = 2l − 1−
l
2−1∑
i=0

22i = 2
3 (2l − 1).

�
This follows directly from the two cases in the proof

of Proposition 1 (either 0 or 1 in least-significant bit). For
example, Figure 14 illustrates how, for l = 8, the maximal-
serial-transition-count words are 85 and 170.

Lemma 1 (Maximum serial transition count).
For every l-bit word n, #δ(n) ≤ l − 1. �
Proof (Maximum serial transition count).
The number of bits l in a word is a natural number. When
l is 1, there are no transitions in the word, by definition
of the serial transition count. For all other l, the maximum
serial transition count occurs when all adjacent bits of a
word differ. There are four cases in which this could happen,
corresponding to whether l is even or odd, and whether the
least-significant bit (LSB) contains a 1 or a 0.

First, consider the cases when l is even. When l is even,
there are l

2 ones and l
2 zeros. If the LSB is 0, there will be

one transition in moving from the LSB towards the most-
significant bit (MSB), and each of the remaining l

2 − 1 bits
which are 0 will have two associated transitions. There will
therefore be a total of l − 1 transitions. The same argument
applies if the LSB were 1.

Next, consider the cases when l is odd. When l is odd,
there are either b l2c bits which are 1 and d l2e bits which are
0, or vice versa, and the bit polarity appearing in the LSB
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will occur l−1
2 + 1 times, and the opposite polarity to the

LSB will occur l−1
2 times.

There will be one transition moving out of the LSB to-
wards the MSB, followed by transitions in the remaining
l− 1 bits. Since l is odd, it follows that l− 1 is even. But we
showed above that such an even number of bits could con-
tain at most (l − 1)− 1 transitions. Thus, when l is odd, the
maximum number of transitions is also 1 + (l− 1)− 1. That
is, the maximum number of transitions is l − 1. �
Theorem 1 (Serial transitions and Gray code).
Let s be an l-bit integer, let GrayCode(s) denote the sth
value in Gray code order for l-bit values, and let #1(s) de-
note the count of 1s in s. Then, #δ(s) = #1(GrayCode(s)).
�

We will use the following, the Gray code theorem [23], in
the proof of Theorem 1. We include a self-contained adap-
tation of Wilf’s original proof here so that our discussion
stands on its own.

Theorem 2 (Wilf’s Gray Code Theorem).
Let s be an l-bit integer, and let g be the sth l-bit integer in
Gray code order for l-bit values, where

s =
l−1∑
i=0

si2i and g =
l−1∑
i=0

gi2i

Then,

gi ≡ si + si+1 (mod 2) (i = 0, . . . , l − 2). �

For example, consider the 8-bit value 63. The string of
rank 63 in the 8-bit Gray code, that is, the 63rd Gray code
value, can be constructed as follows: for the ith bit, simply
take the ith and i+ 1th bits of 63, and add them modulo 2.

Proof (Wilf’s Gray Code Theorem).
Let Ll be the list of l-bit strings in Gray code order. L0 is the
empty list. Ll can be constructed recursively by:

• Let L0
l−1 be the list obtained by prefixing every element

of Ll−1 with an additional 0.
• Let Ll−1

1
be the list obtained by prefixing every element

of the list Ll−1, in reverse order, with an additional 1.
• Ll is the concatenation of L0

l−1 and Ll−1
1
.

By construction therefore, the 2l entries for an l-bit Gray
code will be identical to the first 2l entries for an (l + 1)-bit
Gray code; we use this property below.

We prove by induction on l that the property of Theorem 2
holds for all l-bit integers s. When l = 0, Ll is the empty
list, and the property we seek to prove is vacuously true.
Suppose the property of Theorem 2 holds for all strings on
the list Ll−1. By construction of Ll, we know the property
must also hold for the first 2l−1 items on Ll. Suppose then,
that s ≥ 2l−1. Let s′ = 2l − 1 − s. Then the property of
Theorem 2 holds for the string that has Gray code rank s′,
since it is by its definition less than 2l−1.

But, again by construction of the Gray code lists Ll from
Ll−1, the first l− 1 bits of the strings with ranks s and s′ are
identical, while the most-significant bits, sl and s′l, of these
corresponding strings, have the relation

sl = 1 + s′l.

At the same time, the binary representations of the integers
s and s′ have the relation

si ≡ 1 + s′i (mod 2) (i = 0, . . . , l − 1),

and the property of Theorem 2 continues to hold for all
strings on the list Ll. �
Proof (Serial transitions and Gray code).
The proof is a direct result of Theorem 2. Let g be the Gray
code representation for l-bit integer s. That is, g is the rank-s
l-bit Gray code. The number of 1s in g, #1(g), is

#1(g) =
l−1∑
i=0

gi

=
l−2∑
i=0

(si + si+1 (mod 2)) , from Theorem 2

=
l−2∑
i=0

(si ⊕ si+1) .

But this is exactly the #δ(s) from Definition 1. �
Property 1 (Bound on serial transition count difference).
For any two l-bit words s and t, the serial transition count
difference, ∆s,t is less than or equal to l − 1. �
Proof (Bound on serial transition count difference).
By construction, the serial transition count, #δ(s) for a non-
negative integer s, is a natural number. Therefore, the largest
serial transition count difference, will occur when either
#δ(s) is zero and #δ(t) takes on the maximum value in
the codomain of #δ(t), or vice versa. From Lemma 1, this
maximum value is l−1. Thus the maximum serial transition
count difference, ∆s,t is l − 1. �
Property 2 (Minimum and maximum deviation at maximum
serial transition count difference).
Let s and t be two l-bit words with l even, and let these words
have the maximal serial transition count difference, ∆s,t, of
l − 1. That is,

min
∆s,t=l−1

{|s− t|} = 1
3

(
2∆s,t+1 − 1

)
, (2)

and

max
∆s,t=l−1

{|s− t|} = 2
3

(
2∆s,t+1 − 1

)
. (3)

�
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Proof (Minimum and maximum deviation at maximum se-
rial transition count difference).
Follows directly from Corollary 1. �

For example, for l = 8, we have from Lemma 1 that
the maximal serial transition count difference is l − 1 = 7.
The minimum deviation between two words which have this
maximum serial transition count difference, from Property 2,
is 85. Therefore, to reduce the serial transition count of
an 8-bit word by 7 transitions, one cannot do so with a
replacement word that deviates from it by less than 85.

Appendix B Bounds on Serial Transition
Count Reduction

The bounds of Property 2 are only specified for the case of
maximal changes in serial transition count, not for any ar-
bitrary reduction in serial transition count. General bounds
across all possible values of serial transition count reduction
are desirable, because they would enable us to answer ques-
tions such as:

• By how much can serial transition counts differ for a
given value deviation? This will be captured by Defini-
tion 4 and Theorem 3 below.

• By how much can values differ for a given difference in
serial transition count? This will be captured by Defini-
tion 5 below.

Definition 4 (Serial transition difference bound function).
Given an l-bit integer m, let f(m) be a function yielding the
amount by which the serial transition counts of two words s
and t can differ if |s− t| = m. That is,

f(m) = max
|s−t|=m

{∆s,t} . �

Why f(m) is important: The function f(m) is interest-
ing because, if one had an exact expression or tight bounds
for f(m), then an algorithm that searched for the serial-
transition-reducing encoding for a value s could terminate
as soon as it found a value t such that ∆s,t = f(m), since no
better value than t is possible.

Theorem 3 (Bound on f(m)).
The function f(m) of Definition 4, for any l-bit value, m
(with l even), is not monotone. The best linear monotone
bound on f(m) is f(m) ≤ l − 1 . �
Proof (Bound on f(m)).
Let s and t be two l-bit words, and let m be |s − t|, a
value in the domain of f . If m is 0, then s is identical
to t, and must have identical serial transition count, thus
#δ(s) = #δ(t) and therefore f(0) = 0. If m is 2l − 1,
then either s is 2l − 1 and t is zero, or vice versa. In both
cases, their serial transition counts are 0 by definition, that is
#δ(s) = #δ(t) = 0. Thus, when m is 2l − 1, f(m) = 0.

From Corollary 1 and Lemma 1, the maximum value of
f(m) is l − 1, and it occurs at two values, b̂1 and b̂2 from

f(m)

f(0) = 0
2l - 1

l - 1

f(m) is undefined 
in these regions

since m = 0 when s = t

m
f(2l - 1) = 0

1
3 (2l � 1) 2

3 (2l � 1)

(a) Illustration of f(m).

� �� ��� ��� ��� ���
�
�
�
�
�
�
�
�

�

�(�
)

(b) Numerical evaluation of f(m).

Figure 15. The function f(m) yielding the amount by which
the serial transition counts of two words s and t can differ if
s− t = m, is not monotone.
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(b) Numerical evaluation: g(d), ĝ(d).

Figure 16. At minimum serial transition count (STC) differ-
ence, d = 0, either s and t are identical, or they are different
but take on values s = 0 and t = 2l − 1 or vice versa.

Equation 1. Both b̂1 and b̂2 are greater than 0 and less than
2l−1. Since f(0) is 0, f(b̂1) is l−1, f(b̂2) is l−1, and f(2l−1)
is 0, it follows that f(m) is not monotone.

From Corollary 1 and Lemma 1, since there are two
values of m for which f(m) takes on its maximum value of
l − 1, it follows that the tightest linear bound on f(m) must
pass through these points. Thus the tightest linear bound on
f(m) is l − 1. �

Figure 15(a) illustrates several properties of f(m), and
Figure 15(b) shows an empirical exact enumeration of f(m)
across all possible 8-bit values.

Definition 5 (Value deviation bound functions).
Let g(d) be the minimum amount by which two integers s
and t can differ if their difference in serial transition count,
∆s,t, is d. Similarly, let ĝ(d) be the maximum amount by
which two integers s and t can differ if their difference in
serial transition count, ∆s,t, is d. That is

g(d) = min
∆s,t=d

{|s− t|} , and ĝ(d) = max
∆s,t=d

{|s− t|} .�

Figure 16(a) illustrates several properties of g(d) and
ĝ(d), and Figure 16(b) shows an empirical exact enumera-
tion of g(d) and ĝ(d) for 8-bit values.
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Figure 17. Mean reduction in serial transition count and
increase in average observed value deviation versus tolerable
deviation, for 8-bit words and tolerable deviation from 0–51.
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Figure 18. Mean reduction in serial transition count and
increase in average observed value deviation versus tolerable
deviation, for 8-bit words and tolerable deviation of 0–255.

Appendix C Details of Numerical Study
Section 4 presented a numerical evaluation of the behavior
of VDBS encoders for 8- and 16-bit values. The behavior
for other word sizes, presented next, follows a similar trend
across the different Pareto-optimal encoders and the Rake
encoder.

C.1 Behavior across all possible 8-bit values
Figure 17 and Figure 18 show the reduction in serial transi-
tion count and increase in average observed value deviation,
as a function of the tolerable deviation for both the ideal and
practical VDBS encoders.

In both figures, we observe that even at low values of tol-
erable deviation (e.g., tolerable deviations of less than 10%
of the full-scale range of values), the reduction in serial tran-
sitions is significant, and is a reduction of over 60% for the
Rake encoder. The Rake encoder also performs close to the
optimal transition-reducing encoder, and far outperforms the
basic VDBS encoder. Figure 19, Figure 20, and Figure 21
provide more detailed insight into the distribution of transi-
tion reduction and incurred deviation as functions of tolera-
ble deviation.

C.2 Behavior across all possible 13-bit values
For 13-bit words, Figure 22, Figure 23, Figure 24, Figure 25,
and Figure 26 show the reduction in serial transition count
and increase in average observed value deviation, as a func-

(a) Basic VDBS encoder. (b) Basic VDBS encoder.

(c) Rake encoder. (d) Rake encoder.

(e) e4(s,m) encoder. (f) e4(s,m) encoder.

(g) e1(s,m) encoder. (h) e1(s,m) encoder.

(i) e3(s,m) encoder. (j) e3(s,m) encoder.

(k) e2(s,m) encoder. (l) e2(s,m) encoder.

Figure 19. Distribution of actual deviation and serial transi-
tion count (STC) reduction percentage, across all basis val-
ues, over the range of tolerable deviations, for 8-bit words
and tolerable deviation from 0–255. The percentage actual
deviation is a measure of relative error, as opposed to abso-
lute error. The definition of the e2(s,m) encoder targets the
largest actual value deviation smaller or equal to the tolera-
ble deviation. For a given original value therefore, the per-
centage actual deviation may be greater than 100%.
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(a) e4(s,m) encoder.
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(b) e1(s,m) encoder.

◒ ◒ ◒ ◒ ◒ ◒ ◒ ◒ ◒ ◒◓

◓

◓

◓

◓

◓

◓

◓

◓

◓

� ��� ��� ���
�

��

���

���

���

���

��������� ��������� (% ���)

�
��
��

��
��

��
���

�

1

100
28 - 1max

(c) e3(s,m) encoder.
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(d) e2(s,m) encoder.
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(e) Basic VDBS encoder.
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(f) Rake encoder.
  Legend:    ◒ : Minimum    ◓ : Maximum    ● : Mean    (Error bars: Standard Deviation)

Figure 20. Actual value deviation versus tolerable deviation
for 8-bit words and tolerable deviation from 0–255.

tion of the tolerable deviation for both the ideal and practical
VDBS encoders.

The absolute value of tolerable deviation is the same
as shown previously for 8-bit values, and is a maximum
absolute value of tolerable deviation of 51 in Figure 22, and
a maximum absolute value of tolerable deviation of 255 in
Figure 23 to Figure 24. As a percentage of the full-scale
range of 13-bit values however, these tolerable deviations
correspond to 0.62 and 3.1% respectively.

For larger word sizes, one could in principle explore toler-
ating larger absolute values of deviations. Larger word sizes
are however employed specifically to provide higher preci-
sion; we therefore only explore maximum absolute values of
tolerable deviation in the ranges of 0–51 and 0–255.

C.3 Behavior across all possible 16-bit values
For 16-bit words, Figure 27, Figure 28, Figure 29, and Fig-
ure 30 show the reduction in serial transition count and in-
crease in average observed value deviation, as a function of
the tolerable deviation for both the ideal and practical VDBS
encoders.
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(b) e1(s,m) encoder.
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(c) e3(s,m) encoder.
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(d) e2(s,m) encoder.
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(e) Basic VDBS encoder.
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(f) Rake encoder.
  Legend:    ◒ : Minimum    ◓ : Maximum    ● : Mean    (Error bars: Standard Deviation)

Figure 21. Serial transition count versus tolerable deviation
for 8-bit words and tolerable deviation from 0–255.
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  Legend:    ◇ : e4    ▿ : e3    � : e2    □ : e1    △ : Rake1    � : Basic VDBS

Figure 22. Mean reduction in serial transition count and
increase in actual deviation versus tolerable deviation for 13-
bit words and tolerable deviation from 0–51.
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  Legend:    ◇ : e4    ▿ : e3    � : e2    □ : e1    △ : Rake1    � : Basic VDBS

Figure 23. Mean reduction in serial transition count and
increase in actual deviation versus tolerable deviation for 13-
bit words and tolerable deviation from 0–255.
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(a) Basic VDBS encoder. (b) Basic VDBS encoder.

(c) Rake encoder. (d) Rake encoder.

(e) e4(s,m) encoder. (f) e4(s,m) encoder.

(g) e1(s,m) encoder. (h) e1(s,m) encoder.

(i) e3(s,m) encoder. (j) e3(s,m) encoder.

(k) e2(s,m) encoder. (l) e2(s,m) encoder.

Figure 24. Distribution of actual deviation and serial transi-
tion count (STC) reduction percentage, across all basis val-
ues, over the range of tolerable deviations, for 13-bit words
and tolerable deviation from 0–255. The percentage actual
deviation is a measure of relative error, as opposed to abso-
lute error. The definition of the e2(s,m) encoder targets the
largest actual value deviation smaller or equal to the tolera-
ble deviation. For a given original value therefore, the per-
centage actual deviation may be greater than 100%.
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(a) e4(s,m) encoder.
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(b) e1(s,m) encoder.
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(c) e3(s,m) encoder.
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(d) e2(s,m) encoder.
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(e) Basic VDBS encoder.
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(f) Rake encoder.
  Legend:    ◒ : Minimum    ◓ : Maximum    ● : Mean    (Error bars: Standard Deviation)

Figure 25. Actual value deviation versus tolerable deviation
for 13-bit words and tolerable deviation from 0–255.

C.4 Behavior across word sizes
For the same absolute value of tolerable deviation (say, 51),
we observe from the preceding figures for 8-, 13-, and 16-bit
values, that the reduction in serial transition count decreases
with increasing word size, although it still remains substan-
tial, at reductions of almost 40% for the practical Rake en-
coder given tolerable deviation of 51 (0.07% of full-scale
range for 16-bit values).
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(a) e4(s,m) encoder.
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(b) e1(s,m) encoder.
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(c) e3(s,m) encoder.
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(d) e2(s,m) encoder.
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(e) Basic VDBS encoder.
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(f) Rake encoder.
  Legend:    ◒ : Minimum    ◓ : Maximum    ● : Mean    (Error bars: Standard Deviation)

Figure 26. Serial transition count reduction versus tolerable
deviation for 13-bit words, tolerable deviation from 0–255.
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  Legend:    ◇ : e4    ▿ : e3    � : e2    □ : e1    △ : Rake1    � : Basic VDBS

Figure 27. Mean serial transition count reduction and actual
deviation, 16-bit words and tolerable deviation from 0–51.

���� ���� ���� ����
�

��

��

��

��

���

��������� ��������� (% ���)

�
��

�
��

��
���

�
(%

)

Alg+Simple

Alg+Runs+Aggressive

Search-A

Search-B

Search-C

Search-D

���� ���� ���� ����
�

��

���

���

���

���

��������� ��������� (% ���)

�
��

�
�
��
��

��
��

��
���

�

Alg+Simple

Alg+Runs+Aggressive

Search-A

Search-B

Search-C

Search-D

  Legend:    ◇ : e4    ▿ : e3    � : e2    □ : e1    △ : Rake1    � : Basic VDBS

Figure 28. Mean serial transition count reduction and actual
deviation, 16-bit words and tolerable deviation from 0–255.
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(a) e4(s,m) encoder.
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(b) e1(s,m) encoder.
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(c) e3(s,m) encoder.
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(d) e2(s,m) encoder.
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(e) Basic VDBS encoder.
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(f) Rake encoder.

  Legend:    ◒ : Minimum    ◓ : Maximum    ● : Mean    (Error bars: Standard Deviation)

Figure 29. Actual deviation versus tolerable deviation for
16-bit words and tolerable deviation from 0–255.
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(a) e4(s,m) encoder.
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(b) e1(s,m) encoder.
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(c) e3(s,m) encoder.
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(d) e2(s,m) encoder.
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(e) Basic VDBS encoder.
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(f) Rake encoder.
  Legend:    ◒ : Minimum    ◓ : Maximum    ● : Mean    (Error bars: Standard Deviation)

Figure 30. Serial transition count reduction versus tolerable
deviation for 16-bit words, tolerable deviation from 0–255.
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(a) ENOB for word sizes up to
24 bits, for unencoded binary val-
ues (upper curve) and e4(s,m)-
encoded values with m = 10.
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(b) ENOB of 8-bit words, for un-
encoded binary values (upper curve)
and e4(s,m)-encoded values with
tolerable deviations of up to 255.
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(c) ENOB of 13-bit words, for un-
encoded binary values (upper curve)
and e4(s,m)-encoded values with
tolerable deviations of up to 255.

� �� ��� ��� ��� ���
�

�

��

��

��������� ���������� �

�
�
�
�

(d) ENOB of 16-bit words, for un-
encoded binary values (upper curve)
and e4(s,m)-encoded values with
tolerable deviations of up to 255.

Figure 31. The optimum transition-reducing encoder
(e4(s,m)) leads to a smaller effective number of bits
(ENOB) for encoded words, than unencoded words of the
same word size.

C.5 Effective number of bits for encoded values
Figure 31 shows the effect of word size and tolerable devi-
ation on the effective number of bits (ENOB) for the opti-
mal VDBS encoder that prioritizes transition reduction over
deviation reduction (e4(s,m)). Particularly for larger word
sizes, ENOB remains largely constant after an initial drop
for the first few values of tolerable deviation.

Figure 32 shows the trend in mean number of serial tran-
sitions as a function of word size. Combined with the trend
in transition reduction versus tolerable deviation seen pre-
viously for the ideal and practical VDBS encoders, there is
more reduction in transition count of the output of VDBS en-
coders with increasing tolerable deviation (Figures 18, 23,
28), than there is reduction in transitions from reduced bit
width alone for unencoded values.

Figure 33, Figure 34, and Figure 35 show the reduction
in serial transition count as a function of the ENOB for
unencoded words, as well as for values encoded by the ideal
e4(s,m) encoder that minimizes transitions. For unencoded
words, the reduction in serial transition count is shown both
when only considering the fact that shorter words lead to
fewer transitions on any associated clock interface, as well
as considering the effect of shorter words on within-word
transitions (as previously seen in Figure 32).
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Figure 32. For l-bit words, the mean number of serial tran-
sitions is (l − 1)/2.
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(a) Transition reduction in both
data and clock interfaces.
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(b) Transition reduction in only
clock interface.

Figure 33. Reduction in serial transition count compared
to unencoded 8-bit words, as a function of the ENOB for
both unencoded shorter words (M) and values encoded by
the ideal e4(s,m) encoder that minimizes transitions (◦).
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(a) Transition reduction in both
data and clock interfaces.
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(b) Transition reduction in only
clock interface.

Figure 34. Reduction in serial transition count compared
to unencoded 10-bit words, as a function of the ENOB for
both unencoded shorter words (M) and values encoded by
the ideal e4(s,m) encoder that minimizes transitions (◦).
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VDBS Encoding

Bitwidth Word and Clock Transition Reduction

(a) Transition reduction in both
data and clock interfaces.
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(b) Transition reduction in only
clock interface.

Figure 35. Reduction in serial transition count compared
to unencoded 13-bit words, as a function of the ENOB for
both unencoded shorter words (M) and values encoded by
the ideal e4(s,m) encoder that minimizes transitions (◦).
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Figure 36. Thumbnails of the 12 bitmap images used in the
evaluation.
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(a) Ideal e4(s,m) VDBS encoder
that prioritizes transition reduction.
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(b) Ideal e4(s,m) VDBS encoder
that prioritizes transition reduction.
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(c) Rake.

◒

◒

◒

◒ ◒
◒

◒ ◒ ◒
◒

◒

◓

◓

◓

◓ ◓
◓

◓
◓ ◓ ◓

◓

� � � �

��
��
��
��
��
��
��

��������� ��������� (% ���)

�
��

�
��

��
���

�
(%

)

(d) Rake.
  Legend:    ◒ : Minimum    ◓ : Maximum    ● : Mean    (Error bars: Standard Deviation)

Figure 37. Reduction in serial transition count as a function
of tolerable deviation, across the set of 12 test images from
Figure 36.

C.6 VDBS encoding on image data
Figure 36 shows the set of 12 reference images used to evalu-
ate the visual effect of VDBS encoding. Figure 37 shows the
reduction in serial transition count across this set of images,
as a function of the tolerable deviation. Figure 38 shows de-
tails of the effects of VDBS encoding for a representative
subset of the images.

C.7 Encoding camera data in a text-recognition system
Figure 39 shows the set of text images used as input. Fig-
ure 40 shows the full data set for the effect of VDBS en-
coders on the end-to-end OCR application from Section 5.1.

C.8 Encoding accelerometer data in a pedometer system
Figure 41 and Figure 42 show details of the effect of VDBS
encoders on the end-to-end pedometer application from Sec-
tion 5.2. The figures illustrate the effect of encoding on the
internal data representation in the pedometer application, as
the data proceeds through signal processing stages.

(a) VDBS encoding with tolerable deviation of 1% of dynamic range, applied
to 10-bit grayscale image.

(b) From left to right: Original image, e4(s,m) encoded, Rake encoded,
e4(s,m) image difference, Rake image difference.

(c) From left to right: Original image, e4(s,m) encoded, Rake encoded,
e4(s,m) image difference, Rake image difference.

(d) From left to right: Original image, e4(s,m) encoded, Rake encoded,
e4(s,m) image difference, Rake image difference.

(e) From left to right: Original image, e4(s,m) encoded, Rake encoded,
e4(s,m) image difference, Rake image difference.

(f) From left to right: Original image, e4(s,m) encoded, Rake encoded,
e4(s,m) image difference, Rake image difference.

(g) From left to right: Original image, e4(s,m) encoded, Rake encoded,
e4(s,m) image difference, Rake image difference.

(h) VDBS encoding with tolerable deviation of 3 % of dynamic range, applied
to 8-bit per channel RGB color image. Since VDBS encoding leads to a slight
reduction in the effective number of bits used to encode values (Section 4.2),
there is visible “staircase” distortion in regions with smooth gradients.

Figure 38. VDBS encoding with tolerable deviation of: (a)
1 % of dynamic range, applied to 10-bit grayscale; (b)–(h) :
tolerable deviation of 3 % of dynamic range, applied to 8-bit
per channel RGB color image.
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Figure 39. 392 image subset from the ICDAR text recognition dataset [24] used in evaluation. This is the subset for which
Tesseract [14] correctly reports OCR text identical to the benchmark-supplied ground truth.
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(a) Transition reduction, all inputs.
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(b) Mean reduction in serial transi-
tions across all 392 text image inputs.
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(c) OCR error, all inputs.
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(d) Average OCR accuracy across all
392 text image inputs.

  Legend:    ◒ : Minimum    ◓ : Maximum    ● : Mean    (Error bars: Standard Deviation)

Figure 40. Rake reduces serial transitions by 55 % on average (a, b) while maintaining OCR accuracy of previously-correctly-
recognized text at over 90 % (c, d).
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(a) X-axis accelerometer samples.
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(b) Y-axis accelerometer samples.
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(c) Z-axis accelerometer samples.
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(d) All axes, low-pass filtered.
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(e) Maximum-activity axis per 500 ms window.
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(f) Maximum-activity axis, low-pass filtered.
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(g) Maximum-activity axis and thresholds.

Figure 41. Unencoded accelerometer data as it progresses
through pedometer algorithm stages for data from user 2
from the WISDM dataset [9]. The algorithm reports 19 steps.
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(a) X-axis accelerometer samples.
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(b) Y-axis accelerometer samples.
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(c) Z-axis accelerometer samples.
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(d) All axes, low-pass filtered.

� � � � �
�

�

��

��

��

���� (�������)

�
��

��
��
��
��
�

([
-
��

��
]�
��

≡
��

)

(e) Maximum-activity axis per 500 ms window.
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(f) Maximum-activity axis, low-pass filtered.
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(g) Maximum-activity axis and thresholds.

Figure 42. Rake encoded accelerometer data as it pro-
gresses through pedometer algorithm stages for user 2 of
WISDM dataset [9]. The algorithm reports 20 steps (5.26%
error). The reduction in serial transitions is however 54.38%.
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