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Abstract: In collider physics, jet algorithms are a ubiquitous tool for clustering particles

into discrete jet objects. Event shapes offer an alternative way to characterize jets, and

one can define a jet multiplicity event shape, which can take on fractional values, using the

framework of “jets without jets”. In this paper, we perform the first analytic studies of

fractional jet multiplicity Ñjet in the context of e+e− collisions. We use fixed-order QCD to

understand the Ñjet cross section at order α2
s, and we introduce a candidate factorization

theorem to capture certain higher-order effects. The resulting distributions have a hybrid

jet algorithm/event shape behavior which agrees with parton shower Monte Carlo gener-

ators. The Ñjet observable does not satisfy ordinary soft-collinear factorization, and the

Ñjet cross section exhibits a number of unique features, including the absence of collinear

logarithms and the presence of soft logarithms that are purely non-global. Additionally,

we find novel divergences connected to the energy sharing between emissions, which are

reminiscent of rapidity divergences encountered in other applications. Given these inter-

esting properties of fractional jet multiplicity, we advocate for future measurements and

calculations of Ñjet at hadron colliders like the LHC.
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1 Introduction

For almost forty years, we have known that high energy particle collisions can produce

jets [1, 2]. The term “jets” has two related but different meanings: “jet formation” is

the physical process by which quarks and gluons shower and fragment into collimated

sprays of hadrons [3], while “jet algorithms” are an analysis technique used to cluster those

hadrons into proxies for the underlying quarks and gluons [4]. Jet algorithms are a powerful

way to categorize and organize collision events [5, 6], but event shapes (and jet shapes)

offer a more sensitive probe of jet formation itself [7]. Indeed, though the observation of

three-jet structure in e+e− collisions strongly hinted at the existence of gluons [8, 9], an

unambiguous discovery at PETRA [10–13] required the use of event shapes like thrust [14]

and oblateness [11].

Recently, the distinction between jet algorithms and event shapes was blurred through

the “jets without jets” framework, in which standard jet-based observables are mapped into

jet-like event shapes [15]. These observables incorporate a transverse momentum threshold

pT cut and a jet radius R just like traditional jet algorithms, but they behave more like event

shapes because they involve an inclusive sum over particles in an event and do not uniquely

assign hadrons to jet objects. A particularly interesting jets-without-jets observable is jet

multiplicity,

Ñjet(pT cut, R) =
∑

i∈event

pT i
pT i,R

Θ(pT i,R − pT cut), (1.1)

where pT i,R is the transverse momentum contained in a cone of radius R around particle

i. By design, this observable is highly correlated with the standard jet count (for the same

pT cut and R values). Crucially, Ñjet can yield fractional values, offering a new probe of jet

formation.

In this paper, we initiate the analytic study of fractional jet multiplicity. For simplicity,

we treat the case of e+e− → jets, though we briefly mention how to adapt our calculational

techniques to collisions at the Large Hadron Collider (LHC). With two or three partons in

the final state (e+e− → qq or qq̄g), Ñjet always yields an integer value. Fractional jets only

start appearing with four or more partons (e.g. e+e− → qqgg), so our analytic calculations

will start at O
(
α2
s

)
. This is a general feature of fractional jets: non-integer values only

appear with three or more particles in a given jet region.1 Our main technical results will

be obtained using fixed-order perturbative QCD, though we will also discuss connections

to factorization properties in soft-collinear effective theory (SCET) [16–20].

We will focus on the behavior of Ñjet in the vicinity of dijet configurations,

∆2+ = Ñjet − 2, ∆2− = 2− Ñjet, (1.2)

though we do present some results for ∆3− = 3− Ñjet as well. This near-integer behavior

exhibits a number of curious analytic features, which are already visible at O
(
α2
s

)
.

• Hybrid jet algorithm/event shape behavior. Jet algorithms have a finite cross section

at (integer) jet multiplicities whereas event shapes typically have form factors that

1For e+e− collisions in the rest frame, momentum conservation prevents all particles from being in the

same jet region. Hence four partons are required for non-integer values.
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suppress the cross section at singular values. The Ñjet distribution has both types

of behavior. Even though the Born-level process e+e− → qq gives the integer value

Ñjet = 2, one might naively expect the corresponding spike at ∆2± = 0 to be com-

pletely smeared out by multiple emissions that generate finite values of ∆2±. Instead,

the spike at ∆2± = 0 is robust, as there is a finite region of the many-body phase

space that still gives rise to integer values of Ñjet. At the same time, the appearance

of logarithms in ∆2± at every perturbative order generates a shoulder at finite values

of ∆2±, which is suppressed as ∆2± → 0. Thus, the cross section at exact-integer

values of Ñjet behave like a jet algorithm while near-integer values behave like an

event shape (see section 2.1).

• Cancellation of single- and double-soft divergences. The first non-trivial contribu-

tions to non-integer behavior of Ñjet arise from configurations where three partons are

within a mutual radius of 2R but not within R (see section 2.2). For ∆2+, this three-

parton phase space has singularities when one or two of the partons goes soft. These

divergences arise because the observable receives parametrically equivalent contribu-

tions from the single- and double-soft regions, which are not regulated in dimensional

regularization. Interestingly, these divergences are structurally similar to rapidity di-

vergences, and we will introduce the analog of rapidity regularization [21, 22] to

see that the single-soft and double-soft divergences do indeed cancel (see section 3).

We note that soft emissions contribute in a non-linear way, and therefore Ñjet is a

non-additive observable.

• No collinear logarithms. Typical event shapes have singularities in both the soft

and collinear limit, giving rise to both soft and collinear logarithms. The resulting

double-logarithmic structure appears as Sudakov form factors in the cross section.

By contrast, collinear emissions do not generate logarithms of Ñjet, and only soft

logarithms appear in the Ñjet distribution (see section 2.2).2 Thus, the suppression

in the ∆2± → 0 limit is only single-logarithmic.

• Non-global yet local structure. The ∆2± cross section does not satisfy ordinary soft-

collinear factorization, because the coefficients of the soft logarithms depend on the

collinear structure of the jets (despite the absence of collinear logarithms). Further-

more, the soft logarithms in Ñjet are purely non-global [26, 27], in the sense that they

arise from soft emissions in a restricted region of phase space (see section 2.3).3 These

features would seem to preclude any standard factorization theorem, especially given

the non-additive nature of Ñjet. In order to change the value of Ñjet, however, soft

emissions must lie within . 2R from the hard core of the jet. Thus, color coherence

ensures that the dependence on ∆2±, albeit non-global, is local to each jet region.

We will present a candidate factorization theorem that exploits this local structure

(see section 5).

2Mass-dropped observables [23–25] have the reverse behavior of only having collinear logarithms.
3As explained in section 2.3, our use of the term “non-global” can refer to both non-Abelian and Abelian

correlations.
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In addition to analytic studies, we will test Ñjet using high-statistics Monte Carlo samples

from Pythia 8 [28] and Herwig++ [29]. Within theoretical uncertainties, the Monte

Carlo results confirm our analytic understanding.

Given its many features and potential applications, Ñjet would be very interesting to

measure at the LHC. As mentioned above, Ñjet is a purely non-global observable, with

the near-integer behavior determined only by soft and not by collinear divergences. To

our knowledge, it is the only jet or event shape observable with this behavior. As such,

it is a unique probe of soft physics, and measurements of Ñjet can be used to test color

coherence, underlying event models, and pileup mitigation strategies. Furthermore, Ñjet

is useful basis to compare parton shower predictions for jet substructure, and we present

an initial comparison in this work. For new physics searches involving high-multiplicity

final states, fractional Ñjet values interpolate between different jet multiplicities, obviating

the need for exclusive jet bins. This interpolation also makes for an interesting version of

the classic “staircase” plots for vector boson plus N jet production [30–38]. Finally, for

the growing field of matrix element/parton shower matching/merging [39–50], Ñjet has a

continuous distribution unlike standard jet algorithms and a huge dynamic range compared

to standard event shapes, so Ñjet can be used to test whether matching/merging procedures

achieve a smooth interpolation, even in the soft regime. We note, of course, that theoretical

calculations of Ñjet for hadronic collisions must contend with additional effects such as the

underlying event and pileup contamination. Moreover, it will be non-trivial to include non-

perturbative effects, power-suppressed terms, and higher-order perturbative effects such as

the resummation of non-global logarithms [26, 27, 51–54]. Although a detailed study of

Ñjet for the LHC is beyond the scope of this paper, we briefly discuss some of these issues

and potential solutions in section 6.

The rest of this paper is organized as follows. In section 2, we review the basic physics

behind Ñjet and explain the kinematic regimes that give rise to fractional jets. In section 3,

we discuss the structure of rapidity-like divergences and how they appear in the Ñjet calcu-

lation. In section 4, we perform fixed-order calculations of ∆2± at O
(
α2
s

)
, using both the

full e+e− → 4 parton matrix element as well as a 1→ 3 splitting function approximation.

We then present a candidate factorization theorem for ∆2± in section 5, which includes

a renormalization-group-independent “collinear function”. In section 6, we briefly discuss

how to extend our results to the LHC. We compare our analytic calculations to Pythia 8

and Herwig++ in section 7, and we conclude in section 8. The appendices contain further

calculational results and details.

2 Aspects of fractional jets

Since we will be looking at electron-positron collisions, it is more natural to work with a

variant of Ñjet based on energies and angles (instead of transverse momenta and azimuth-

rapidity distances):

Ñjet(Ecut, R) =
∑

i∈event

Ei
Ei,R

Θ(Ei,R − Ecut), (2.1)

– 4 –
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where Ei is the energy of particle i,

Ei,R =
∑

j∈event

Ej Θ(R− θij), (2.2)

and θij is the opening angle between particles i and j.

For particles whose angular separation is always larger than R, Ei/Ei,R reduces to

1, and Ñjet simply counts the number of hard particles above the energy threshold Ecut.

Because Ñjet is an infrared/collinear (IRC) safe observable, Ñjet always takes on integer

values in the extreme soft and collinear limit. We will use the notation

∆n± = ±(Ñjet − n) (2.3)

to indicate the near-integer behavior, with ∆n+ (∆n−) parameterizing the Ñjet behavior

just above (below) n. Our calculations will focus on ∆2± and ∆3− in e+e− collisions.

2.1 Hybrid jet algorithm/event shape behavior

The Ñjet distribution is peaked at integer values, with substantial support in the near-

integer regime. These different parts of the Ñjet distribution can be qualitatively studied

with Monte Carlo generators.4 We generate events for e+e− → hadrons at a center-of-

mass energy of Q = 500 GeV in Pythia 8.183 [28] and Herwig++ 2.7.1 [29], including

showering and hadronization. In figure 1a, we plot the distribution of Ñjet across a wide

range of values, showing the circus-tent-like peak and fall-off behavior of the cross section.5

In figure 1b, we focus on the distribution in the range 2 . Ñjet . 3, which is the region

we aim to quantitatively describe in this paper. In figure 2, we plot the Ñjet distribution

in a “triptych” form that shows in more detail the near-integer behavior in ∆2−, ∆2+, and

∆3−, in particular the logarithmic enhancement as ∆n± → 0.

As mentioned in the introduction, the cross section at exact integer values has a differ-

ent behavior than at near-integer values, a feature related to the hybrid jet algorithm/event

shape nature of the observable. Like a jet algorithm, the cross section at integer values

Ñjet = n has a non-zero value. Like an event shape, the non-integer cross section is sup-

pressed by all-orders emissions as Ñjet → n. The behavior can be seen in figure 3, where

we plot the distribution in the very near vicinity of Ñjet = 2.

The reason why integer values Ñjet = n have a finite cross section is that they receive

contributions from regions of phase space with non-zero measure. This can be seen easily at

O(αs) for e+e− → qqg, where the entire cross section lies at Ñjet = 2 or 3. More generally,

any collection of particles within a mutual radius of R will give an integer contribution to

4The original Ñjet variable in eq. (1.1) is available through the JetsWithoutJets package, an add-on

to FastJet 3 [55] contained in the FastJet contrib library (http://fastjet.hepforge.org/contrib/). The

variant in eq. (2.1) is available from the authors upon request.
5The peak at Ñjet = 1 in Pythia 8 seems to arise from events with τ leptons produced in hadron decays,

where the resulting neutrinos carry away a substantial fraction of the jet momentum. The same feature is

not visible in Herwig++, nor is it visible when hadronization effects are turned off in Pythia 8.

– 5 –
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Figure 1. The Ñjet distribution in e+e− collisions from Pythia 8 and Herwig++, over a wide

range of multiplicities (left plot) and for 2 . Ñjet . 3 (right plot). The distribution peaks at integer

values, and near-integer values are enhanced relative to intermediate values between integers. It is

this enhancement that we will understand quantitatively through our calculations.
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Figure 2. The same Ñjet distributions as figure 1, now plotted in “triptych” form to show the

near-integer behavior in ∆2−, ∆2+, and ∆3−. Note that the ∆2− and ∆3− axes run backwards.

The ∆2− and ∆2+ distributions interface at Ñjet = 2 (where ∆2± = 0), indicated by the left-hand

dashed vertical line. Since we do not plot ∆2± all the way to 0, we put a gap over the region around

Ñjet = 2. The ∆2+ and ∆3− distributions are connected at Ñjet = 2.5 (where ∆2+ = ∆3− = 0.5),

indicated by the right-hand dashed vertical line.
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Figure 3. The same Ñjet distributions as figure 1, now plotted in the very near vicinity of Ñjet = 2.

Note the scale on the x-axis and the fact that the y-axis is logarithmic on the left plot but linear

on the right one. At Ñjet = 2, there is a spike in the distribution from the jet algorithm behavior of

the fractional jet multiplicity. At non-integer values, the continuous distribution is more similar to

event shapes. We show the near-integer values in two different ranges, and for the closer range (right

plot) one can see bumps in the Monte Carlo distributions from multiple emission and hadronization

effects.

Ñjet.
6 This means that the differential distribution at integer values has the form

dσ

dÑjet

(Ñjet = n) ∝ δ(n) . (2.4)

In contrast, the distribution for near-integer values ∆n± > 0 is dominated by logarithms

of ∆n±. We will later show that the logarithms of ∆n± arise from soft emissions, and

the most important terms scale single logarithmically as (αs ln ∆n±)k. These logarithms

combine at all orders to suppress the cross section as ∆n± → 0, leading to the disjoint

behavior at integer Ñjet. Note that single-logarithmic suppression is not as strong as the

more familiar double-logarithmic suppression, so there are no Sudakov peaks in the ∆n±
distributions.

2.2 Soft and collinear limits of fractional jets

To understand the leading near-integer behavior of Ñjet, we can focus on the soft and

collinear limits. As discussed further in section 5, the all-orders structure of the cross

section does not satisfy standard soft-collinear factorization, but a soft-collinear analysis is

still fruitful at fixed order. The essential physics appears already in the three-parton phase

space, where the near-integer behavior is dominated by soft physics. We will focus on a

6Regions within mutual radius R are bounded by curves of constant width R. A circle of radius R/2

is the simplest example, but there are more general examples like the Reuleaux triangle or the Canadian

loonie.
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Figure 4. Schematic representation of the different phase space configurations with three merged

partons. The numbered line shows the corresponding range of Ñjet. Here, we are considering just

a single jet region; an e+e− → dijet event has two such jet regions. Circles represent cones of

radius R, large blue dots represent energetic partons, and small red dots represent soft partons

with z < zcut. The near-integer regions ∆1−, ∆1+, and ∆2− get contributions from single- and/or

double-soft emissions.

single jet region here; to describe e+e− → dijets, we sum over the contributions to Ñjet

from both jet regions (see eq. (5.2)).

We call a group of particles merged if their contribution to Ñjet is connected, such that

removing a subset of particles affects the contribution to Ñjet from other particles. For a

single isolated particle, its contribution to Ñjet is 1. For a merged pair of particles with

separation less than R, one still obtains an integer value of Ñjet:

Ñjet =
E1

E1 + E2
+

E2

E1 + E2
= 1. (2.5)

Because a single soft/collinear emission does not contribute to the value of Ñjet, it is not

linear in soft and collinear momenta in the singular region of phase space, and hence it is

a non-additive observable.

Now consider three merged partons. As shown in figure 4, there are various different

phase space configurations that lead to different values of Ñjet. To achieve non-integer

values, one needs a phase space configuration with

θ12 > R , θ13, θ23 < R, (2.6)

or permutations of the parton labels. If all Ei > Ecut, then the contribution to the jet

multiplicity is

Ñjet =
E1

E1 + E3
+

E2

E2 + E3
+

E3

E1 + E2 + E3
∈ (1, 2) . (2.7)

In terms of energy fractions

zi ≡
Ei

E1 + E2 + E3
, z1 + z2 + z3 = 1 , zcut ≡

Ecut

E1 + E2 + E3
, (2.8)

– 8 –
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which removes the overall energy scale of the jet as a degree of freedom, the observable

takes the value

Ñjet =
z1

z1 + z3
+

z2

z2 + z3
+ z3 . (2.9)

For this merged triplet, near-integer behavior is obtained when one or two of the

partons goes soft, as shown in figure 4. In these soft limits, the observable may depend on

a single soft momentum or a product of soft momenta. For example, if particle 1 is soft,

Ñjet −−−−→
z1� 1

1 + z1
z2(2− z2)

1− z2
+O

(
z2

1

)
. (2.10)

Or, if particles 1 and 2 are both soft,

Ñjet −−−−−→
z1,2� 1

1 + 2z1z2 +O
(
z3

1,2

)
. (2.11)

The first case is typical of event shape observables, as the near-integer behavior is linear

in the soft particle’s energy. The second case, however, is unusual — it goes as the product

of soft momenta, another demonstration of the non-additive nature of Ñjet. This feature

creates a novel structure in the perturbative series, reminiscent of rapidity divergences in

SCETII [21, 56]. We discuss this further in section 3, using a toy observable ∆ = z1z2 that

exhibits the same analytic features.

With more emissions, near-integer behavior requires the soft limit of one or more

particles.7 As mentioned above, an arbitrary collection of energetic particles will yield an

integer Ñjet if the particles can be grouped into merged clusters where each particle in the

cluster is within R of all other particles in the cluster (such that each cluster has Ñjet = 1).

Non-integer values are obtained when this is not satisfied (as in the merged triplet example

above), though generically the resulting values are far from integers. Near-integer values

are obtained by starting from an integer Ñjet configuration and then adding any number

of soft particles which are not within the mutual radius R of the cluster. The contribution

of these soft particles to Ñjet will be suppressed by

Esoft

Esoft,R
, (2.12)

and the deviation of Ñjet from integer values is similarly suppressed by this ratio as long

as Esoft,R > Ecut. In this way, the near-integer behavior is determined by soft emissions in

the vicinity of hard clusters, and soft emissions will generate logarithms of ∆n±.

By contrast, collinear splittings cannot generate near-integer behavior of Ñjet and hence

do not generate logarithms of ∆n±. For collinear splittings of angle Rc, the only effect on

Ñjet comes from particles who are within R of either of the two daughters or the parent,

but not within R of all three. For small Rc, this is a power-suppressed region of phase space

and not logarithmically enhanced. Said another way, the effect on Ñjet from a small-angle

splitting is not smooth, as it either preserves the value of Ñjet or discretely changes it by

7We are neglecting special configurations of energetic particles where the value of Ñjet happens to be

near-integer, since those regions of phase space are power suppressed.

– 9 –
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including or excluding particles from the various Ei,R terms; this behavior cannot generate

logarithms of ∆n±. So unlike standard jet shapes (like jet mass) which depend on both

the softness and collinearity of a splitting, the near-integer Ñjet value depends only on the

softness of emissions.

2.3 Non-global yet local structure

We have argued that soft emissions contribute to near-integer values of Ñjet, but this is

only the case if the soft emissions lie within a restricted phase space of size . 2R around

the jet. Wide-angle soft radiation does not contribute to Ñjet, since those emissions yield

Ei,R < Ecut.
8 This angular restriction on soft radiation produces non-global logarithms of

∆n±, which are logarithms that arise from emissions in a restricted angular region of phase

space [26, 27].

At leading order, non-global logarithms are often associated with correlated soft emis-

sions from non-Abelian matrix elements and are therefore proportional to CFCA. For the

case of fractional jet multiplicity, however, the measurement itself introduces a correla-

tion between different emissions, and this effect appears for both non-Abelian and Abelian

matrix elements. As we discuss in detail in section 4.1, the allowed phase space for a soft

emission to change Ñjet depends on the phase space of other soft emissions and on the phase

space of the hard partons, similarly to what happens for clustering logarithms [57–60]. In

this regard, all soft logarithms of Ñjet, including those proportional to C2
F , can be consid-

ered non-global.

Moreover, the fact that the allowed phase space for soft emissions to change Ñjet de-

pends on the phase space of the hard partons means that one cannot consider how Ñjet

depends on soft emissions without also considering collinear emissions, and vice versa. Be-

cause the contributions to Ñjet from soft and collinear emissions are inextricably linked,

we will show in section 5.2 that Ñjet does not obey standard soft-collinear factoriza-

tion [19, 61–63]. As mentioned above, collinear emissions by themselves do not generate

logarithms of Ñjet, but they do alter the allowed phase space for soft radiation within a

jet region. Thus, collinear emissions will modify the coefficients of soft logarithms of Ñjet,

which is a sign of collinear-soft non-factorization.

While the ∆n± dependence is non-global, it is also local to each jet. Emissions affecting

Ñjet are restricted to an angular region of . 2R around each jet direction. Additional

emissions away from all jets can also create their own jets, changing Ñjet by an integer or

near-integer amount, but an emission far from all jets cannot change Ñjet by a small amount.

Because of color coherence, this implies that the contribution to Ñjet from a given jet is, to

leading power, independent of all other jets in the event.9 The Ñjet distribution is therefore

a sum of contributions from jet regions that are to a good approximation independently

determined. We will formalize this “local” factorization structure in section 5.4, and see

how it could simplify LHC calculations in section 6.

8As discussed in section 5.4, wide-angle soft radiation does affect the cross section at a fixed value of

Ñjet, just not the Ñjet value itself.
9Color coherence states that emissions collinear to a given jet and well-separated from all other jets are

only sensitive to the kinematics and color of that jet and the anti-color of the jet, i.e., the color of all other

jets in the event [64].
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1 soft, 2 collinear
sc

1 soft, 2 soft

ss

1 collinear, 2 soft

cs

Λ
2

Λ 1
z1

Λ
2

Λ

1

z2

Figure 5. The single- and double-soft modes depicted in the z1-z2 plane for the simplified observ-

able ∆ = z1z2 (similar to ∆2+). We assign the power counting ∆ ∼ λ2. In the case with only

one soft particle, the soft energy scales as λ2, whereas in the case with two soft particles, the soft

energies scale as λ. These modes are connected by the hyperbola shown, which can be thought of

as tracing out the rapidity in the energies of the two partons (see eq. (3.1)). In our calculation, we

encounter divergences in this rapidity variable for each mode depicted. This picture has a strong

analog in the divergences in physical rapidity of single particles in SCETII.

3 Rapidity-like divergences

As mentioned in section 2.2, the calculation of Ñjet at O(α2
s) features divergences not

regulated by dimensional regularization (dim reg) when the calculation is divided into

unique soft limits. These divergences have a strong resemblance to rapidity divergences

in SCETII, where the large rapidities of soft and collinear modes in the effective theory

generate divergent integrals not regulated by dim reg [21, 22, 56]. The similar divergences

appearing in the Ñjet calculation are not from physical rapidities, but instead originate

from the energy sharing between particles and are easily cast in terms of a “rapidity” of

this energy sharing:

y =
1

2
ln
z1

z2
. (3.1)

In this section, we show how these divergences arise in the Ñjet calculation and how we

can adapt standard rapidity regulators to our case.

Instead of the complete Ñjet calculation, consider the simplified observable

∆ = z1z2 , (3.2)

where particles 1 and 2 are particles that may be soft. ∆ has the same soft scaling properties

as the near-integer behavior of Ñjet (see eqs. (2.10) and (2.11)), and the other complications

from the complete Ñjet calculation are irrelevant for the discussion here. Like ∆2+ to be

calculated in section 4.1, ∆ receives contributions from both single-soft and double-soft

regions of phase space. Also like ∆2+, ∆ is a non-additive observable that does not get a

linear contribution from each soft emission.

The interplay between the single- and double-soft limits is illustrated in figure 5. In

order to have a consistent power counting for ∆, we need to consider two different scalings
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of the soft modes. Let λ � 1 be the power counting parameter, with ∆ ∼ λ2. The phase

space regions with the same parametric contribution to ∆ are:

1 soft, 2 collinear (sc): z1 ∼ λ2 , z2 ∼ 1 ,

1 soft, 2 soft (ss): z1 ∼ λ , z2 ∼ λ ,
1 collinear, 2 soft (cs): z1 ∼ 1 , z2 ∼ λ2 . (3.3)

Thus, there are two types of soft modes — single-soft modes scale as λ2, whereas double-

soft modes scale as λ — and there is a unique soft power counting within each sector. This

relative scaling is the same as ultrasoft modes in SCETI (which scale as λ2) and soft modes

in SCETII (which scale as λ). This indicates that the calculation has contributions to the

observable from soft modes in both SCETI and SCETII. The “energy rapidity” variable y

in eq. (3.1) separates these phase space regions by measuring the relative energy sharing

between particles 1 and 2. Like an ordinary rapidity, the range is y ∈ (−∞,∞). The sc

region has z1 � z2 (y → −∞), the ss region has z1 ' z2 (|y| ' 1), and the cs region has

z1 � z2 (y →∞). Each of the sc/cs/ss sectors gives an independent contribution to the ∆

distribution at O(α2
s) which should be properly summed (i.e. one has to remove potential

double-counting). As we will now see, unbounded integrals in y produce divergences, not

regulated by dim reg.

In full QCD with dim reg in d = 4 − 2ε dimensions, the soft divergences of ∆ are

encapsulated by the integral

Ifull(∆) =

∫ 1

0

dz1

z1

dz2

z2
(z1z2)−2ε δ(∆− z1z2)

= ∆−1−2ε

∫ ∞
−∞

dyΘ

(
− 1

2
ln(1/∆) < y <

1

2
ln(1/∆)

)
=

1

4ε2
δ(∆)− L1(∆) Θ(∆ < 1) +O(ε) , (3.4)

where L1 is a logarithmic plus-function defined in eq. (B.3). If we take soft limits of the

phase space, where the boundaries scale as [0, 1]→ [0,∞], we get:

1 soft: Isc(∆) =

∫ ∞
0

dz1

z1

∫ 1

0

dz2

z2
(z1z2)−2ε δ(∆− z1z2)

= ∆−1−2ε

∫ ∞
−∞

dyΘ

(
− 1

2
ln(1/∆) < y

)
,

2 soft: Ics(∆) =

∫ 1

0

dz1

z1

∫ ∞
0

dz2

z2
(z1z2)−2ε δ(∆− z1z2)

= ∆−1−2ε

∫ ∞
−∞

dyΘ

(
y <

1

2
ln(1/∆)

)
,

1, 2 soft: Iss(∆) =

∫ ∞
0

dz1

z1

∫ ∞
0

dz2

z2
(z1z2)−2ε δ(∆− z1z2)

= ∆−1−2ε

∫ ∞
−∞

dy . (3.5)
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Each integral is divergent and unregulated, but the ∆ < 1 regime of full QCD is reproduced

by the combination10

Ifull(∆) =
[
Isc(∆) + Ics(∆)− Iss(∆)

]
Θ(∆ < 1). (3.6)

This result is as expected, since the double-soft limit should remove the double-counting of

the single-soft limits, even if each contribution is not well-defined individually. Note that

the unregulated divergences appear only in y.

This structure of divergences in y is identical to those in physical rapidities of single

particles in SCETII. These divergences may be handled in a number of ways, and we will use

the rapidity renormalization group (rapidity RG) [21, 22]. In the rapidity RG, divergences

are regulated analogously to dim reg, using a scale ν and infinitesimal parameter η that

correspond to the usual µ and ε in dim reg. At one loop, these regulator factors are [21, 22]

1 soft: Rscη =
( ν

EJ

)η
z−η2 =

( ν

EJ

)η
s−η/2eyη ,

2 soft: Rcsη =
( ν

EJ

)η
z−η1 =

( ν

EJ

)η
s−η/2e−yη ,

1, 2 soft: Rssη =
( ν

EJ

)η
|z1 − z2|−η =

( ν

EJ

)η
s−η/2|2 sinh y|−η , (3.7)

where s = z1z2, and EJ is the total jet energy such that zi = Ei/EJ . These regulators give

well-defined terms for each soft limit,

1 soft: Isc(∆) =

∫ ∞
0

dz1

z1

∫ 1

0

dz2

z2
(z1z2)−2ε δ(∆− z1z2)Rscη

= −
( ν

EJ

)η
∆−1−2ε 1

η
,

2 soft: Ics(∆) =

∫ 1

0

dz1

z1

∫ ∞
0

dz2

z2
(z1z2)−2ε δ(∆− z1z2)Rcsη

= −
( ν

EJ

)η
∆−1−2ε 1

η
,

1, 2 soft: Iss(∆) =

∫ ∞
0

dz1

z1

∫ ∞
0

dz2

z2
(z1z2)−2ε δ(∆− z1z2)Rssη

=
( ν

EJ

)η
∆−1−2ε−η/2

[
2

η
+O(η)

]
. (3.8)

Now the sum of contributions is independent of the rapidity regulator and matches the full

QCD results for ∆ < 1:[
Isc(∆) + Ics(∆) + Iss(∆)

]
Θ(∆ < 1) =

1

4ε2
δ(∆)− L1(∆) Θ(∆ < 1) +O(ε, η) = Ifull(∆) .

(3.9)

Comparing eq. (3.9) to eq. (3.6), we see that with the rapidity regulator, the full result

is reproduced by the sum of single- and double-soft contributions, instead of the difference.

10Note that outside this toy example, only the logarithms of ∆ in full QCD will be reproduced by the

soft limits, instead of the full ∆ < 1 result.
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This happens because the single- and double-soft limits produce canceling poles in the large

positive and negative rapidity regions. For example, the large rapidity limit is allowed in

both the sc and ss contributions, where the rapidity regulators scale as

1 soft: Rscη (y →∞) ∼ eyη ,
1, 2 soft: Rssη (y →∞) ∼ e−yη , (3.10)

which lead to canceling poles:

1 soft:

∫ ∞
0

dy eyη = −1

η
,

1, 2 soft:

∫ ∞
0

dy e−yη =
1

η
. (3.11)

Thus the cancellation of the large rapidity regimes happens at the level of the sum of

contributions, instead of the difference.

Not only does the rapidity RG make the various soft contributions well defined, but it

also separates the double-soft limit from the zero-bin subtraction (needed to remove double

counting [65]) of the single-soft limits.11 Because the rapidity regulators in the single- and

double-soft limits are not related by scaling in rapidities, the double-soft contribution is

not the zero-bin of the single-soft limit. In fact, the zero-bin limit is scaleless; the rapidity

regulator is unchanged in the zero-bin limit but now all rapidities are allowed, leading to

the scaleless integral [22] ∫ ∞
−∞

dy e±yη = 0 . (3.12)

In SCETII applications where the collinear and soft contributions to the distribution can

be factorized into separated jet/beam and soft functions, this factorization allows these

rapidity divergences to be divided into the collinear and soft functions and the resulting

logarithms to be resummed using standard techniques (see, e.g., [21, 22]).

The features of rapidity divergences in this simple example of ∆ repeat themselves in

the calculation of near-integer behavior of Ñjet (specifically, ∆2+) in section 4.1 below.

4 Calculating the near-integer behavior

As seen in figure 4, fractional values of Ñjet arise when radiation in a jet region extends

beyond a radius R. In particular, near-integer values of Ñjet come from soft radiation

beyond R, and the deviation from integer values grows as emissions become harder. In

this section, we study the leading-order near-integer behavior of Ñjet in e+e− → jets at a

center-of-mass energy of Q, which first occurs for e+e− → 4 partons.

Let ∆2± be the jet multiplicity near the 2-jet peak as defined in eq. (2.3); we take the

power counting ∆2± ∼ λ2, with λ� 1. We will first derive an analytic expression for the

cross section at leading order in λ (i.e. the singular contributions), including a discussion of

11In this case, the zero-bin limit is the overlap of the single- and double-soft limits, and is tantamount to

removing the restriction on y in the single-soft limits in eq. (3.5).
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the aforementioned rapidity-like divergences. We will then calculate the full O
(
α2
s

)
result

using the Monte Carlo program Event2 [66, 67], which allows us to include non-singular

terms as well as cross check our results for the singular contributions. We will also calculate

the O
(
α2
s

)
contributions to ∆3−, though this is not the focus of our studies.

4.1 Singular contributions using splitting functions

The cross section for ∆2± can be written as

dσ

d∆2±
=

∫
dΦ4 T (e+e− → 4 partons)F(∆2±,Φ4), (4.1)

where Φ4 represents four-body phase space, T is the matrix element for e+e− → 4 partons,

and F(∆2±,Φ4) is the measurement function, which projects out the slice of phase space

corresponding to a constant value of ∆2±. The allowed values of Ñjet for four partons are:12

Four isolated partons: Ñjet = 4, (4.2)

Two isolated partons and one merged pair: Ñjet = 3, (4.3)

One isolated parton and one merged triplet: Ñjet ∈
(
2− (Ecut/Q)2, 3

)
, (4.4)

Two merged pairs: Ñjet = 2. (4.5)

The only non-integer behavior is obtained for the merged triplet in eq. (4.4), which

requires three particles to be within an angular distance . 2R. Thus, for sufficiently small

R, we can use the matrix element in the limit where three partons are collinear, allowing

us to take advantage of collinear factorization [66–70]:13

T (e+e− → 4 partons) ' T (e+e− → qq̄) ·
∑
k

T coll
k (1→ 3) (4.6)

= T (e+e− → qq̄) · (8παsµ
2ε)2

s2
123

∑
k

〈P̂ k1→3〉 , (4.7)

where k labels one of the parton channels q → ggq , q̄ → ggq̄ , q → q′q̄′q , or q̄ → q′q̄′q̄, s123

is the squared invariant mass of the three parton system, and 〈P̂ k1→3〉 is the spin-averaged

1 → 3 splitting function [76, 77]. The factorization in eq. (4.6) implies that the relevant

phase space for the collinear splitting is 3-body, meaning we decompose the 4-body phase

space of the whole event into the 2-body qq̄ system of the hard interaction and the 3-body

phase space of the 1→ 3 splitting. In the collinear limit, the 4-body phase space factorizes

as dΦ4 = dΦ2(qq̄)× ds123/(2π)× dΦ3(1→ 3).

The collinear matrix elements can be further decomposed according to their color

structure. The channel q → ggq (and q̄ → ggq̄) can be written as a sum of Abelian (“ab”)

12Here we assume that each isolated parton and group of partons are sufficiently energetic to pass the

energy cut Ecut. If this does not hold, then the integer values of Ñjet = 3 or 4 may be reduced to 2 or 3.
13We use spin-averaged splitting functions, which are sufficient since the value of Ñjet for the collinear

system is independent of its orientation relative to other jets in the event (see, e.g., [71]). This 1 → 3

splitting function approach also appears in ref. [72] for calculating the jet substructure observable planar

flow [73–75].
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and non-Abelian (“nab”) contributions:

T coll(q → ggq) = C2
FT coll

ab (q → ggq) + CFCAT coll
nab (q → ggq), (4.8)

while the q → q′q̄′q (and q̄ → q′q̄′q̄) channels will give contributions proportional to the

CFTR color structure.14 At O
(
α2
s

)
the cross section for ∆2± is obtained by summing

over all channels and color structures. In the rest of this subsection we will discuss the

calculation of the Abelian piece of the cross section; results for the other color structures

can be found in appendix A.

The Abelian contribution comes from a q → ggq or q̄ → ggq̄ splitting. The two

channels give identical contributions and we will focus on the q → ggq case for definiteness,

labeling the final state as:

g1g2q3. (4.9)

As discussed in section 2.2, at leading power we can take the soft limit of our observable,

which corresponds to either one or both gluons becoming soft. As in the toy calculation

in section 3, we will label the limit where gluon 1 (gluon 2) is soft as sc (cs) and the

double-soft limit as ss. We again use the energy sharing variables zi = Ei/EJ and scaled

veto variable zcut = Ecut/EJ in eq. (2.8), where here EJ is the energy of one jet region

(with EJ ' Q/2 for a collision at center-of-mass energy Q). We generally assume zcut � 1,

which allows us to neglect power-suppressed contributions from soft quarks, and if some

zi < zcut then that particle may be treated as soft.

In tables 1 and 2 we collect contributions to ∆2± in the relevant soft limits and regions

of phase space. At this order, we also get a contribution to ∆3− = 3 − Ñjet, and we will

carry out the calculation for ∆3− as well.

We now gather the relevant pieces to evaluate eq. (4.1) in the collinear limit. There

are three relevant regions of phase space:

RA = Θ(θ13 > R) Θ(θ23 < R) Θ(θ12 < R), (4.10)

RB = RA(1↔ 2), (4.11)

RC = Θ(θ13 < R) Θ(θ23 < R) Θ(θ12 > R), (4.12)

where θij labels the opening angle between partons i and j. In table 1 we show a schematic

representation of the angular phase space regions and soft limits which are explicitly listed

in table 2. From table 2, the measurement functions are given by

F(∆2−,Φ4) = F ss
∆2− , (4.13)

F(∆2+,Φ4) = F sc
∆2+

+ F cs
∆2+

+ F ss
∆2+

, (4.14)

F(∆3−,Φ4) = F sc
∆3− + F cs

∆3− , (4.15)

14For same flavor final state quarks q′ = q, this matrix element contains also terms proportional to C2
F

and CFCA. However, these terms do not contribute to the cross section at leading power.
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Observable RA RB RC

∆2− –

∆2+

∆3− –

Table 1. Representation of the phase space configurations contributing to the near-integer jet

multiplicities ∆2−, ∆2+, and ∆3−. Compared to figure 4, the value of Ñjet is 1 unit higher, because

the event contains an additional isolated parton (not shown). For each observable, we show the

corresponding contributions from different angular regions and soft limits. Circles represent cones

of radius R, large blue dots represent energetic partons, small red dots soft partons with z < zcut.

The angular regions RA, RB , and RC are defined in eq. (4.10).

where

F ss
∆2− = δ(∆2− − z1z2) Θ(z1 + z2 < zcut)RA + (1↔ 2), (4.16)

F sc
∆2+

= δ [∆2+ − z1 (1/z2 − z2)] Θ(z2 > zcut)RA
+ δ[∆2+ − z1z2(2− z2)/(1− z2)]RC ,

(4.17)

F cs
∆2+

= F sc
∆2+

(1↔ 2), (4.18)

F ss
∆2+

= δ(∆2+ − 2z1z2)RC , (4.19)

F sc
∆3− = δ (∆3− − z1[1− z2(1− z2)]/[z2(1− z2)]) Θ(z2 > zcut)RB, (4.20)

F cs
∆3− = F sc

∆3−(1↔ 2). (4.21)

The single- and double-soft limits for the 1→ 3 matrix elements are

Tab(q → g1g2q3) '



T scab =
4(4παsµ

2ε)2

E4
J

2− 2z2 + z2
2(1− ε)

θ2
13θ

2
23z

2
1z

2
2(1− z2)

, (1 soft, 2 collinear)

T csab = T scab (1↔ 2), (1 collinear, 2 soft)

T ssab =
8(4παsµ

2ε)2

E4
J

1

θ2
13θ

2
23z

2
1z

2
2

, (1 soft, 2 soft)

(4.22)

where we have included a symmetry factor of 1/2! for identical gluons. Notice that in the

double-soft limit, the Abelian matrix element simply reduces to the product of two eikonal
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Observable Region Expression Limit Cuts

∆2− RA z1z2 1, 2 soft z1 + z2 < zcut

∆2− RB z1z2 1, 2 soft z1 + z2 < zcut

∆2+ RA z1(1− z2
2)/z2 1 soft z2 > zcut

∆2+ RB z2(1− z2
1)/z1 2 soft z1 > zcut

∆2+ RC z1z2(2− z2)/(1− z2) 1 soft –

∆2+ RC z1z2(2− z1)/(1− z1) 2 soft –

∆2+ RC 2z1z2 1, 2 soft –

∆3− RA z2[1− z1(1− z1)]/[z1(1− z1)] 2 soft z1 > zcut

∆3− RB z1[1− z2(1− z2)]/[z2(1− z2)] 1 soft z2 > zcut

Table 2. Near-integer behavior of Ñjet, shown for various phase space regions as depicted in table 1.

In each case, the expression for the observable is given along with the relevant limits and phase

space cuts.

factors. In the collinear regime, the 3-body phase space can be written as [78]

dΦcoll
3 =

E4−4ε
J

(4π)4−2εΓ(1− 2ε)
dΦΩ dΦz, (4.23)

where the angular phase space dΦΩ is given by

dΦΩ = dθ2
13dθ2

23dθ2
12Θ(∆)∆−1/2−ε, ∆ = 4θ2

13θ
2
23 − (θ2

12 − θ2
23 − θ2

13)2, (4.24)

and the energy phase space dΦz is given by

dΦz '


dΦsc

z = Θ(z1 <∞)Θ(z2 < 1)[z1z2(1− z2)]1−2εdz1dz2, (1 soft, 2 collinear)

dΦcs
z = dΦsc

z (1↔ 2), (1 collinear, 2 soft)

dΦss
z = Θ(z1 <∞)Θ(z2 <∞)(z1z2)1−2εdz1dz2. (1 soft, 2 soft)

(4.25)

As discussed in section 3, for certain contributions to the observable, these energy

integrals give rise to rapidity divergences which require special regularization to make each

term well defined. We use the rapidity regulator to do this, and the sum of all contributions

is regulator independent. Specifically, the contribution to ∆2+ fromRC is the only one with

both single- and double-soft limits (see tables 1 and 2), and hence the only contribution

which requires this extra regulator. While ∆2− does receive contributions from the double-

soft region of phase space, the constraints on the gluon energies from zcut implies that both

gluons must be soft, and hence the single-soft limits do not contribute. The limit on the

gluon energies also implies there is a kinematic limit on the observable, ∆2− < (zcut/2)2.

By combining the measurement function with the proper limits of the matrix elements,

we get an analytic expression for the Abelian contribution to the ∆2± and ∆3− distributions
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at leading power in λ. Including the identical contribution from q̄ → q̄gg yields[
dσ

d∆2−

]
ab

= C2
F

(αs
π

)2
IΩ

{
−2L1(∆2−) + 4 ln zcut L0(∆2−)

}
Θ(∆2− < z2

cut/4) , (4.26)[
dσ

d∆2+

]
ab

= C2
F

(αs
π

)2
IΩ

{
−14

5
L1(∆2+) +

(
−57

10
+

14

5
ln 2− 2 ln zcut

)
L0(∆2+)

}
, (4.27)[

dσ

d∆3−

]
ab

= C2
F

(αs
π

)2
IΩ

(
−3

2
− 2 ln zcut

)
L0(∆3−) , (4.28)

where the distributions Ln are the usual logarithmic plus distributions, defined in ap-

pendix B. The integral over the angular phase space is given by15

IΩ =
4

π

∫
dΦΩ

θ2
13θ

2
23

RA =
5π2

54
. (4.29)

Eqs. (4.26), (4.27), and (4.28) represent the leading order distributions in the small

R and zcut limits. Notice that at this order there is no dependence on R, as the 1/θ2
ij

factors in the denominator of the angular integral provide a logarithmic scaling which can

be used to explicitly remove the R dependence. Since we are focused on the non-integer

behavior of Ñjet, we have suppressed contributions proportional to δ(∆n±) in our results

(see, however, eq. (5.5)).

The calculation of the CFCA and CFTRnf contributions are very similar to the Abelian

case, albeit more involved as the matrix elements do not simply factorize into separate

angular and energy functions as in eq. (4.22). In appendix A, we give the full set of results

for the different color structures.

In the O
(
α2
s

)
calculation performed above, double logarithms of ∆n± (appearing as

L1(∆n±)) arose when both emitted gluons became soft, and single logarithms (L0(∆n±))

arose when a single gluon became soft. This correspondence holds true with more soft

emissions: each soft emission results in a single logarithm of ∆n± (in certain regions of phase

space). Therefore, in general the largest logarithm at O
(
αks
)

appears when all emissions

are soft gluons, and the contribution to the cross section is of the form αksLk−1(∆n±).

4.2 Nonsingular contributions from Event2

To go beyond leading power in λ, we need to incorporate the O
(
α2
s

)
matrix elements

from full QCD. For fixed-order calculations of e+e− → partons at low multiplicity, the

program Event2 is a particularly useful tool [66, 67]. Event2 performs next-to-leading

order calculations of e+e− → 2 and 3 partons, so it includes the needed e+e− → 4 parton

tree-level matrix elements. Conveniently, it allows for the decomposition of its results

order-by-order in αs and by color structure. Crucially, Event2 can probe the far infrared

regions of phase space, meaning the (singular) logarithmic terms of ∆2± and ∆3− are

enhanced. This allows us to perform a robust comparison and cross check of our splitting

15We have written the common angular coefficient IΩ in terms of the phase space region RA. The same

angular coefficient appears for regions RA, RB , and RC due to an unexpected symmetry in the angular

integrals. This symmetry is only present for certain angular integrals in the non-Abelian case.

– 19 –



J
H
E
P
0
5
(
2
0
1
5
)
0
0
8

10 10 10 10

%3$

10 10 10 10

%2"%2$

CF
2

CFCA

CFTFn f

R ! 0.1, zcut ! 0.02

N "
jet
!
2

N "
jet
!
2
.5

10#3 10#4 10#5 10#6 10#4 10#3 10#2 10#1 10#410#310#210#1
#5

0

5

10

15

20

25

30
co
ef
fi
ci
en
t

10 3 10 4 10 5 10 6 10 4 10 3 10 2 10 1
5

0

5

10

15

20

25

30

!!Αs
2" contributions to N

"

jet in full QCD

~~ ~ ~
~ ~~~

Figure 6. The ∆2± and ∆3− distributions extracted from Event2. Shown are the separate C2
F ,

CFCA, and CFTFnf contributions to the cross section, plotted as the coefficient of (αs/2π)2 C,

where C is the relevant color factor. Note that the ∆2− and ∆3− axes run backwards.

function calculations above. Having verified the singular logarithmic contributions to ∆2±
and ∆3−, we can then extract the nonsingular O

(
α2
s

)
contributions directly from Event2.

In figure 6, we show the O
(
α2
s

)
contributions to ∆2± and ∆3− extracted from Event2.

We plot the coefficients of the (αs/2π)2C terms in the cross section as a function of ln ∆n±,

where C is the relevant color factor (C2
F , CFCA, or CFTFnf ). To enhance the logarithmic

contributions and minimize the power corrections in R and zcut, we choose the small values

R = 0.1 and zcut = 0.02. Plotted this way, double logarithms
(
L1(∆n±)

)
appear as lines

of constant non-zero slope,16 single logarithms
(
L0(∆n±)

)
appear as lines with zero slope

and non-zero offset, and nonsingular contributions vanish as ∆n± → 0. It is clear that

logarithmically-enhanced terms are indeed present in the full QCD result from Event2.

To make sure the logarithmic behavior from Event2 matches our analytic calculations

in section 4.1 and appendix A, we can extract the nonsingular contribution to the cross

section, which are the residual fixed-order terms after the logarithmic contributions are

subtracted:
dσns

d∆n±
=

dσfull

d∆n±
− dσsing

d∆n±
. (4.30)

These are shown in figure 7, again separated by color structure, and confirm that our

splitting function calculation, which includes the leading contributions in a small R and

zcut expansion, captures the leading-order near-integer behavior of Ñjet correctly.17

For Ñjet < 2, the singular terms tend to dominate over the nonsingular ones. The

reason is that the ∆2− distribution has a kinematic endpoint at (zcut/2)2 � 1 at this

order, so the distribution only has support in the singular region of phase space.

16Note that these are not Sudakov double logarithms, since they appear at O
(
α2
s

)
, not O(αs).

17Power suppressed terms of the form O
(
R2, zcut

)
L0,1(∆n±) are generically present in the nonsingular

terms, though their contributions are negligible in figure 7 since we have chosen both R and zcut small.
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Figure 7. Same as figure 6, but subtracting our calculations for the singular contributions in

each region. The residuals vanish in the logarithmic (∆n± → 0) regime, indicating that the only

remaining terms are nonsingular.

For 2 < Ñjet < 3, there is an ambiguity in determining the nonsingular terms in the

cross section, related to the fact that singular terms exist at multiple points in the Ñjet

spectrum. In this range, there are singular terms from ∆2+ that dominate near Ñjet = 2

and singular terms from ∆3− that dominate near Ñjet = 3. In figure 7, we defined the

nonsingular term by removing the singular terms from the nearest singular point in the Ñjet

distribution, using Ñjet = 2.5 as an arbitrary dividing line.18 Alternatively, we could define

the nonsingular term by removing both sets of singular terms over the entire spectrum.19

This is a valid approach as well, since the singular ∆2+ and ∆3− distributions are governed

by different soft limits of phase space, hence there is no double-counting by including both

singularities.

Since we are mainly interested in describing the behavior in the vicinity of Ñjet = 2,

though, for the rest of the paper we will simply adopt the nonsingular definition in

eq. (4.30), even in the vicinity of Ñjet = 3:

dσns

dÑjet

(2 < Ñjet < 3) =
dσns

d∆2+
=

dσfull

dÑjet

− dσsing

d∆2+
. (4.31)

18This corresponds to the nonsingular definition

dσns

dÑjet

(2 < Ñjet < 3) =
dσfull

dÑjet

−
[

dσsing

d∆2+
Θ(Ñjet < 2.5) +

dσsing

d∆3−
Θ(Ñjet > 2.5)

]
.

19This would correspond to the nonsingular definition

dσns

dÑjet

(2 < Ñjet < 3) =
dσfull

dÑjet

−
[

dσsing

d∆2+
+

dσsing

d∆3−

]
.
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contributions from ∆2+ and ∆3− (blue, dashed/dot-dashed) and residual nonsingular contributions

(red, dotted). The coefficient of (αs/2π)2 is plotted for each contribution. Note that the sum of

singular contributions is numerically dominant over the entire range.

That said, this non-singular term turns out to be dominated by the singular ∆3− piece.

Writing the nonsingular term as

dσns

d∆2+
=

dσsing

d∆3−
+

dσres

d∆2+
, (4.32)

the residual term is quite small, even in the vicinity of Ñjet = 2.5. This is shown in figure 8,

where the full QCD result between 2 < Ñjet < 3 is decomposed into the ∆2+ singular, ∆3−
singular, and residual terms for R = 0.4 and zcut = 0.2. The fact that the ∆2+ nonsingular

term is nearly saturated by the ∆3− singular term suggests that higher-order logarithmic

terms can play an important role in determining the shape of the Ñjet distribution, even

for large deviations from integer values of the observable.

4.3 Complete results to order α2
s

Summarizing the results from sections 4.1 and 4.2, the full O
(
α2
s

)
result for the near-integer

∆2± distributions can be written as

dσ

d∆2±
=

[
dσ

d∆2±

]
ab

+

[
dσ

d∆2±

]
nab

+

[
dσ

d∆2±

]
CFTRnf︸ ︷︷ ︸

singular

+
dσns

d∆2±
. (4.33)

The first three terms in eq. (4.33) are the singular contributions to the cross section. The

Abelian terms are given in eqs. (4.26) and (4.27), while the contributions of non-Abelian

and CFTRnf color structures can be found in appendix A. The last term in eq. (4.33) is the

nonsingular contribution that we extract numerically from Event2 as discussed above.
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As discussed in eq. (4.31), the entirety of the ∆3− singular distribution in eq. (4.28)

has been absorbed into the ∆2+ nonsingular distribution. Thus, when we plot ∆3− in

section 7, we are in effect plotting the prediction for ∆3− = 1−∆2+.

5 Towards a factorization theorem

In the previous section, we have seen that soft and collinear matrix elements govern the

near-integer behavior of Ñjet in fixed-order QCD. In this section, we explore the all-orders

behavior at and near Ñjet = 2, building a candidate factorization theorem to describe the

logarithmically-enhanced contributions to the cross section.

Near Ñjet = 2, energetic collinear modes must be confined to two jet regions of diam-

eter R, such that no two energetic particles are more than R apart. This suggests that

the collinear radiation may be described by jet functions. Additional radiation must be

sufficiently soft so as not to create an additional jet, meaning there is a local veto of size

zcut outside of the primary jets. This suggests that additional radiation may be described

by a soft function. However, while one might hope that a factorization theorem of the form

σ(∆2±) ∼ σ0Hqq̄

[
Jq(∆2±)⊗ Jq̄(∆2±)⊗ Sqq̄(∆2±)

]
(5.1)

would hold, it fails on several fronts. First, this standard factorization picture is challenged

by both the non-additivity of the observable and soft-collinear non-factorization (discussed

in section 2.3 and examined in more detail below). Additionally, the logarithms of ∆2±
are non-global, and may not be summed with the above factorization into jet and soft

functions. Furthermore, the cross section at Ñjet = 2 (∆2± = 0) behaves similarly to a

dijet cross section from a standard discrete jet algorithm, for which a convolution structure

does not apply.

We will discuss these issues below, en route to a candidate “local” factorization theorem

which applies in the small R limit. This factorization theorem will take the form

dσ

d∆2±
= σ(Ñjet = 2)

[
Cq(∆2±)⊗ Cq̄(∆2±)

]
, (5.2)

where σ(Ñjet = 2) is the cross section exactly at Ñjet = 2 (see section 5.1) and Cq,q̄ are

“collinear functions” (see section 5.3). This form satisfies a number of plausibility checks,

but a formal proof of its validity is beyond the scope of the present paper.

5.1 The cross section at Ñjet = 2

We begin by considering the cross section at exactly Ñjet = 2. At O(αs), the constraints

to obtain Ñjet = 2 are the same as for obtaining two jets from a discrete jet algorithm,

namely that either two of the three partons must lie within a mutual radius of R or one of

the partons must be below Ecut. At leading power, the phase space restrictions on the qqg

final state are

Θ(θqg < R) + Θ(θq̄g < R) + Θ(θqg > R)Θ(θq̄g > R)Θ(zg < zcut) . (5.3)
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At higher orders, the phase space restrictions differ from discrete jet algorithms (which

also differ among themselves), and the Ñjet = 2 cross section has unique features. Consider

an O
(
α2
s

)
configuration contributing to the near-integer behavior, as discussed in the sec-

tion 4.1. A concrete example is the ∆2+-RC configuration in table 1, which has a collinear

q → qg splitting with another soft gluon (labeled s) emitted such that

θqg < R , θqs > R , θgs < R . (5.4)

This event will give a non-integer contribution to Ñjet, and its contribution to the cross

section is of the form

∼ α2
s

[
1

ε2
δ(Ñjet − 2) + ζδ(Ñjet − 2) + κ0 L0(∆2+) + κ1 L1(∆2+)

]
. (5.5)

The plus distribution terms were already calculated in eq. (4.27). The δ(∆2+) terms were

suppressed in our previous discussion (since we were focused on the non-integer behavior),

but both the 1/ε2 term and the ζ term follow directly from the calculations in section 4.1.

The structure of eq. (5.5) reflects the hybrid jet algorithm/event shape behavior of

Ñjet. The plus distribution terms have no support at Ñjet = 2, since the plus function

prescription removes any divergence there.20 This feature is similar to other event shape

variables with a singular limit, such as thrust, where there is zero cross section in the

singular limit at higher orders. By contrast, the delta function terms behave more like a

jet algorithm, as anticipated in eq. (2.4), with a finite cross section at exactly Ñjet = 2.

The IR pole from the real radiation at Ñjet = 2 will cancel divergences from virtual matrix

elements, such that the Ñjet = 2 cross section is IR finite.21 The additional finite ζ term at

Ñjet = 2 implies that the non-global structure in the near-integer part of the cross section

is also contributing at Ñjet = 2.

5.2 Soft-collinear non-factorization

The non-global nature of the near-integer behavior of Ñjet is suggestive of a non-standard

picture of factorization. In fact, the Ñjet observable does not obey soft-collinear factoriza-

tion, meaning separate soft and collinear functions cannot be easily (or usefully) defined.

This was foreshadowed in section 2.3 and can be illustrated with a simple example at O
(
α2
s

)
.

Consider the same phase space configuration as eq. (5.4), which has a single soft

gluon and a pair of collinear (energetic) partons. The soft gluon is in the region of phase

space where it is in the jet region of only one of the collinear partons, and the value

of the observable is dependent on this fact. This implies that the observable receives

contributions that intrinsically depend on the soft and collinear modes in a non-factorizable

20To see this, we can use the definition of the plus function in eq. (B.1). Integrating [q(x)]+ against δ(x)

gives the value at 0,

[q(0)]+ =

∫
dx [q(x)]+ δ(x) = 0 . (5.6)

21It is straightforward to see that at O
(
α2
s

)
the cross section at Ñjet = 2 must be IR finite. Since non-

integer values of Ñjet, as well as Ñjet = 3 and 4, have IR finite cross sections, and since the inclusive cross

section is IR finite, the remaining piece, the cross section at Ñjet = 2, must be as well.
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way; the measurement function cannot be separated into separate soft and collinear pieces

that do not depend on each other (see figure 4). Therefore, soft-collinear factorization

does not hold. We note that, unlike other cases where soft-collinear factorization is not

straightforward (see, e.g., [63, 79]), here the leading non-integer behavior does not factorize.

Because the non-global structure of ∆2± feeds into the Ñjet = 2 cross section through

the ζ term in eq. (5.5), the same non-factorization is also true of the integer value. Of

course, for the exact Ñjet = 2 case, non-factorization of the soft and collinear modes

happens only at O
(
α2
s

)
. Therefore, one can write the Ñjet = 2 cross section as the sum

of terms, one with global contributions that can consistently be resummed and one with

non-factorizing contributions. Such a form is

σ(Ñjet = 2) = σ0Hqq̄(Q,µ)Jq(Q,R, zcut, µ)Jq̄(Q,R, zcut, µ)Sqq̄(R, zcut, µ)

+ σnon−fac
2 (Q,R, zcut, µ) . (5.7)

The factorized part of the cross section is similar to dijet (or, generally, exclusive jet) cross

sections. In e+e− collisions, such cross sections are known to contain non-global logarithms

that spoil a standard effective theory picture of the dynamics. These non-global logarithms

span the jet and soft functions, affecting the RG evolution in nontrivial ways. Similar to

the non-factorizing terms, the non-global contributions start at O
(
α2
s

)
.

5.3 Introducing collinear functions

Let us now try to simultaneously describe the near-integer and exact-integer behavior of

Ñjet. We have established that the logarithms of ∆2± are purely non-global, and there is

no standard soft-collinear factorization. As mentioned in section 2.3, however, the contri-

butions from each jet region are independent, meaning they can be separated:

dσ

d∆2±
∼ σ0Cq(∆2±)⊗ Cq̄(∆2±) , (5.8)

where σ0 is an overall prefactor and ⊗ refers to the standard convolution in eq. (B.6). Here,

we have introduced “collinear functions” Cq and Cq̄ for the two jet regions, which give the

contribution to ∆2± for each jet region separately.

The collinear functions contain only the singular terms and have the general form

Cq,q̄(∆2±) = δ(∆2±) +

∞∑
n=2

(αs
π

)n n−1∑
k=−1

[
κ

(n)
k,+ Lk(∆2+) + κ

(n)
k,− Lk(∆2−)

]
, (5.9)

where κ
(n)
k,± are coefficients which in general depend on zcut (except for the leading coefficient

κ
(n)
n−1,±). Recall that L−1(x) = δ(x), and these delta functions are needed to describe the

Ñjet = 2 cross section. Since ∆2± describe different regimes of the same observable (Ñjet

just above/below 2), each term in the expansion has support for one term or the other.

The convolution between the collinear functions in eq. (5.8) mixes the distributions for

∆2+ and ∆2−. Therefore, we require not only the usual convolutions between distributions

of either ∆2+ or ∆2− (which we refer to as convolutions of one-sided distributions, e.g.
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L0(∆2+)⊗L0(∆2+)), but also convolutions between distributions of ∆2+ and ∆2− (which

we refer to as convolutions of two-sided distributions, e.g. L0(∆2+) ⊗ L0(∆2−)). Details

about the definitions of one- and two-sided distributions and convolutions between them

are presented in appendix B.

We can now reinterpret the calculation in section 4.1 directly as a calculation of Cq
and Cq̄ to O

(
α2
s

)
(see appendix C). The convolution between Cq and Cq̄ in eq. (5.8) then

gives part of the higher-order O
(
α4
s

)
cross section. In addition, we can estimate the O

(
α4
s

)
structure of an individual collinear function by performing näıve (Abelian) exponentiation

to capture some of the multiple emission terms. That is, we assume that each of the

collinear functions in eq. (5.9) has the form

Cq,q̄(∆2±) = δ(∆2±) +
(αs(µ)

π

)2[
K+(∆2+) +K−(∆2−)

]
+

1

2

(αs(µ)

π

)4[
K+(∆2+) +K−(∆2−)

]
⊗
[
K+(∆2+) +K−(∆2−)

]
,

(5.10)

where

K+(∆2+) = κ
(2)
0,+L0(∆2+) + κ

(2)
1,+L1(∆2+) , (5.11)

K−(∆2−) = κ
(2)
0,−L0(∆2−) + κ

(2)
1,−L1(∆2−) . (5.12)

The convolution terms at O(α4
s) are those coming from näıve Abelian exponentiation in

one jet region. Note that this does not fully capture the correct higher-order terms (for

example, we do not get any term at O(α3
s) from this exponentiation), but we will see in

section 7 that it is enough to reproduce some of the higher-order effects observed in parton

shower Monte Carlo generators. In defining eq. (5.10), we have used the fact that one can

absorb corrections to the Ñjet = 2 cross section into the σ0 prefactor (see further discussion

below).

5.4 A “local” factorization theorem

Via eq. (5.8), we can capture the impact on Ñjet of soft and collinear emissions within the

two jet regions. But soft emissions away from the jet regions can still give logarithmically-

enhanced contributions to the cross section, even if they do not change the value of Ñjet.

For example, a soft gluon well-separated from the jets with energy fraction less than zcut

will not change Ñjet, but it will contribute to the cross section. For e+e− → qq̄g, this

wide-angle soft radiation is part of the Ñjet = 2 phase space. Going to higher orders, there

is a contribution to both the exact-integer and near-integer cross sections from wide-angle

soft radiation, and up to power corrections for small R, both contributions are identical.

This logic implies that the Ñjet = 2 cross section should multiply the near-integer

contributions, leading to the candidate factorization theorem from eq. (5.2), repeated for

convenience:
dσ

d∆2±
= σ(Ñjet = 2)

[
Cq(∆2±)⊗ Cq̄(∆2±)

]
. (5.13)

This is the same structure as eq. (5.8), but we have identified σ0 with σ(Ñjet = 2). As

discussed in eq. (5.7), σ(Ñjet = 2) itself has its own quasi-factorization theorem. If this
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candidate factorization theorem is indeed true, then the definition of Cq,q̄(∆2±) in eq. (5.10)

should be revised such that the coefficient of the δ(∆2±) piece is always 1 (i.e. the sum

over k should start at 0 instead of −1).

We stress here that eq. (5.2) is only a candidate factorization theorem, and we have not

proven that such a form exists. In particular, we do not have an operator definition of the

collinear functions Cq,q̄, and without such a definition, the extraction of Cq,q̄ is ambiguous

from fixed-order calculations alone. The reason is that the structure of Cq(∆2±)⊗Cq̄(∆2±)

is single-logarithmic order-by-order, without any definite relation between coefficients, so

higher-order terms can absorb corrections from lower-order ones. For example, the leading

nontrivial terms in σ(Ñjet = 2) (the O(αs) term) and Cq(∆2±) ⊗ Cq̄(∆2±) (the O
(
α2
sL1

)
terms) will contribute to κ

(3)
1,± (the O

(
α3
s

)
L1(∆2±) terms), but cannot unambiguously

determine that coefficient.

Despite these limitations, our candidate factorization theorem does describe important

effects (like convolutions between the two jet regions) that go beyond a simple perturbative,

log series expansion, which is why we will use eq. (5.2) in our comparison studies in section 7.

One thing we can say unambiguously is that if the factorization theorem in eq. (5.2) is valid,

then the collinear functions must be RG independent. The reason is that the prefactor

σ(Ñjet = 2) is itself a cross section, so it must be RG independent, and therefore Cq ⊗ Cq̄
must be RG independent. Similarly, the modes that contribute to Cq and Cq̄ are completely

disjoint, so there is no possibility that RG-scale-dependence could cancel between Cq and

Cq̄. This does not rule out, however, a further factorization of the collinear functions.

5.5 Complete results

Let us summarize our final prediction for the ∆2± distributions using the candidate fac-

torization theorem in eq. (5.2). Beyond the calculation summarized in section 4.3, we can

include two higher-order effects.

First, as described in section 5.3, the collinear function approach allows us to capture

O
(
α4
s

)
terms coming from convolutions. There are two types of convolutions: convolu-

tions between Cq and Cq̄ given by the factorization theorem, and convolutions within an

individual collinear function coming from näıve Abelian exponentiation. Though the näıve

exponentiation can in principle give results to all orders in αs, we will truncate the con-

volutions to order O
(
α4
s

)
, especially since there are known O

(
α3
s

)
terms missed by this

approach.

Second, we can include running coupling effects by evaluating αs(µ) at an energy scale

µ = Q
√

∆2±. To see why this is the correct scale, note that in section 4.1, the fixed-order

expansion in dim reg had a prefactor of(
µ2

E2
J∆2±

)2ε

, (5.14)

where EJ ' Q/2 is the jet energy. This implies that at higher orders, the fixed-order calcu-

lation generates terms like ln(µ2/E2
J∆2±) where µ is the renormalization scale, suggesting

that Q
√

∆2± is a relevant running coupling energy scale.
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As in section 4.3, the nonsingular contributions to the cross section enter at fixed

O
(
α2
s

)
and can be simply included additively. Like in section 4.3, we absorb the entirety

of the ∆3− singular distribution into the ∆2+ nonsingular distribution. To try to capture

some higher-order effects in ∆3−, though, we make use of the nonsingular decomposition

in eq. (4.32), repeated for convenience:

dσns

d∆2+
=

dσsing

d∆3−
+

dσres

d∆2+
. (5.15)

We evaluate the singular ∆3− piece at the scale µ = Q
√

∆3− and the small ∆2+ residual

term at a fixed scale µ = Q. While this approach misses out on genuine O
(
α3
s

)
fixed-

order corrections from 3-jet events, they have an endpoint at ∆3− = (zcut/2)2 analogous

to eq. (4.4), so we will simply not make a prediction for ∆3− < (zcut/2)2.

Finally, while the singular terms for ∆2± come with an overall prefactor of σ(Ñjet = 2),

the nonsingular terms do not. However, since the nonsingular terms start at O
(
α2
s

)
, we

can multiply them by σ(Ñjet = 2)/σ0, which introduces corrections beyond the order to

which we are working. This allows us to factor out a global σ(Ñjet = 2) from our final

predictions.

Putting these pieces together, our final analytic prediction for the ∆2± distribution is:

dσ

d∆2±
= σ(Ñjet = 2)

{
Cq(∆2±)⊗ Cq̄(∆2±) +

1

σ0

dσns

d∆2±

}
(5.16)

= σ(Ñjet = 2)

{
δ(∆2±) + 2

(
αs(Q

√
∆2±)

π

)2[
K+(∆2+) +K−(∆2−)

]
+ 2

(
αs(Q

√
∆2±)

π

)4[
K+(∆2+) +K−(∆2−)

]
⊗
[
K+(∆2+) +K−(∆2−)

]
+

1

σ0

dσns

d∆2±

}
.

In figure 9, we compare the pure fixed O
(
α2
s

)
distributions for ∆2± and ∆3− from

eq. (4.33) with the final prediction from eq. (5.16). At small values of ∆n±, the dominant

differences come from the higher-order logarithms included in our final prediction, while

at larger values of ∆n± the running effects from our ∆n±-dependent scale choice give

most of the difference from the fixed-order prediction. Since we do not have a candidate

factorization theorem for the Ñjet = 3 region of phase space, the ∆3− distribution is really

just eq. (5.16) evaluated at ∆3− = 1−∆2+.

6 Looking towards the LHC

Given the interesting features of Ñjet and the wide-ranging and robust measurements of

jet substructure at the LHC [80–82], a natural consideration is the Ñjet distribution in

hadronic collisions. In this case, it is more convenient to use the original definition of Ñjet

from eq. (1.1) based on transverse momenta and rapidity-azimuth distances (instead of
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Figure 9. A comparison between analytic predictions for the Ñjet distribution. Shown in dashed

black are the fixed O
(
α2
s

)
calculations from eq. (4.33). Shown in solid blue are our final predictions

from eq. (5.16), which include an estimate of higher-order O
(
α4
s

)
terms as well as ∆2±-dependent

running of αs. Note that the ∆2− and ∆3− axes run backwards.

energies and angles):

Ñjet(pT cut, R) =
∑

i∈event

pT i
pT i,R

Θ(pT i,R − pT cut), (6.1)

where pT i,R =
∑

j pTj Θ(R−Rij) and Rij =
√

∆y2
ij + ∆φ2

ij .

At first glance, the calculation of Ñjet at the LHC would seem to be much more

difficult than at an e+e− collider. After all, Ñjet depends sensitively on soft radiation, and

soft QCD is notoriously complicated at a hadron collider. However, Ñjet only depends on

soft radiation in a region of size . 2R around energetic partons. To the extent that we can

exploit color coherence at small R, we can make predictions for Ñjet by simply knowing the

collinear functions for quark- and gluon-initiated jets, Cq and Cg. In particular, the 1→ 3

splitting function formalism that we used in section 4.1 to calculate the collinear function

for quarks in e+e− may also be used to calculate the quark and gluon collinear functions

for LHC processes.

Conveniently, when switching between the e+e− and hadronic definitions of Ñjet, the

collinear functions Cq,g only differ by terms of O(R). For small jet radii, one can therefore

neglect those corrections and use the e+e− collinear functions calculated in this paper also

for the hadronic case, though one has to be careful to match the zcut value to the outgoing

parton momentum. To see why this is the case, notice that

zi =
Ei
EJ
' pT i
pTJ

[1 +O(R)], zcut =
Ecut

EJ
' pT cut

pTJ
[1 +O(R)], (6.2)

where pTJ is the scalar sum of transverse momenta in a jet region. Thus, the energy

integrals in Cq,g would differ at most by O(R) terms. The angular phase space regions in
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eq. (4.10) would be written as constraints on Rij instead of θij , but notice that

Rij = θij(cosh yi cosh yj)
1/2 ' θij cosh yJ [1 +O(R)], (6.3)

where yJ is some characteristic rapidity associated with the jet region, for example the

rapidity of the summed jet region momenta. At leading power, the logarithmic scaling

of the angular integrals can be used to remove any dependence on cosh yJ , so that the

differences in the angular integrals are again at most an O(R) effect.

In order to extend the candidate dijet factorization formula in eq. (5.2) to dijet events

from hadronic collisions, we have to sum over all relevant partonic channels:

dσ

d∆2±
=
∑
k,`

σh1h2→k`(Ñjet = 2)Ck(∆2±)⊗ C`(∆2±) , (6.4)

where k, ` = q, q̄, or g, and h1,2 represents the colliding hadrons. In general, σh1h2→k`,

Ck, and C` depend on the outgoing parton kinematics, though we have suppressed that

dependence in eq. (6.4) for readability. Note that the incoming beams only create ad-

ditional high-pT jets through hard, perturbative emissions. We can write the total rate

σh1h2→k`(Ñjet = 2) schematically as

σh1h2→k`(Ñjet = 2) =
∑
a,b

∫ 1

0
dxa dxb fa/h1

(xa)fb/h2
(xb)σab→k`(Ñjet = 2), (6.5)

where fa/h1
and fb/h2

are parton distribution functions for partons a and b carrying mo-

mentum fractions xa,b of the initial hadrons h1,2, and σab→k`(Ñjet = 2) is the total rate at

Ñjet = 2 for the partonic channel ab→ k`. As in the e+e− case, this cross section can have

large logarithms of R and pT cut that require resummation to obtain reliable predictions.

Compared to the e+e− case, the main new ingredient is the collinear function Cg(∆2±)

for a gluon-initiated jet. For completeness, we have calculated the gluon collinear function

using the same approach as section 4.1, and we present both Cq and Cg in appendix C.

The structure in eq. (6.4) can be easily extended to handle the ∆n± cross section for

n-jet processes by using n collinear functions multiplied by the Ñjet = n cross section,

appropriately summed over the various partonic channels.

At a hadron collider, there is also a new potential source of non-global logarithms

from initial state partons. In general, non-global logarithms of ∆n± only appear in the

collinear functions Cq,g for each final state jet, and are associated with correlated emissions

from final state partons. For events with well-separated jets, the collinear functions are

universal and independent of other jets in the event. However, there are also non-global

logarithms of zcut and R which appear both in the collinear functions and in the exact

integer Ñjet cross section (e.g. σh1h2→k`(Ñjet = 2), see eq. (5.7)). For the exact integer

cross section at a hadron collider, one also has to include correlated emissions from initial

state partons, which may introduce super-leading logarithms [83–85] at sufficiently high αs
order. Ideally, one would want to understand the resummation of non-global effects in the

collinear functions and the exact integer cross section to achieve accurate predictions.
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Because a detailed study for the LHC is beyond the scope of this paper, we will not

present any results for hadronic collisions. An important effect to account for in future

LHC predictions and comparisons with measurements is hadronization, which we have not

considered here. Additionally, for hadronic collisions, effects from the underlying event and

initial state radiation are not present in the e+e− case. To lowest order in R, we expect

those effects to be captured by color coherence, and one could imagine using the techniques

of ref. [86] to understand the R dependence. A similar concern is pileup contamination,

though the closed-form nature of Ñjet makes it well-suited to analytic studies using area

subtraction [87–89]. One could further mitigate the impact of pileup by using a version of

Ñjet that includes jet trimming [90] in closed form [15], and we expect the collinear function

for the trimmed Ñjet version could be calculated using the same techniques used here.

7 Monte Carlo comparisons

We now compare our analytic prediction in eq. (5.16) with parton shower Monte Carlo

generators. As discussed in section 5.4, the rate σ(Ñjet = 2) only enters as an overall

normalization factor, and it in principle requires resummation of logarithms of R and zcut

to obtain a reliable prediction. Since we are mainly interested in describing only the near-

integer (and not the exact-integer) behavior, we will divide out by an overall normalization

factor and perform only a shape comparison. In all of the plots below, we normalize the

cross section to the region ∆2+ ∈ (10−4, 10−2).

To make an apples-to-apples comparison of our analytic results to Pythia 8 and

Herwig++, we turn off hadronization in the Monte Carlo generators. In principle, the

collinear functions Cq and Cq̄ should get hadronization corrections, but the non-factorizing

nature of Ñjet means that we cannot adopt a standard shape function analysis [91, 92]. We

run at a sufficiently high energy to allow for a comparison over a wide logarithmic range

in ∆2±. The large collision energy we choose, Q = 10 TeV, also mitigates the effect of low

energy cutoffs (' 1 GeV) on the parton shower.

Because the singular terms in our calculation are numerically dominant for small ∆2±,

higher-order logarithms may be important in determining the shape of the distribution

in this regime. Some of the O
(
α4
s

)
effects are captured by the convolution structure in

eq. (5.16), but they are not fully reliable. Therefore, we include an uncertainty in our

predictions derived from the addition of O
(
α3
sL2(∆2±)

)
and O

(
α4
sL3(∆2±)

)
terms with

unknown coefficients that we vary. These terms represent the leading logarithms at each

order, and are an estimate of missing higher-order terms. The form we use to determine

the uncertainty is

dσ

d∆2±
⊃
(
αs
π

)3

κ
(3)
2,±L2(∆2±) +

(
αs
π

)4

κ
(4)
3,±L3(∆2±), (7.1)

and we vary independently the coefficients in the ranges κ
(3)
2,± ∈ (−5, 5) and κ

(4)
3,± ∈

(−15, 15). These coefficients are of similar size as the leading coefficients κ
(2)
1,± in our

calculation, and the O
(
α4
s

)
term generated by the näıve exponentiation in eq. (5.16) has
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Figure 10. A shape comparison between our analytic predictions for the 2 < Ñjet < 3 distribution

with the Monte Carlo generators Pythia 8 and Herwig++. Our calculation is summarized in

eq. (5.16) with uncertainties given in eq. (7.1). To make an apples-to-apples comparison, we include

showering but not hadronization in the Monte Carlo samples. All cross sections are normalized to

have the same value in the ∆2+ ∈ (10−4, 10−2) window.

κ
(4)
3,± ∼ O(10). The uncertainty band is given by the envelope of these variations, includ-

ing effects both on the cross section normalization (where we just add eq. (7.1)) and on

the cross section shape (where we add eq. (7.1) and readjust the normalization in the

∆2+ ∈ (10−4, 10−2) window).

In figure 10, we show the shape comparison between our result and

Pythia 8/Herwig++ over the range 2 < Ñjet < 3. The singular cross section for ∆3−
is included as part of the nonsingular correction to the ∆2+ distribution (see eq. (5.15)).

Overall, we find good agreement with the Monte Carlo generators within uncertainties. It

is amusing that there is such close agreement with Pythia 8 in the Ñjet → 2 region and

with Herwig++ in the Ñjet → 3 region, with the analytic result effectively interpolating

between the two. Given that the ∆2+ and ∆3− parts of the distribution are dominated

by different phase space configurations (see table 1), it is possible that we are seeing the

impact of different shower ordering variables in Pythia 8 (p⊥-ordered) versus Herwig++

(angular-ordered). Of course, the theoretical uncertainties in our calculation are too large

to make a definitive statement.

In figure 11, we compare distributions of ∆2± over the range (10−4, 1), using the

triptych format to also see the ∆3− region. Again, our analytic prediction reproduces the

shape of the Pythia 8 and Herwig++ distributions remarkably well over the whole range.

The Monte Carlo distributions, which include higher-order logarithms of ∆2± through

multiple emissions, generally lie within the uncertainty band of our prediction for Ñjet > 2.

This indicates that we have made a reasonable estimate of the higher-order corrections not

included in our calculation. Because we normalize to the window ∆2+ ∈ (10−4, 10−2), it is
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Figure 11. Same distributions as figure 10, but in triptych form to highlight the near integer be-

havior. Because we normalize only to the ∆2+ ∈ (10−4, 10−2) window, the normalization differences

in the ∆2− region are accentuated; the shape agreement is much better. For the ∆3− distribution,

we extend our central prediction (with a dotted blue line) to ∆3− < (zcut/2)2, where genuine 3-jet

events, whose contribution we have not calculated, contribute to the observable. Note that the ∆2−
and ∆3− axes run backwards.

not surprising that there is a normalization discrepancy in ∆2−, though one can see that

the shape agreement for Ñjet < 2 is excellent. We suspect that the normalization issues for

Ñjet < 2 may be due to the treatment of correlated soft radiation (and angular ordering)

in the Monte Carlo generators, since the ∆2− distribution is dominated by double-soft

emissions with a CFCA color structure. The overall shape agreement between Pythia 8

and Herwig++ is quite surprising, given that they exhibit a factor of 3 difference (not

shown) in their predicted value of σ(Ñjet = 2), suggesting that the shape of the non-integer

distributions is more robust than the cross section at integer values.

8 Conclusions

In this paper, we studied the analytic properties of Ñjet, a jets-without-jets event shape that

can return a fractional value of jet multiplicity. Focusing on e+e− → jets, we calculated the

distribution of Ñjet in the vicinity of a dijet configuration at O
(
α2
s

)
. A fractional number

of jets requires at least three collimated partons, such that for e+e− → jets, the first non-

trivial contribution requires at least two emissions. The singular parts of this emission

structure can be captured using 1→ 3 splitting functions, and we validated this approach

(and included nonsingular contributions) using the fixed-order code Event2. To partially

capture higher-order effects out to O
(
α4
s

)
, we included convolutions from different phase

space regions and running coupling effects. We found very good agreement between our

calculation and Monte Carlo distributions from both Pythia 8 and Herwig++.
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Fractional jet multiplicity exhibits unique analytic features that are not shared by other

jet observables. At O
(
α2
s

)
, we showed how rapidity-like divergences, related to the energy

sharing between emissions, appear when one or two partons become soft, and we explained

how to regulate them. Beyond the fixed-order result, we proposed a candidate local factor-

ization theorem and used it to predict a hybrid jet algorithm/event shape behavior for the

Ñjet distribution in the vicinity of an integer. At exact-integer values, Ñjet behaves much

like a standard jet algorithm, yielding spikes in the Ñjet cross section. The near-integer

behavior of Ñjet is more characteristic of event shapes, where towers of higher-order log-

arithms give rise to (single-logarithmic) suppression of the singular phase space, yielding

shoulders in the Ñjet cross section. Finally, as opposed to typical event shapes, collinear

emissions do not generate logarithms of Ñjet, so the shape of the near-integer distribution

is entirely determined by soft logarithms. These soft logarithms are purely non-global, as

near-integer values force soft partons to lie in a restricted angular region of phase space

and correlate different emissions (even if generated from an Abelian matrix element).

Beyond our present understanding of Ñjet, there are three key directions to pursue. The

first is to extend our calculations to O
(
α3
s

)
. Though the differential cross section shapes

were largely within our uncertainty estimates, the normalization differences seen between

our analytic calculations and Monte Carlo generators suggest that higher-order terms might

be relevant. While we were able to estimate some O
(
α4
s

)
effects through convolutions, there

are genuine O
(
α3
s

)
effects that may get a phase space enhancement in the merged jet region

(relative to the O
(
α2
s

)
phase space) to partially overcome the αs suppression. The second

is to attempt an understanding of logarithmic resummation. Because of the non-global

nature of the observable, standard renormalization group methods will not work, but there

may be a way to exploit the rapidity-like divergences seen in section 3 or the techniques

introduced in refs. [93, 94]. The third is to perform a detailed study for hadron colliders

like the LHC, as discussed in section 6, including the important effect of hadronization.

Fractional jets offer a more nuanced understanding of jet formation than is possible with

standard jet algorithms, and a measurement of Ñjet seems feasible given the increasingly

sophisticated approach to jet physics at the LHC.
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A Results for non-Abelian contributions

Following the Abelian results in section 4.1, here we show the singular CFCA and CFTRnf
contributions to the ∆2± and ∆3− cross sections. The CFCA terms are[

dσ

d∆2−

]
nab

=
(αs
π

)2
CFCA

{
−14

5
IΩL1(∆2−) (A.1)

+

[
28

5
IΩ ln zcut + I(a)

Ω

]
L0(∆2−)

}
Θ(∆2− < z2

cut/4) ,[
dσ

d∆2+

]
nab

=
(αs
π

)2
CFCA

{
2

5
IΩL1(∆2+) (A.2)

+

[(
−3

2
− 2

5
ln 2− 14

5
ln zcut

)
IΩ + I(b)

Ω

]
L0(∆2+)

}
,[

dσ

d∆3−

]
nab

=
(αs
π

)2
CFCAIΩ

(
−21

10
− 14

5
ln zcut

)
L0(∆3−) , (A.3)

where IΩ is defined in eq. (4.29), and the remaining angular integrals can only be done

numerically:

I(a)
Ω = −2.44393 , I(b)

Ω = −0.035397 . (A.4)

The CFTRnf terms are[
dσ

d∆2−

]
CFTRnf

=
(αs
π

)2
CFTRnfI

(c)
Ω L0(∆2−)Θ(∆2− < z2

cut/4) , (A.5)[
dσ

d∆2+

]
CFTRnf

=
(αs
π

)2
CFTRnfI

(d)
Ω L0(∆2+) , (A.6)

with the angular integrals

I(c)
Ω = 0.724689 , I(d)

Ω = 0.251525 . (A.7)

The CFTRnf contribution to ∆3− is purely power suppressed.

B Properties of distributions

In this appendix we collect useful formulae for the convolution of one-sided distributions,

and then discuss two-sided distributions and their convolutions. The relations given here

are straightforwardly derived from the results and techniques in ref. [95].

Throughout this paper, we use the standard plus distribution notation. For a func-

tion q,

[q(x)]+ = lim
β→0

d

dx

[
Θ(x− β)Q(x)

]
, Q(x) =

∫ x

1
dx′q(x′) . (B.1)

This distribution has a boundary at 1, so that∫ 1

−∞
dx [q(x)]+ = 0 . (B.2)
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We also use the shorthand

Ln(x) =

[
lnn x

x
Θ(x)

]
+

for n an integer ≥ 0 , L−1(x) = δ(x) , (B.3)

as well as the distribution

[
Θ(x)x−1+β

][∞]

+
=

1

β
δ(x) +

∞∑
n=0

1

n!
βnLn(x) . (B.4)

The [∞] notation on the plus distribution indicates that the boundary is at ∞ (instead

of 1), so that ∫ ∞
−∞

[
Θ(x)x−1+β

][∞]

+
= 0 . (B.5)

B.1 One-sided distributions and their convolutions

For many applications, one often makes use of convolutions between plus distributions,

especially Ln. The convolution is defined as

(f ⊗ g)(x) ≡
∫ ∞
−∞

dx′ dx′′ δ(x− x′ − x′′) f(x′) g(x′′) . (B.6)

We can take the Fourier transform F to make the convolution multiplicative, and also use

the Fourier transform and its inverse to determine a convolution:

F
{
f ⊗ g

}
= F

{
f
}
F
{
g
}

⇒ f ⊗ g = F−1
{
F
{
f
}
F
{
g
}}

. (B.7)

It is straightforward to determine the convolution between two plus functions Lk and

Ln by relating it to eq. (B.4):

(
Lk ⊗ Ln

)
(x) = the O

(
αk

k!

βn

n!

)
coefficient of

([
Θ(x)x−1+α

][∞]

+

)
⊗
([

Θ(x)x−1+β
][∞]

+

)
.

(B.8)

Using the Fourier transform

F
{[

Θ(x)x−1+β
][∞]

+

}
= Γ[β](−is)−β , (B.9)

with s as the conjugate variable, it is straightforward to show

(
Lk ⊗ Ln

)
(x) = the O

(
αk

k!

βn

n!

)
coefficient of

Γ(α)Γ(β)

Γ(α+ β)

[
Θ(x)x−1+α+β

][∞]

+
(B.10)

= the O
(
αk

k!

βn

n!

)
coefficient of

Γ(α)Γ(β)

Γ(α+ β)

[
1

α+ β
δ(x) +

∞∑
m=0

1

m!
(α+ β)mLm(x)

]
.

This approach is similar to the one used in ref. [95] to give the general form of the convo-

lution (Lk ⊗ Ln)(x), where an equivalent result to eq. (B.10) is given.
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We give the first few convolutions here for convenience:

L0(x)⊗ L0(x) = 2L1(x)− π2

6
δ(x) ,

L0(x)⊗ L1(x) =
3

2
L2(x)− π2

6
L0(x) + ζ3δ(x) ,

L1(x)⊗ L1(x) = L3(x)− π2

3
L1(x) + 2ζ3L0(x)− π4

360
δ(x) . (B.11)

These distributions only have support for x > 0, and appear in many applications.

B.2 Two-sided distributions and their convolutions

In this work, we encountered observables whose cross sections have support for all x and

behave like distributions as x → 0±. We will refer to them as two-sided distributions

(one may think of the usual distributions as one-sided), and we now discuss convolutions

of them.

Consider an observable x with singular behavior for x→ 0±. The fixed-order singular

behavior of x is described by distributions Ln(x±), where x+ = x for x ≥ 0 and x− = −x
for x ≤ 0, so that

Ln(x+) = Ln(x) =

[
lnn x

x
Θ(x)

]
+

,

Ln(x−) = Ln(−x) =

[
lnn(−x)

−x
Θ(−x)

]
+

. (B.12)

Convolutions between various Ln(x±) will mix the x± distributions.

First, we note that convolutions between two x+ distributions or two x− distributions

are effectively one-sided, meaning the above results can be used without modification.

Convolutions between an x+ and an x− distribution are the novel ones we derive here,

adapting the technique in appendix B.1 to find the general form of two-sided convolutions.

Using the Fourier transforms of the x± distributions

F
{[

Θ(x±)x−1+β
±

][∞]

+

}
= Γ(β)(∓is)−β , (B.13)

we have

F
{([

Θ(x+)x−1+α
+

][∞]

+

)
⊗
([

Θ(x−)x−1+β
−

][∞]

+

)}
= Γ(α)Γ(β)(−is)−α(is)−β (B.14)

=
Γ(b)Γ(1− (a+ b))

Γ(1− a)
Γ(a+ b)(−is)−(α+β) +

Γ(a)Γ(1− (a+ b))

Γ(1− b)
Γ(a+ b)(is)−(α+β) .
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We can easily Fourier invert the right-hand side given eq. (B.13). This implies

(
Lk(x+)⊗ Ln(x−)

)
(x±)

= the O
(
αk

k!

βn

n!

)
coefficient of (B.15)

Γ(b)Γ(1− (a+ b))

Γ(1− a)

[
Θ(x+)x−1+α+β

+

][∞]

+
+

Γ(a)Γ(1− (a+ b))

Γ(1− b)
[
Θ(x−)x−1+α+β

−
][∞]

+

= the O
(
αk

k!

βn

n!

)
coefficient of

Γ(b)Γ(1− (a+ b))

Γ(1− a)

[
1

α+ β
δ(x+) +

∞∑
m=0

1

m!
(α+ β)mLm(x+)

]

+
Γ(a)Γ(1− (a+ b))

Γ(1− b)

[
1

α+ β
δ(x−) +

∞∑
m=0

1

m!
(α+ β)mLm(x−)

]
. (B.16)

Using this relation, the first few nontrivial convolutions for two-sided distributions are

L0(x+)⊗ L0(x−) = L1(x+) + L1(x−) +
π2

3
δ(x) ,

L1(x+)⊗ L0(x−) = L2(x+) +
π2

6
L0(x+)

+
1

2
L2(x−) +

π2

6
L0(x−) + ζ3 δ(x) ,

L0(x+)⊗ L1(x−) =
1

2
L2(x+) +

π2

6
L0(x+)

+ L2(x−) +
π2

6
L0(x−) + ζ3 δ(x) ,

L1(x+)⊗ L1(x−) =
1

2
L3(x+) +

π2

3
L1(x+) + ζ3 L0(x+)

+
1

2
L3(x−) +

π2

3
L1(x−) + ζ3 L0(x−) +

7π4

180
δ(x) . (B.17)

C Quark and gluon collinear functions

We summarize here results for the collinear functions for quark- and gluon-initiated jets

through O
(
α2
s

)
. We express our results for dijet observables (∆2± and ∆3−), but they can

be applied to the more general n-jet case of ∆n± as well. The quark collinear function

can be derived from the calculations in section 4.1 and appendix A. The gluon collinear

function calculation proceeds in analogy with the quark case, and there is a strong relation

between the quark and gluon results for nearly all coefficients.
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To O
(
α2
s

)
, the quark and gluon collinear functions contribute to ∆2± and ∆3−, with

Ci(∆2−) = δ(∆2−) +

(
αs
π

)2

K(i)
2−(∆2−) , (C.1)

Ci(∆2+) = δ(∆2+) +

(
αs
π

)2

K(i)
2+(∆2+) ,

Ci(∆3−) =

(
αs
π

)2

K(i)
3−(∆3−) ,

where i = q, g for the different parton types, and the subscripts on K(i) indicate the

contribution of an individual jet region to Ñjet. The O
(
α2
s

)
terms are given by

K(q)
2−(∆2−) =

{(
−C2

F −
7

5
CFCA

)
IΩL1(∆2−) +

(
2 ln zcutC

2
F +

14

5
ln zcutCFCA

)
IΩL0(∆2−)

+

(
1

2
I(a)

Ω CFCA +
1

2
I(c)

Ω CFTRnf

)
L0(∆2−)

}
Θ(∆2− < z2

cut/4) ,

K(g)
2−(∆2−) =

{(
−12

5
C2
A

)
IΩL1(∆2−) +

(
24

5
ln zcutC

2
A

)
IΩL0(∆2−)

+

(
1

2
I(a)

Ω C2
A +

1

2
I(c)

Ω CATRnf

)
L0(∆2−)

}
Θ(∆2− < z2

cut/4) , (C.2)

and

K(q)
2+(∆2+) =

(
−7

5
C2
F +

1

5
CFCA

)
IΩL1(∆2+)

+

[(
−57

20
+

7

5
ln 2− ln zcut

)
C2
F +

(
−3

4
− 1

5
ln 2− 7

5
ln zcut

)
CFCA

]
IΩL0(∆2+)

+

(
1

2
I(b)

Ω CFCA +
1

2
I(d)

Ω CFTRnf

)
L0(∆2+) ,

K(g)
2+(∆2+) =

(
−6

5
C2
A

)
IΩL1(∆2+)

+

[
6

5

(
−11

3
+ ln 2− 2 ln zcut

)
C2
A +

2

3
CFTRnf +

2

3
· 7

5
CATRnf

]
IΩL0(∆2+)

+

(
1

2
I(b)

Ω C2
A +

1

2
I(d)

Ω CATRnf

)
L0(∆2+) , (C.3)

and

K(q)
3−(∆3−) =

[(
−3

4
− ln zcut

)
C2
F +

(
−3

4
− ln zcut

)
7

5
CFCA

]
IΩL0(∆3−) , (C.4)

K(g)
3−(∆3−) =

[
6

5

(
−11

6
− 2 ln zcut

)
C2
A +

2

3
· 7

5
CFTRnf −

2

3
· 1

5
CATRnf

]
IΩL0(∆3−) .

The angular integral factor IΩ is defined in eq. (4.29) and I(a,b,c,d)
Ω are given in eqs. (A.4)

and (A.7).
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