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Abstract 

Several growth methods were employed to investigate the photovoltaic behavior of GaN/Cu2O heterojunctions by depositing 
cuprous oxide thin films on top of gallium nitride templates. The templates consist of a thin layer of GaN:Si grown on a 
sapphire substrate by metal organic vapor deposition. The deposition procedure was followed up by photolithographic 
structuring and thermal evaporation of metal contacts. For device characterization, J-V characteristics and external quantum 
efficiency were measured, pointing to a possible energy barrier in the conduction band. To gain further insight X-ray 
photoelectron spectroscopy was applied. 

© 2013 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of The European Materials Research Society (E-MRS). 
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1. Introduction 

Due to its high absorption coefficient, non-toxicity and the abundance of its composing elements, cuprous oxide 
(Cu2O) is a promising absorber material for photovoltaic applications, even despite of the relatively large band gap 
(2.17 eV). With increasing success in the past decade, more attention has been paid to zinc oxide/cuprous oxide 
heterojunctions, especially when oxidized copper foils, resulting in cuprous oxide substrates with superior 
electrical properties, are employed [1,2,3]. At forward bias, however the large conduction band offset of 1.0 eV 

* Corresponding author. Tel.: +49-641-9933114. 
E-mail address: philipp.hering@exp1.physik.uni-giessen.de 

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY-NC-ND license.
Selection and peer-review under responsibility of The European Materials Research Society (E-MRS)

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


 K.P. Hering et al.  /  Energy Procedia   44  ( 2014 )  32 – 36 33

limits the open circuit voltage: the theoretically attainable efficiency is decreased by about 50%. As a way out, we 
chose Gallium nitride as window layer: it offers a conduction band offset of 0.2 eV in relation to Cu2O [4]. 

2. Experimental 

The gallium nitride films were grown on polished sapphire substrates via MOCVD and were provided by the 
OSRAM AG. The cuprous oxide thin films were produced via RF-magnetron sputtering, deposited at 75 W, 
utilizing a copper target. An Argon flow of 35 sccm and oxygen flow of 3.4 sccm for the deposition at room 
temperature, 50 sccm Ar and 3.4 sccm O2 for the deposition at 920 K, was used, corresponding to 4.5E-3 mbar and 
7.5E-3 mbar in total pressure, respectively. Further films were produced by rapid thermal annealing (RTA) at    
800 K after sputter deposition at room temperature, via chemical vapor deposition at 40 mbar, employing the 
evaporation of CuI2 at a rate of 30 mg/h, transported by 1.4 slpm of argon flow under addition of 3 sccm oxygen 
flow at a temperature of 770 K, and plasma assisted molecular beam epitaxy at 5E-6 mbar, evaporating copper at 
1350 K and adding 0.45 sccm of oxygen flow, where the plasma was powered with 250 W. After deposition, 
photolithographic processing steps were undertaken. That includes usage of diluted nitric acid and several soft-
bake steps at 100 °C, as well as one hard-bake step at 100 °C for one hour, followed by the deposition of Ti/Au and 
Au metal contacts via thermal evaporation. J-V characteristics EQE were measured by a Keithley 4200SCS 
parameter analyzer, combined with a Xe arc lamp, monochromator, and AM1.5g filter. XPS measurements were 
carried out with a PHI Electronics VersaProbe II system. Film thicknesses were obtained from the interference of 
UV-VIS reflectance measurements; Grain sizes were determined atomic force microscopy. DC-Hall-effect was 
measured using insulating substrates, such as sapphire, magnesium oxide or quartz glass. 

 
 

heterostructure Film thickness 
(nm) 

Avg. grain sizes 
(nm) 

Hall mobility 
(cm2/Vs) 

PVD (3.1 sccm O2) 540 50 <5 

PVD (3.2 sccm O2) 540 50 8 

PVD (3.3 sccm O2) 

PVD (3.4 sccm O2) 

PVD (3.5 sccm O2) 

PVD (3.4 sccm O2, RTA) 

PVD (920 K) 

CVD 

MBE 

540 

540 

540 

540 

500 

720 

160 

50 

50 

50 

50 

500-2000 

500 

500-1000 

<5 

<5 

<5 

10 

52 

22 

70 

 

3. Results and discussion 

On changing the oxygen flow applied when depositing Cu2O via sputtering, the stoichiometry is significantly 
changed, the amount of intrinsic defects, causing p-type conduction, i.e. copper vacancies, can be controlled 
resulting in hole densities of 5E14 cm-3 up to 5E16 cm-3, while staying within reasonable stoichiometric limits of 
the cuprous oxide phase [5]. The observed short circuit current densities in Fig. 1 show a maximum at 3.2 sccm 
oxygen flow during growth, which can be attributed to the carrier mobility that is slightly higher for lower oxygen 
flows. The open circuit voltage is significantly higher at an increased oxygen flow of 3.4 sccm, corresponding to 
higher carrier densities. A large open circuit voltage, combined with a very small short circuit current, is 
characteristic for an energy barrier at the interface, which will severely impede the minority carriers, i.e. electrons 
generated in the cuprous oxide absorber, to reach the gallium nitride emitter. That, in conjunction with the low 
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carrier mobilities, which originate in the small grain sizes, when sputter depositing at low temperatures, also 
accounts for a small diffusion length, resulting in the overall low quantum efficiency. 
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Figure 1:  (a) J-V-characteristics of the heterostructures employing RF magnetron sputtering at room temperature under AM1.5g illumination 
at 100 mW/cm2. (b) Corresponding external quantum efficiency measurements. 

 

     Table 1. Parameters of the devices with Cu2O layers prepared by sputtering at room temperature. 

heterostructure VOC (V) JSC (mA/cm2) FF (%) Efficiency (%) 

PVD (3.1) 0.47 0.04 53 0.01 

PVD (3.2) 0.39 0.22 46 0.04 

PVD (3.3) 0.45 0.12 74 0.04 

PVD (3.4) 

PVD (3.5) 

0.87 

0.31 

0.10 

0.07 

78 

64 

0.07 

0.01 

 
 
 

In order to investigate the possibility of an electron barrier in the conduction band, XPS measurements of a 
heterostructure deposited at room temperature via sputtering were undertaken. In Fig. 2 on the left hand side (a)     
a depth profile of the heterostructure XPS-spectra is depicted, showing the gallium 2p3/2 signal, clearly undergoing 
a shift in binding energy from a nitrogen bond towards an oxygen bond. The profile was collected by sequential 
sputtering and measuring. Each step corresponds to approximately 0.5 nm in depth. The graph on the right hand 
side (b) depicts the energetic positions of the 2p3/2 maxima for each, gallium and copper. Since the measurement 
was performed insulated with a constant neutralization of 1.6 eV it is prone to error, due to an occasional charge 
up, leading to energetic shifts that could be misinterpreted as a change in binding energy. That however would 
cause all signals to shift in the same manner, which is not the case in the interface region. 
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Fig. 2: XPS depth profile of a heterostructure prepared by sputtering at room temperature. (a) Partial spectra showing the Ga 2p3/2 signal, where 
the interface region is depicted in red. (b) The peak positions of each, the Ga 2p3/2  and the Cu 2p3/2  signal. 

 
When heat is applied, during or after sputter deposition, the short circuit current is significantly increased, while 

the open circuit voltage is decreased. Although an improved quality of the absorber material can be reached at 
annealing temperature ranges from 1200 K and higher, the thermal annealing was performed at 800 K and will 
only cause marginal changes to the cuprous oxide film. Thus, a change at the hetero interface can be concluded. 
Heating during the sputtering process results in improved material quality and therefore in increased minority 
carrier diffusion lengths, as is observed in the electrical measurements. 

 In addition to sputter deposition other growth methods, such as chemical vapor deposition and plasma assisted 
molecular beam epitaxy were employed. While the chemical vapor deposition, being the least damaging deposition 
technique, shows the largest short circuit current, the open circuit voltage and parasitic resistances obtained, were 
the overall worst. That can be explained by the very low growth rate of approximately 5 nm per hour. The material 
properties of the absorber film fabricated by PAMBE are superior to the other growth methods used. However, a 
film thickness of only 160 nm could be reached, which is caused by a significantly lowered growth rate on the 
GaN-templates as compared to other substrates, such as MgO. Thus, the external short circuit current and quantum 
efficiency did not exceed the ones of the devices involving sputtering at high temperatures or chemical vapor 
deposition. 
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Fig. 3: (a) J-V-characteristics of the remaining heterostructures under AM1.5g illumination at 100  mW/cm2. To ease comparison the device   
prepared by sputtering at room temperature and 3.4 sccm O2 flow was added.  (b) Corresponding external quantum efficiency 
measurements. 
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     Table 2. Parameters of the remaining devices. 

heterostructure VOC (V) JSC (mA/cm2) FF (%) Efficiency (%) 

PVD (RTA) 0.1 0.47 28 0.01 

PVD (920 K) 0.27 1. 25 57 0.19 

PVD (MBE) 

PVD (CVD) 

0.64 

0.15 

0.72 

2.63 

61 

35 

0.28 

0.14 

 

4. Conclusion 

Given the results of the films sputtered at room temperature, it may be concluded that electrical material 
properties of those low temperature absorber films are too inferior to permit reasonable photovoltaic conversion 
efficiencies. Also a strong energy barrier in the conduction band can arise. XPS measurements point to a gallium 
oxide layer, possibly a delafossite, i.e. CuGaO2, which could impose the electron barrier at the hetero interface. 
Gallium oxide forming a barrier would contradict the results recently published by Minami et al. [6], successfully 
employing a Ga2O3 window layer, leaving CuGaO2 or a strong interface dipole as the only candidates. However, 
further investigation to clarify the latter must be undertaken. Furthermore, it can be concluded that recombination 
at the hetero interface is strong in any case. It is therefore safe to say that further investigation should focus on the 
hetero interface properties and might show the necessity for a buffer layer to overcome interface recombination. It 
should be noted that sufficient hole densities from intrinsic defects in cuprous oxide require huge quantities of 
copper vacancies, due to their large energetic depth and that the donor density in the gallium nitride templates used 
are too low, preventing a beneficial asymmetric development of the space charge region further into the cuprous 
oxide absorber layer. 
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