
18.783 Elliptic Curves Spring 2013

Problem Set #10 Due: 05/03/2013

Description

These problems are related to the material covered in Lectures 18-21. As usual, the first
person to spot each non-trivial typo/error will receive a point of extra credit.

Instructions: Solve Problems 1-3 and then complete Problem 4, which is a survey.

Problem 1. Congruence subgroups (30 points)

The diagram below depicts 9 translates of the fundamental region F for H∗/Γ(1) in H∗.
Each(translate) γF is labelled in bold by γ, where γ is expressed in terms of S =

(
0 1 and1
−
0

T = 1 1
0 1 The labels ρ and i within the region labeled by γ indicate the points γρ and

)
γi,

respectively.
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1. Determine the index of Γ(2) in Γ(1), determine the number of Γ(2) cusp orbits. Then
specify a connected fundamental region for H∗/Γ(2) by listing a subset of the translates
of F in the diagram above and identify the cusps that lie in your region. Compute
the genus of X(2) by triangulating your fundamental region and applying Euler’s
formula V − E + F = 2 − 2g. Be careful to count vertices and edges correctly —
initially specify vertices and edges as H∗-points in the diagram (e.g. STρ), then
determine which vertices and edges are Γ(2)-equivalent (note that in the quotient
X(2) = H∗/Γ(2) there may be more than one edge between the same pair of vertices).
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2. For each of the following congruence subgroups, determine its index in Γ(1), the
number of cusp orbits, and a set of representative cusps: Γ0(2), Γ0(3), Γ1(3), Γ(3).

3. Derive formulas for the index in Γ(1) and the number of cusps for the congruence
subgroups Γ0(p), Γ1(p), Γ(p), where p is any odd prime.

Problem 2. Polycyclic presentations (35 points)

Let α~ = (α1, . . . , αk) be a sequence of generators for a finite abelian group G, and let
Gi = 〈α1, . . . , αi〉 be the subgroup generated by α1, . . . , αi. The series

1 = G0 / G1 / · · · / Gk−1 / Gk = G,

is a polycyclic series: each Gi−1 is a normal subgroup of Gi and each of the quotients
Gi/Gi−1 = 〈αiGi−1〉 is a cyclic group. Every finite solvable group admits a polycyclic
series, but we restrict ourselves here to abelian groups (written multiplicatively).

When G is the internal direct product of the cyclic groups 〈αi〉, we have Gi/Gi−1 ∼= 〈αi〉
and call α~ a basis for G, but this is a special case. For abelian groups, Gi/Gi−1 is isomorphic
to a subgroup of 〈αi〉, but it may be a proper subgroup, even when G is cyclic.

The sequence r(α~ ) = (r1, . . . , rk) of relative orders for α~ is defined by

ri = |Gi : Gi−1|,

and satisfies ri = min{r : αri ∈ Gi 1}. We necessarily have r− i ≤ |αi|, but equality typically
do∏ es not hold (α~ is a basis precisely when ri = |αi| for all i). In any case, we always have

i ri = |G|, thus computing the ri determines the order of G.

1. Let α~ = (α1, . . . , αk) be a sequence of generators for a finite abelian group G, with rel-
ative orders r(α~ ) = (r1, . . . , rk). Prove that every β ∈ G can be uniquely represented
in the form

β = ~x · α~ = αx11 · · ·
xα k ,k

where the integers xi satisfy 0 ≤ rxi < ri. Show that if β = α i
i , then xj = 0 for j ≥ i.

By analogy with the case r = 1, we call ~x the discrete logarithm of β with respect to α~ (but
note that the discrete logarithm of the identity element is now the zero vector). The vector
~x can be conveniently encoded as an integer x in the interval [0, |G| − 1] via

x = xiNi, Ni = rj ,
1≤

∑
i≤k 1≤

∏
j<i

and we may simply write x = logα~ β to indicate that x is the integer encoding the vector
~x = logα~ β. Note that xi = bx/Nic mod ri, so it is easy to recover ~x from its encoding x.

2. Design a generic group algorithm that, given a sequence of generators α~ = (α1, . . . , αk)
for a finite abelian group G, constructs a table T with entries T [0], ..., T [|G| − 1] with
the property that if T [n] = β, then n = logα β. Your algorithm should also output

rthe relative orders r , and the integers s for which T [s ] = α i
i i i i .

This allows us to compute a polycyclic presentation for G, which consists of the sequence
α~ , the relative orders r(α~ ) = (r!, . . . , rk), and the vector of integers s(α~ ) = (s1, . . . , sk). With
this presentation in hand, we can effectively simulate any computation in G without actually
performing any group operations (i.e. calls to the black box). This can be very useful when
the group operation is expensive.
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3. Let α, r(α), and s(α) be a polycyclic presentation for a finite abelian group G. Given
integers x = logα~ β and y = logα~ γ, explain how to compute the integer z = logα~ βγ
using r(α) and s(α), without performing any group operations. Also explain how to
compute the integer w = logα~ β

−1.

As a side benefit, the algorithm you designed in part 2 gives a more efficient way to
enumerate the class group cl(D) than √we used in Problem Set 9, since the class number
h(D) is asymptotically on the order of |D| (this is a theorem of Siegel).

But first we need to figure out how to construct a set of generators for G. We will do
this using prime forms. These are forms f = (a, b, c) for which a is prime and −a < b ≤ a
(but we do not require a ≤ c, so prime forms need not be reduced). Prime forms correspond
to prime ideals whose norm is prime (degree-1 primes). Recall that imaginary quadratic
orders O are determined by their discriminant D, which can always be written in the form
D = u2DK , where DK is the discriminant of the maximal order OK and u = [OK : O] is
the conductor of O.

4. Let a be a prime. Prove that if a divides the conductor then there are no prime forms
of norm a, and that otherwise there are exactly 1+(D ) prime forms of norm a, wherea
(D ) is the Kronecker symbol.1 Write a program that either outputs a prime forma
(a, b, c) with b ≥ 0 or determines that none exists.

√ When D is fundamental, we can generate cl(D) using prime forms of norm at most
|D|/3; this follows from the bound proved in Problem Set 9 and the fact that the maximal

order OK is a Dedekind domain (so ideals can be uniquely factored into prime ideals). We
can still generate cl(D) with prime forms when D is non-fundamental, but bounding the
primes involved is slightly more complicated, so we will restrict ourselves to fundamental
discriminants for now.

5. Implement the algorithm you designed in part√ 2, using the program from part 4
to enumerate the prime forms of norm a ≤ |D|/3 in increasing order by a. Use
the prime forms as generators, but use a table lookup to discard prime forms that
are already present in your table so that your αi all have relative orders ri > 1
(warning: prime forms need not be reduced: be sure to reduce them before making
any comparisons). For the group operation, you can create binary quadratic forms in
Sage using BinaryQF([a,b,c]), and then compose forms f and g using h=f*g.
Use h.reduced form() to get the reduced form. You will only be using this code
on small examples, so don’t worry about efficiency; you will only be graded on your
answers to part 6 (which you can probably solve mostly by hand, with a little help
from Sage).

6. Run your algorithm on D = −5291, and then run it on the first fundamental dis-
criminant D < −N , where N is the first five digits of your student ID. Don’t
list all the elements of cl(D), just give the reduced forms for the elements of α~
and the integer vectors r(α~ ) and s(α~ ). Sanity check your results by verifying that
you at least get the right class number for D (you can check this in Sage using
NumberField(x**2-D,’t’).class number()).

1Thus (D ) is 0 if D is even, 1 if D 1 mod 8, and 1 otherwise. Note that we refer to a as the ”norm”
2

≡ −
of the form (a, b, c), since the corresponding ideal has norm a.
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Problem 3. Mapping the CM torsor (35 points)

Let O be an imaginary quadratic order of discriminant D, and let p > 3 be a prime that
splits completely in the ring class field of O, equivalently, a prime of the form 4p = t2−v2D.
As explained in lecture, the set

Ell (FO p) = {j(E/Fp) : End(E) ' O}

is a cl(O)-torsor. This means that for any pair j1, j2 ∈ Ell (Fp), there is a unique αO ∈ cl(O)
for which αj1 = j2. This has many implications, two of which we explore in this problem.

First and foremost, the cl(O)-action can be used to enumerate the set Ell (FO p), all
we need is a starting point j0 ∈ Ell (Fp). In this problem we will “cheat” and use theO
Hilbert class polynomial HD(X) to do this (in Problem Set 11 we will find a starting point
ourselves). The polynomial HD(X) splits completely in Fp[X], and its roots are precisely
the elements of Ell (Fp). We could enumerate Ell (F ) by factoring H (X) completely,O O p D

but that would not let us “map the torsor”. We want to construct an explicit bijection from
cl(O) to Ell (F )O p that is compatible with the group action.

Let us start with a simple example, using D = −1091. In this case the class number
h(D) = 17 is prime, so cl(D) is cyclic and every non-trivial element is a generator. For
our generator, let α be the class of the prime form (3, 1, 91), which acts on Ell (FO p) via
cyclic isogenies of degree 3: each j ∈ Ell (Fp) is 3-isogenous2 to the j-invariant αj. ThisO
means that Φ3(j, αj) = 0 for all j ∈ Ell (FO p), where Φ3(X,Y ) = 0 is the modular equation
for X0(3).

To enumerate Ell (Fp) as j0, j1, j2, . . ., with jk =( αkjO 0, we start by identifying j1 is a
root of the univariate polynomial Φ3(j0, Y ). Now D = 1 in this case, so by part 4 of3
problem 2 there are two ideals of norm 3 in cl(D), both of which act via 3-isogenies; the
other one corresponds to the form (3,−1, 91), the inverse

)
of α in cl(O). Thus there are at

least two roots of Φ3(j0, Y ) in Fp, but provided that we pick the prime p so that 3 does not
divide v, there will be only two Fp-rational roots.

There are methods to determine which of of these two roots “really” corresponds to the
action of α, but for now we disregard√ the distinction between α and α−1; this ultimately
depends on how we embed Q( −1091) into C in any case. Let us arbitrarily designate one
of the Fp-rational roots of Φ3(j0, Y ) as j1. To determine j2, we now consider the Fp-rational
roots of Φ3(j1, Y ). Again there are exactly two, but we already know one of them: j0 must
be a root, since Φ3(X,Y ) = Φ3(Y,X). So we can unambiguously identify j2 as the other
Fp-rational root of Φ3(j1, Y ), equivalently, the unique Fp-rational root of Φ3(j1, Y )/(Y −j0).

1. Let D = 1091, and let t be the least odd integer greater than 1000N for which
p = (t2

−
− D)/4 is prime, where N is the last three digits of you student ID. Use

the Sage function hilbert class polynomial to compute HD(X), then pick a
root j0 of HD(X) in Fp (you will need to coerce HD into the polynomial ring Fp[X]
to do this). Using the function isogeny nbrs implemented in the Sage worksheet

, enumerate the set EllO (Fp) as j0, j1, j2, . . . by

walking a cycle of 3-isogenies starting from j0, as described above, so that jk = αkj 0
(assuming that your arbitrary choice of j1 was in fact j1 = αj0). You should find

that the length of this cycle is 17, because α has order 17 in cl(D). Finally, verify

that the you have in fact enumerated all the roots of HD(X).

2When we say that j1 and j2 are 3-isogenous, we are referring to isomorphism classes of elliptic curves
over

18.783 Problem Set 10 Problem 3.sws

Fp. There are 3-isogenous curves E1/Fp and E2/Fp with j1 = j(E1) and j2(E2), but one must be
careful to choose the correct twists.
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2. Let D, p, and j0 be as in part 1, and let β ∈ cl(D) be the class of the prime form
(7, 1, 39). Compute k = logα β. Enumerate Ell (F ,O p) again as j0

′ , j1
′ j2
′ , . . ., starting

from the same j0
′ = j0 but this time use the action of β, by walking a cycle of 7-

isogenies. Rather than choosing j1
′ arbitrarily, choose j1

′ in a way that is consistent
with the assumption j1 = αj0 in part 1: i.e., choose j1

′ so that j1
′ = βj0 = αkj0 = jk.

Then verify that for all m = 1, 2, 3, . . . , 16 we have j′ = βm m
m j k

0 = α j0 = jkm, where
the subscript km is reduced modulo |α| = 17.

You should find the results of parts 1 and 2 remarkable (astonishing even). A priori,
there is no reason to think that there should be a relationship between a cycle of 3-isogenies
and a cycle of 7-isogenies. The fact that we can use the modular polynomials Φ` to enu-
merate the roots of HD is extremely useful. One can enumerate the roots of polynomial
whose degree is, say, 10 million, simply by finding roots of polynomials of very small degree
(typically one can use Φ` with ` < 20). We can also use the CM torsor to find zeros of Φ`,
even when ` is ridiculously large.

3. Let ` be the least prime greater than 10100N for which
(
D is`

)
= 1, where N the last

three digits of your student ID. Determine the Fp-rational roots of Φ`(j0, Y ).

For reference, the total size of the polynomial Φ` ∈ Z[X,Y ] is roughly 6`3 log ` bits, which
is on the order of 101000000 bits in the problem you just solved. Even reduced modulo p,
it would take more than 1010000 bits to write down the coefficients of this polynomial (for
comparison, there are fewer than 10100 atoms in the universe). This example might seem
fanciful, but an isogeny of degree 10100 is well within the range that might be of interest in
cryptographic applications.

Now for a slightly more complicated example, where the class group is not a cyclic
group of prime order. Let D = −5291. In this case h(D) = 36 and the class group cl(D)
is isomorphic to Z/2Z × Z/18Z. In problem 3 you computed a polycyclic presentation α~ ,
r(α~ ), s(α~ ) for cl(D), which should involve generators α~ = (α1, α2, α3), of norms 3, 5, and 7.

4. Let D = −5291, and let t be the least odd integer greater than 1000N for which
p = (t2 − D)/4 is prime, where N is the last three digits of you student ID. Using
the polycyclic presentation for cl(D) that you computed in problem 3, enumerate
Ell (D) starting from a j-invariant j0 obtained as a root of HO D. Your enumeration
j0, j1, j2, . . . , j35 should have the property that the element β ∈ cl(O) whose action
sends j0 to jk satisfies k = logα β (in terms of the table T in part 2 of problem 3,
jk = T [k]j0), subject to the assumption that j1 = α1j0.

Here are a few tips on part 4. You will compute j0, . . . , jr1 1 using 3-isogenies, but to−
compute jr1 you will need to compute a 5-isogeny from j0. When choosing jr1 as a root
of Φ5(j0, Y ), make this choice consistent with the assumption j1 = α1j0 by using the fact
that s2 = log r2

α~ α2 (assuming s2 6= 0, which is true in this case). When you go to compute
jr1+1, you will need to choose a root of Φ3(jr1 , Y ). Here you can make the choice consistent
with the fact that cl(O) is abelian, so the action of α1α2 should be the same as the action
of α2α1. Similar comments apply throughout; any time you start a new isogeny cycle, you
have a choice to make, but you can make all of them consistent with your choice of j1.

I don’t recommend trying to write a program to make all these choices (this can be done
but it is a bit involved), it will be easier and more instructive to work it out by hand, using
Sage to enumerate paths of `-isogenies as required (you can use the function isogeny path
in the Sage worksheet 18.783 Problem Set 10 Problem 3.sws.
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Problem 4. Survey

Complete the following survey by rating each of the problems you attempted on a scale of
1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10 =
“mind-blowing”), and how difficult you found the problem (1 = “trivial,” 10 = “brutal”).
Also estimate the amount of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Also, please rate each of the following lectures that you attended, according to the quality
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

4/25 Riemann surfaces and X(1)

4/30 The modular equation

Please feel free to record any additional comments you have on the problem sets or lectures,
in particular, ways in which they might be improved.
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