
18.783 Elliptic Curves Spring 2013

Problem Set #12 Due: 05/16/2013

Description

These problems are related to the material covered in Lecture 23. As usual, the first person
to spot each non-trivial typo/error will receive a point of extra credit.

Instructions: Solve Problem 1 and one of Problems 2 and 3. Then complete Problem 4,
which is a survey. The Sage worksheet 18.783 Problem Set 12.sws contains modular polynom

ials and helper functions from previous problem sets that you may find useful.

Problem 1. Isogeny volcanoes (40 points)

For the purposes of this problem, an isogeny volcano is an ordinary component of an `-
isogeny graph G`(Fq) that does not contain 0 or 1728, where ` - q. This is a bi-directed
graph that we regard as an undirected graph.

1. Use the CM method to explicitly construct isogeny volcanoes that meet each of the
following sets of criteria:

(a) ` = 2, d = 3, V0 is a 5-cycle;

(b) ` = 3, d = 2, V0 contains a single edge;

(c) ` = 7, d = 1, V0 contains a single vertex with two self-loops.

In your answers, specify the finite field used, the discriminant of the order O0 corre-
sponding to V0, and list each bi-directed edge just once, as a pair (v1, v2) of j-invariants
corresponding to a horizontal or descending edge.

2. Use the CM method to construct an ordinary elliptic curve E/Fq with the following
properties

(a) j(E) is on the floor of its 2-volcano, which has depth 6.

(b) j(E) is on the surface of its 3-volcano, which has depth 3.

(c) j(E) is on the middle level of its 5-volcano, which has depth 2.

(d) j(E) is on the floor of its 7-volcano, which as depth 5.

(e) j(E) is one of exactly two vertices in its 11-volcano.

(f) j(E) is the only vertex in its 13-volcano.

In your answer, specify the finite field Fq, the j-invariant j(E), and the discriminant D
of the order O ' End(E).

3. Prove that the cardinality of a 2-isogeny volcano with an odd number of vertices must
be a Mersenne number (an integer of the form 2n − 1). Give an explicit example of a
2-isogeny volcano with 15 vertices.

4. Prove that every ordinary elliptic curve E/Fq is isogenous to an elliptic curve E′/Fq

for which E′(Fq) is a cyclic group.

-
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Problem 2. Computing modular polynomials (60 points)

As we have seen, the modular polynomials Φ`(X,Y ) play a key role in many theoretical and
practical applications of elliptic curves. One can compute them using the q-expansions of
the modular functions j(z) and j(`z), but this is approach is difficult to implement efficiently
and extremely memory intensive. In this problem you will implement an easier and faster
algorithm using isogeny volcanoes. The strategy is to use a CRT approach, with primes p
carefully selected to achieve a configuration of `-volcanoes similar to that depicted below:

Here we have a configuration of three `-volcanoes, with ` = 7, each of depth d = 1. There
are a total of `+ 2 vertices on the surface (any value greater than `+ 1 suffices).

Provided we have completely “mapped” this configuration of `-volcanoes, meaning that
we know the j-invariants of every vertex in the figure, we can compute Φ`(X,Y ) as follows.
For any particular j-invariant ji on the surface, we know the values of all the roots of
φi(Y ) = Φ`(ji, Y ), since we know the ` + 1 neighbors of ji in G`(Fp). We can therefore
compute each φi as the product of its linear factors. If we then consider the coefficient of
Y k in φi, we know (at least) `+2 values cik of this coefficient, corresponding to `+2 distinct
ji. This suffices to uniquely determine the polynomial ψk(X) of degree at most ` + 1 for
which ψk(ji) = cik, via Lagrange interpolation:

∑̀+2
)

ψk(X) = cik
i=1

∏ (X − jm

m6=i
(ji − jm)

1. Prove that Φ`(X,Y ) =
∑`+1 k

k=0 ψk(X)Y .

To make things simpler, we will use a configuration with (at least) ` + 2 isomorphic
`-volcanoes, each with just one vertex on the surface and `+ 1 neighbors on the floor – this
can be achieved using a fundamental discriminant D with (D ) = −1 and h(D)` ≥ `+2. The
vertex on the surface√ of each `-volcano will have endomorphism ring equal to the maximal
order for K = Q( D), and the vertices on the floor will then have endomorphism ring equal
to the order O′ with discriminant `2D (note that O′ has index ` in

2
O). For convenience, we

will choose D so that both cl(D) and cl(` D) are cyclic groups generated by prime forms
of norm `0 = 3 (so we can use `0-volcanoes of depth 0; see part 4 of problem 2). This
idealized setup is not always achievable, but it will work for our example using ` = 17 and
D = −2339, with class number h(D) = 19.

The key challenge is to map our set of `-volcanoes without using the polynomial Φ`.
Mapping the surface is easy: the vertices on the surface of our set of `-volcanoes are the
roots of the Hilbert class polynomial HD (each root constitutes the surface of its own
volcano). The vertices on the floor are the roots of the Hilbert class polynomial H`2D, but
this polynomial is much larger than H

Õ
D and we don’t want to compute it, since it would

take time (`4). Instead we will use Vélu’s formulas (see [3, §12.3]) to compute a descending
isogeny from each vertex on the surface. The kernel of this isogeny is a cyclic subgroup of
E[`], and Vélu’s formulas require us to enumerate the points in the kernel, which may lie
in an extension field of degree as large as `2 − 1 (the degree of the `-division polynomial).
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But we will choose primes p ≡ 1 mod ` that satisfy the norm equation 4p = t2 − `2D. This
ensures that the elliptic curves E/Fp with endomorphism ring OK have rational `-torsion
(provided we choose the correct twist); in this situation Vélu’s formulas are very efficient.

2. With ` = 17 and D = −2339, find a prime p ≡ 1 mod ` that satisfies 4p = t2 − `2D.
Note that this requires t ≡ ±2 mod `, and with t ≡ 2 mod ` we will have p + 1 − t
divisible by `2. Use Sage to compute the Hilbert class polynomial HD(X) and find
the roots of HD mod p. For each of the roots j1, . . . , jh of HD, construct an elliptic
curve Ei with j-invariant ji, and attempt to find a point Pi ∈ E(Fp) with order ` by
computing random Pi = mP with m = (p+ 1− t)/`2. If you find Pi 6= 0 and `Pi 6= 0
then you will need to replace Ei with a quadratic twist y2 = x3 + d2A+ d3B, where d
a not a square in Fp

As a sanity check, you may want to pick one of the Ei and use Sage to verify that
Ei(Fp) has `-rank 2, but this is not part of the algorithm.

We are now ready to apply Vélu’s formulas to each pair (Ei, Pi) to obtain an `-isogenous
curve Ei

′. Since every curve Ei
′ that is `-isogenous to Ei lies on the floor, it does not matter

which Pi we choose, any point of order ` will work. Below is a simplified algorithm that
implements Vélu’s formulas for the case where we have a cyclic subgroup generated by a
point P of odd order on an elliptic curve given in short Weierstrass form y2 = x3 +Ax+B
over a finite field Fp with p > 3.

1. Set t← 0, w ← 0, and Q← P .

2. Repeat (l − 1)/2 times:

a. Set s← 6Q2 2
x + 2A, and then set u← 4Qy + sQx.

b. Set t← t+ s, w ← w + u, and Q← Q+ P .

3. Set A′ = A− 5t and B′ = B − 7w.

4. Output the curve E′/Fp defined by y2 = x3 +A′x+B′.

In the description above Qx and Qy are the affine coordinates (x.y) of the point Q.

3. Implement the above algorithm and use it to compute elliptic curves Ei
′ that are `-

isogenous to the curves Ei you computed in step 2. Let j1
′ , . . . , jh

′ be the corresponding
j-invariants.

Now comes the interesting part. We want to enumerate the vertices on the floor of our
our `-volcano, but there are no horizontal `-isogenies between vertices on the floor! Instead,
we must go up to the surface and back down, which amounts to computing an isogeny of
degree `2. If we return to the same vertex this is just the multiplication-by-` map (the
composition of an `-isogeny with its dual), but otherwise it is a cyclic isogeny of degree `2,
corresponding to the CM action of a proper O′-ideal of norm `2.

4. For (D ) = −1, show that there are ` inequivalent integral primitive positive definite`
binary quadratic forms (`2, b, c) of discriminant `2D (in our example these will all be
reduced forms). These forms generate a cyclic subgroup G of cl(`2D) of order ` + 1.
For ` = 17 and D = −2339, determine a generator f = (a, b, c) for G.
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Now we certainly don’t want to use Φ`2 to compute the action of f (we don’t even know
Φ` yet!). But as in problem 3 of Problem Set 10, we can compute the action of an O′-ideal
of large norm using the action O′-ideals of much smaller norm. In our example, we can use
an O′-ideal of norm `0 = 3 to enumerate all the vertices on the floor of our set of volcanoes,
and then determine the action of f by computing a discrete logarithm in cl(`2D). Recall
that we chose D so that a prime form of norm 3 generates cl(`2D), so this is easy.

5. Use Φ`0 = Φ3 to enumerate all the vertices on the floor as a cycle of 3-isogenies.

6. Compute the discrete logarithm k of the form f from part 4 with respect to a prime
form of norm `0 = 3 in cl(`2D). There is no need to distinguish inverses, and you
should find that (` + 1)k ≡ 0 mod h(`2D). Feel free to use brute force (a linear
search); the time will be dominated by later steps in any case. Knowing k, you can
now identify the subsets in the enumeration of part 5 that correspond to cosets of G.
Each of these subsets will contain exactly one the j-invariants ji

′ that you computed
in step 3 and corresponds to the `+ 1 “children” of ji (its neighbors on the floor).

7. ∏For each of `+2 vertices ji on the surface, compute the polynomial φi(Y ) = Φ`(ji, Y ) =

n(Y − jim), where the jim range over the `+ 1 children of ji that you identified in
part 6. Then, for k ranging from 0 to `+1, interpolate the unique polynomial ψk(X) of
degree at most `+1 for which ψk(ji) is equal to the coefficient of Y k in φi(Y ). You can
do this with Sage: first create the polynomial ring R.<X>=PolynomialRing(GF(p)),
and then use R.lagrange polynomial([(x0,y0),(x1,y1),...,(xn,yn)])
to compute the unique polynomial f(X) of degree at most n for which f(xi) = yi.
Note that ψ`+1(X) must be the constant polynomial 1.

Finally, compute Φ (X,Y ) =
∑`+1 f (X)Y k

` k=0 k mod p.

You have now computed Φ17(X,Y ) mod p. As a sanity check, verify that the coefficients
are symmetric: Φ`(X,Y ) = Φ`(Y,X). If you need to debug your algorithm, you may find it
helpful to ask Sage to compute the Hilbert class polynomial H`2D(X) and then verify that
the j-invariants ji

′ that you computed in step 3 are actually roots of H`2D mod p.
Now to convince ourselves that we have really computed Φ17 mod p, let’s use it to

enumerate the roots of a completely different Hilbert class polynomial.

8. Using the same prime p, pick a different discriminant D∗ for which 4p = t2 v2D∗
D∗

−
with v not divisible by 17 and ( ) = 1, and such that h(D`

∗) > 4. Use Sage to
compute all the roots of the Hilbert class polynomial HD∗(X) mod p, and then use
the polynomial Φ17(X,Y ) mod p to organize the roots into cycles of 17-isogenies.

Note that Φ17(X,Y ) mod p must permute the roots of HD∗(X) mod p, and this permu-
tation must be a product of cycles, each with length equal to the order of the prime forms
of norm 17 in cl(D∗) (since the roots of HD∗ are a cl(D∗)-torsor).

Provided that D = O(`2) and `0 = O(log `), one can show that the algorithm you
have implemented takes time O(`2 log3 p log log p), which is nearly optimal, since it is quasi-
linear in the size of Φ` mod p. By applying the same algorithm to a sufficiently large set
of suitable primes pi (it suffices to have log pi > 6` log ` + 18`), one can then use the
Chinese remainder theorem (as in problem
of Φ Z[X,Y ]. Under the GRH, the total

∑
1 of Problem Set 11) to compute the coefficients

∈ time to compute Φ over Z isO(`3 3
` ` log ` log log `);

see [1]. In practical terms, this algorithm can be used to compute Φ` even when ` is well
into the thousands and Φ` is many gigabytes.
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Problem 3. Supersingular isogeny graphs (60 points)

Let p be and ` be distinct primes. Recall from Theorem 15.12 that the j-invariant of
every supersingular elliptic curve over Fp lies in Fp2 . In this problem you will explore some
properties of the supersingular components of G`(F 1

p2).

1. Compute the graph of the component of G2(F972) containing the supersingular j-
invariant 1. You may wish to draw the graph on paper, but in your write-up just give
a complete list of directed edges.

2. Prove that every supersingular vertex in G`(Fp2) has out-degree ` + 1, and conclude
that no supersingular component of G`(Fp2) is an `-volcano. Show by example that
the in-degree need not be `+ 1.

3. Design an efficient Las Vegas algorithm that, given an arbitrary j-invariant in Fp2 ,
determines whether it lies in an ordinary or supersingular component of G`(Fp2) by
detecting the difference between these components as abstract graphs. Prove that if

˜` = O(1) then the expected running time of your algorithm is O(n3), where n = log p.2

The fastest known algorithms for computing the trace of Frobenius all have complexity
Ω(n4), so your algorithm provides a way to determine whether a given elliptic curve over
a finite field is ordinary or supersingular that is asympotically more efficient than checking
whether the trace of Frobenius is divisible by p, and in practice, it should be much faster.

4. By applying your algorithm to G2(Fp2), determine which of the following j-invariants
is supersingular. List the running time of your algorithm in each case.

(a) p = 264 + 81:

p=2ˆ64+81
R.<t> = PolynomialRing(GF(p))
F.<a> = GF(pˆ2, modulus=tˆ2+5)
j1=8326557536028784306*a + 13186271742734526835
j2=17095442389470987916*a + 5391379569813173462
j3=8201451720284342414*a + 1239990603471114829
j4=3832397532494683106*a + 3456346199771023610
j5=6995663267023152807*a + 5118305496003400382

(b) p = 2498(217 − 1) + 52 · 112:

p=2ˆ498*(2ˆ17-1)+5ˆ2*11ˆ2
F.<a>=GF(pˆ2)
j1=F(1068730309040382537178579357918315740437237673601\
46365282990696994391226239701748935923381766723513633\
617314116677847252974815762274295992015602852450016138)
j2=F(9307837638889485802864130889597342112431240717617\
79743203146570670576874073881819468942290046762690325\
81122360838583736151525289450839654218958090187901480)

Be patient, it may take several minutes for your program to run on the last two
examples (but it should not take more than 10 or 20 minutes).

1There is in fact only one supersingular component of G`(Fp2), see [2, Cor. 78], but we will not use this.
2 ˜As usual, the soft O-notation ignores factors that are polylogarithmic in n.
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5. Augment your algorithm to output a certificate that allows a third-party to verify
˜the result. The certificate size should be O(n2), and it should be possible to verify

˜it in O(n2) time. Specify precisely what the certificate contains and describe the
verification algorithm.

6. Working in the finite field F972 , construct a certificate of “supersingularity” for the
j-invariant 1, and a certificate of “ordinariness” for the j-invariant 61.

Problem 4. Survey

Complete the following survey by rating each of the problems you attempted on a scale of
1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10 =
“mind-blowing”), and how difficult you found the problem (1 = “trivial,” 10 = “brutal”).
Also estimate the amount of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Also, please rate each of the following lectures that you attended, according to the quality
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

5/9 Modular forms

5/14 Fermat’s last theorem

Please feel free to record any additional comments you have on the problem sets or lectures,
in particular, ways in which they might be improved.
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