
18.783 Elliptic Curves Spring 2013

Problem Set #2 Due: 02/21/2013

These problems are related to the material covered in Lectures 2-3. I have made every
effort to proof-read the problems, but there may well be errors that I have missed. The
first person to spot each error will receive 1-3 points of extra credit on their problem set,
depending on the severity of the error.

Instructions: Solve both Problems 1 and 2 and one of Problems 3 and 4. Then complete
Problem 5, which is a survey.

Problem 1. Complexity analysis (30 points)

Let Fk denote the kth Fibonacci number, defined by:

F1 = 1, F2 = 1, Fk = Fk 2 + F (− k−1 k ≥ 2) (1)

Analyze the time complexity of computing Fk modulo an n-bit prime p using each of the
algorithms listed below. You may assume that k > n. Your answers should be in the form
O(f(k, n)) and as tight as you can make them. Use M(n) to denote the complexity of
multiplying two n-bit integers.

(a) Compute the integers F1, F2, . . . , Fk via (1), and then reduce Fk mod p.

(b) Same as (a), except perform all computations modulo p (i.e., work in Fp).

(c) Assume p = ±1 mod 5. Compute the roots φ and ψ of x2 − x
φk ψk

− 1 in Fp (using a

probabilistic root-finding algorithm), and then compute Fk = − in .−ψ Fpφ

(d) Assume p 6= ±1 mod 5. Represent Fp2 as Fp[φ]/(φ2 − φ − 1), let ψ = 1 − φ, and then
φk k

compute F = −ψ
k as an element of actually−ψ Fp2 that lies inφ Fp.

0 1
(e) Compute the kth power of

()
in GL2(Fp) and output its upper right entry.

1 1

(f) Assume k is a power of 2. Use the identities F2i 1 = F 2
− i +F 2

i−1 and F2i = (2Fi−1+Fi)Fi
to compute (F1, F2), (F3, F4), (F7, F8),. . . (F 1

k−1, Fk), working modulo p throughout.

Notably absent from the above list is the näıve recursive algorithm:

def fibonacci(k):
if k <= 2: return 1
return fibonacci(k-1) + fibonacci(k-2)

What is the time complexity of computing fibonacci(k) and reducing it modulo p?
What if you modified the algorithm to work modulo p throughout?

1This approach can be generalized to arbitrary k.

1

Problem 2. Computing rth roots (40 points)

In Lecture 4 we saw how to compute rth roots in a finite field Fq using a probabilistic
root-finding algorithm. In this problem you will implement an entirely different approach
for computing rth roots that works in any cyclic group G, including the cyclic group F∗

q . In
addition to being more general, this method is usually faster than polynomial root-finding
for computing rth roots in F∗

q (but this depends on r and q), and it has the virtue of being
deterministic (assuming we are given a generator for G, a probabilistic approach might be
used initially to find such a generator).

We assume without loss of generality that r is prime (to compute nth roots, successively
compute rth roots for each prime r dividing n, with multiplicity). To simplify the notation,
let us write the group G additively; so an rth root of γ ∈ G is an element ρ ∈ G for which
rρ = γ. We use |γ| to denote the order of γ, the least positive integer m for which mγ = 0.

Prove the following:

1. For all γ ∈ G and n ∈ Z we have |nγ| = |γ|/ gcd(n, |γ|).

2. If r does not divide |G|, then there is an integer s such that for all γ ∈ G the element
ρ = sγ is the unique rth root of γ.

3. If r does divide |G|, then the number of rth roots of each γ ∈ G is either 0 or r. In
the latter case, it may be that none of these rth roots lie in 〈γ〉.

4. Suppose r divides |G|. Let |G| = ark, where r - a. Let δ ∈ G be an element of
order rk, let γ be any element of G, and let α = aγ and β = rkγ. The following hold:

(a) α = xδ for some integer x ∈ [1, rk].

(b) If r does not divide x then there is no ρ ∈ G for which rρ = γ.

(c) If r divides x, and s and t are integers satisfying sa+ trk+1 = 1, then the element
ρ = s(x/r)δ + tβ satisfies rρ = γ.

The element δ in part 4 is a generator for the r-Sylow subgroup of G. Given a generator σ
for G, we can obtain such a δ by computing δ = aσ. The integer x is the discrete logarithm
of α with respect to δ.

Implement the following algorithm for computing an rth root of γ in a cyclic group G
of order ark, where r is a prime that does not divide a, given δ ∈ G of order rk:

1. If k = 0 then compute s = 1/r mod a and return ρ = sγ.

2. Compute α = aγ and β = rkγ.

3. Compute the discrete logarithm of x of α with respect to δ by brute force: check
whether α = xδ for each x from 1 to rk (this holds for some x, by part (a) of 4).2

4. If r does not divide x then return null.

5. Compute s and t such that sa+ trk+1 = 1 using the extended Euclidean algorithm.

6. Return ρ = s(x/r)δ + tβ.

2We will learn much better ways to compute this discrete logarithm later in the course. For the moment,
assume rk is small (this is often the case, even when q is very large).

2

The return value null is used to indicate that γ does not have any rth roots in G. To
compute s = 1/r mod a in Sage, use: s=1/mod(r,a). To compute s and t such that
sa+ trk+1 = 1, use: d,s,t=xgcd(a,r**(k+1)) (the value d = gcd(a, rk+1) will be 1).

The Python language used by Sage is untyped, so your algorithm can be used to compute
rth roots in any cyclic group that Sage knows how to represent; it will automatically perform
operations in whatever group the inputs δ and γ happen to lie in. To test your algorithm,
you may find it useful to work in the additive group of the ring Z/nZ, where n = ark,
which you can create in Sage using Zn=Integers(n). You can then use delta=Zn(a)
to create an element of Z/nZ with additive order rk.

Let E be the elliptic curve y2 = x3 + 31415926x+ 21782818 over Fp with p = 2255− 19.
The group E(Fp) is cyclic, of order 2 · 5 · 11 ·m, where

m = 526327678351437251925322659130399581153890530360799936898619298682575411573,

and the point P = (x0 : y0 : 1), where x0 = 1 and

y0 = 13134814009004874435178595602484727393250015841439437156743965100178108553104,

is a generator for E(Fp). Thus for r = 2, 5, 11 you can use δ = (n/r)P as a generator of the
r-Sylow subgroup (which in each case has order r).

Let c be the least prime greater than the integer formed by the last four digits of your
student ID. Let Q = (x1 : y1 : 1), where

x1 = 6044428498752310014675982582859197165940793807815638882398853158746179998524,

y1 = 15213333001572637024476234182397935874270965424629854864096629656428211884435

Use your algorithm to find an rth root R of γ = cQ, for r = 2, 5, 11. Note that you can
easily check your result by testing whether r*R==c*Q holds using Sage (please be sure to
do this; your grade on this problem will be largely determined by whether you compute
the points R correctly or not). In your answer you only need to list the point R for each
value of r, you don’t need to include your code. Be sure to format your answer so that the
coordinates of R all fit on the page.

Problem 3*. Exponentiation (30 points)

An addition chain for a positive integer n is an increasing sequence of integers (c0, . . . , cm)
with c0 = 1 and cm = n such that each entry other than c0 is the sum of two (not necessarily
distinct) preceeding entries. The length of an addition chain is the index m of the last entry.
When computing an with a generic algorithm, the exponents of the powers of ak computed
by the algorithm define an addition chain whose length is the number of multiplications
performed. For example, using left-to-right binary exponentiation to compute a47 yields the
addition chain (1, 2, 4, 5, 10, 11, 22, 23, 46, 47), and right-to-left binary exponentiation yields
the addition chain (1, 2, 3, 4, 7, 8, 15, 16, 32, 47), both of which have length 9.

1. For n = 715, determine the addition chains given by: (a) left-to-right binary, (b)
right-to-left binary, (c) fixed-window, and (d) sliding-window exponentiation, using a
window of size 2 for (c) and (d).

2. Find an addition chain for n = 715 that is shorter than any you found in part 1.

3. Repeat part 1 for the integer N obtained by adding 990,000 to the last 4 digits of
your student ID, using a window of size 3 in parts (c) and (d).

3

4. Find the shortest addition chain for N that you can. There is a good chance you can
do better than any of the chains you found in part 3.

In groups where inversions are cheap (such as the group of points on an elliptic curve), it
can be advantageous to use signe∑ d binary representations of exponents, where we write the
exponent n in the form n = n 2ii with ni ∈ {−1, 0, 1}. Such a representation is generally
not unique, but there is a unique signed representation with the property that no pair of
adjacent digits are both nonzero. This is known as non-adjacent form (NAF). The NAF
representation of 47, for example, is 101̄0001̄, where 1̄ is used to compactly denote −1.

To construct the NAF representation one begins by writing n in binary with a leading 0,
and then successively replaces the least significant block of the form 01 · · · 1 with 10 · · · 01̄
until there are no adjacent nonzero digits. For example, the computation for 47 proceeds
as 0101111, 110001̄, 101̄0001̄, which reduces the number of nonzero digits from 5 to 3. Even
though the length is increase by 1, the total cost of exponentiation may be reduced.

An addition-subtraction chain extends the definition of an addition chain by allowing
ck = ci ± cj . Exponentiation using the NAF representation defines an addition-subtraction
chain. For example, using left-to-right binary exponentiation, the NAF representation
of 47 yields the chain (1, 2, 4, 3, 6, 12, 24, 48, 47), which is shorter than the addition chain
(1, 2, 4, 5, 10, 11, 22, 23, 46, 47) given by standard left-to-right binary exponentiation.

5. Compute addition-subtraction chains for n = 715 and the integer N defined in part 2
using left-to-right binary exponentiation with the NAF representation.

6. Find the shortest addition-subtraction chains for n and N that you can.

Problem 4*. Cornacchia’s algorithm (30 points)

Cornacchia’s algorithm is used to find primitive solutions (x, y) to the Diophantine equation

x2 + dy2 = m, (2)

where d and m are positive integers. A primitive solution has x and y relatively prime.
Typically m = p or m = 4p, where p is a prime, but the algorithm works for any m, provided
it is given a square root of −d mod m.

The algorithm is very simple: it uses a partial Euclidean algorithm that terminates as
soon as the sequence of remainders ri drops below the square root of r0 = m.

(a) Let r 2
0 = m and r1 = r, where r ≡ −d mod m and 0 ≤ r ≤ m/2.

(b) Compute r 2
i+2 = ri mod ri+1 until rk < m is reached.

(c) If (m− r2k)/d is the square of an integer s, return the solution (rk, s).

It is clear that if the algorithm returns (rk, s), then it is a solution to (2). It is not so
clear that the algorithm will necessarily find a primitive solution if one exists, but this is
in fact true; see the article On the solution ofx2 + dy2 = m by Basilla for a short and
elementary proof.3 Note that if m is square-free (in particular, if m is prime),then every
solution to (2) is primitive, but this is not true if m is not square-free (this fact is pertinent
to part 5 below, where m = 4p).

3N.B., there is an obvious typo in step 3 of the algorithm given in Basilla’s paper.

Basilla, Julius Magalona. "On the solution of $x^2 + dy^2 = m$." Proceedings of the Japan Academy, Series A,
Mathematical Sciences 80, no. 5 (2004): 40-1.

4

1. Implement this algorithm in Sage. Use mod(-d,m).is square() to test if −d has
a square root mod m, and use int(mod(-d,m).sqrt()) to obtain a square root.

2. You may recall Fermat’s “Christmas theorem”, which states that an odd prime p is
the sum of two squares if and only if p ≡ 1 mod 4. You may also recall that −1 is a
square modulo an odd prime p if and only if p ≡ 1 mod 4.

Let n be the integer corresponding to the last 4 digits of your student ID. For the
least prime p > n · 10100 congruent to 1 mod 4, write p as the sum of two squares.

3. Fermat also proved that a prime p can be written in the form p = x2 + 3y2 if and only
if p ≡ 1 mod 3, which is equivalent to the condition that −3 is a square mod p.

For the least prime p > n·10100 congruent to 1 mod 3, write p in the form p = x2+3y2.

4. Show that this does not work for d = 5 by finding a prime p for which −5 is a square
modulo p but p cannot be written in the form x2 + 5y2. Empirically determine a
stronger congruence condition on p that guarantees not only that is −5 a square mod
p, but also that p can be written in the form x2 + 5y2. Then find the least prime
p > n · 10100 that satisfies your condition and write it in the form p = x2 + 5y2.

5. Let E be the elliptic curve y2 = x3 − 35x − 98. As you found in Problem Set 1, the
integer ap = p + 1 − #E(Fp) is zero precisely when −7 is not a square modulo p.
When −7 is a square modulo p, the integer a 2

p satisfies the equation 4p = ap + 7y2,
for some integer y. Prove that this equation has no primitive solutions for p > 2, and
in this case it has a solution if and only if the equation p = u2 + 7v2 has a solution.

Use your algorithm to find a solution to p = u2 + 7v2 for the least prime p > n · 10100

for which −7 is a square modulo p, and use this to deduce the absolute value of ap.
Determine the sign of ap, by finding a random point P ∈ E(Fp) for which only one of
(p+ 1− ap)P and (p+ 1 + ap)P is zero.

Problem 5. Survey

Complete the following survey by rating each of the problems you attempted on a scale of
1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10 =
“mind-blowing”), and how difficult you found the problem (1 = “trivial,” 10 = “brutal”).
Also estimate the amount of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Also, please rate each of the following lectures that you attended, according to the quality
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), and the novelty of the material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Novelty

2/12 Integer arithmetic

2/14 Finite field arithmetic

Feel free to record any additional comments you have on the problem sets or lectures.

5

MIT OpenCourseWare
http://ocw.mit.edu

18.783 Elliptic Curves
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

