
18.783 Elliptic Curves Spring 2013

Problem Set #3 Due: 02/28/2013

Description

These problems are related to the material covered in Lectures 5-6. I have made every
effort to proof-read the problems, but there may well be errors that I have missed. The
first person to spot each error will receive 1-3 points of extra credit on their problem set,
depending on the severity of the error.

Instructions: Solve Problem 1 and one of Problems 2 and 3. Then complete Problem 4,
which is a survey.

All of the problems on this problem set involve at least some programming. While the
algorithms involved are straight-forward and you only have two problems to do, I recom-
mend starting early just in case it takes more time to debug your code than you expect
(experienced programmers will know that this is good advice; it is even better advice for
inexperienced programmers).

Problem 1. Root-finding over Z (50 points)

In this problem you will develop an algorithm to find integer roots of polynomials in Z[x]
using a p-adic version of Newton’s method (also known as Hensel lifting). As an application,
this gives us an efficient way to factor perfect powers (a special case that we will need to
handle when we come to the elliptic curve factorization method), and it will be needed in
Problem 2 to find integer roots of division polynomials.

In the questions below, p can be any integer greater than 1, but you may assume it is a
prime power if you wish.

1. Let x0 ∈ Z and f ∈ Z[x]. Prove that the following equivalence holds in Z[x]:

f(x) ≡ f(x0) + f ′(x0)(x− x0) mod (x− x0)2.

2. Let x0, z0 ∈ Z and f ∈ Z[x] satisfy f(x0) ≡ 0 mod p and f ′(x0)z0 ≡ 1 mod p. Let

x1 ≡ x0 − f(x0)z0 mod p2,

z1 ≡ 2z0 − f ′(x1)z20 mod p2.

Prove that that the following three equivalences hold:

x1 ≡ x0 mod p, (i)

f(x1) ≡ 0 mod p2, (ii)

f ′(x1)z1 ≡ 1 mod p2. (iii)

Show that (i) and (ii) characterize x1 mod p2 uniquely by proving that if x2 ∈ Z also
satisfies x2 ≡ x0 mod p and f(x2) = 0 mod p2, then x1 ≡ x2 mod p2.

Iteratively applying part 2 yields an algorithm that, given an integer k and x0, z0, and f
k

satisfying the hypothesis of part 2, outputs an integer xk that satisfies f(xk) ≡ 0 mod p2 .
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3. Prove that if f has an integer root r for which f ′(r) is invertible modulo p, then

given x0 ≡
k

r mod p, z0 ≡ 1/f ′(x0) mod p, and k such that |r| < p2 /2, this algorithm

outputs xk such that r is the unique integer r ≡ k k
x mo 2
k d p2 satisfying |r| < p /2.

To apply the result of part 3, we need to know a suitable starting value (or values) for x0.
For the two applications we have in mind, this is will be straightforward, so let us proceed
on the assumption that we are given a suitable x0 with f ′(x0) invertible modulo p.

Let B be the maximum of the absolute values of the coefficients of f , and let B0 be an
upper bound on the absolute value of its largest integer root. It suffices to choose the least k
such that p2

k
> 2B0, and since any integer root of f must divide its constant coefficient,

we can assume that B0 ≤ B.

4. Prove that with this choice of k the algorithm can be implemented to run in time
O(d M(logB)), where d is the degree of f . Prove that if f has O(1) terms, then the
algorithm can be implemented to run in time O(M(logB) + M(logB0) log d).

5. Using the primes p = 2 and p = 3, describe an efficient algorithm that, given an
integer N relatively prime to 6, either outputs an integer a and a prime q such that
aq = N , or proves that N is not a perfect power. Prove that your algorithm runs in
time O(n2 log log n), where n = logN .1

6. Implement your algorithm and report the time it takes when run on the each of the
following five inputs: 21000 + 297, 5503, (2500 + 55)2, (2333 + 285)3, and (232 + 15)31.

Problem 2. The torsion subgroup of E(Q) (50 points)

Let E be an elliptic curve over Q. The problem of determining the set of rational points
on E is a famously hard problem that is still unsolved. However, determining the rational
points of finite order is easy. In this problem you will develop the first part of an efficient
algorithm for doing so.

We shall assume that E is defined by a Weierstrass equation y2 = x3 + Ax+B, where
A and B are integers. This assumption is not restrictive: we can always pick u ∈ Z so that
the isomorphic curve y2 = x3 + u4Ax+ u6B has integer coefficients.

Let P = (x1, y1) be a point of finite order m > 0 in E(Q). Our first goal is to prove
that P must have integer coordinates. This was proved independently first by Nagell [3]
and then by Lutz [2] in the 1930’s and is the first half of the Nagell-Lutz Theorem. The
standard proof [4, §8.1] relies on a p-adic filtration.

Here you will give a shorter and simpler proof that relies only on properties of the
division polynomials. As shown in lecture, for any positive integer n, the x-coordinate xn
of the point nP is given by xn = φn(x1)/ψ

2
n(x1) where

φn(x) = xn
2

+ · · · ,

ψ2 2

n(x) = n2xn −1 + · · · ,

with each ellipsis denoting lower order terms; see Problem 3 for the full definition of φn
and ψn, which depend on the curve coefficients A and B.

1In fact, this problem can be solved in quasi-linear time; see [1].
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1. Prove that if xn is an integer, then x1 must be an integer. Conclude that if P does
not have integer coordinates, then for any prime p dividing m, the point (m/p)P does
not have integer coordinates, and thus we may assume that m is prime.

2. Prove that if m = 2 then P has integer coordinates.

(m2
3. Let m be an odd prime. Then x1 is a root of the polynomial ψm(x) = mx −1)/2+· · · ,

which has integer coefficients. Using this and the fact that (x1, y1) satisfies the curve
equation, prove that x1 (and therefore y1) is an integer, so P has integer coordinates.

We now need a few facts about the image of the torsion subgroup under reduction modulo
a prime p of good reduction for E. So let ∆(E) = −16(4A3 + 27B2) be the discriminant
of E, and let p be a prime that does not divide ∆. Abusing notation, let us write E(Fp) to
denote the group of Fp-rational points on the reduction of E modulo p.

4. Prove that if P ∈ E(Q) has order m, then its reduction in E(Fp) also has order m.
Moreover, show that the reduction map from E(Q) to E(Fp) is injective at torsion
points.

5. Let N be the last four digits of your student ID. Then set A = a(N) and B = b(N),
where a(t) and b(t) are the polynomials2

a(t) = −27(t4 − 12t3 + 14t2 + 12t+ 1),

b(t) = 54(t6 − 18t5 + 75t4 + 75t2 + 18t+ 1),

and let E be the elliptic curve y2 = x3 + Ax + B over Q. Let p be the least prime
of good reduction for E such that 25 does not divide #E(Fp). Use the root-finding
algorithm from Problem 1 to lift a point Pof order 5 from E(Fp) to E(Q); that is,
compute the pre-image of P ∈ E(Fp) under the reduction map from E(Q) to E(Fp).

Problem 3. Computing division polynomials (50 points)

For integers n ≥ 0, define ψn ∈ Z[x, y,A,B] by

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6Ax2 + 12Bx−A2,

ψ 6
4 = 4y(x + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3),

1
ψ2m = ψm(ψm+2ψ

2
m 1 − ψm ψ2

2 m+1) (m
2y − − ≥ 3),

ψ2m+1 = ψ 3 3
m+2ψm − ψm 1ψm+1 (m− ≥ 2).

Let φ1 = x and ω1 = y, and for integers n > 1 define

φm = xψ2
m − ψm+1ψm−1,

1
ωm = (ψm+2ψ

2

4y m−1 − ψm−2ψ
2
m+1).

2This parameterization is due to David Zywina.

3



It is a straight-forward exercise (which you are not required to do) to show that these
polynomials have the form

φn(x) = xn
2{ + · · · ,

y(x3(n
2−1)/2 +

ωn(x, y) =
· · · ) n odd,

x3n
2/2{ +

2

· · · n even,

nx(n −1)/2 + n odd,
ψn(x, y) =

y(nx(n
2 2

· ·
−4)/

·
+ · · · ) n even,

where each ellipsis denotes terms of lower degree in x.

In practical applications it is more convenient to work with the univariate polynomials

ψn n odd,
fn(x) =

{
ψn/ψ2 n even.

Note that ψ2 = 2y, and it follows from the formulas above that fn does not depend on y.
If P = (x0, y

2
0) is a point on the elliptic curve y = x3 + Ax + B with y0 6= 0 (so P is not

a 2-torsion point), then fn(x0) = 0 if and only if nP = 0. In this problem you will develop
an efficient algorithm to compute fn.

1. Let F (x) = 4(x3 +Ax+B). Using the recursion formulas for ψ2m and ψ2m+1, derive
recursion fomulas for f2m and f2m+1 that involve fm 2, . . . , fm+2 and F . Note that−
for f2m+1 you will need to distinguish the cases where m is odd and even.

2. Show that for any k ≥ 3, if you are given the polynomials fk 3, . . . , fk+5 and F , you−
can compute the polynomials f2k−3, . . . , f2k+5 (call this doubling), and you can also
compute the polynomials f2(k+1)−3, . . . , f2(k+1)+5 (call this doubling-and-adding).

3. Implement an algorithm that, given a positive integer n, a prime p, and coefficients
A and B, computes the division polynomial fn ∈ Fp[x] for the elliptic curve E/Fp

defined by y2 = x3 + Ax + B, using a left-to-right binary exponentiation approach.
Here are a few tips, but you are free to use any design you like.

• Work in the polynomial ring Fp[x], which you can create in Sage by typing
R.<x>=PolynomialRing(GF(p)). Note that A and B are now scalars in Fp,
not variables. Precompute F = 4(x3 +Ax+B) ∈ Fp[x].

• You need an initial vector of division polynomials v = [fk−3, . . . , fk+5] to get
started. If the leading two bits of n are “11”, then let v = [f0, . . . , f8] and k = 3.
Otherwise, let [f1, . . . , f9] and k = 4 if the top three bits of n are “100”, and let
v = [f2, . . . , f10] and k = 5 if the top three bits of n are “101”.

• Implement a function that, given k, v = [fk−3, . . . , fk+5], F , and a bit b, com-
putes k′ = 2k + b and v = [fk′ 3, . . . , f− k′+5]. To perform left-to-right binary
exponentiation, call this function repeatedly, passing in the bits of n starting
from either 2 or 3 bits from in the top and working down to the low order bit.

• To test your code, you can compare results with Sage, which already knows how
to compute fn, via
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FF=GF(p); R.<x>=PolynomialRing(FF)
E=EllipticCurve([FF(A),FF(B)])
E.division_polynomial(n,x,0)

• Your program should be quite fast, but be careful not to test it with values of n
that are too large — the degree of fn is quadratic in n, so if n is, say, a million,
you would need terabytes of memory to store fn (which you do not have!).

4. Analyze the asymptotic complexity of your program as a function of log p and n.

5. Modify your program so that it performs its computations modulo x7 (to compute
f(x) mod x7 in Sage use f.mod(xˆ7)). Now let A be the least prime greater than
the last two digits of your student ID, let B be the least prime greater than the first
two digits of your student ID, and let p = 65537. Let E/Fp be the elliptic curve
defined by y2 = x3 +Ax+B, and let n = N100 + 1, where N is the integer formed by
adding the last three digits of your student ID to 9000.

a. Use your modified program to compute fn mod x7 and record the result in your
problem set. Be sure to first test your program with smaller values of n and verify
the results with Sage (your answer to this question will be heavily weighted when
grading this problem, so please be careful).

b. Time your program using the time command in Sage. How long does it take?

Problem 4. Survey

Complete the following survey by rating each of the problems you attempted on a scale of
1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10 =
“mind-blowing”), and how difficult you found the problem (1 = “trivial,” 10 = “brutal”).
Also estimate the amount of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Also, please rate each of the following lectures that you attended, according to the quality
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), and the novelty of the material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Novelty

2/21 Isogenies and endomorphisms

2/26 Division polynomials and torsion points

Feel free to record any additional comments you have on the problem sets or lectures.
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