
18.783 Elliptic Curves Spring 2013

Problem Set #5 Due: 03/19/2013

Description

These problems are related to the material covered in Lectures 9-10. As usual, the first
person to spot each non-trivial typo/error will receive one point of extra credit.

Instructions: Solve one of Problems 1-2 and one of Problems 3-4. Then do Problem 5,
which is a survey.

Problem 1. Rubik’s pie (60 points)

In this problem you will write an optimal solver for the Rubik’s pie puzzle that you received
in class. The Rubik’s pie consists of 18 pieces: 8 corner pieces, 8 edge pieces, and 2 center
pieces. Every piece of the puzzle can be uniquely identified by specifying its shape (corner,
edge, center), and the color of the stickers on it; for example, there is exactly one white-blue
corner piece. The puzzle has 6 faces. The two circular faces, which we will call the front
and back faces, each contain 9 pieces: 4 corners, 4 edges, and a center piece. The four side
faces, which we will call the up ,down, right, and left faces, each contain 6 pieces: 4 corners
and 2 edges. Note that each side face intersects each circular face in 3 pieces (2 corners and
an edge), and adjacent side faces intersect in 2 corner pieces.

There are seven permissible moves, all of which are performed while looking directly at
the front face (this determines the meaning of “clockwise” – you are assumed to be looking
at the front face while turning the back face).

1. A clockwise quarter-turn of the back face (b), which moves the back pieces on the
right face to the down face.

2. A counter-clockwise quarter-turn of the back face (f), which moves the back pieces
on the right face to the up face.

3. A half-turn of the back face (B).

4. Half-turns of any of the four side faces (u, d, r, l).

All moves keep the center front piece in a fixed orientation and each has a unique inverse.
We do not include rotations of the front face; up to orientation, these are equivalent to a
rotation of the back face (the counter-clockwise quarter-turn of the back face is labelled f
because it is equivalent to a clockwise quarter-turn of the front face).

We define a solved puzzle to be one in which the front face is white and the colors of
the stickers running clockwise along the side of the front layer starting from the blue corner
are blue, blue, orange, orange, red, red, green, green, and the colors of the stickers along
the side of the back layer match those in the front. Figure 1 shows a solved puzzle.1

1Unfortunately the manufacturer did not deliver all of the puzzles in a solved state, according to our
definition (the order of the colors may vary). You can deal with this either by taking your puzzle apart
(rotate an side face 45 degrees and gently force a corner out) and reassembling it, or by using your solver to
put the puzzle in a solved state before answering the questions that follow.

1

Figure 1. Two views of a solved puzzle.

A configuration of the puzzle specifies the location of each edge and corner piece in a fixed
orientation with the white center piece in front; for example, a particular configuration might
have the yellow-red edge is in the down-back position. There are four possible configurations
of a solved puzzle. We say that a solved puzzle is in the standard configuration if the white-
blue corner is in the up-left-front position (which also means that the yellow-red edge is in
the down-back position).

Below are four views of a puzzle that had the move sequence frBul applied to a solved
puzzle in the standard configuration. The view on the far left has the same orientation as
the standard configuration. You may wish to verify this with your own puzzle.

Figure 2. Views of a solved puzzle in the standard configuration after applying frBul.

Your task is to implement an optimal solver (also known as “God’s algorithm”) for the
Rubik’s pie. This is an algorithm that, given any starting configuration, outputs a shortest
sequence of moves that leads to a solved configuration (not necessarily the standard one).2

Consider the graph G = (V,E) whose vertex set V consists of all possible configurations
of the puzzle and whose edges (v1, v2) are labelled with one of the seven permissible moves
m ∈ {u, d, r, l, b, B, f}, where applying the move m to configuration v1 yields the configu-
ration v2. This is a bi-directed graph in which each vertex has degree 7; the move labelling
the edge (v1, v2) is the inverse of the move labelling the edge (v2, v1).

Given two vertices s and t in this graph, we wish to find a (not necessarily unique)
shortest path from s to t. The edge labels on this path give us a sequence of moves
w = m1m2 · · ·mk that will take the puzzle from configuration s to configuration t in k
moves, where k is the distance from s to t. Reversing the path and inverting each move
yields a sequence w−1 = m−1m−1 m from t s.k k

−1 that takes the puzzle to−1 · · · 1

To find such a path you will use a bidirectional search. Let N(s, r) denote ther-
neighborhood of s, the set of vertices v whose distance from s is at most r. For each
vertex in v ∈ N(s, r) we include a path w from s to v of length r (it does not matter which
path is chosen) that we store together with v, so we view N(s, r) as a set of pairs (v, w)
where the v’s are all distinct, and we index this set by v (in Python this can be conveniently
implemented using a dictionary).

The bi-directional search algorithm works by alternately expanding neighborhoods of s
and t until they intersect. An outline of the algorithm is given below. We use ε to denote
the empty path.

2Unlike a Rubik’s cube, with the Rubik’s Pie, every starting configuration can be solved; this means that
if your puzzle falls apart it does not matter how you put it back together.

2

1. Set N(s, 0) = {(s, ε)} and N(t, 0) = {(t, ε)}, and set rs = rt = 0.

2. Repeat until N(s, rs) and N(t, rt) contain a common vertex v:

a. If rs = rt, compute N(s, rs + 1) by extending N(s, rs) and then increment rs;
Otherwise, compute N(t, rt + 1) by extending N(t, rt) and then increment rt.

3. Output the path w1w
−1
2 , where (v, w1) ∈ N(s, rs) and (v, w2) ∈ N(t, rt).

Note that when extending a neighborhood you may encounter the same vertex multiple
times, but you should only keep one pair (v, w) for each v (alternatively you could keep
them all and compute every shortest path from s to t). Once you have implemented and
tested your algorithm, use it to answer the following questions:

1. Find an optimal solution to the configuration obtained by applying the move sequence

blurdbrBrdflblfrBrBrBdrbub

to the standard puzzle. Below are four views of a standard puzzle after applying
this move sequence. The view on the left has the same orientation as the standard
configuration.

Figure 3. Standard puzzle after applying blurdbrBrdflblfrBrBrBdrbub.

Your solution should be a shortest move sequence that, when applied to the puzzle
pictured on the left, yields a solved puzzle. Equivalently, it should be a shortest
inverse of the move sequence above. Also record how long it took your algorithm to
find a solution.

2. Next, generate a “random” sequence of moves m using the Python code snippet

m = ’’.join([’fbBudlr’[d] for d in (Nˆ10).digits(7)])

where N is the first four digits of your student ID. Find a shortest inverse to m.

3. By linearly extrapolating from the time it took your program to solve part 1, give
a rough estimate (to within an order of magnitude) of the time it would take your
program to find an optimal solution to the puzzle in Figure 3 if you had instead used a
breadth-first search rather than a bidirectional search (i.e. just expand a neighborhood
of s until it contains t). Assume that memory is not a limiting factor.

3

Problem 2. The image of Galois (60 points)

Let E/Q be an elliptic curve, let ` be a prime, and let K = Q(E[`]) be the Galois extension
of Q obtained by adjoining the coordinates of all the points in the `-torsion subgroup E[`]
to Q. The Galois group Gal(K/Q) acts linearly on the vector space

E[`] ' Z/`Z⊕ Z/`Z ' F2
` ,

thus there is a group homomorphism

ρE : Gal(K/Q)→ GL2(F`)

that maps each field automorphism σ ∈ Gal(K/Q) to an element of the general linear
group GL2(F`), which we may view as an invertible 2 × 2 matrix with coefficients in F`
(after choosing a basis for E[`]).

As you may recall, a homomorphism from a group G to a group of linear transformations
is called a (linear) representation of G. The map ρE is a representation of the group
Gal(K/Q), known as the mod-` Galois representation attached to E.3

For each prime p 6= ` where E has good reduction there is a Frobenius element Frobp
of Gal(K/Q), which reduces to the Frobenius map x 7→ xp modulo a prime of K lying
above p. Let Ep denote the reduction of E modulo such a prime p. The Frobenius element
is mapped by ρE to an element of GL2(F`) corresponding to π`, the restriction of the
Frobenius endomorphism of Ep to the `-torsion subgroup Ep[`]. The Frobenius element
Frobp is only determined up to conjugacy (and is usually identified with its conjugacy
class), since it depends on a choice of basis, but we can unambiguously determine the
characteristic polynomial of ρE(Frobp) = π`. In particular, the trace of ρE(Frobp) is the
trace of Frobenius t = p + 1 − #Ep(Fp) modulo `, and the determinant of ρE(Frobp) is
simply p mod ` (note that p 6= `).

The Chebotarev density theorem tells us that for any conjugacy class C of Gal(K/Q),
the proportion of primes p for which Frobp lies in C is exactly the ratio #C/#Gal(K/Q).
Asymptotically, we can think of each prime p as being assigned a uniformly random Frobe-
nius element Frobp ∈ Gal(K/Q) which is mapped by ρE to a uniformly random element
of the image of ρE in GL2(F`). For a typical elliptic curve E/Q, the representation ρE is
surjective and its image is all of GL2(F`), but this is not always the case. Number theorists
(and others) are very interested in understanding these exceptional cases. The image of
ρE has a direct impact on the statistical behavior of Ep[`] as p varies. For instance, the
proportion of primes p for which Ep[`] = Ep(Fp)[`] is precisely 1/# im ρE , since this occurs
if and only if ρE(Frobp) = π` is the identity.

The purpose of this exercise is for you to attempt to determine the image of ρE for
various elliptic curves E/Q by analyzing the statistics of π` as p 6= ` varies over primes
of good reduction, by comparing these statistics to the corresponding statistics for various
candidate subgroups of GL2(F`). Not every subgroup of GL2(F`) can arise as the image of
ρE , since, for example, im ρE must contain matrices with ever possible nonzero determinant
(as p varies, detπ` will eventually hit every element of F∗`).

For ` = 3 there are, up to conjugacy, 8 candidate subgroups G of GL2(F`) for the
image of ρE . These are listed in Table 1, and can also be found in the Sage worksheet

.

3Typically K is replaced by the algebraic closure of Q, but for our purposes we just need E[`](K) = E[`].

4

18.783 Problem Set 5 Problem 2.sws

group order description generators

2
C2 2 cyclic

(
0

0 1

)
D2 4 dihedral

(
2 0

)
,

(
2 0

)
D3 = S3 6 dihedral

(0 1 0 2

2 1
2 0

)
,

(
1 0
1 2

1 1

)
C8 8 cyclic

(
1 0

)
D4 8 dihedral

(
2 0 0 2

,(0 1

1

) (
1 0

2

)
D6 12 dihedral

1 0

)
,

(
0 1

)
Q16 16 semi-dihedral

(
1 1
2 1

2 0

) 1 0

0
,

(
1

1 0

)
GL2(F3) 48 general linear

(
0 1

)
,

(
2 1
2 0

)
Table 1. Candidates for the image of ρE in GL2(F3).

1. The determinant detA, trace trA, and the multiplicative order |A| of a matrix in
GL2(F`) are all invariant under conjugation. Show that the pair (detA, trA) does
not determine the conjugacy class of A in GL2(F3), but then prove that the triple
(detA, trA, |A|) does determine the conjugacy class of A in GL2(F3).

Thus we can get more information about π` if, in addition to computing its trace, we
also compute its multiplicative order in the ring End(Ep[`]).

2. Modify the function trace mod in the Sage workhseet

so that it also computes the order of π` and returns both the trace and
the order of π`. You don’t need to handle ` = 2, but if you wish, you can use that
fact that the order of π2 is 1, 2, or 3, depending on whether f(x) has 3,1, or 0 roots
in Fp, respectively, where y2 = f(x) is the Weierstrass equation for E.

Note: The order of π` must be computed modulo the full division polyno-
mial ψ`. So compute |π`| before the step that computes q`, which is the first place
where a division-by-zero error could occur, causing h to be replaced by a proper fac-
tor. Also, be sure to compute |π`| only the first time through the loop when you know
that h = ψ`, don’t accidentally recompute it if the loop repeats more than once.

Now address the first part of part 1 in a different way: pick an elliptic curve E/Q and
find two primes p and p′ for which π3 ∈ End(Ep[3]) and π3

′ ∈ End(Ep′ [3]) have the
same characteristic polynomial but different multiplicative orders.

3. Write a program that, given an elliptic curve E, a prime `, and an upper bound N ,
enumerates the primes p ≤ N distinct from ` and for which E has good reduction,
and for each Ep, computes the triple (detπ`, trπ`, |π`|). Keep a count of how often
each distinct triple occurs (use a dictionary, as in the group stats function in

Then normalize the counts by dividing by the

number of primes p used, yielding a ratio for each triple.

For ` = 3, use your program to provisionally determine the image of ρE for each of the
ten elliptic curves below, by comparing the statistics computed by your program with
the corresponding statistics for each of the 8 candidate subgroups of GL2(F3). With N

5

18.783 Lecture 9: Schoof's al-
gorithm.sws

18.783 Problem Set 5 Problem 2.sws.

around 5000 or 10000 you should be able to easily distinguish among the possibilities.
The curves below are also listed in the worksheet .

y2 = x3 + x y2 = x3 + 1
y2 = x3 + 432 y2 = x3 + x+ 1
y2 = x3 + 21x+ 26 y2 = x3 − 112x+ 784
y2 = x3 − 3915x+ 113670 y2 = x3 + 4752x+ 127872
y2 = x3 + 5805x− 285714 y2 = x3 + 652509x− 621544482

4. Note that if a given triple (detπ`, trπ`, |pi`|) occurs for some Ep but does not occur
in a candidate subgroup G ⊂ GL(F`), you can immediately rule out G as a possibility
for the image of ρE . Analyze the 8 candidate subgroups in Table 1 to find a pair of
triples that arise in GL2(F3) but do not both arise in any of its proper subgroups. If
for a given curve E/Q you can find both of these triples for some Ep1 and Ep2 , then
you have unconditionally proven that ρE is surjective for ` = 3.

Use this to devise an algorithm that attempts to prove ρE is surjective for ` = 3. Your
algorithm should return true as soon as it is able to determine im ρE = GL2(F3) (this
should happen quite quickly, if it is true). If this fails to happen after computing triples
for Ep for every prime up to, say, 10000, then your algorithm should give up and return
false. You can think of this as a Monte Carlo algorithm with one-sided error: the
“randomness” comes from the assumption that each π` is uniformly and independently
distributed over the image of ρE for each prime p. If your program returns true, then
ρE is definitely surjective; if it returns false it is almost certainly not surjective, but
there is a small probability of error.

Generate 1000 random elliptic curves E/Q of the form y2 = x3 + Ax + B, with A
and B uniformly distributed over the interval [1, 106], and use your program to test
whether their mod-3 Galois representation ρE is surjective or not. List any and all
curves for which your program returns false, and provisionally identify the image
of ρE in each such case as in part 3 above.

Problem 3. Schoof’s algorithm (40 points)

In this problem you will analyze the complexity of Schoof’s algorithm, as described in the
notes for Lecture 9 and implemented in the Sage worksheet

.

In your complexity bounds, use M(n) to denote the complexity of multiplying two n-bit
integers. Recall that the complexity of multiplying polynomials in Fp[x] of degree d is
O(M(d log p)), and the complexity of inverting a polynomial of degree O(d) modulo a
polynomial of degree d is O(M(d log p) log d). The space complexity of both operations
is O(d log p).

1. Analyze the time and space complexity of computing t` as described in Algorithm 9.5
of the lecture notes and implemented in the trace mod function in the worksheet.
Give separate bounds for each of the four non-trivial steps in Algorithm 9.5 as well
as overall bounds for the entire algorithm. Express your bounds in terms of ` and
n = log p, using M(m) to denote the cost of multiplying two m-bit integers.

6

18.783 Problem Set 5 Problem 2.sws

18.783 Lecture 9: Schoof's algorithm.sws

2. Analyze the overall time and space complexity of Schoof’s algorithm, as described
in Algorithm 9.1 of the lectures notes and implemented in the Schoof function of
the worksheet above, as a function of n = log p. Give your answer in two forms,
first using M(m) to express the cost of multiplication, and then using the explicit
Schönhage-Strassen bound M(m) = O(m logm log logm).

3. In your answer to part 1, you should have found that the running time of one particular
step strictly dominates the running time of all the other steps of Algorithm 9.5. Ex-
plain how to modify Algorithm 9.5 to improve the running time of this step so that its
time complexity matches that of the next most time-consuming step in Algorithm 9.5.

4. Revise your time and space complexity estimates in part 2 to reflect part 3.

Problem 4. A Las Vegas algorithm to compute E(Fp). (40 points)

In this problem you will use the extended discrete logarithm to design a Las Vegas algorithm
to determine the structure of E(Fp) as a sum of two cyclic groups Z/N1Z ⊕ Z/N2Z, with
N1|N2. We assume that the group order N has already been computed, either by Schoof’s
algorithm or by the Las Vegas algorithm that you implemented in Problem Set 3. We also
assume that we can readily compute (or are given) the prime factorization of N .

Our strategy is to determine the structure of the `-Sylow subgroups of E(Fp) for each
prime ` dividing N . If ` divides N but `2 does not, then the `-Sylow subgroup is obviously
isomorphic to Z/`Z, so we only need to consider primes whose square divides N . Addition-
ally, we know that if ` does not divide p− 1, then the `-Sylow subgroup must be cyclic (if
not, E[`] = E(Fp)[`] and π` is the identity matrix, which implies detπ` ≡ p ≡ 1 mod `).

This yields the following high-level algorithm to compute N1 and N2, given N .

1. Compute (if not given) the prime factorization N .

2. Set N1 = 1 and N2 = 1, and for each maximal prime power `e dividing N :

(a) If e = 1 or ` does not divide p− 1, then set N2 = `eN2 and continue.

(b) Otherwise, compute the structure Z/`e1Z ⊕ Z/`e2Z of the `-Sylow subgroup of
E(F e

p) as described below, with e1 ≤ e 1 e2
2, and set N1 = ` N2 and N2 = ` N2.

3. Output N1 and N2

All we need now is an algorithm to compute the `-Sylow subgroup G` of E(Fp), given
the orders `e and N of G` and E(Fp), respectively. Our strategy is to first pick two random
points P1, P

e
2 ∈ G`, by generating random points in E(Fp) and multiplying them by N/` .

We hope that these points generate G`. Next, we reduce them to what we hope is a
basis for G`, that is, points Q1 and Q2 such that G` ' 〈Q1〉 ⊕ 〈Q2〉. We then have
G` ' Z/`e1Z ⊕ Z/`e2Z where `e1 = |Q1|, `e2 = |Q2|. Note that we can quickly compute
the order of any element of G`, since it must be a power of `. Provided that we know the
points Q1 and Q2 are independent, which means that 〈Q1, Q2〉 ' 〈Q1〉⊕〈Q2〉, to verify that
we actually have computed a basis for G` (and not some proper subgroup), we just need to
check that e1 + e2 = e. If this does not hold, we try again with two new random points P1

and P2, secure in the knowledge that we must eventually succeed.

Your job is to flesh out this strategy and analyze the resulting algorithm. We first recall
the definition of the extended discrete logarithm given in class.

7

Definition 1. For elements α and β of a finite group G, the extended discrete logarithm of β
with respect to α, denoted DL∗(α, β), is the pair of positive integers (x, y) with αx = βy,
where y is minimal subject to βy ∈ 〈α〉, and x = log y

α β .

Prove each of the following statements, in which G is an arbitrary finite abelian `-group
containing elements α and β.

(1) If G has `-rank at most 2 and α and β are random elements uniformly distributed
over the elements of G, then the probability that G = 〈α, β〉 is at least 3/8.

(2) If (x, y) = DL∗(α, β) then y is a power of `.

(3) For (x, y) = DL∗(α, β) the following are equivalent:

(a) x = |α| and y = |β|;
(b) 〈α, β〉 has order |α| · |β|.
(c) α and β are independent;

(4) If |α| ≥ |β| and (x, y) = DL∗(α, β) then y|x and γ = β−(x/y)α and α are independent.

The key fact is (4), which tells us that we should order the Pi so that |P1| ≤ |P2|
and then let Q1 = P1 − (x/y)P2 and Q2 = P2, where (x, y) = DL∗(P2, P1). If we then
compute `e1 = |Q1| and `e2 = |Q2|, it follows from (3) that G` = 〈Q1, Q2〉 if and only
if e1 + e2 = e. Fact (1) tells that we expect this to occur within less than 3 iterations,
on average. By (2), we can compute (x, y) = DL∗(P2, P1), by attempting to compute
x = logP2

`iP1 for i = 0, 1, 2, . . . until we succeed, at which point we have y = `i.4

To compute logP2
`iP1, we use the prime-power case of the Pohlig-Hellman algorithm to

reduce the problem to a discrete logarithm computation in a group of prime order `, where
we use the baby-steps giant-steps method.

Now do the following:

5. Write down a step-by-step description (not a program) of an algorithm to compute
the structure of the `-Sylow subgroup G` of E(Fp) in the form Z/`e1Z

e
⊕Z/`e2Z, given

N = #E(Fp) and ` = #G`, and analyze its expected time complexity in terms of `
and n = log p.

6. Analyze the total expected time complexity of the algorithm to compute the structure
of E(Fp) in the form Z/N1Z⊕Z/N2Z, given N = #E(Fp) and its prime factorization,
as described above (hint: first determine the worst case scenario).

Problem 5. Survey

Complete the following survey by rating each of the problems you attempted on a scale of
1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10 =
“mind-blowing”), and how difficult you found the problem (1 = “trivial,” 10 = “brutal”).
Also estimate the amount of time you spent on each problem to the nearest half hour.

4There are much better ways to do this (a binary search, for example), but using them won’t improve
the worst-case complexity of the overall algorithm.

8

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Also, please rate each of the following lectures that you attended, according to the quality
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

3/7 Schoof’s Algorithm

3/12 Discrete Logarithm Problem (part 1)

Please feel free to record any additional comments you have on the problem sets or lectures,
in particular, ways in which they might be improved.

9

MIT OpenCourseWare
http://ocw.mit.edu

18.783 Elliptic Curves
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

