
18.783 Elliptic Curves Spring 2013

Problem Set #6 Due: 04/02/2013

Description

These problems are related to the material covered in Lectures 11-13. As usual, the first
person to spot each non-trivial typo/error will receive one point of extra credit.

Instructions: Solve Problem 1 and any two of Problems 2-4. Then do Problem 5, which
is a survey. Late problem sets will lose one point for each hour they are late.

Problem 1. Subexponential bounds (20 points)

This is an easy problem designed to familiarize you with subexponential complexity bounds.
The subexponential complexity bounds most commonly used have the form

LN [α, c] := exp
((
c+ o(1)

)
(logN)α(log logN)1−α

)
,

where 0 ≤ α ≤ 1 and c > 0. The notation o(1) denotes any function ε(N) whose absolute
value converges to 0 as N → ∞. Thus LN [α, c] should really viewed as a set of functions.
A function f(N) belongs to the set LN [α, c] if and only if

log f(N)
lim
N→∞

= c.
(logN)α(log logN)1−α

To get a sense of how these bounds grow with N , and how to compare consider the
following table, in which the o(1) term is assumed to be 0 and n = log2N .

n n5 LN [1/4, 1] LN [1/2, 1] LN [1/2,
√

2] n2LN [1/2,
√

2] N1/4.

64 1.1× 109 1.1× 103 4.3× 105 9.3× 107 3.8× 1011 6.6× 104

128 3.4× 1010 1.3× 104 4.6× 108 1.8
12 5 13

× 1012 2.9× 1016 4.3× 109

256 1.1× 10 2.8× 10 1.5
13

× 10 4.2× 1018 2.7× 1023 1.8× 1019

512 3.5× 10 1.3× 107 6.7× 1019 1.1× 1028 2.9× 1033 3.4× 1038

1024 1.1× 1015 1.6× 109 4.4× 1029 8.4× 1041 8.8× 1047 1.2× 1077

2048 3.6× 1016 6.1× 1011 1.2× 1044 2.2× 1062 9.2× 1068 1.3× 10154

1. Simplify the following expressions, in which 0 < α, β < 1 and c, d > 0, and p(x)
denotes a polynomial of degree k. Interpret sums and products of complexity bounds
(sets of functions) in the obvious way, e.g. S + T is the set of all functions s+ t with
s ∈ S and t ∈ T .

(a) LN [0, c] and LN [1, c] (b) LN [α, c] + LN [β, d]

(c) LN [α, c]LN [β, d] (d) LN [α, c]p(logN)

(e) p(LN [α, c]) (f) Lp(N)[α, c]

(g) LLN [α,c][β, d]

2. For each of the following pairs of complexity bounds A(N) and B(N) representing sets
of functions A and B, indicate which of the following holds: (a) A (B, (b) B (A,
(c) A = B, (d) A ∩B = ∅, or (e) none of the above.

1

a) LN [α, c] and O(LN [α, c]).

b) LN [α, c] and LN [β, d] with α > β.

c) LN [α, c] and LN([α, d(] with c > d.

d) LN [α, c] and O exp c(logN)α .

e) LN [α, c] and Lexp(log2N)[α, c].

))

3. The Canfield-Erdős-Pomerance theorem states that ψ(x, x1/u) = xu−u+o(u) holds uni-
formly for u < (1− ε) log x/ log log x. Using this, prove that

1
ψ(x, L 1x[/2, c]) = Lx[1/2, 1/2c]−1.

x

Problem 2. ECM second stage (40 points)

The elliptic curve factorization method (ECM) can be extended to incorporate a second stage
that substantially improves its practical performance. In this problem you will analyze the
benefit of this second stage, and, as a√side benefit, derive a generic algorithm to compute
the order of a group element using o(N) group operations.

Given an integer N to be factored, a bound M on the largest prime divisor of N one
hopes to find, and a smoothness bound B1 = LM [1/2, 1/

√
2], the ECM algorithm selects

random elliptic curves E/Q with a known point P of infinite order and computes the scalar
multiple mP = (x∏m : ym : zm), working with projective coordinates reduced modulo N .

eThe integer m = ` i e
i is a product of prime powers that satisfy ` i

i ≤ (
√

+1M 2 e+ 1) ≤ ` i
i ,

ranging over all primes pi ≤ B1. The goal is to find a curve for which gcd(zm, N) is
enon-trivial (we actually check gcd(z i

mi , N) for the partial products mi = `i as we go).
But suppose that, as usually happens, gcd(zm, N) = 1. Let us assume that N has a

prime factor p ≤M . We know that #E(Fp) is not B1-smooth, meaning that

∏
it has a prime

factor q > B1, but suppose that q is the only prime factor of #E(Fp) greater than B1.
1

Then the point Q = mP must have order q as an element of E(Fp). Provided q is not too
large, say, q ≤ B2 for some bound B2 ≈ B2

1 , then we can try to “compute” the order of mP
in E(Fp) using a baby-steps giant-steps search up to the bound B2. This is not as simple
as it sounds: we don’t know p so we must work modulo N while checking for collisions
modulo p, but there is an efficient algorithm for detecting collisions [3, §3]. The details of
this algorithm do not concern us here, we simply want to consider the potential speedup
we might gain from such a second stage.

If the prime factors of an integer n are all smaller than y, and all but one of them is
smaller than z, then n is said to be semismooth with respect to y and z. The function
ψ(x, y, z) counts the number of such integers less than or equal to x. We are interested in
the quantity 1 ψ(M,B2, B1). Under the heuristic assumption that the orders of randomM
elliptic curves over a finite field are about as likely to be semismooth as integers of similar
size, this is the probability that our algorithm will be able to find an integer n for which
nP ≡ 0 mod q, either in the first or second stage (we aren’t guaranteed to succeed if this
happens, we also need nP 6≡ 0 mod N , but this is very likely to be true).

Let B1 = M1/u. We saw in class that, under our heuristic assumption, the expected
running time of ECM with just a single stage is proportional to

M1/u(ψ(M,M1/u)/M)−1M(logN). (1)

1As usual, we abuse notation by writing E(Fp) for the group of Fp-rational points on the reduction of
the elliptic curve E/Q modulo the prime p, where E has good reduction at p.

2

Using the Canfield-Erd˝
should pick u =

√ o s-Pomerance bound ψ(x, x1/u)/x = u−u+o(u), we found that we
2 logM/ log logM and obtained the bound L[1/2/,

√
2]M(logN). But this

is a very rough approximation and we ignored several factors logarithmic in M along the
way (these are hidden in the o(1) term in the subexponential notation).

We can get a much more precise estimate by using the Dickman function ρ(u) to ap-
proximate ψ(x, x1/u)/x. The Dickman function ρ(u) is defined via the differential delay
equation

ρ′(u) = −ρ(u− 1)/u,

with ρ(u) = 1 for 0 ≤ u ≤ 1. Asymptotically ρ(u) = ψ(x, x1/u)/x + o(1), and in practice
ρ(u) is very close to 1ψ(x, x1/u) for x and u in the range we are interested in. Sage has ax
built-in function dickman rho(u) that computes a good numerical approximation to ρ(u).
See [2, §1] if you want to know more about ρ(u) and its relation to ψ(x, y).

To minimize (1) it suffices to thus suffices to minimize

M1/u/ρ(u). (2)

1. Using Newton’s method, write a simple function in Sage that approximates the value
of u that minimizes (2) for a given value of M (accurate to at least 3 decimal places).

For the sake of simplicity, let us suppose that B2 = B2
1 = M2/u and that the second stage

has a running time approximately equal to that of the first. Then the expected running
time of ECM with a BSGS second stage is heuristically proportional to

2M1/u(M/ψ(M,M2/u,M1/u)) ·M(logN), (3)

with the same constant of proportionality as in our single stage analysis. In fact, we should
optimally spend asymptotically slightly less time on the second stage than the first; this
would allow us to save the factor of 2 in (3). You will prove below that this can actually
be achieved using B2 = B2

1 if we modify the baby-steps giant-steps search appropriately.
Analogous to ρ(u), Bach and Peralta [1] define the semismooth probability function

1
G(a, b) = lim

x→∞
ψ(x, xb, xa)

x

(note the reverse order of a and b). The function G(a, b) can be numerically approximated
using the Dickman function in terms of the function F (α) = ρ(1/α) as

(

∫ β α
G(α, β) = F α) + F

α

(
1− t

)
dt
.

t

By numerically approximating G(a, b) we can determine a suitable choice of u to minimize
the quantity

M1/u/G(1/u, 2/u). (4)

This calculation is a bit time consuming, so a table of optimal u values for M = 2k with k =
10, 20, 30, . . . , 200 has been prepared for you and can be found in the Sage worksheet

, which also implements a function G(a,b)that approximates

G(α, β) using ρ(u).

2. Use the algorithm you implemented in part 1 to generate a similar table of optimal u
values that minimize (2). Then, for k = 20, 40, 60, . . . , 200 compute M1/u1/ρ(u1) and
M1/u2/G(1/u2, 2/u2), with M = 2k and u1 chosen to minimize the first quantity and
u2 chosen to minimize the second. List these values and their ratio in a table.

3

18.783
Problem Set 4 Problem 2.sws

The ratios express the speedup we might hope to gain by using a second stage. You
should find that the speedup is clearly increasing with k, implying that it is asymptoti-
cally better than a constant factor. Nevertheless, the second stage does not improve the
subexponential complexity bound, which ignores even polynomial factors of logM .

3. Prove that√ the heuristic expected running time of ECM with a second stage is still
L [1M /2, 2]M(logN), the same as with just one stage. Based on the data in your
table from part 2, estimate what the asymptotic speedup is as a function of logM .

Let Q = mP be the point obtained after an unsuccessful first stage. When using baby-
steps giant-steps to implement the second stage we can take advantage of the fact that, for
any prime divisor p ≤ M of N , in the group E(Fp) the reduction of the point Q cannot
have order divisible by any prime pi ≤ B1. Indeed, the second stage will succeed only in
the case where Q has prime order q ∈ (B1, B2] in E(Fp).

This means that our baby-steps giant-steps search only needs to check O(B2/ logB2) dis-
tinct multiples of Q, those corresponding to prime values. In principle, this potentially
be achieved with just

√ could
B2/ logB2 group operations, but it is not obvious how to do this.

At a minimum, we can certainly avoid checking multiples of small primes 2, 3, 5, . . . , ` whose

product t is substantially less than
√ 1
B2, for the sake of concreteness, let’s say t ≈ /4

B2 .
We should then compute baby steps of the form iQ with gcd(i, t) = 1 for all 1 ≤ i ≤ r for
some multiple r of t, followed by giant steps of the form jrQ for 1 ≤ j ≤ s, where rs ≥ B2.

4. Explain how to choose r and s so that the number of baby steps and giant steps
are approximately equal, and give a tight asymptotic bound on the total number of
steps in terms of∑B2. You may use the∑Prime Number Theorem and standard facts it
implies, such as p log p and≤ ∼ x 1

x p≤x = log log x+O(1).2p

5. Now forget about ECM. Using your answer to part 4, describe a generic algorithm to
compute the order of an element α ∈ G given an integer N > α

√
| | that uses o(N)

group operations (the order of α may be prime or composite).

6. Modify the algorithm in part 5 to not require N , so that it computes |α| using o(
√
|α|)

group operations.

7. Computing |α| is equivalent to computing the discrete logarithm of the identity with
respect to α. Explain why your algorithm does not contradict Shoup’s Ω(

√
p) generic

lower bound for the discrete logarithm problem in the case that |α| = p is prime.

Problem 3. ECPP (40 points)

Let us define an elliptic curve primality proof (ECPP) for p as a sequence of certificates
C1, C2, . . . , Ck, where each certificate Ci is of the form (pi, Ai, Bi, xi, yi, pi+1) with p1 = p
and pk+1 < (log p)4. In each certificate Ci, the primes pi and pi+1 satisfy

(
√
4 pi + 1)2 < pi+1 < (

√
pi + 1)2/2,

and Pi = (xi, yi) is a point of order p 2
i+1 on the elliptic curve y = x3 +Aix+Bi over Fpi .

2The second fact doesn’t require the Prime Number Theorem, it was proven earlier by Mertens.

4

1. Generate a random 100-bit prime using the Sage function random prime and con-
struct an elliptic curve primality proof for it. Your proof should not require more
than half a dozen certificates.

2. Analyze the complexity of verifying an elliptic curve primality proof. Express your
answer solely in terms of n = log p (so assume a worst-case certificate).

3. Analyze the asymptotic complexity of constructing an elliptic curve primality proof
using the Goldwasser-Kilian algorithm given in class, under the heuristic assumption
that the orders of random elliptic curves over Fp have factorizations comparable to
random integers in the interval [p, 2p]. Assume that trial division and the Miller-Rabin
test are used for attempted factorizations. Use an O(n5 log log n) complexity bound
for point-counting via Schoof’s algorithm.

4. Now suppose that you want to construct an elliptic curve primality proofs that can
always be verified in O(nM(n)) time, where n = log p. Under the heuristic assumption
above, give a probabilistic algorithm for constructing such a proof whose expected
running time is bounded by Lp[α, c], using the tightest values of α and c that you can.

Problem 4. Pomerance proofs (40 points)

A Pomerance proof is a special form of an elliptic curve primality proof that involves just a
single certificate (p,A, x0, k) and uses a Montgomery curve By2 = x3 +Ax2 + x over Fp on
which there is a point (x0, y0) of point of order 2k > (

√
4 p + 1)2 ≥ 2k−1. Note that neither

the y-coordinate nor B is needed to verify the certificate (no matter what x30 + Ax20 + x0
is, there exists a nonzero B and a y0 that will work and the verifier does not need to know
what they are), but the verifier should check that A2 6≡ 4 mod q for all primes q dividing p,
to ensure that the curve is not singular.

Every prime p has a Pomerance proof, but for a general prime p no efficient algorithm
is known for finding one. In this problem you will develop a very efficient algorithm to
construct a Pomerance proof for primes of a special form. Let E be the elliptic curve
defined by y2 = x3 + 8.

3
1. Using the formula #E(Fp) = p + 1 +

∑ +8
x Fp

(
x

∈ , prove that for every odd primep

p ≡ 2 mod 3 we have #E(Fp) = p+ 1.

)
2. Prove that for any prime p 11 mod 12 the curve E/Fp can be put in Montgomery

form By2 = x3 2
≡

+Ax + x. Give a deterministic algorithm that computes A and B in
time O(nM(n)), where n = log p.

3. Give a probabilistic algorithm to construct a Pomerance proof for primes of the form
p = 3 2mc 1, where c is odd and 2m > (

√· − 4 p + 1)2, and analyze its complexity. Be
sure to address the fact that the algorithm you gave in part 2 assumes that p is prime,
but now it must also handle composite values of p.

4. Implement your algorithm and use it to construct a Pomerance proof for a prime of
the form p = 2k · 3m − 1 that is greater than 21000. Be sure to format you answer so
that all of the digits in the certificate you construct fit on the page. You may wish to
use trial division by small primes to eliminate obviously composite values of p before
attempting to construct a primality proof, but it is not worth using a Miller-Rabin
test to detect composites; explain why this is so.

5

Problem 5. Survey

Complete the following survey by rating each of the problems you attempted on a scale of
1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10 =
“mind-blowing”), and how difficult you found the problem (1 = “trivial,” 10 = “brutal”).
Also estimate the amount of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Also, please rate each of the following lectures that you attended, according to the quality
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

3/14 Discrete Logarithm Problem (part 2)

3/19 Elliptic curve factorization method

3/21 Elliptic curve primality proving

Please feel free to record any additional comments you have on the problem sets or lectures,
in particular, ways in which they might be improved.

References

[1] E. Bach and R. Peralta, Asymptotic semismoothness probabilities, Mathematics of Com-
putation 65 (1998) 1701–1715.

[2] A. Granville, Smooth numbers, computational number theory and beyond, in Algorithmic
Number Theory: Lattices, Number Fields, Curves and Cryptography (MSRI Workshop),
MSRI Publications 44 (2008), 267–324.

[3] P. Zimmermann and B. Dodson, 20 years of ECM, Algorithmic Number Theory 7th
International Symposium (ANTS VII), LNCS 4076 (2006), 525–542.

6

MIT OpenCourseWare
http://ocw.mit.edu

18.783 Elliptic Curves
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

