
18.783 Elliptic Curves Spring 2013

Problem Set #7 Due: 04/09/2013

Description

These problems are related to the material covered in Lectures 14-15. As usual, the first
person to spot each non-trivial typo/error will receive one point of extra credit.

Instructions: Solve both Problems 1 and 2, and then complete Problem 3, which is a
survey. Late problem sets will lose one point for each hour they are late.

Problem 1. The Weil conjectures (50 points)

The zeta function of a smooth projective curve C/Fq (or more generally, a projective variety)
is the exponential generating function
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The exponential of a formal power series F ∈ Q[[t]] with constant term zero is defined by
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and the inverse operation is the formal logarithm1
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The integers #C(Fqn) can be recovered from Z(C/Fq;T ) via
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The definition of the zeta function may seem awkward at first

∣∣
glance, but it has many

remarkable properties. Most notably, although it is defined as a power series, it is actually
a rational function.

Theorem 1 (Weil). Let C/Fq be a smooth projective curve of genus g.

)1. (Rationality) Z(C/F P (T
q;T ) = for some polynomial P (T ) of degree 2g.(1 Z−T )(1−qT ) ∈

2. (Functional Equation) Z(C/Fq; 1/(qT )) = q1−gT 2−2gZ(C/Fq;T )

3. (Riemann Hypothesis) The roots α1, . . . α2g ∈ C of P (T ) satisfy |αi| = 1/
√
q.

n1These definitions agree with the usual Taylor series expansions; note that log(1 − F ) = −
∑∞ F

k=1 n
.
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This theorem was conjectured by Emil Artin and proved by Weil in 1949. Weil also
proposed generalizations to projective varieties that include this theorem as a special case;
these became known as the Weil conjectures. Many mathematicians contributed to the proof
of the Weil conjectures, including Bernard Dwork, Michael Artin, Alexander Grothendieck,
and Pierre Deligne, who completed the proof in the 1970’s.2 In this problem you will prove
the Weil conjectures in the case that C is an elliptic curve E, and derive several useful facts
along the way.

Most of the facts we need hold for any endomorphism of an elliptic curve E, in fact for
any element of the endomorphism algebra End0(E), so we will prove them in this generality
and then apply them to the Frobenius endomorphism of an elliptic curve over a finite
field. So let φ be an arbitrary element of End0(E), and let α, β ∈ C be the roots of its
characteristic polynomial x2 − tr(φ)x+ deg(φ).

1. Show that φ can be written uniquely as φ = φr + φi, with√ φ 0
r ∈ Q, φi ∈ End (E) and

φ2i = −deg(φi). Define re(φ) = φr ∈ R and im(φ) = deg(φi) ∈ R, and let Q(φ)
denote the Q-subalgebra of End0(E) generated by φ. Prove that there is a unique
field embedding ι : Q(φ) ↪→ C that maps φ to re(φ)+im(φ)i, and that for all λ ∈ Q(φ)

ˆwe have ι(λ) = ι(λ), where the bar denotes complex conjugation in C.

2. Use part 1 to prove that |α| = |β| =
√

deg φ and therefore | tr(φ)| ≤ 2
√

deg φ.

3. By applying part 2 to the Frobenius endomorphism π of E/Fq and recalling that 1−π
is separable, give a very short proof of Hasse’s theorem: |q + 1−#E(Fq)| ≤ 2

√
q.

4. Prove that for any positive integer n we have tr(φn) = αn + βn and therefore

deg(1− φn) = deg(φ)n + 1− αn − βn.

Deduce that if φ = π is the Frobenius endomorphism of E/Fq, then

#E(Fqn) = qn + 1− αn − βn.

As a quick digression, part 4 implies that for E/Fq we can easily compute #E(Fqn) once
we know #E(Fq). A useful method for doing this is the following recurrence.

5. Let a0 = 2 and an = qn + 1−#E(Fqn). Prove that an+2 = a1an+1− qan for all n ≥ 0.
Conclude that the zeta function Z(E/Fq;T ) is completely determined by #E(Fq).

You are now ready to prove the Weil conjectures for elliptic curves.

6. Prove that

exp

(∑∞ deg(1− φn)

n=1
n

Tn

)
=

1− tr(φ)T + deg(φ)T 2

.
(1− T )(1− deg(φ)T )

By applying this in the case that φ = π is the Frobenius endomorphism of E/Fq, prove
that the rationality statement in Theorem 1 holds with P (T ) = 1− tr(π)T + qT 2, in
the case that C is the elliptic curve E.

7. Prove that the functional equation and Riemann hypothesis in Theorem 1 both hold
when C is an elliptic curve.

2Deligne was recently awarded the $1,000,000 Abel prize for this work.
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Problem 2. An elliptic curve with complex multiplication (50 points)

Let E/Q be the elliptic curve defined by

y2 = x3 − 35x− 98.

)We wish to consider the endomorphism φ(x, ) =
(
u(xy v(x) ,

s(x)yt(x)

)
, where

u(x) = 2x2 + (7
√
− −7)x+ (−7− 21

√
−7),

v(x) = (−3 +
√
−7)x+ (−7 + 5

√
−7),

s(x) = 2x2 + (14− 2
√
−7)x+ (28 + 14

√
−7),

t(x) = (5 +
√
−7)x2 + (42 + 2

√
−7)x+ (77− 7

√
−7).

The following block of sage code represents φ = (uv ,
s) as a pair of rational functionst

in x, with the factor y in the second coordinate implicit. It then verifies that φ is an
endomorphism of E by checking that its coordinate functions satisfy the curve equation
y2 = f(x) = x3 − 35x− 98:

R.<t>=PolynomialRing(Rationals())
N.<d>=NumberField(tˆ2+7)
F.<x>=PolynomialRing(N)
u=2*xˆ2 + (-d + 7)*x -(7+21*d)
v=(-3+d)*x +(-7+5*d)
s=2*xˆ2 + (-2*d + 14)*x + (14*d + 28)
t=(5+d)*xˆ2 + (42+2*d)*x + (77-7*d)
phi = (u/v,s/t)
f=xˆ3-35*x-98
assert phi[1]ˆ2*f == f.subs(phi[0])

Note: on the LHS of the assert we also squared the implicit y and replaced y2 by f(x).

1. Determine the characteristic polynomial of φ by computing (hint: its degree is ev-
ˆident, you just need to determine its trace φ + φ; remember that addition in the

endomorphism ring corresponds to the group operation on the elliptic curve).

2. Determine End(E). Be sure to justify your answer.

3. Let p be a prime of good reduction for E. Prove that the reduction of E at p is

supersingular if the Legendre symbol
(
−7 inaryp

)
is −1 and ord otherwise.

4. Let p be the least prime greater than the last two digits of your student ID where E
has supersingular reduction. Prove that the endomorphism algebra of E mod p is a
quaternion algebra Q(α, β) with α2, β2 < 0 and αβ = −βα. Give α2 and β2 explicitly,
and express α and β in terms of φ and the Frobenius endomorphism π.

5. Prove that every prime p where E has ordinary reduction satisfies the norm equation

4p = t2 + 7v2,

where t = trπ is the trace of Frobenius and v is a positive integer.

6. Find a pair of primes p, q > 2512 for which the reduction of E modulo p has exactly
4q rational points. Be sure to format your answer so that the primes p and q both fit
on the page (line wrapping is fine).
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Problem 3. Survey

Complete the following survey by rating each of the problems you attempted on a scale of
1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10 =
“mind-blowing”), and how difficult you found the problem (1 = “trivial,” 10 = “brutal”).
Also estimate the amount of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Also, please rate each of the following lectures that you attended, according to the quality
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

4/2 Endomorphism algebras

4/4 Ordinary and supersingular curves

Please feel free to record any additional comments you have on the problem sets or lectures,
in particular, ways in which they might be improved.
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