
18.783 Elliptic Curves Spring 2013

Problem Set #9 Due: 04/25/2013

Description

These problems are related to the material covered in Lectures 18-19. As usual, the first
person to spot each non-trivial typo/error will receive a point of extra credit.

Instructions: Either solve both problems 1 and 2, or solve just problem 3, and then
complete Problem 4, which is a survey. Late problem sets will lose half a point for
each hour they are late.

Problem 1. Complex multiplication (40 points)

Let τ = (1 +
√
−7)/2. In problem 1 of Problem Set 8 you computed j(τ) = −3375. In

problem 2 of Problem Set 7 you proved that the endomorphism ring of the elliptic curve
y2 3 − − −
Q(
√= x 35x 98 (with j-invariant 3375) is isomorphic to [1, τ ], the maximal order of
−7). We now set g2 = −4(−35) = 140 and g3 = −4(−98) = 392 and work with the

isomorphic elliptic curve E/C defined by

y2 = 4x3 − g2x− g3.

We should note that g2([1, τ ]) and g3([1, τ ]) are not equal to 140 and 392, but there is a
lattice L for which g2(L) = 140 and g3(L) = 392 (you computed L in problem 2 of Problem
Set 8), and L is homothetic to [1, τ ]. In particular, τL ⊆ L, thus τ satisfies condition (1) of
Theorem 18.7. The goal of this problem is to compute the polynomials u, v ∈ C[x] for which
condition (2) of Theorem 18.7 holds, and the endomorphism φ for which condition (3) of
Theorem 18.7 holds, and to explicitly confirm that the diagram

C/L E(C)

C/L E(C)

Φ

τ φ

Φ

commutes, where τ denotes the multiplication-by-τ map z 7→ τz.
Recall that the Weierstrass ℘-function satisfying the differential equation

(℘(z)′)2 = 4(℘(z))3 − g2℘(z)− g3 (1)

has a Laurent series expansion about 0 of the form ℘(z) = z−2 +
∑∞

n=1 a
2n

2nz .

1. Use g2 and g3 to determine a2 and a4, and then determine a6 by comparing coefficients
in the Laurent expansions of both sides of (1).

We now wish to compute the polynomials u, v ∈ C[x] for which

u
℘(τz) =

(
℘(z)

)
v
(
℘(z)

) ,
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as in condition (2) of Theorem 18.7. We have N(τ) = τ τ̄ = 2, so deg u = 2 and deg v = 1.
We can make u = x2 + ax+ b monic, and with v = cx+ d we must have

(c℘(z) + d)℘(τz) = ℘(z)2 + a℘(z) + b (2)

2. Use (2) to determine the coefficients a, b, c, d, expressing your answers in terms of τ .
It will be convenient to work in the subfield K = Q(τ), rather than C. To define the
field K and the polynomial ring K[x] in Sage, use

RQ.<w>=PolynomialRing(QQ)
K.<tau>=NumberField(wˆ2-w+2)
RK.<x>=PolynomilaRing(K)

Once you have determined a, b, c, d ∈ K, you can verify u, v ∈ K[x] via1

wp=EllipticCurve([-35,-98]).weierstrass_p(100).change_ring(K)
assert wp(tau*z) == u(wp)/v(wp)

3. Following the proof of Theorem 18.7, construct polynomials s, t ∈ K[x] that satisfy

s
℘′(τz) =

(
℘(z)

)
℘′(z).

t ℘(x)

You can verify your results in Sage via

( )
assert wp.derivative()(tau*z) == s(wp)/t(wp)*wp.derivative()

)4. Now let φ
(u(x= v(x) ,

s(x)y . Use Sage to verify that φ is an endomorphism by checkingt(x)

that its coordinate function

)
s satisfy the curve equation y2 = 4x3 − g2x− g3.

The symbolic verifications in parts 2 and 4 confirm that Φ(τz) = φ(Φ(z)), showing that
the diagram commutes (at least for the first 100 terms in the Laurent expansion of ℘(z)).
But we would like to explicitly check this for some specific values of z ∈ C. In order to do
this in Sage, we need to redefine τ and the polynomials u, v, s, t over C, rather than K. Use
the following Sage script to do so

R.<X>=PolynomialRing(CC)
pi=K.embeddings(CC)[0]
tauC=pi(tau)
uC=sum([pi(u.coeffs()[i])*Xˆi for i in range (0,u.degree()+1)])
vC=sum([pi(v.coeffs()[i])*Xˆi for i in range (0,v.degree()+1)])
sC=sum([pi(s.coeffs()[i])*Xˆi for i in range (0,s.degree()+1)])
tC=sum([pi(t.coeffs()[i])*Xˆi for i in range (0,t.degree()+1)])

5. Pick three “random” nonzero complex numbers z1, z2, z3 of norm less than 0.1 (they
need to be close to 0 in order for the Laurent series of ℘(x) to converge quickly).
You can approximate the point P1 = Φ(z1) =

(
℘(z1), ℘′(z1)

)
on the elliptic curve

y2 = 4x3 − g2x− g3 in Sage using

wp = EllipticCurve([CC(-35),CC(-98)]).weierstrass_p(100)
P1=(wp(z1),wp.derivative()(z1))

1Sage effectively computes ℘(z) using y2 = 4x3 − g2x − g3 when we define E : y2 = x3 + Ax + B with
g2 = −4A and g3 = −4B.
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For i = 1, 2, 3, compute the points Pi = Φ(zi) and Qi = Φ(τzi) (remember to use
the embedding of τ in C). Check that the points all approximately satisfy the curve
equation y2 = 4x3 − g2x− g3 (if not, use zi with smaller norms). Then verify that Qi
and φ(Pi) are approximately equal in each case.

Problem 2. Binary quadratic forms (60 points)

A binary quadratic form is a homogeneous polynomial of degree 2 in two variables:

f(x, y) = ax2 + bxy + cy2,

which we identify by the triple (a, b, c). We are interested in a specific set of binary quadratic
forms, namely, those that are integral (a, b, c ∈ Z), primitive (gcd(a, b, c) = 1), and positive
definite (b2 − 4ac < 0 and a > 0). Henceforth we shall use the word form to refer to an
integral, primitive, positive definite, binary quadratic form. The discriminant of a form is
the negative integer D = b2 − 4ac, which is necessarily congruent to 0 or 1 mod 4. We
generically call such integers (imaginary quadratic) discriminants, and let F (D) denote the
set of forms with discriminant D.

1. Prove that SL2(Z) acts on the set F (D) via(
s t

)
f(x, y) = f(sx+ ty, ux+ vy).

u v

Forms f and g are (properly) equivalent if g = γf for some γ ∈ SL2(Z). In this problem
and the next, you will prove that the set cl(D) of SL2(Z)-equivalence classes of F (D) forms
a finite abelian group, and develop algorithms to compute in this group.

The group cl(D) is called the class group, and it plays a key role in the theory of
complex multiplication. Our first objective is to prove that cl(D) is finite, and to develop
an algorithm to enumerate unique representatives of its elements (which also allows us to
determine its cardinality). We define the (principal) root τ of a form f = (a, b, c) to be the
unique root of f(x, 1) in the upper half plane:

τ =
−b+

√
D
.

2a

Recall that SL2(Z) acts on the upper half plane H via linear fractional transformations(
s t
u v

)
sτ + t

τ = ,
uτ + v

and that the set

F =
{
τ ∈ H : re(τ) ∈ [−1/2, 0] and |τ | ≥ 1

}
∪
{
τ ∈ H : re(τ) ∈ (0, 1/2) and |τ | > 1

is a fundamental region for H modulo the SL2(Z)-action.

}

2. Prove that γ ∈ SL2(Z) acts (anti-)compatibly on forms and their roots by showing
that if τ is the root of f , then γ−1τ is the root of γf . Conclude that two forms are
equivalent if and only if their roots are equivalent.
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The form f = (a, b, c) is reduced if

−a < b ≤ a < c or 0 ≤ b ≤ a = c.

3. Prove that a form is reduced if and only if its root lies in the fundamental region F .
Conclude that each equivalence class in F (D) contains exactly one reduced form.

4. Prove that if f is reduced then a ≤
√
|D|/3. Conclude that the set cl(D) is finite,

and show that in fact its cardinality h(D) satisfies h(D) ≤ |D|/3. Prove that F (D)
contains a unique reduced form (a, b, c) with a = 1. Thus h(D) ≥ 1, which proves
that h(−3) = h(−4) = 1.

The positive integer h(D) is called the class number of the discriminant D.

5. Give an algorithm to enumerate the reduced forms in F (D). Using the upper bound
h(D) = O(|D|1/2 log |D|), prove that your algorithm runs in O(|D|M(log |D|)) time.

6. Implement your algorithm and use it to enumerate the five reduced forms in F (−103)
and the six reduced forms in F (−396). Then use it to compute h(D) for the first
three discriminants D < −N , where N is the integer formed by the first four digits of
your student ID.

Problem 3. The class group (100 points)

In Problem 2 it was proved that cl(D) is a finite set. In this problem you will prove that it
is an abelian group, and develop an algorithm to implement the group operation.

To each form f(x, y) = ax2 + bxy + cy2 in F (D) with root τ = (−b +
√
D)/(2a), we

associate the lattice L(f) = L(a, b, c) = a[1, τ ].

1. Show that two forms f, g ∈ F (D) are equivalent if and only if the lattices L(f) and
L(g) are homothetic.

For any lattice L, the order of L is the set

O(L) = {α ∈ C : αL ⊆ L}.

2. Prove that either O(L) = Z or O(L) is an order in an imaginary quadratic field, and
that homothetic lattices have the same order. Prove that if L is the lattice of a form
in F (D), then O(L) is the order of discriminant D in the field K = Q(

√
D).

For the rest of this problem let O denote the (not necessarily maximal) imaginary
quadratic order of discriminant D, which may be represented as a lattice L = [1, α], where
α is any algebraic integer whose minimal polynomial x2+bx+c has discriminant b2−4c = D.

Recall that an (integral) O-ideal a is an additive subgroup of O that is closed under
multiplication by O. Every O-ideal a is necessarily a sublattice of O, and its norm N(a)
is the index [O : a] = |O/a|. An O-ideal a is said to be proper if O(a) = O. Note that we
always have O ⊆ O(a), so when O is maximal every nonzero O-ideal is proper.

3. Prove that if L(a, b, c) = a[1, τ ] is the lattice of a form in F (D), then L is a proper
O-ideal of norm a, where O = O(L) = [1, aτ ]. Give an example of an O-ideal that is
not proper, thereby proving that not every O-ideal arises as the lattice of a form (or
is even homothetic to the lattice of a form).
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4. Conversely, prove that every proper O-ideal is homothetic to the lattice of a form
in F (D).

The product of two lattices [ω1, ω2] and [ω3, ω4] is defined to be [ω1ω3, ω1ω4, ω2ω3, ω2ω4].
In general, the product of two lattices need not be a lattice, but if the lattices are O-ideals,
then their product is an O-ideal and therefore a lattice (the lattice product agrees with the
usual definition of the product of ideals).

5. Let cl(O) denote the set of equivalence classes (under homothety) of lattices that are
proper O-ideals. Prove that the lattice product makes cl(O) into an abelian group.
Conclude that the corresponding operation on the equivalence classes of F (D) makes
cl(D) into an abelian group that is isomorphic to cl(O).

To perform explicit computations in cl(D) we need to translate the product operation
on lattices L(f1) and L(f2) into a corresponding product operation on forms f1, f2 ∈ F (D).
This is known as composition of forms, and is performed as follows. If f1 = (a1, b1, c1) and
f2 = (a2, b2, c2) are forms in F (D), then let s = (b1 + b2)/2 (this is an integer because b1, b2
and D all have the same parity). Use the extended Euclidean algorithm (twice) to compute
integers u, v, w, and d such that ua1 + va2 + ws = d = gcd(a1, a2, s). The composition of
f1 and f2 is then given by

f1 ∗ 2
f2 = (a3, b3, c3 =

(
a1a

)
d2

, b2 +
2a2

d
(v(s− b2)− wc2),

b23 −D .
4a3

)
It is a straight-forward but tedious task to verify that this composition formula satisfies
L(f1 ∗ f2) = L(f1) ∗ L(f2); you are not asked to do this.

6. Verify that the inverse of (a, b, c) is (a,−b, c) and that the unique reduced from with
a = 1 acts as the identity (see Problem 2 for the definition of a reduced form).

Unfortunately, even if f1 and f2 are reduced forms, the composition of f1 and f2 need not
be reduced. In order
the matrices S =

7. Let f be the

( to compute in cl(D) effectively, w algorithm. Recall
0 −1

) e need a reduction
and T = ( 1 1 that generate SL2(Z).1 0 0 1 )

form (a, b, c). Compute the forms Sf , Tmf , and T−mf , for a positive
integer m.

A form (a, b, c) with −a < b ≤ a is said to be normalized.

8. Show that for any form f there is an integer m such that Tmf is normalized, and
give an explicit formula for m. Let us call Tmf the normalization of f . Now let
f = (a, b, c) be a normalized form and prove the following:

(a) If a <
√
|D|/2 then f is reduced.

(b) If a <
√√|D| and f is not reduced, then the normalization of Sf is reduced.

(c) If a ≥ |D| then the normalization (a′, b′, c′) of Sf has a′ ≤ a/2.

9. Give an algorithm to compute the reduction of a form f in F (D), and bound its
complexity as a function of n = log |D|, assuming that its coefficients are O(n) bits
in size. Then bound the complexity of computing the reduction of the product of two
reduced forms (this corresponds to performing a group operation in cl(D)).2

2A quasi-linear bound is known [1], but your bound does not need to be this tight. However it should be
polynomial in n.
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10. Implement your algorithm and use it to compute the reduction of a form (a, b, c) ∈
F (D), with a equal to the least prime greater than |D|2 for which (D ) = 1. Do thisa
for the discriminants D = −103 and D = −396, and for the first three discriminants
D < −N , where N is the first four digits of your student ID. For the largest |D|, list
the sequence of normalized forms computed during the reduction.

Problem 4. Survey

Complete the following survey by rating each of the problems you attempted on a scale of
1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10 =
“mind-blowing”), and how difficult you found the problem (1 = “trivial,” 10 = “brutal”).
Also estimate the amount of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Also, please rate each of the following lectures that you attended, according to the quality
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

4/18 Uniformization theorem and CM

4/23 Orders, ideals, and class groups

Please feel free to record any additional comments you have on the problem sets or lectures,
in particular, ways in which they might be improved.
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