Description

These problems are related to the material covered in Lectures 18-19. As usual, the first person to spot each non-trivial typo/error will receive a point of extra credit.

Instructions: Either solve both problems 1 and 2, or solve just problem 3, and then complete Problem 4, which is a survey. Late problem sets will lose half a point for each hour they are late.

Problem 1. Complex multiplication (40 points)

Let $\tau=(1+\sqrt{-7}) / 2$. In problem 1 of Problem Set 8 you computed $j(\tau)=-3375$. In problem 2 of Problem Set 7 you proved that the endomorphism ring of the elliptic curve $y^{2}=x^{3}-35 x-98$ (with j-invariant -3375) is isomorphic to $[1, \tau]$, the maximal order of $\mathbb{Q}(\sqrt{-7})$. We now set $g_{2}=-4(-35)=140$ and $g_{3}=-4(-98)=392$ and work with the isomorphic elliptic curve E / \mathbb{C} defined by

$$
y^{2}=4 x^{3}-g_{2} x-g_{3} .
$$

We should note that $g_{2}([1, \tau])$ and $g_{3}([1, \tau])$ are not equal to 140 and 392 , but there is a lattice L for which $g_{2}(L)=140$ and $g_{3}(L)=392$ (you computed L in problem 2 of Problem Set 8), and L is homothetic to $[1, \tau]$. In particular, $\tau L \subseteq L$, thus τ satisfies condition (1) of Theorem 18.7. The goal of this problem is to compute the polynomials $u, v \in \mathbb{C}[x]$ for which condition (2) of Theorem 18.7 holds, and the endomorphism ϕ for which condition (3) of Theorem 18.7 holds, and to explicitly confirm that the diagram

commutes, where τ denotes the multiplication-by- τ map $z \mapsto \tau z$.
Recall that the Weierstrass \wp-function satisfying the differential equation

$$
\begin{equation*}
\left(\wp(z)^{\prime}\right)^{2}=4(\wp \supset(z))^{3}-g_{2} \wp(z)-g_{3} \tag{1}
\end{equation*}
$$

has a Laurent series expansion about 0 of the form $\wp(z)=z^{-2}+\sum_{n=1}^{\infty} a_{2 n} z^{2 n}$.

1. Use g_{2} and g_{3} to determine a_{2} and a_{4}, and then determine a_{6} by comparing coefficients in the Laurent expansions of both sides of (1).

We now wish to compute the polynomials $u, v \in \mathbb{C}[x]$ for which

$$
\wp(\tau z)=\frac{u(\wp(z))}{v(\wp(z))},
$$

as in condition (2) of Theorem 18.7. We have $N(\tau)=\tau \bar{\tau}=2$, so $\operatorname{deg} u=2$ and $\operatorname{deg} v=1$. We can make $u=x^{2}+a x+b$ monic, and with $v=c x+d$ we must have

$$
\begin{equation*}
(c \wp(z)+d) \wp(\tau z)=\wp(z)^{2}+a \wp(z)+b \tag{2}
\end{equation*}
$$

2. Use (2) to determine the coefficients a, b, c, d, expressing your answers in terms of τ. It will be convenient to work in the subfield $K=\mathbb{Q}(\tau)$, rather than \mathbb{C}. To define the field K and the polynomial ring $K[x]$ in Sage, use
```
RQ.<w>=PolynomialRing(QQ)
K.<tau>=NumberField(w^2-w+2)
RK.<x>=PolynomilaRing(K)
```

Once you have determined $a, b, c, d \in K$, you can verify $u, v \in K[x]$ via -

```
wp=EllipticCurve([-35,-98]).weierstrass_p(100).change_ring(K)
assert wp(tau*z) == u(wp)/v(wp)
```

3. Following the proof of Theorem 18.7, construct polynomials $s, t \in K[x]$ that satisfy

$$
\wp^{\prime}(\tau z)=\frac{s(\wp(z))}{t(\wp(x))} \wp^{\prime}(z) .
$$

You can verify your results in Sage via

```
assert wp.derivative()(tau*z) == s(wp)/t(wp)*wp.derivative()
```

4. Now let $\phi=\left(\frac{u(x)}{v(x)}, \frac{s(x)}{t(x)} y\right)$. Use Sage to verify that ϕ is an endomorphism by checking that its coordinate functions satisfy the curve equation $y^{2}=4 x^{3}-g_{2} x-g_{3}$.

The symbolic verifications in parts 2 and 4 confirm that $\Phi(\tau z)=\phi(\Phi(z))$, showing that the diagram commutes (at least for the first 100 terms in the Laurent expansion of $\wp(z)$). But we would like to explicitly check this for some specific values of $z \in \mathbb{C}$. In order to do this in Sage, we need to redefine τ and the polynomials u, v, s, t over \mathbb{C}, rather than K. Use the following Sage script to do so

```
R.}\langleX\rangle=PolynomialRing(CC
pi=K.embeddings(CC)[0]
tauC=pi(tau)
uC=sum([pi(u.coeffs()[i])*X^i for i in range (0,u.degree()+1)])
vC=sum([pi(v.coeffs()[i])*X^i for i in range (0,v.degree()+1)])
sC=sum([pi(s.coeffs()[i])*X^i for i in range (0,s.degree()+1)])
tC=sum([pi(t.coeffs()[i])*X^i for i in range (0,t.degree()+1)])
```

5. Pick three "random" nonzero complex numbers z_{1}, z_{2}, z_{3} of norm less than 0.1 (they need to be close to 0 in order for the Laurent series of $\wp(x)$ to converge quickly). You can approximate the point $P_{1}=\Phi\left(z_{1}\right)=\left(\wp\left(z_{1}\right), \wp^{\prime}\left(z_{1}\right)\right)$ on the elliptic curve $y^{2}=4 x^{3}-g 2 x-g 3$ in Sage using
```
wp = EllipticCurve([CC(-35),CC(-98)]).weierstrass_p(100)
P1=(wp(z1),wp.derivative()(z1))
```

[^0]For $i=1,2,3$, compute the points $P_{i}=\Phi\left(z_{i}\right)$ and $Q_{i}=\Phi\left(\tau z_{i}\right)$ (remember to use the embedding of τ in \mathbb{C}. Check that the points all approximately satisfy the curve equation $y^{2}=4 x^{3}-g_{2} x-g_{3}$ (if not, use z_{i} with smaller norms). Then verify that Q_{i} and $\phi\left(P_{i}\right)$ are approximately equal in each case.

Problem 2. Binary quadratic forms (60 points)

A binary quadratic form is a homogeneous polynomial of degree 2 in two variables:

$$
f(x, y)=a x^{2}+b x y+c y^{2},
$$

which we identify by the triple (a, b, c). We are interested in a specific set of binary quadratic forms, namely, those that are integral $(a, b, c \in \mathbb{Z})$, primitive $(\operatorname{gcd}(a, b, c)=1)$, and positive definite $\left(b^{2}-4 a c<0\right.$ and $\left.a>0\right)$. Henceforth we shall use the word form to refer to an integral, primitive, positive definite, binary quadratic form. The discriminant of a form is the negative integer $D=b^{2}-4 a c$, which is necessarily congruent to 0 or $1 \bmod 4$. We generically call such integers (imaginary quadratic) discriminants, and let $F(D)$ denote the set of forms with discriminant D.

1. Prove that $\mathrm{SL}_{2}(\mathbb{Z})$ acts on the set $F(D)$ via

$$
\left(\begin{array}{ll}
s & t \\
u & v
\end{array}\right) f(x, y)=f(s x+t y, u x+v y) .
$$

Forms f and g are (properly) equivalent if $g=\gamma f$ for some $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$. In this problem and the next, you will prove that the set $\operatorname{cl}(D)$ of $\mathrm{SL}_{2}(\mathbb{Z})$-equivalence classes of $F(D)$ forms a finite abelian group, and develop algorithms to compute in this group.

The group $\operatorname{cl}(D)$ is called the class group, and it plays a key role in the theory of complex multiplication. Our first objective is to prove that $\operatorname{cl}(D)$ is finite, and to develop an algorithm to enumerate unique representatives of its elements (which also allows us to determine its cardinality). We define the (principal) root τ of a form $f=(a, b, c)$ to be the unique root of $f(x, 1)$ in the upper half plane:

$$
\tau=\frac{-b+\sqrt{D}}{2 a} .
$$

Recall that $\mathrm{SL}_{2}(\mathbb{Z})$ acts on the upper half plane \mathbb{H} via linear fractional transformations

$$
\left(\begin{array}{cc}
s & t \\
u & v
\end{array}\right) \tau=\frac{s \tau+t}{u \tau+v}
$$

and that the set

$$
\mathcal{F}=\{\tau \in \mathbb{H}: \operatorname{re}(\tau) \in[-1 / 2,0] \text { and }|\tau| \geq 1\} \cup\{\tau \in \mathbb{H}: \operatorname{re}(\tau) \in(0,1 / 2) \text { and }|\tau|>1\}
$$

is a fundamental region for \mathbb{H} modulo the $\mathrm{SL}_{2}(\mathbb{Z})$-action.
2. Prove that $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ acts (anti-)compatibly on forms and their roots by showing that if τ is the root of f, then $\gamma^{-1} \tau$ is the root of γf. Conclude that two forms are equivalent if and only if their roots are equivalent.

The form $f=(a, b, c)$ is reduced if

$$
-a<b \leq a<c \quad \text { or } \quad 0 \leq b \leq a=c .
$$

3. Prove that a form is reduced if and only if its root lies in the fundamental region \mathcal{F}. Conclude that each equivalence class in $F(D)$ contains exactly one reduced form.
4. Prove that if f is reduced then $a \leq \sqrt{|D| / 3}$. Conclude that the set $\operatorname{cl}(D)$ is finite, and show that in fact its cardinality $h(D)$ satisfies $h(D) \leq|D| / 3$. Prove that $F(D)$ contains a unique reduced form (a, b, c) with $a=1$. Thus $h(D) \geq 1$, which proves that $h(-3)=h(-4)=1$.

The positive integer $h(D)$ is called the class number of the discriminant D.
5. Give an algorithm to enumerate the reduced forms in $F(D)$. Using the upper bound $h(D)=O\left(|D|^{1 / 2} \log |D|\right)$, prove that your algorithm runs in $O(|D| \mathrm{M}(\log |D|))$ time.
6. Implement your algorithm and use it to enumerate the five reduced forms in $F(-103)$ and the six reduced forms in $F(-396)$. Then use it to compute $h(D)$ for the first three discriminants $D<-N$, where N is the integer formed by the first four digits of your student ID.

Problem 3. The class group (100 points)

In Problem 2 it was proved that $\operatorname{cl}(D)$ is a finite set. In this problem you will prove that it is an abelian group, and develop an algorithm to implement the group operation.

To each form $f(x, y)=a x^{2}+b x y+c y^{2}$ in $F(D)$ with root $\tau=(-b+\sqrt{D}) /(2 a)$, we associate the lattice $L(f)=L(a, b, c)=a[1, \tau]$.

1. Show that two forms $f, g \in F(D)$ are equivalent if and only if the lattices $L(f)$ and $L(g)$ are homothetic.

For any lattice L, the order of L is the set

$$
\mathcal{O}(L)=\{\alpha \in \mathbb{C}: \alpha L \subseteq L\}
$$

2. Prove that either $\mathcal{O}(L)=\mathbb{Z}$ or $\mathcal{O}(L)$ is an order in an imaginary quadratic field, and that homothetic lattices have the same order. Prove that if L is the lattice of a form in $F(D)$, then $\mathcal{O}(L)$ is the order of discriminant D in the field $K=\mathbb{Q}(\sqrt{D})$.

For the rest of this problem let \mathcal{O} denote the (not necessarily maximal) imaginary quadratic order of discriminant D, which may be represented as a lattice $L=[1, \alpha]$, where α is any algebraic integer whose minimal polynomial $x^{2}+b x+c$ has discriminant $b^{2}-4 c=D$.

Recall that an (integral) \mathcal{O}-ideal \mathfrak{a} is an additive subgroup of O that is closed under multiplication by \mathcal{O}. Every \mathcal{O}-ideal \mathfrak{a} is necessarily a sublattice of \mathcal{O}, and its norm $N(\mathfrak{a})$ is the index $[\mathcal{O}: \mathfrak{a}]=|\mathcal{O} / \mathfrak{a}|$. An \mathcal{O}-ideal \mathfrak{a} is said to be proper if $\mathcal{O}(\mathfrak{a})=\mathcal{O}$. Note that we always have $\mathcal{O} \subseteq \mathcal{O}(\mathfrak{a})$, so when \mathcal{O} is maximal every nonzero \mathcal{O}-ideal is proper.
3. Prove that if $L(a, b, c)=a[1, \tau]$ is the lattice of a form in $F(D)$, then L is a proper \mathcal{O}-ideal of norm a, where $\mathcal{O}=\mathcal{O}(L)=[1, a \tau]$. Give an example of an \mathcal{O}-ideal that is not proper, thereby proving that not every \mathcal{O}-ideal arises as the lattice of a form (or is even homothetic to the lattice of a form).
4. Conversely, prove that every proper \mathcal{O}-ideal is homothetic to the lattice of a form in $F(D)$.

The product of two lattices $\left[\omega_{1}, \omega_{2}\right]$ and $\left[\omega_{3}, \omega_{4}\right]$ is defined to be $\left[\omega_{1} \omega_{3}, \omega_{1} \omega_{4}, \omega_{2} \omega_{3}, \omega_{2} \omega_{4}\right]$. In general, the product of two lattices need not be a lattice, but if the lattices are \mathcal{O}-ideals, then their product is an \mathcal{O}-ideal and therefore a lattice (the lattice product agrees with the usual definition of the product of ideals).
5. Let $\operatorname{cl}(\mathcal{O})$ denote the set of equivalence classes (under homothety) of lattices that are proper \mathcal{O}-ideals. Prove that the lattice product makes $\operatorname{cl}(\mathcal{O})$ into an abelian group. Conclude that the corresponding operation on the equivalence classes of $F(D)$ makes $\operatorname{cl}(D)$ into an abelian group that is isomorphic to $\operatorname{cl}(\mathcal{O})$.

To perform explicit computations in $\mathrm{cl}(D)$ we need to translate the product operation on lattices $L\left(f_{1}\right)$ and $L\left(f_{2}\right)$ into a corresponding product operation on forms $f_{1}, f_{2} \in F(D)$. This is known as composition of forms, and is performed as follows. If $f_{1}=\left(a_{1}, b_{1}, c_{1}\right)$ and $f_{2}=\left(a_{2}, b_{2}, c_{2}\right)$ are forms in $F(D)$, then let $s=\left(b_{1}+b_{2}\right) / 2$ (this is an integer because b_{1}, b_{2} and D all have the same parity). Use the extended Euclidean algorithm (twice) to compute integers u, v, w, and d such that $u a_{1}+v a_{2}+w s=d=\operatorname{gcd}\left(a_{1}, a_{2}, s\right)$. The composition of f_{1} and f_{2} is then given by

$$
f_{1} * f_{2}=\left(a_{3}, b_{3}, c_{3}\right)=\left(\frac{a_{1} a_{2}}{d^{2}}, b_{2}+\frac{2 a_{2}}{d}\left(v\left(s-b_{2}\right)-w c_{2}\right), \frac{b_{3}^{2}-D}{4 a_{3}}\right) .
$$

It is a straight-forward but tedious task to verify that this composition formula satisfies $L\left(f_{1} * f_{2}\right)=L\left(f_{1}\right) * L\left(f_{2}\right)$; you are not asked to do this.
6. Verify that the inverse of (a, b, c) is $(a,-b, c)$ and that the unique reduced from with $a=1$ acts as the identity (see Problem 2 for the definition of a reduced form).

Unfortunately, even if f_{1} and f_{2} are reduced forms, the composition of f_{1} and f_{2} need not be reduced. In order to compute in $\operatorname{cl}(D)$ effectively, we need a reduction algorithm. Recall the matrices $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ that generate $\mathrm{SL}_{2}(\mathbb{Z})$.
7. Let f be the form (a, b, c). Compute the forms $S f, T^{m} f$, and $T^{-m} f$, for a positive integer m.

A form (a, b, c) with $-a<b \leq a$ is said to be normalized.
8. Show that for any form f there is an integer m such that $T^{m} f$ is normalized, and give an explicit formula for m. Let us call $T^{m} f$ the normalization of f. Now let $f=(a, b, c)$ be a normalized form and prove the following:
(a) If $a<\sqrt{|D|} / 2$ then f is reduced.
(b) If $a<\sqrt{|D|}$ and f is not reduced, then the normalization of $S f$ is reduced.
(c) If $a \geq \sqrt{|D|}$ then the normalization $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ of $S f$ has $a^{\prime} \leq a / 2$.
9. Give an algorithm to compute the reduction of a form f in $F(D)$, and bound its complexity as a function of $n=\log |D|$, assuming that its coefficients are $O(n)$ bits in size. Then bound the complexity of computing the reduction of the product of two reduced forms (this corresponds to performing a group operation in $\operatorname{cl}(D)) . \underline{2}$

[^1]10. Implement your algorithm and use it to compute the reduction of a form $(a, b, c) \in$ $F(D)$, with a equal to the least prime greater than $|D|^{2}$ for which $\left(\frac{D}{a}\right)=1$. Do this for the discriminants $D=-103$ and $D=-396$, and for the first three discriminants $D<-N$, where N is the first four digits of your student ID. For the largest $|D|$, list the sequence of normalized forms computed during the reduction.

Problem 4. Survey

Complete the following survey by rating each of the problems you attempted on a scale of 1 to 10 according to how interesting you found the problem ($1=$ "mind-numbing," $10=$ "mind-blowing"), and how difficult you found the problem ($1=$ "trivial," $10=$ "brutal"). Also estimate the amount of time you spent on each problem to the nearest half hour.

	Interest	Difficulty	Time Spent
Problem 1			
Problem 2			
Problem 3			

Also, please rate each of the following lectures that you attended, according to the quality of the material ($1=$ "useless", $10=$ "fascinating"), the quality of the presentation ($1=$ "epic fail", $10=$ "perfection"), the pace ($1=$ "way too slow", $10=$ "way too fast", $5=$ "just right") and the novelty of the material ($1=$ "old hat", $10=$ "all new").

Date	Lecture Topic	Material	Presentation	Pace	Novelty
$4 / 18$	Uniformization theorem and CM				
$4 / 23$	Orders, ideals, and class groups				

Please feel free to record any additional comments you have on the problem sets or lectures, in particular, ways in which they might be improved.

References

[1] A. Schönhage, Fast reduction and composition of binary quadratic forms, in International Symposium on Symbolic and Algebraic Computation-ISSAC'91, ACM, 1991, 128-133.

MIT OpenCourseWare
http://ocw.mit.edu

18.783 Elliptic Curves

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Sage effectively computes $\wp(z)$ using $y^{2}=4 x^{3}-g_{2} x-g_{3}$ when we define $E: y^{2}=x^{3}+A x+B$ with $g_{2}=-4 A$ and $g_{3}=-4 B$.

[^1]: ${ }^{2} \mathrm{~A}$ quasi-linear bound is known [1], but your bound does not need to be this tight. However it should be polynomial in n.

