
18.783 Elliptic Curves Spring 2013
Lecture #10 03/12/2013

Andrew V. Sutherland

10.1 The discrete logarithm problem

In its most standard form, the discrete logarithm problem (DLP) is stated as follows:

Given α ∈ G and β ∈ 〈α〉, find the least positive integer x such that αx = β.

In additive notation, we want xα = β. In any case, we call x the discrete logarithm of β
with respect to the base α, denoted by log 1

α β.
We can formulate a slightly stronger version of the problem:

Given α, β ∈ G, compute logα β if β ∈ 〈α〉, otherwise, report that β 6∈ 〈α〉.

This can be a significantly harder problem. For example, say we are using a randomized (Las
Vegas) algorithm. If β lies in 〈α〉 then we are guaranteed to eventually find logα β, but if
not, we will never find it and it may be impossible to tell whether we are just very unlucky
or β 6∈ 〈α〉. On the other hand, with a deterministic algorithm such as the baby-steps
giant-steps method, we can unequivocally determine whether β lies in 〈α〉 or not.

There is also a generalization called the extended discrete logarithm:

Given α, β ∈ G, determine the least positive integer y such that βy ∈ 〈α〉, and
then output the pair (x, y), where x = logα β

y.

This yields positive integers x and y satisfying βy = αx, where we minimize y first and x
second. Note that there is always a solution: in the worst case x = |α| and y = |β|.

Example 10.1. Suppose G = F×101. Then log3 37 = 24, since 324 ≡ 37 mod 101.

Example 10.2. Suppose G = F+
101. Then log3 37 = 46, since 46 · 3 = 37 mod 101.

Both of these examples involve groups where the discrete logarithm is easy to compute
(and not just because 101 is a small number), but for very different reasons. In Example 10.1
we are working in a group of order 100 = 22·52. As we will see in this lecture, when the group
order is a product of small primes (i.e. smooth), it is easy to compute discrete logarithms.
In Example 10.2 we are working in a group of order 101, which is prime. In terms of the
group order, this represents the hardest possible case. But in fact it is very easy to compute
discrete logarithms in the additive group of a finite field! All we need to do is compute the
inverse of 3 modulo 101 (which is 34) and multiply by 37. This is a small example, but
even if the field size is very large, we can use the extended Euclidean algorithm to compute
inverses in quasi-linear time.

So while the DLP is generally considered a “hard problem”, it really depends on which
group we are talking about. In the case of the additive group of a finite field the problem is
easier not because the group itself is different in any group-theoretic sense, but because it
is embedded in a field. This allows us to perform operations on group elements beyond the

1We will primarily use additive notation, but stick with the multiplicative terminology (hence the word
logarithm), which is traditional; most of the early work on discrete logarithms was done in the multiplicative
group of a finite field.

1

standard group operation, which is in some sense “cheating”. Note that if the Euclidean
algorithm were only allowed to use addition and subtraction it would take exponential time.

Even when working in the multiplicative group of a finite field, where the DLP is believed
to be much harder, we can do substantially better than in a generic setting. As we shall see,
there sub-exponential time algorithms for this problem, whereas in the generic case only
exponential time algorithms exist, as we will prove in the next lecture. The reason we can
do better than in the generic case again arises from the fact that the group in question is
embedded in a larger algebraic structure.

10.2 Generic group algorithms

To make formal the notion of “not cheating”, we define a generic group algorithm (or just a
generic algorithm) to be one that interacts with the group G using a black box (also called
an oracle), via the following interface (think of a black box with four buttons, two input
slots, and one output slot):

1. identity: output the identity element.

2. invert: given input α, output α−1 (or −α, in additive notation).

3. composition: given inputs α and β, output αβ (or α+ β, in additive notation).

4. random: output a uniformly distributed random element α ∈ G.

All group elements processed by the black box are represented as bit-strings of length
k = O(log |G|). Some models for generic group algorithms also include a black box operation
for testing equality of group elements, but we will instead assume that group elements are
uniquely identified ; this means that there is an injective identification map G → {0, 1}k
such that all inputs and outputs to the black box are bit-strings in {0, 1}k that correspond
to images of group elements under this map. With uniquely identified group elements we
can test equality by comparing bit-strings, which does not involve the black box.2

The black box may use any identification map (including one chosen at random). A
generic algorithm is not considered correct unless it works no matter what the identification
map is. We have already seen several examples of generic group algorithms, including
exponentiation algorithms, fast order algorithms, and the baby-steps giant-steps method.

We measure the time complexity of a generic group algorithm by counting group op-
erations, the number of interactions with the black box. This metric has the virtue of
being independent of the actual software and hardware implementation, allowing one to
make comparisons the remain valid even as technology improves. But if we want to get a
complete measure of the complexity of solving a problem in a particular group, we need to
multiply the group operation count by the bit-complexity of each group operation, which
of course depends on the black box. To measure the space complexity, we count the total
number of group identifiers stored at any one time (i.e. the maximum number of group
identifiers the algorithm ever has to remember).

These complexity metrics do not account for any other work done by the algorithm. If
the algorithm wants to compute a trillion digits of pi, or factor some huge integer, it can
effectively do that “for free”. But the implicit assumption is that the cost of any auxiliary
computation is at worst proportional to the number of group operations, which is true of
all the algorithms we will consider.

2We can also sort bit-strings or index them with a hash table or other data structure; this is essential to
an efficient implementation of the baby-steps giant-steps algorithm.

2

10.3 Generic algorithms for the discrete logarithm problem

We now consider generic algorithms for the discrete logarithm problem. We shall assume
throughout that N = |α| is known. This is a reasonable assumption, since there is a generic
algorithm to compute N using o(

√
N) group operations [5], which is strictly less than the

complexity of any of the generic algorithms we consider (at least in the worst case, when N
is prime). Indeed, we will prove an Ω(

√
N) lower bound for prime N in the next lecture.

The cyclic group 〈α〉 is isomorphic to the additive group Z/NZ, where N is the order
of α. In the context of generic group algorithms, we may as well assume 〈α〉 is Z/NZ,
generated by α = 1, since every cyclic group of order N looks the same when it is hidden
in a black box. Of course with the black box picking arbitrary group identifiers, we cannot
actually tell which integer x in Z/NZ corresponds to a particular group element β; indeed,
x is precisely the discrete logarithm of β that we wish to compute!

Thus computing discrete logarithms amounts to explicitly computing the isomorphism
from 〈α〉 to Z/NZ. Computing the isomorphism in the reverse direction is easy: this is just
exponentiation. Thus we have (in multiplicative notation):

Z/NZ ' 〈α〉
x→ αx

logα β ← β

Cryptographic applications of the discrete logarithm problem rely on the fact that it is
easy to compute β = αx but hard (in general) to compute x = logα β.

10.3.1 Linear search

Starting form α, compute
α, 2α, 3α, . . . ,mα = β,

and then output m (or if we reach m > N , report that β 6∈ 〈α〉). This uses at most N
group operations, and the average over all inputs is N/2 group operations.

We mention this algorithm only for the sake of comparison. Its time complexity is not
attractive, but it is very space-efficient: it only needs to store one group element, in addition
to the inputs α and β.

10.3.2 Baby-steps giant-steps

Pick positive integers r and s such that rs > N , and then compute:

baby steps: 0, α, 2α, 3α, . . . , (r − 1)α,
giant steps: β, β − rα, β − 2rα, . . . , β − (s− 1)rα,

A collision occurs when we find a baby step that is equal to a giant step. We then have

iα = β − jrα,

for some nonnegative integers i < r and j < s. If i = j = 0, then β is the identity and
logα β = N . Otherwise,

logα β = i+ jr.

Typically the baby steps are stored in a lookup table, allowing us to check for a collision
as each giant step is computed, so we don’t necessarily need to compute all the giant steps.

3

We can easily detect β 6∈ 〈α〉, since every integer in [1, N] can be written in the form i+ jr
with 0 ≤ i < r and 0 ≤ j < s. If we do not find a collision, then β 6∈ 〈α〉.

The baby-steps giant-steps algorithm uses r+s group operations, which is O(
√
N) if we

choose r ≈ s. It requires space for r group elements (the baby steps), which is also O(
√
N)

but can be made smaller if are willing to increase the running time by making s larger. So
there is a trade-off between time and space.

Both of the algorithms above are insensitive to any special properties of N , their com-
plexities depend only on its approximate size. In fact we do not even need to know N
exactly, we can easily make do with an upper bound. For the next algorithm we consider
it is quite important to know N exactly, because our first step will be to factor it.

10.3.3 Pohlig-Hellman (and Silver)

Suppose N = N1N2, where N1 ⊥ N2. Then Z/NZ ' Z/N1Z ⊕ Z/N2Z, by the Chinese
remainder theorem, and we can make this isomorphism completely explicit:

x → (x mod N1, x mod N2),

(M1x1 +M2x2) mod N ← (x1, x2),

where

M1 = N2(N
−1
2 mod N1) ≡

{
1 mod N1,

(1)
0 mod N2,

M2 = N1(N
−1 0 mod N1,
1 mod N2) ≡

{
(2)

1 mod N2.

Note that computing Mi and Ni does not involve group operations and is independent of β.
Now let us consider the computation of x = logα β. Let

x1 = x mod N1 and x2 = x mod N2,

so that x = M1x1 +M2x2, and

β = (M1x1 +M2x2)α.

Multiplying both sides by N2 and distributing yields

N2β = M1x1N2α+M2x2N2α. (3)

As you proved in Problem Set 1, the order of N2α is N1. From (1) and (2) we note that
M1 ≡ 1 mod N1 and M2 ≡ 0 mod N1, so (3) can be simplified to

N2β = x1N2α.

We similarly find that N1β = x2N1α, and therefore

x1 = logN2αN2β,

x2 = logN1αN1β.

Assuming we have computed x1 and x2, we may then compute x = (M1x1+M2x2) mod N .
Thus we have reduced the computation of the discrete logarithm logα β to the computation

4

of the discrete logarithms logN2αN2β and logN1αN1β. If N is prime this doesn’t help
(either N1 = N or N2 = N), but otherwise these two discrete logarithms have bases with
smaller orders. In the best case N1 ≈ N2, and we have reduced our original problem to two
subproblems of half the size.

By applying the reduction above recursively, we can reduce this to the case where N is
a prime power pe, which we now assume. Let e0 = de/2e and e1 = be/2c. We may write
x = logα β in the form x = x0 + pe0x1, with 0 ≤ x0 < pe0 and 0 ≤ x1 < pe1 . We then have

β = (x0 + pe0x1)α,

pe1β = x0p
e1α+ x1p

eα,

but the second term is zero, because α has order N = pe, so

x0 = logpe1α p
e1β.

We also have β − x0α = pe0x1α, thus

x1 = logpe0α(β − x0α).

If N is not prime, this again reduces the computation of logα β to the computation of two
smaller discrete logarithms (of roughly equal size).

The Pohlig-Hellman method [2] recursively applies the two reductions above to reduce
the problem to a set of discrete logarithm computations in groups of prime order.3 For
these computations we must revert to some other method, such as baby-steps giant-steps
(or Pollard-rho, which we will see shortly). When N is a prime p, the complexity is then
O(
√
p) group operations.

10.3.4 Complexity analysis

Suppose N is a product of relatively prime powers, q1 . . . qk. Reducing to the prime-power
case involves at most lg k = O(log n) levels of recursion, where n = logN . The largest
possible exponent of a prime power is lgN = O(n), thus reducing prime powers to the
prime case involves at most an additional O(log n) levels of recursion.

The total depth of the recursion tree is thus O(log n), and note that the product of the
orders of the bases used at any given level of the recursion tree is equal to N . The number
of group operations required at each internal node of the recursion tree is linear in the order
of the base, thus if we exclude the primes cases at the leaves, every layer of the recursion
tree uses O(n) group operations. Each leaf requires O(

√
pi) group operations, so the total

running time is

O
(
n log n+

∑
ei
√
pi

group operations, which we may bound by

)

O (n log n+ n
√
p) ,

where p is the largest prime dividing N . The space complexity is O(
√
p) group elements,

assuming we use a baby-steps giant-steps search for the prime cases; this can be reduced to

3The original algorithm of Pohlig and Hellman actually used an iterative approach that is not as fast as
the recursive approach suggested here is faster (a recursive approach for the prime-power case is given by
Shoup in [4, §11.2.3]).

5

O(1) using the Pollard-rho method (which is the next algorithm we will consider), but this
results in a probabilistic (Las Vegas) algorithm, whereas the basic Pohlig-Hellman approach
is completely deterministic.

The Pohlig-Hellman algorithm can be extremely efficient when N is composite; if N is
sufficiently smooth it runs in quasi-linear time (computing discreate logarithms in a group of
order 101000 takes almost no time at all). This underscores the importance of using groups of
prime or near-prime order in any cryptographic application based on the discrete logarithm
problem. This is one of the main motivations for efficient point-counting algorithms for
elliptic curves: we really want to know exactly what the group order is.

10.4 Randomized algorithms for the discrete logarithm problem

So far we have only considered deterministic algorithms. We will not achieve a better time
complexity bound with randomization, but we can achieve a much better space complexity;
this also makes it much easier to parallelize the algorithm, which is crucial for large-scale
computations (one can construct a parallel version of the baby-steps giant-steps algorithm,
but detecting collisions is more complicated and requires a lot of communication).

10.4.1 The birthday paradox

Recall what the birthday paradox tells us about collision frequency: if we drop Ω(
√
N) balls

randomly into O(N) bins then the probability that some bin contains more than one ball
is bounded below by some nonzero constant that we can make arbitrarily close to 1. Given
β√∈ 〈α〉, the baby-steps giant-steps method for computing logα β can be viewed as dropping

2N balls that are linear combinations of α and β (the baby steps are linear combinations
of α alone) into N bins corresponding to the elementd of 〈α〉. Of course these balls are not
dropped randomly, they are dropped a

But
√in a pattern that guarantees collision.

if we instead just computed 2N linear combinations of α and β at random, the
birthday paradox tells us that we would still have a good chance of finding a collision
(better than 50/50, in fact). The main problem with this approach is that in order to find
the collision we might need to keep track of all the linear combinations we have computed,
which would take a lot of space. In order to take advantage of the birthday paradox in a
way that uses less space we need to be a bit more clever.

10.4.2 Random walks on a graph

Let us now view the group 〈α〉 as the vertext set V of a graph. Suppose we use a random
function f : V → V to construct a walk from a random starting point v0 as follows:

v1 = f(v0)

v2 = f(v1)

v3 = f(v2)

...

Since f is a function, if we ever repeat a vertex, say vρ = vλ for some ρ > λ, we will be
permanently stuck in a cycle, since we then have f(vρ+i) = f(vλ+i) for all i ≥ 0. This is a
good thing, because once we are in this cycle every step corresponds to a collision (a pair

6

of vertices with different indices in our random walk that correspond to the same group
element). Note that V is finite, so we must eventually hit a cycle.

Our random walk thus consists of two parts, a path from v0 to the vertex vλ, the first
vertex that is visited more than once, and a cycle consisting of the vertices vλ, vλ+1, . . . , vρ−1.
The can be visualized as a path in the shape of the Greek letter ρ, which explains the name
of the ρ-method we wish to consider.

A collision doesn’t necessarily tell us anything on its own, but if we augment the func-
tion f appropriately, it will. We will construct f so that the vertices in our random walk
correspond to linear combinations aα + bβ whose coefficients a and b we know. But let us
first compute the expected number of steps a random walk takes to reach its first collision.

Theorem 10.3. Let V be a finite set. For any v0 ∈ V , the expected value of ρ for a walk
from v0 defined by a random function f : V → V is

E[ρ] ∼
√
πN/2,

as the cardinality N of V tends to infinity.

This theorem was stated in lecture without proof; we now give an elementary proof.

Proof. Let Pn = Pr[ρ > n]. We have P0 = 1 and P1 = (1− 1/N), and in general

Pn =
(1

1−
N

)(
1− 2

N

)
· · ·
(

1− n

N

)
=

n∏
i=1

(
1− i

N

)
for any n < N (and Pn = 0 for n ≥ N). We compute the expectation of ρ as

N−1

E[ρ] =
∑

n · Pr[ρ = n]
n=1

N−1

= n
n=1

· (Pn−1 − Pn),

= 1(

∑
P0 − P1) + 2(P1 − P2) + . . .+ n(Pn−1 − Pn)

N−1

=
n

∑
Pn

=0

− nPn. (4)

In order to determine the asymptotic behavior of E[ρ] we need tight bounds on Pn. Using
the fact that log(1− x) < −x for 0 < x < 1, we obtain an upper bound on Pn:

i
Pn =

(∑n
exp log

i

(
1

=1

−
N

))

< exp

(
1−

n

∑n
i

N
i=1

)

< exp
(− 2

2N

)
.

7

To establish a lower bound, we use the fact that log(1− x) > −x− x2 for 0 < x < 1 , which2
can be verified using the Taylor series expansion for log(1− x).

Pn = exp

(∑n
log

i=1

(i
1−

N

))

> exp

(
n

−
∑
i=1

(i
N

+
i2

.
N2

))

We now let M = N3/5 and assume n < M . In this range we have

∑n
i=1

(i
N

+
i2

N2

)
<

n∑
i=1

(i
N

+N−
4
5

n2 + n

)
<

1

+N−
2N

5

n2
<

1
+

2N 2
N−

2
5 +N−

1
5

n2
<

1

+ 2N−
2N

5 ,

which implies

Pn > exp
(−n2

2N

)
exp

(
−2N−

1
5

)
=
(
1 + o(1)

)
exp

(−n2
.

2N

We now return to the computation of E[ρ]. From (4

)
) we have

b

E[ρ] =
n

∑Mc N−1

Pn +
∑

Pn + o(1) (5)
=0 n=dMe

2
where the error term comes from nPn < n exp

(−n = o(1) (we use o(1) to denote any2N
term whose absolute value tends to 0 as N →∞). The

)
second sum is negligible, since

N∑−1 2

Pn < N exp

n dMe

(M−
=

2N

)
= N exp

(1−
2
N−

1
5

= o(1).

)
(6)

8

For the first sum we have

d∑Me d∑Me () (n2
Pn = 1 + o(1) exp

n=0 n=0

−
2N

)
= (1 + o(1))

∫ ∞ 2

e−
x

0

2N dx+O(1)

= (1 + o(1))
√ ∞

2N

∫
eu

2
du+O(1)

0

= (1 + o(1))
√

2N(
√√ π/2)

= (1 + o(1)) πN/2. (7)

Plugging (6) and (7) in to (5) yields the desired result.

Remark 10.4. One can also show E[λ] = E[σ] = 1
2E[ρ] =

√
πN/8, where σ = ρ− λ is the

length of the cycle.

In the baby-steps giant-steps algorithm (BSGS), if we assume that the discrete logarithm
is uniformly distributed over [1, N], then we should use

√
N/2 baby steps and expect to

find the discrete logarithm after
√
N/2 giant steps, on average, using a total of

√√ 2N group
operations. But note that π/2 ≈ 1.25 is less than

√
2 ≈ 1.41, so we may hope to compute

discrete logarithms faster than BSGS (on average) by simulating a random walk. Of course
the worst-case running time for BSGS is better, we will never need more than

√
2N giant

steps, but with a random walk the (astronomically unlikely) worst case is N steps.

10.5 Pollard-ρ Algorithm

We now present the Pollard-ρ algorithm for computing logα β. As noted earlier, a collision
in a random walk is useful to us only if we know how to express the colliding group elements
as (independent) linear combinations of α and β. Thus we extend the function f : G → G
that defines our random walk to a function

f : (Z/NZ)2 ×G→ (Z/NZ)2 ×G,
′

which, given (a, b, γ) such that αaβb
′

= γ, outputs some (a′, b′, γ′) such that αa βb = γ′.
There are several ways to define such a function f , one of which is the following. First

fix r distinct group elements δi = ciα + diβ for some randomly chosen ci, di ∈ Z/NZ. In
order to simulate a random walk, we don’t want r to be too small: empirically a value of
around 20 works well [6]. Then define f(a, b, γ) = (a + ci, b + di, γ + δi) where i = h(γ) is
determined by a randomly chosen hash function

h : G→ {1, . . . , r}.

In practice we don’t choose h randomly, we just need the preimages h−1(i) to partition G
into r subsets of roughly equal size (for example, we might just reduce the integer corre-
sponding to the bit-string that uniquely represents γ modulo r, assuming that these integers
are roughly equidistributed mod r).4

4Note the importance of unique identifiers. We must be sure that γ is always hashed to to the same
value. Using a non-unique representation such as projective points on an elliptic curve will not achieve this.

9

To start our random walk, we pick random a0, b0 ∈ Z/NZ and let γ0 = αa0βb0 . The
walk defined by the iteration function f is then known as an r-adding walk. Note that if
(aj+1, bj+1, γj+1) = f(aj , bj , γj), the value of γj+1 depends only on γj , not on aj or bj , so f
does define a walk in the same sense as before. We now give the algorithm.

Algorithm 10.5 (Pollard-ρ).

1. Compute δi = ciα+ diβ for r randomly chosen values of ci, di ∈ Z/NZ.

2. Compute γ0 = a0α+ boβ for randomly chosen a0, b0 ∈ Z/NZ.

3. Compute (aj , bj , γj) = f(aj 1, bj 1, γj 1) for j = 1, 2, 3, . . ., until we find a collision,− − −
i.e. γk = γj for some k > j.

4. The collision γk = γj implies ajα+bjβ = akα+bkβ. Provided that bk−bj is invertible

in Z/NZ a
, we return logα β = j−ak / w

k
Z−bj ∈ NZ, otherwise e simply start over.b

Note that if N = |α| is a large prime, it is extremely likely that bk− bj will be invertible. In
any case, by restarting we ensure that the algorithm is guaranteed to eventually terminate
(with probability 1), since it is certainly possible to have γ0 = αx and γ1 = β, for example.
With this implementation the Pollard rho algorithm is a Las Vegas algorithm, not a Monte
Carlo algorithm as it is often described in the literature.

The description above does not specify exactly how we should detect collisions. A
simple method is to store all the γj as they are computed and look for a collision during
each iteration.√ However, this implies a space complexity of ρ, which we expect to be on the
order of N . But we can use dramatically less space than this.

The key point is that once the walk enters a cycle, it will remain inside this cycle forever,
and every step inside the cycle produces a collision. Therefore it is not necessary to detect
a collision at the exact moment we enter the cycle, we can afford a slight delay. We now
consider two space-efficient methods for doing this.

10.6 Floyd’s cycle detection method

Floyd’s cycle detection method [1, p. 4] minimizes the space required: it keeps track of just
two triples (aj , bjγj) and (ak, bk, γk) that correspond to vertices of the walk (of course it
also needs to store ci, di, γi for 0 ≤ i < r). The method is typically described in terms of
a tortoise and a hare that are both traveling along the walk. They both start at the same
point γ0, but in each iteration the hare takes two steps, while the tortoise takes just one.
Thus in step 3 of Algorithm 10.5 we compute

(aj , bj , γj) = f(aj−1, bj−1, γj−1)

(ak, bk, γk) = f(f(ak−1, bk−1, γk−1)).

The triple (aj , bjγj) corresponds to the tortoise, and the triple (ak, bk, γk) corresponds to
the hare. Once the tortoise enters the cycle, the hare (who must already be in the cycle) is
guaranteed to collide with the tortoise within σ/2 iterations, where σ is the length of the
cycle (to see this, note that the hare cannot pass the tortoise without landing on it). On
average, we expect it to take σ iterations for the hare to catch the tortoise and produce a4
collision, which we detect by testing whether γj = γk after each iteration.

The expected number of iterations is thus E[λ + σ/4] = 5/8E[ρ]. But notice that each
iteration now requires three group operations, so the algorithm is actually slower by a factor

10

of 15/8. Still, this achieves a time complexity of O(
√
N) group operations while storing

just O(1) group elements, which is a dramatic improvement.

10.7 The method of distinguished points

The “distinguished points” method (attributed to Rivest) uses more space, say O(logcN)
group elements, for some constant c, but it detects cycles in essentially optimal time (within
a factor of 1 + o(1) of the best possible), and uses just one group operation per iteration.

The idea is to “distinguish” a certain subset of G by fixing a random boolean function
B : G → {0, 1} and calling the elements of B−1(1) distinguished points. We don’t want
the set of distinguished points to be too large, since we have to store them, but we want
our walk to contain quite a few distinguished points; ideally we should choose B so that
|B−1(1)| ' logcN√ .

N
One way to define such a function B is to hash group elements to bit-strings of length k

˜via a hash function h : G
5 1

→ { ˜0, 1}k, and then let B(γ) = 1 if and only if h(γ) is the zero
vector. With k = log N − c log logN we achieve |B−1(1)2 2 2 | as desired. An easy and

˜very efficient way to construct the hash function h is to use the k least significant bits of
the bit-string that uniquely represents the group element. For points on elliptic curves,
we should use bits from the x-coordinate, since this will allow us to detect more general
collisions of the form γj = ±γk (we can determine the sign by checking y-coordinates).

Algorithm 10.6 (Pollard rho using distinguished points).

1. Pick random ci, di, a0, b0 ∈ Z/NZ and compute δi = ciα+ diβ and γ0 = a0α+ b0β as
in the original Pollard-rho algorithm.

2. Initialize the set D of distinguished points to the empty set.

3. For j = 1, 2, 3, ...:

a. Compute (aj , bj , γj) = f(aj 1, b ,− j−1 γj−1).

b. If B(γj) = 1 then

i. If there exists (ak, bk, γk) ∈
a a

D with γ = γk then return logα β = j
j

− k ifbk−bj
gcd(bk − bj , N) = 1 and restart otherwise.

ii. If not, replace D by D ∪ {(aj , bj , γj)} and continue.

A key feature of the distinguished points method is that it is well-suited to a parallel
implementation, which is critical for any large-scale discrete logarithm computation. Sup-
pose we have many CPUs all running the same algorithm independently. If we have

√
N

CPUs, then after just one step there is a good chance
have m CPUs we expect to get a collision within O(

√of a collision, and in general if we
N/m) steps. We can detect this

collision as soon as the CPUs involved in the collision reach a distinguished point, which
we expect to occur within O(logcN) steps. However, the individual CPUs cannot realize
this themselves, since we do not assume they share the same set D of distinguished points.
Instead, whenever a CPU encounters a distinguished point, it sends the corresponding triple
to a central server that is responsible for detecting collisions. This scenario is also called
a λ-search, since the collision typically occurs between paths with different starting points

5 ˜Note that h is not the same as the hash function h : G→ {1, 2, 3, . . . , r} used in Algorithm 10.5.

11

that then follow the same trajectory (forming the shape of the letter λ, rather than the
letter ρ).

There is one important issue that remains to be addressed. If there are no distinguished
points in the cycle then Algorithm 10.6 will never terminate!

˜The solution is to let the distinguished set S grow with time. We begin with S = h−1(0),
˜where h : G→ {0, 1}k with k = 1

2 log2N−c log2 logN . Every
√
πN/2 iterations, we decrease

k by 1. This effectively doubles the number of distinguished points, and when k reaches zero
we consider every point to be distinguished. This guarantees termination, and the expected
space is still just O(logcN) group elements (notice that we are generally only increasing
the size of S in situations where D is not growing).

References

[1] D. E. Knuth, The Art of Computer Programming, vol. II: Semi-numerical Algorithms,
Addison-Wesley, 1969.

[2] S. C. Pohlig and M. E. Hellman, An improved algorithm for computing logarithms over
GF (p) and its cryptographic significance, IEEE Transactions on Information Theory 24
(1978), 106–110.

[3] J. M. Pollard, Monte Carlo methods for index computation (mod p), Mathematics of
Computation 143 (1978), 918–924.

[4] V. Shoup, A Computational Introduction to Number Theory and Algebra, Cambridge
University Press, 2005.

[5] A. V. Sutherland, Order computations in generic groups, PhD thesis, Massachusetts
Institute of Technology, 2007.

[6] E. Teske, On random walks for Pollard’s rho method, Mathematics of Computation 70
(2001), 809–825.

12

MIT OpenCourseWare
http://ocw.mit.edu

18.783 Elliptic Curves
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	The discrete logarithm problem
	Generic group algorithms
	Generic algorithms for the discrete logarithm problem
	Linear search
	Baby-steps giant-steps
	Pohlig-Hellman (and Silver)
	Complexity analysis

	Randomized algorithms for the discrete logarithm problem
	The birthday paradox
	Random walks on a graph

	Pollard- Algorithm
	Floyd's cycle detection method
	The method of distinguished points

