
18.783 Elliptic Curves Spring 2013
Lecture #11 03/14/2013

Andrew V. Sutherland

11.1 A generic lower bound for the discrete logarithm problem

We now give a lower bound for solving the discrete logarithm problem with a generic group
algorithm. We will show that if p is the largest prime divisor of N , then any generic
group algorithm for the discrete logarithm problem must use Ω(

√
p) group operations. In

the case that the group order N = p is prime√this bound is tight, since we have already
seen that the problem can be solved with O( N) group operations using the baby-steps
giant-steps method. This lower bound applies not only to deterministic algorithms, but
also to randomized algorithms. A generic Monte Carlo algorithm for the discrete logarithm
problem must use Ω(

√
p) group operations in order to be correct with probability greater

than 1/2, and the expected running time of any generic Las Vegas algorithm for the discrete
logarithm problem is Ω(

√
p) group operations.

The following theorem is due to Shoup [7]. It generalizes an earlier result of Nechaev [6]
to a wider class of algorithms that includes all the methods we have seen for computing
discrete logarithms. Our presentation here differs slightly from Shoup’s and gives a sharper
bound, but the essential details are the same. Recall that in our generic group model, each
group element is uniquely represented as a bit-string via an injective identification map
id: G→ {0, 1}n, where n = O(log |G|).

Theorem 11.1 (Shoup). Let G = 〈α〉 be group of order N . Let B be a black box for G
supporting the operations identity, inverse, and compose, using a random identifi-
cation map id : G → {0, 1}n. Let A : {0, 1}n × {0, 1}n → Z/NZ be a randomized generic
group algorithm that makes at most m−4dlog2Ne calls to B, for some integer m, and let x
denote a random element of Z/NZ. Then

m2

Pr [A(id(α), id(xα)) = x] <
x,id,τ

,
2p

where τ denotes the random coin-flips made by A and p is the largest prime factor of N .

Note that A can generate random elements of G by computing zα for random z ∈ Z/NZ (we
assume that A is given the group order N). The theorem includes deterministic algorithms
as the special case where A does not use any bits of τ . Bounding the number of calls A
makes to B might appear to preclude Las Vegas algorithms, but we will derive a corollary
that addresses this.

Proof. To simply the proof, we will replace A by an algorithm A′ that does the following:

1. Use B to compute id(Nα) = id(0).

2. Simulate A, using id(0) to replace identity operations, to get y = A(id(α), id(xα)).

3. Use B to compute id(yα).

In the description above we assume that the inputs to A are id(α) and id(xα); the behavior
of A′ when this is not the case is irrelevant. Note that steps 1 and 3 each require at most
2dlog2Ne calls to B using double-and-add, so A′ makes at most m− 2 calls to B.

Let γ1 = id(α) and γ2 = id(xα). Without loss of generality we may assume that every
interaction between A′ and B is of the form γk = γi± γj , with 1 ≤ i, j < k, where γi and γj

1



are group element identifiers that were either inputs or values previously returned by B
(here the notation γi ± γj means that A′ is using B to add or subtract the group elements
identified by γi and γj). Note that A′ can invert γj using γi = id(0).

Clearly the number of such interactions is a lower bound on the number of calls made
by A′ to B. To further simplify matters, we will assume that the execution of A′ is padded
with operations of the form γk = γ1 + γ1 as required until k reaches m.

Let N = peM with p ⊥M . Define Fk = akX + bk ∈ Z/peZ[X] and zk ∈ Z/MZ via:

F1 = 1 z1 = 1
F2 = X z2 = x mod M
. .. .. .
Fk = Fi ± Fj zk = zi ± zj (where γk = γi ± γj)
. .. .. .
Fm = Fi ± Fj zm = zi ± zj (where γm = γi ± γj)

Note that Fk(x) = logα γk mod pe for all k (think of X as the unknown value x mod pe).
Now consider the following game, which models the execution of A′. At the start of the

game we set F1 = 1, F2 = X, z1 = 1, and set z2 to a random element of Z/MZ. We also set
γ1 and γ2 to distinct random values in {0, 1}n. For rounds k = 2, 3, . . . ,m, the algorithm
A′ and the black box B play the game as follows:

1. A′ chooses a pair of integers i and j, with 1 ≤ i, j < k, and a sign ± that determines
Fk = Fi ± Fj and zk = zi ± zj , and asks B for the value of γk.

2. B sets γk = γ` if Fk = F` and zk = z` for some ` < k, and otherwise B sets γk to a
random element bit-string in {0, 1}n that is distinct from γ` for all ` < k.

After m rounds we pick t ∈ Z/peZ at random and say that A′ wins if Fi(t) = Fj(t) for any
Fi 6= Fj , otherwise B wins. The value x plays no role in the game, γ2 is chosen at random.

We now claim that

Pr [A(id(α), id(xα)) = x]
x,id,τ

≤ Pr [
t,id,τ

A′ wins the game], (1)

where the id function on the right represents an injective mapG→ {0, 1}n that is compatible
with the choices made by B during the game, i.e. there exists a sequence of group elements
α = α1, α2, α3, . . . , αm such that id(αi) = γi and αk = αi ± αj , where i, j, and the sign ±
correspond to the values chosen by A′ in the kth round.

For every value of x, id, and τ for which A(id(α), id(xα)) = x, there is a value of t,
namely t = x mod pe, for which A′ wins the game (here we use the fact that A′ always
computes yα, where y = A(id(α), id(xα))). The number of possible values of t is no greater
than the number of possible values of x, hence (1) holds.

We now bound the probability that A′ wins the game. Consider any particular execution
of the game, and let Fi,j = Fi − Fj . We claim that for all i and j such that Fi,j 6= 0,

1
Pr[Fi,j(t) = 0]
t

≤ . (2)
p

We have Fi,j(X) = aX + b for some a, b ∈ Z/peZ with a and b not both zero. Let pd be
the largest power of p that divides both a and b. Let a = a/pd mod p and b = b/pd mod p.

2



Then F = aX + b is not the zero polynomial in Fp[X]. Therefore F has at most one root
and we have Pr[F (t mod p) = 0] ≤ 1/p, which implies Pr[Fi,j(t) = 0] ≤ 1/p, proving (2).

If A′ wins the game then there must exist an Fi,j 6= 0 for which Fi,j(t) = 0. Furthermore,
since Fi,j(t) = 0 if and only if Fj,i(t) = 0, we may assume i < j. Thus

Pr [A′ wins the game] ≤ Pr [Fi,j(t) = 0 for some Fi,j
t,id,τ t,id

6= 0 with i < j]

≤
i<j

∑,τ
Pr[Fi,j(t) = 0]
t( ,Fi,j 6=0

m 1≤
2

)
p
<
m2

,
2p

where we have used a union bound (Pr[A ∪B] ≤ Pr(A) + Pr(B)) to obtain the sum.

Corollary 11.2. Let G = 〈α〉 be a cyclic group of prime order N . Every deterministic
generic algorithm for the discrete logarithm problem in G uses at least (

√
2 + o(1))

√
N

group operations.

The baby-steps giant-steps algorithm uses (2 + o(1))
√
N group operations in the worst

case, so this lower bound is tight up to a constant factor, but there is a slight gap. In fact
the baby-steps giant-steps method is not optimal, the constant factor in the upper bound
can be improved; see [1] (this still leaves a small gap).

Let us now extend Theorem 11.1 to our generic group model where the black box also
supports the generation of random group elements for a cost of one group operation. We
first note that having the algorithm generate random elements itself by computing zα for
random z ∈ Z/NZ does not change the lower bound significantly if only a small number of
random elements are used, which applies to all of the algorithms we have considered.

Corollary 11.3. Let G = 〈α〉 be a cyclic group of prime order N . Every generic Monte
Carlo algorithm for the discrete logarithm problem in G that uses o(

√
√ N/ logN) random

group elements uses at least (1 + o(1)) N group operations.

This follows immediately from Theorem 11.1, since a Monte Carlo algorithm is required
to succeed with probability greater than 1/2. In the Pollard-ρ algorithm, assuming it
behaves like a truly random walk, the number of steps required before the probability of a
collision exceeds 1/2 is

√
2 log 2 ≈ 1.1774, so there is again only a slight gap in the constant

factor between the lower bound and the upper bound.
In the case of a Las Vegas algorithm, we can obtain a lower bound by supposing that the

algorithm terminates as soon as it finds a non-trivial collision (in the proof, this corresponds
to a nonzero Fi,j with Fi,j(t) = 0). Ignoring the O(logN) additive term, this occurs within
m steps with probability at most m2/(2p). Summing over m from 1 to

√
2p and supposing

that the algorithm terminates in exactly m steps with probability (m2 − (m − 1)2)/(2p),
the expected number of steps is 2

√
2p/3 + o(

√
p).

Corollary 11.4. Let G = 〈α〉 be a cyclic group of prime order N . Every generic√Las Vegas
algorithm for the discrete logarithm problem in G that generates an expected o(√ N/ logN)
random group elements uses at least (2 2/3 + o(1))

√
N expected group operations.

Here the constant factor 2
√

2/3 ≈ 0.9428 in the lower bound is once again only slightly
smaller than the constant factor

√
π/2 ≈ 1.2533 in the upper bound given by the Pollard-ρ

algorithm (under a random walk assumption).

3



Even if we have a generic algorithm that generates a large number of random elements,
say R = N1/3+δ for some δ > 0 the cost of computing zα for R random values of z can be
bounded by 2R+O(N1/3). If we let n = dlgN/3e and precompute cα, c2nα, and c22nα for
c ∈ [1, 2n], we can then compute zα for any z ∈ [1, N ] using just 2 group operations. We
thus obtain the following corollary, which applies to every generic group algorithm for the
discrete logarithm problem.

Corollary 11.5. Let G = 〈α〉 be a cyclic group of prime order N . The expected numb√er of
group operations used by any generic algorithm for the discrete logarithm problem is Ω( N).

In fact we can say that the constant factor is at least
√

2/2.

11.2 Index calculus

Having seen several examples of generic algorithms for the discrete logarithm problem, we
now consider a non-generic algorithm for the discrete logarithm problem in the multiplica-
tive group of a finite field, using a method known as index calculus. The same technique
can be applied in other settings,1 but we will restrict our attention to the simplest case: a
finite field Fp of prime order. If α is a generator for F∗p (a primitive root) then the discrete
logarithm of β ∈ F∗p with respect to α is also called the index of β (with respect to α),
which explains the term “index calculus”.

Given a positive integer B we define the factor base PB as the set

PB = {p : p ≤ B is prime} = {p1, p2, . . . , pb}.

The integer B is a smoothness bound; integers whose prime factors all lie in PB are said to
be B-smooth. For example, 1001 is 13-smooth.

Let us identify Fp ' Z/pZ with the set of integers in [0, N ], where N = p − 1 (note:
this is precisely where we “cheat”, since we are identifying group elements with integers
in a particular way; this is not something that a generic algorithm is allowed to do). Now
suppose that αeβ−1 ∈ [1, N ] is B-smooth, say

∏b
αeβ−1 e= p i

i ,
i=1

where the ei are nonnegative integers, most of which are zero. We can then write

e1x1 + e2x2 + · · ·+ ebxb + xb+1 = e

as a linear equation in b + 1 variables x1, x2, . . . , xb+1 with the solution xi = logα pi, for
1 ≤ i ≤ b, and xb+1 = logα β. If we collect b + 1 such equations, say, by choosing random
values of e and discarding those for which αeβ−1 is not B-smooth, we can solve the resulting
linear system. The system will often be under-determined; indeed, a particular variable xi
might not appear in any of the equations. But it is quite likely that the value of xb+1, which
is guaranteed to be present in every equation, will be uniquely determined. We will not
attempt to prove this (to give a rigorous proof one really needs more than b+ 1 equations,
say, on the order of b log b), but it is empirically true.2

This suggests the following algorithm to compute logα β.

1These include groups associated to curves over finite fields; see [3] for a survey. But so far as we know
this does not include the case of elliptic curves, other than in some rare special cases.

2When considering potential attacks on a cryptographic system, one should err on the side of generosity
when it comes to heuristic assumptions that help the attack to succeed.

4



Algorithm 11.6 (Index calculus in a prime field Fp).

1. Pick a smoothness bound B and construct the factor base PB = {p1, . . . , pb}.

2. Generate b + 1 random relations Ri = (ei,1, ei,2, . . . , ei,b, 1, ei) by picking e ∈ [1, N ]
at random and and attempting to factor αeβ−1 ∈ [1, N − 2] over the factor base PB.
Each successful factorization yields a relation Ri with ei = e and αeiβ−

e1 = p i,j

j .

3. Attempt to solve the system defined by the relations R1, . . . , Rb+1 for xb+1 using

∏
linear

algebra (e.g., row reduce the corresponding matrix).

4. If xb+1 = logα β is determined, return this value, otherwise go to step 2.

It remains to determine the choice of B in step 1, but we first make the following remarks.

Remark 11.7. It is not actually necessary to start over from scratch when xb+1 is not
uniquely determined, typically adding just a few more relations will be enough.

Remark 11.8. The relations R1, . . . , Rb+1 will be sparse (have few nonzero entries). The
linear algebra step can be accelerated by using algorithms that take advantage of this fact.

Remark 11.9. While solving the system R1, . . . , Rb+1 one is likely to encounter zero divi-
sors in the ring Z/NZ (N = p−1 is even, so 2 is always a zero divisor). When this happens
one can use a gcd computation to obtain a non-trivial factorization N = N1N2 with N1

and N2 relatively prime. The system is then solved in Z/N1Z × Z/N2Z using the CRT to
recover the value of xb+1 in Z/NZ (recurse if necessary).

Remark 11.10. Solving the system of relations will generally determine the value of not
only xb+1 = logα β, but also of many of the xi = logα pi for pi ∈ PB. Note that the xi
do not depend on β. If we are computing discrete logarithms for many different β with
respect to the same base α, after the first computation the number of relations we need
is just one more than the number of xi = logα pi that have yet to be determined. If we
are computing discrete logarithms for Ω(b) values of β, we expect to compute just O(1)
relations per discrete logarithm, on average.

To choose B, we first note that αe, and therefore αeβ−1, is uniformly distributed over F∗p,
which we have identified with the set of integers in [1, N ]. A large value of B will make it
more likely that αeβ−1 is B-smooth, but it also makes it more difficult to determine whether
this is in fact the case, since we must verify that all the prime factors of αeβ−1 are bounded
by B. To determine the optimal value of B, we want to balance the cost of smoothness
testing against the cost of finding relations (let us suppose for the moment that the cost of
the linear algebra step is negligible by comparison). In order to do this, we need to know
the probability that a random integer in the interval [1, N ] is B-smooth.

11.3 Smooth numbers

For any positive real numbers x and y, let ψ(x, y) be the number of y-smooth positive
integers bounded by x. The probability that a positive integer m ≤ x is y-smooth is then
approximately 1ψ(x, y). Now letx

log x
u = ,

log y

5



so that y = x1/u. The Canfield-Erdős-Pomerance Theorem [2] states that the bound

1
ψ(x, x1/u) = u−u+o(u)

x

holds uniformly as u, x→∞, provided that u < (1− ε) log x/ log log x for some ε > 0. For
more on this result and many other interesting facts about smooth numbers, we recommend
the survey article by Granville [4].

11.4 Optimizing the smoothness bound

Let us assume that generating relations dominates the overall complexity of Algorithm 11.6,
and that we simply use trial-division to factor αeβ−1 over Pb. Then the expected running
time of Algorithm 11.6 is approximately

(b+ 1) · uu · b ·M(logN),

where b is the size of our factor base, N = |α| = p − 1, and u = logN/ logB. The four
factors correspond, respectively, to: (1) the number of relations we need, (2) the expected
number of random exponents e we need to get one B-smooth integer m = αeβ−1 ∈ [1, N ],
(3) the number of trial divisions required to determine whether m is B-smooth (and factor
it over PB), and (4) the time for each trial division. By the Prime Number Theorem, we
have b = π(B) ∼ B/ logB. If we ignore logarithmic factors, we can replace b+ 1 and b by
B and drop the M(logN) factor.

Thus we wish to choose u to minimize the quantity

B2uu = N2/uuu.

Taking logarithms, it suffices to minimize the function

2
f(u) = log(N2/uuu) = logN + u log u.

u

Thus we want f ′(u) = − 2
u2

logN+ 2 +log u+1 = 0. Ignoring the asymptotically negligibleuN
terms 1 and 2 , we would like to pick u so thatuN

u2 log u ≈ 2 logN.

If we let
u = 2

√
logN/ log logN, (3)

then

u2
4 logN

log u =
1

log
log logN

·
(

2 + (log logN − log log logN)
2

= 2 logN + o(logN),

)

as desired. The choice of u in (3) implies that we should use the smoothness bound

1
B = N1/u = exp

(
logN

u

)
= exp

(
1

2

√
logN log logN

= L

)
N [1/2, 1/2].

6



Here we have used the standard asymptotic notation

LN [a, c] = exp
(
(c+ o(1))(logN)a(log logN)1−a

)
.

Note that
LN [0, c] = exp((c+ o(1) log logN) = (logN)c+o(1)

is polynomial in logN , whereas

LN [1, c] = exp((c+ o(1)) logN) = N c+o(1)

is exponential in logN . For 0 < a < 1 the bound LN [a, c] is said to be subexponential.
We also have uu = exp(u log u) = LN [1/2, 1], thus the total expected running time is

B2uu = L [1/ , 21/ 1 1N 2 2] · LN [ /2, 1] = LN [ /2, 2].

The cost of the linear algebra step is certainly no worse than O(b3). We may bound this
by Õ(B3), which in our subexponential notation is LN [1/2, 3/2].̃ So our assumption that
the cost of generating relations dominates the running time is justified. In fact, if done
efficiently (and taking advantage of sparseness), the cost of the linear algebra step is closer
to Õ(b2). However, in large computations the linear algebra step can become a limiting
factor because it is memory intensive and not easy to parallelize.

Remark 11.11. As noted in Remark 11.10, if we are computing many (say at least√
L 1N [ /2, 2/]) discrete logarithms with respect to the same base α, we just need O(1) re-
lations per β, on average. In this case we should choose B = N1/u to minimize Buu rather
than B2uu. This yields an average expected running time of LN [1/2

√
2] per β.

A simple version of Algorithm 11.6 using trial-division for smoothness testing is imple-
mented in the Sage worksheet

.

Finally, we note that using the elliptic curve factorization method (ECM) which we
will discuss in the next lecture, the asymptotic cost of factoring smooth integers can be
substantially reduced. One finds that with ECM the optimal smoothness bound becomes
B = LN [1/2, 1/

√
2], yielding an expected running time of LN [1/2,

√
2].3

But this is not the end of the story. Using more advanced techniques (analogous to those
used in the number field sieve for factoring integers), one can achieve a heuristic running
time of

LN [1/3,
√
3 64/9]

for computing discrete logarithms in F∗p. In fields of small characteristic it may be possible
to do even better. There is a very recent result of Antoine Joux made public just within the
past few weeks that claims to achieve LN [1/4 + o(1), c] for computing discrete logarithms
in fields Fpm , where p is very small (e.g. 2) and m is composite [5].

18.783 Lecture 11: Index Calculus.sws

3As in Remark 11.11, when computing many discrete logarithms with respect to the same base using
ECM, we should use B = L [1 time 1

N /2, 1/2], yielding an average expected running of LN [ /2, 1] per β.

7



References

[1] D. J. Bernstein and T. Lange, Two grumpy giants and a baby, Algorithmic Number
Theory 10th International Symposium (ANTS X), 2012, to appear, preprint at http:
//math.ucsd.edu/˜kedlaya/ants10/bernstein/paper.pdf.

[2] E. Canfield, P. Erdős, and C. Pomerance, On a problem of Oppenheim concerning “fac-
torisatio numerorum”, Journal of Number Theory 17 (1983), 1–28.

[3] A. Enge, Discrete logarithms in curves over finite fields, Finite fields and applications,
Contemporary Mathematics 461, AMS, 2008, 119–139.

[4] A. Granville, Smooth numbers, computational number theory and beyond, in Algorithmic
Number Theory: Lattices, Number Fields, Curves and Cryptography (MSRI Workshop),
Mathematical Sciences Research Institute Publications 44, 2008, 267–324.

[5] A. Joux, A new index calculus algorithm with complexity L(1/4 + o(1)) in very small
characteristic, preprint at http://eprint.iacr.org/2013/095.pdf.

[6] V. I. Nechaev, Complexity of a determinate algorithm for the discrete logarithm, Math-
ematical Notes 55:2 (1994), 165–172.

[7] V. Shoup, Lower bounds for discrete logarithms and related problems, Proceedings of
Eurocrypt ’97 (1997), 256-266, revised version available at http://www.shoup.net/
papers/dlbounds1.pdf.

8

http://math.ucsd.edu/~kedlaya/ants10/bernstein/paper.pdf
http://math.ucsd.edu/~kedlaya/ants10/bernstein/paper.pdf
http://eprint.iacr.org/2013/095.pdf
http://www.shoup.net/papers/dlbounds1.pdf
http://www.shoup.net/papers/dlbounds1.pdf


MIT OpenCourseWare
http://ocw.mit.edu

18.783 Elliptic Curves
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	A generic lower bound for the discrete logarithm problem
	Index calculus
	Smooth numbers
	Optimizing the smoothness bound



