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15.1 Ordinary and supersingular curves

Let E/k be an elliptic curve over a field of positive characteristic p. In Lecture 7 we proved
that the p-torsion subgroup of E is either cyclic of order p, or it is trivial, and we used this
dichotomy to define the terms ordinary and supersingular :

E is ordinary ⇐⇒ E[p] ' Z/pZ.
E is supersingular ⇐⇒ E[p] = {0}.

We now explore this distinction further, focusing on the case that k is a finite field Fq.
We first recall some facts about separable and inseparable isogenies that were either proved
in Lectures 6 and 7, or follow from Lemma 14.4, which states that the degree map is
multiplicative.

1. A isogeny is separable if and only if the size of its kernel is equal to its degree.

2. The sum of a separable and an inseparable isogeny is separable.

3. Any sum or composition of inseparable isogenies is inseparable.

4. Any composition of separable isogenies is separable.

Note that a sum of separable isogenies need not be separable.

Theorem 15.1. Let E/Fq be an elliptic curve over a finite field, and let πE be the Frobenius
endomorphism of E. Then E is supersingular if and only if trπE ≡ 0 mod p.

Proof. Let q = pn and let π be the p-power Frobenius map π(x, y) = (xp, yp) (note that π
is an isogeny, but not necessarily an endomorphism, since E need not be defined over Fp).
We have π̂π = [p], where [p] denotes the multiplication-by-p endomorphism on E.

We first suppose that E is supersingular. The kernel of π̂ must then be trivial, since
the kernel of [p] is trivial, and π̂ is therefore inseparable, since it has degree p > 1. The
map π̂n = π̂n = π̂E is also inseparable, as is πE , so trπE = πE + π̂E is a sum of inseparable
endomorphisms. Thus the endomorphism [trπE ] is inseparable, which means that p divides
trπE , since [m] is separable ⇔ p - m, by Theorem 6.9. So trπE ≡ 0 mod p.

Conversely, if trπE ≡ 0 mod p, then [trπE ] is inseparable, and π̂E = trπE−πE is a sum
of inseparable isogenies and therefore inseparable. This means that π̂n and therefore π̂ is
inseparable. Therefore π̂ must have trivial kernel, since its degree is prime, and the same
is true of π. So the kernel of [p] = π̂π is trivial and E is supersingular.

Corollary 15.2. Let E/Fp be an elliptic curve over a field of prime order p > 3. Then E
is supersingular if and only if tr(πE) = 0 (equivalently, if and only if #E(Fp) = p+ 1).1

Proof. By Hasse’s theorem, | tr(πE)| ≤ 2
√
p, which is smaller than p for all p > 3.

1Corollary 15.2 is not true when p is 2 or 3.
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This should convince you that supersingular curves over Fp are rare: there are Θ(
√
p)

possible values for tr(πE), and all but one correspond to ordinary curves. In fact, the
probability that a randomly chosen elliptic curve over Fp is supersingular is Θ(1˜ /

√
p).2 A

similar proportion of supersingular curves arise over Fp2 : the probability that a random
elliptic curve E/Fp2 is supersingular is Θ(1/p). Remarkably, this trend does not continue.
Up to isomorphism, every supersingular elliptic curve over a field of characteristic p can
be defined over Fp2 , as we will prove in §15.3. Thus the proportion of supersingular curves
over Fpn declines exponentially with n.

Theorem 15.3. Let E/Fq be an elliptic curve over a finite field. Then the endomorphism-
algebra End0(E) is either an imaginary quadratic field or a quaternion algebra. The latter
occurs if and only if E is supersingular.

Proof. We will just prove that E/F is ordinary if and only if End0
q (E) is an imaginary

quadratic field. For the supersingular case, see [1, V.3.1].

So let E/Fq be an ordinary elliptic curve, with q = pn, and let πE be the Frobenius
endomorphism of E. Suppose πE ∈ Z ⊆ End0(E). We have NπE = q2, and the only
such integers in End0(E) are ±q, and therefore trπE = ±2q ≡ 0 mod p. But this is a
contradiction, since tr(πE) 6≡ 0 mod p, by Theorem 15.1, so πE 6∈ Z, and End(E) must be
either an imaginary quadratic field or a quaternion algebra, by Theorem 14.12.

Claim: For all k ≥ 1 we have πkE = aπE + b, for some a 6≡ 0 mod p and b ≡ 0 mod p.
Proof of claim: We proceed by induction. The base case holds with a = 1 and b = 0. We
then have

πk+1
E = πEπ

k
E = πE(aπE + b) (inductive hypothesis)

= bπE + a(tr(πE)πE − q) (since π2E − tr(πE)πE + q = 0)

= (a tr(πE) + b)πE − aq
= cπE + d,

where c 6≡ 0 mod p, since tr(πE) 6≡ 0 mod p, and clearly d = −aq ≡ 0 mod p.

It follows that πkE ∈/ Q for any k: if πkE is in Q then it must be an integer ±pnk and
then trπkE = tr(±pnk) = ±2pnk is divisible by p, but trπkE = tr(aπE + b) 6≡ 0 mod p, by
the claim. Now consider any α ∈ End0(E). We can write α as α = sφ for some s ∈ Q and
some φ ∈ End(E). The endomorphism φ is defined over F̄q, hence over Fqk for some k. This

implies that φ, and therefore α, commutes with πkE , since if φ(x, y) = (r1(x), r2(x)y) then

(φπk
k k

)(x, y) = (r (xq
k k k
), r (xq )yq ) = (r (x)q , r (x)q yq

k

E 1 2 1 2 ) = (πkEφ)(x, y)

By Lemma 14.13, this implies that α ∈ Q(πkE) ⊆ Q(πE). Therefore, End0(E) = Q(πE) is
an imaginary quadratic field.

Remark 15.4. In the proof above we used the fact that every endomorphism commutes
with some power of the Frobenius endomorphism πE to prove that when E is ordinary
End0(E) is an imaginary quadratic field. When E is supersingular it is still true that every
endomorphism commutes with a power of πE , but this power of πE may lie in Z, and
commuting with an element of Z tells us nothing about End0(E).

2The “soft” Õ-notation ignores logarithmic factors.
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In the case that E/Fq is ordinary, the proof above not only shows that End0(E) is an
imaginary quadratic field, it tells us exactly which quadratic field End0(E) = Q(πE) is.

Corollary 15.5. Let E/F√ q be an ordinary elliptic curve with Frobenius endomorphism πE.
Then End0(E) ' Q( D), where D = t2 − 4q < 0, with t = trπE.

Proof. The proof of Theorem 15.3 shows that End0(E) = Q(πE), and D is the discriminant
of the characteristic quadratic equation x2

√
−tx+q = 0 satisfied by πE , thus Q(πE) ' Q( D).

Hasse’s theorem implies t2 − 4q ≤ 0, and t2 6= 4q because t is not divisible by p.

If E/Fq is an ordinary elliptic curve, then its Frobenius endomorphism πE is not an
integer, thus the subring Z[πE ] of End(E) generated by πE is a lattice of rank 2. It follows
that Z[πE ] is an order in the imaginary quadratic field K = End0(E), and is therefore
contained in the maximal order OK , the ring of integers of K. The endomorphism ring
End(E) need not equal Z[π], but the fact that it contains Z[π] and is contained in OK

narrows the possibilities. Recall from Theorem 14.20 that every order O in K is uniquely
characterized by its conductor, which is equal to [O : OK ], the index of O in OK .

Theorem 15.6. Let E/Fq be an ordinary elliptic curve with Frobenius endomorphism πE,
and let OK be the ring of integers of the imaginary quadratic field K ' End0(E). Then

Z[πE ] ⊆ End(E) ⊆ OK ,

and the conductor of End(E) is bounded by [OK : Z[π]].

Proof. Immediate from the discussion above.

Remark 15.7. In Theorem 15.6 (and elsewhere), we identify End0(E) with K and End(E)
with an order O in K. But we should remember that we are actually speaking of isomor-
phisms. In the case of an imaginary quadratic field, there are two distinct choices for this
isomorphism. This choice can be made canonically, see [2, Thm. II.1.1], however this is not
so relevant to us, as we are going to be working in finite fields where we cannot distinguish
the square roots of the discriminant in any case. Thus we accept the fact that we are mak-
ing an arbitrary√choice when we fix an isomorphism of End0(E) with K by identifying πE
with, say, (t+ D)/2 (as opposed to (t−

√
D)/2).

In Problem Set 2 we saw how to use Cornacchia’s algorithm to solve the equation
m = x2 + dy2, where m and d are positive integers. Applying this to the case m = 4q
and d = −D, we can attempt to compute a solution to 4q = t2 − v2D. If it exists, the
solution is unique up to the signs of t and v, thus if we know D we can determine t up to
a sign. Conversely, given D = t2 −√4q < 0, we will see in later lectures how to construct an
elliptic curve with End0(E) = Q( D). Such an elliptic curve necessarily has trace ±t. A
preliminary example of this procedure appears on Problem Set 7. This is known as the CM
method, and it will eventually allows us to construct elliptic curves over finite fields with
any desired group order.

Before leaving the topic of of ordinary and supersingular curves, we want to prove a
remarkable fact about supersingular curves: they are all defined over finite fields of degree
at most 2, either a prime field Fp, or Fp2 . To prove this we first introduce the j-invariant,
which will play a critical role in the lectures to come.
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15.2 The j-invariant of an elliptic curve

As usual, we shall assume we are working over a field k whose characteristic is not 2 or 3, so
that we can assume that elliptic curves E/k are in short Weierstrass form y2 = x3+Ax+B.

Definition 15.8. The j-invariant of the elliptic curve E : y2 = x3 +Ax+B is

4A3

j(E) = j(A,B) = 1728 .
4A3 + 27B2

Note that the denominator of j(E) is never 0, since we always require 4A3 + 27B2 6= 0.
There are two special cases worth noting: if A = 0 then j(A,B) = 0, and if B = 0 then
j(A,B) = 1728 (of course A and B cannot both be zero). The j-invariant can also be
defined for elliptic curves in general Weierstrass form, which is necessary to address fields
of characteristic 2 and 3; see [1, III.1].3

The key property of the j-invariant j(E) is that it characterizes E up to isomorphism
¯over k. Before proving this we first note that every element of the field k is the j-invariant

of an elliptic curve defined over k.

Theorem 15.9. For every j0 ∈ k there is an elliptic curve E/k with j-invariant j(E) = j0.

This theorem is also true in characteristic 2 and 3; see [1, III.1.4.c].

Proof. If j 2
0 is 0 or 1728 we may take E to be y = x3 + 1 or y2 = x3 + x, respectively.

Otherwise, let E/k be the elliptic curve defined by y2 = x3 +Ax+B where

A = 3j0(1728− j0),
B = 2j0(1728− j0)2.

We claim that j(A,B) = j0. We have

4A3

j(A,B) = 1728
4A3 + 27B2

4
= 1728

· 33j30(1728− j0)3

4 · 33j30(1728− j0)3 + 27 · 22j20(1728− j0)4
j0

= 1728
j0 + 1728− j0

= j0.

We now give a necessary and sufficient condition for two elliptic curves to be isomorphic.
An isomorphism φ of elliptic curves is an invertible isogeny, equivalently, an isogeny of

ˆdegree 1 (since φφ = 1). In general, the rational functions that define an isogeny may have
¯coefficients in the algebraic closure k, but in many situations we may want to distinguish

isomorphisms that are actually defined over k, or some finite extenstion of k. For any field
extension K/k, we say that two elliptic curves E/k and E′/k are isomorphic over K if there
exists an isomorphism φ : E → E′ that is defined over K.

This distinction is important when working over a finite field Fq. For example, two
elliptic curves that are isomorphic over Fq need not have the same number of Fq-rational
points, but if they are actually isomorphic over Fq, this must be the case.

3As noted in the errata, there is a typo on p. 42 of [1]; the equation b2 = a2
1−4a4 should read b2 = a2

1−4a2.
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Theorem 15.10. Elliptic curves E : y2 = x3 +Ax+B and E′ : y2 = x3 +A′x+B′ defined
over k are isomorphic over k if and only if A′ = µ4A and B′ = µ6B, for some µ ∈ k∗

Proof. Let φ : E → E′ be an isomorphism in standard form φ(x, y) = (r1(x), r2(x)y) with
r1, r2 ∈ k(x). The isogeny φ must have degree 1, since φ ◦ φ−1 = 1. Since φ is an isomor-
phism, its kernel is trivial, so r1 and r2 must be polynomials (if they had a non-constant

¯denominator, the denominator would have a root in k which would be the x-coordinate of
a non-trivial element of kerφ, by Corollary 5.12). Thus we must have r1(x) = ax + b for
some a, b ∈ k, with a 6= 0. Substituting into the curve equation for E′, we have

r2(x)2y2 = (ax+ b)3 +A′(ax+ b) +B′

r2(x)2(x3 +Ax+B) = (ax+ b)3 +A′(ax+ b) +B′.

By comparing degrees, we see that r2(x) must be constant, say r2(x) = c. Then by
considering the coefficient of x2, we see that b = 0. The coefficient of x3 implies that
c2 = a3. Thus the above equations simplify to

a3(x3 +Ax+B) = a3x3 +A′(ax) +B′,

and we must have A′ = a2A and B′ = a3B. But a3 = c2, so a = (c/a)2 is a square in k∗.
So let µ = c/a ∈ k∗, and then A′ = µ4A and B′ = µ6B as desired.

Conversely, if A′ = µ4A and B′ = µ6B for some µ k∗, then let φ : E E′ be the
isogeny defined by φ(x, y) = (µ2 3

∈ →
x, µ y). If (x0, y0) is any affine point on E then

y20 = x30 +Ax0 +B.

Multiplying both sides by µ6 yields

(µ3y0)
2 = (µ2x0)

3 + µ4A(µ2x0) + µ6B,

thus φ(x0, y0) is a point on y2 = x3+µ4Ax+µ6B = x3+A′x+B′. It is clear that φ : E → E′

is an isomorphism, since it has an inverse φ−1(x, y) = (µ−2x, µ−3y), and φ is defined over k,
so E and E′ are isomorphic over k.

We are now ready to prove the theorem stated at the beginning of this section.

Theorem 15.11. Let E and E′ be elliptic curves over k. Then E and E′ are isomorphic
¯over k if and only if j(E) = j(E′). More precisely, there is a field extension K/k of degree

at most 6, 4, or 2, depending on whether j0 = 0, j0 = 1728, or j0 6= 0, 1728, such that E
and E′ are isomorphic over K if and only if j(E) = j(E′).

The first statement is also true in characteristic 2 and 3; see [1, III.1.4.b]

Proof. Suppose E : y2 = x3 + Ax + B and E′ : y2 = x3 ¯+ A′x + B′ are isomorphic over k.
then for some µ ∈ k̄∗ we have A′ = µ4A and B′ = µ6B, by Theorem 15.10. Then

4(µ4A)3
j(A′, B′) =

4A3

=
4(µ4A)3 + 27(µ6B)2

= j(A,B).
4A3 + 27B2

For the converse, suppose that j(A,B) = j(A′, B′) = j0. If j0 = 0 then A = A′ = 0 and
we may choose µ ∈ K∗, where K/k is an extension of degree at most 6, so that B′ = µ6B
(and A′ = µ4A, trivially). Similarly, if j0 = 1728 than B = 0 and we may choose µ ∈ K∗,
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where K/k is an extension of degree at most 4, so that A′ = µA (and B′ = µ6B, trivially).
We may then apply Theorem 15.10 to show that E and E′ are isomorphic over K (by
extending the field of definition of E and E′ from k to K).

We now assume j0 6= 0, 1728. Let A′′ = 3j (1728−j ) and B′′ = 2j (1728−j )20 0 0 0 , as in the
proof of Theorem 15.9, so that j(A′′, B′′) = j . Plugging in j = 1728 · 4A3/(4A3 2

0 0 + 27B ),
we have

4A3

A′′ = 3 · 1728
4A3 + 27B2

(
1728− 1728

4A3

4A3 + 27B2

)
= 3 · 17282

4A3 · 27B2

(4A3 + 27B2)2
=

(
2735AB

2

4A3 + 27B2

)
A,

4A3

B′′ = 2 · 1728
4A3 + 27B2

(
1728− 1728

4A3 2

4A3 + 27B2

)
= 2 · 17283

4A3 · 272B4

(4A3 + 27B2)3
=

(
2735AB

3

4A3 + 27B2

)
B.

Plugging in j = 1728 · 4A′3/(4A′3 + 27B′20 ) yields analogous expressions for A′′ and B′′ in
terms of A and B. If we let

AB
=

(
2735

u
4A3 + 27B2

)(
4A′3 + 27B′2

,
2735A′B′

)
then A′ = u2A and B′ = u3B. We now choose µ ∈ K∗, where K/k is an extension of degree
at most 2, so that we have µ2 = u. Then A′ = µ4A and B′ = µ6B and Theorem 15.10
implies that E and E′ are isomorphic over K.

Note that while j(A,B) always lies in the minimal field k containing A and B, the
converse is not necessarily true. If A and B are both nonzero, it could be that j(A,B)
lies in a proper subfield of k (fourth powers in A can cancel sixth powers in B). But if we
then define the curve E′ : y2 = x3 + A′x + B′ using coefficients A′ = 3j0(1728 − j0) and
B′ = 2j0(1728 − j 2

0) and take a suitable quadratic twist, we can always obtain a curve
that is isomorphic to E over k and is defined over the field Q(j(E)). The j-invariant j(E)
determines the minimal field of definition of E.

15.3 The minimal field of definition of a supersingular curve

We now prove that every supersingular curve can be defined over Fp2 .

Theorem 15.12. Let E/Fpn be a supersingular curve over a finite field. Then j(E) lies
in Fp2 (and possibly in Fp) if n is even, and j(E) lies in Fp otherwise.

Proof. Let π be the p-power Frobenius isogeny from E to E(p) (if E is y2 = x3+Ax+B then
E(p) is y2 = x3

2
+Apx+Bp), and let E(p ) be the image of π2. The endomorphism [p] = π̂π

has trivial kernel, since E is supersingular, so the isogeny π̂ : E(p) → E has trivial kernel
and is therefore purely inseparable of degree p. By Corollary 5.16, we can decompose π̂ as
π̂ = φ ◦ 2

π, where π is the p-power Frobenius isogeny from E(p) to E(p ) 2
and φ : E(p ) → E

is a separable isogeny of degree 1. The isogeny φ must then be an isomorphism, and it
2 2 2 2

follows from Theorem 15.10 that j(E) = j(Ep ) = j(Ap , Bp ) = j(E)p . Thus j(E) is fixed
by the p2-power Frobenius map on the field Fpn . If n is even this means that j(E) lies in
Fp2 ⊆ Fpn , and otherwise j(E) must lie in Fp, since Fp2 6⊆ Fpn when n is odd.
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