18.783 Elliptic Curves Spring 2013
Lecture #18 04/18/2013

Our first goal for this lecture is to complete the proof of the uniformization theorem,
which states that every elliptic curve E/C is isomorphic to a torus C/L for some lattice L.
Given what we have already proved, it suffices to show that the map that sends a lattice L
to its j-invariant j(L) is surjective; every complex number is the j-invariant of some lattice.

18.1 The j-function

Every lattice [w1,ws] is homothetic to a lattice of the form [1, 7], with 7 in the upper half
plane H = {z € C : imz > 0}; we may take 7 = *wo/w; with the sign chosen so that
im7 > 0. This leads to the following definition of the j-function.

Definition 18.1. The j-function j: H — C is defined by j(7) = j([1,7]). We similarly
define g2(7) = g2([1,7]), g3(7) = g3([1, 7]), and A(7) = A([1,7]).

Note that for any 7 € H, the quantities —1/7 and 7 + 1 also lie in H.

Theorem 18.2. The j-function is holomorphic on H, and satisfies j(—1/7) = j(7) and
J(r+1) =j(7).
Proof. From the definition of j(7) = j([1, 7]) we have
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converge absolutely for any fixed 7 € H, by Lemma 16.11, and uniformly over 7 in any
compact subset of H. The proof of this last fact is straight-forward but slightly technical;
see [1, Thm. 1.15] for the details. It follows that g2(7) and g3(7) are both holomorphic on H,
and therefore A(7) = g2(7)3 — 27g3(7)? is also holomorphic on H. Since A(7) is nonzero
for all 7 € H, by Lemma 16.21, the j-function j(7) is holomorphic on H as well.

The lattices [1,7] and [1,—1/7] = —1/r[1, 7] are homothetic, and the lattices [1,7 + 1]
and [1, 7] are equal; thus j(—1/7) = j(7) and j(7 + 1) = j(7), by Theorem 17.6. O
18.2 The modular group

We now consider the modular group

I = SLy(Z) = {(Z Z) ta,b,c,d € Z, ad—bc:l}.

As proved in Problem Set 8, the group I' acts on H via linear fractional transformations

a b at+0b
T=—,
c d et +d
and I' is generated by the matrices S = ((1) _01) and T = ({1}). This implies that the
j-function is invariant under the action of the modular group. In fact, more is true.
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Figure 1: Fundamental domain F for the action of I' = SLy(Z) on H, with p = ¢>7/3,

Lemma 18.3. We have j(7) = j(7') if and only if 7/ = 7 for some v € T.

Proof. We have j(S7) = j(—1/7) = j(r) and j(T'r) = j(7 + 1) = j(7), by Theorem 18.2, It
follows that if 7/ = 7 then j(7') = j(7), since S and T generate T'.

To prove the converse, let us suppose that j(7) = j(7/). Then by Theorem 17.6, the
lattices [1,7] and [1,7'] must be homothetic So suppose [1,7'] = A[1, 7], for some A € C*.
Then there exist integers a, b, ¢, and d such that

7' = aAT + bA

1 =cAt+dA
From the second equation, we see that A = ﬁ. Substituting this into the first, we have

T,_ar—i—b_ T where v = ¢ b
_CT—l-d_’y’ T=\e d)-

Similarly, using [1,7] = A7![1, 7], we can write 7 = /7’ for some integer matrix 7/. The
fact that 7/ = y4/'7" implies that dety = +1 (since vy and 7/ are integer matrices), and since
7 and 7’ both lie in H, we must have dety = 1, and therefore v € " as desired. O

Lemma 18.3 implies that when studying the j-function, we are really only interested in
how it behaves on I'-equivalence classes of Hl, that is, the orbits of H under the action of I'.
We thus consider the quotient of H modulo I'-equivalence, which we denote by H/I'. Some
authors instead write I'\H, to indicate that the action is on the left. The actions of v and
— are identical, so taking the quotient by PSLo(Z) = SLa(Z)/{+£1} yields the same result,
but for the sake of clarity we will stick with I' = SLo(Z).

We now wish to determine a fundamental domain for H/T', a set of unique representatives
in H for each I'-equivalence class. For this purpose we will use the set

F={re€H:re(r) € [-1/2,1/2) and |7| > 1, such that || > 1 if re(7) > 0}.

Lemma 18.4. The set F is a fundamental domain for H/T.



Proof. We need to show that for every 7 € H, there is a unique 7" € F such that 7/ = 7,
for some v € I'. We first prove existence. Let us fix 7 € H. For any v = (‘; Z) € I' we have

m(w):m<a7+b>:im((m+b>(w+d>) (ad —be)im7  im7

g = 1
cr+d ler + d|? ler + d|? leT + dJ? (1)

Let ¢ + d be a shortest vector in the lattice [1,7]. Then ¢ and d must be relatively prime,
and we can pick integers a and b so that ad — bc = 1. The matrix v = (‘cz g) then
maximizes the value of im(y7) over v € I'. Let us now choose v = T"~g, where k is chosen
so that re(yr) € [1/2,1/2), and note that im(y7) = im(7p7) remains maximal. We must
have |y7| > 1, since otherwise im(Sv7) > im(v7), contradicting the maximality of im(~7).
Finally, if 7 = 47 ¢ F, then we must have |y7| = 1 and re(y7) > 0, in which case we
replace v by Sv so that 7/ = y7 € F.

It remains to show that 7/ is unique. This is equivalent to showing that any two I'-
equivalent points in F must coincide. So let 71 and 7 = 171 be two elements of F, with

v = (‘Z Z), and assume im 71 < im 7. Then by (1), we must have |cr; + d|? < 1, thus
1> |er +d|* = (er1 + d)(er + d) = E|mi|? + d* + 2cdre(ry) > P|mi)? + d? — |cd|.

We cannot have ¢ = d = 0, and we must have |71| > 1, thus the RHS is at least 1. So
equality holds throughout and we have |cm; + d| = 1, which implies im 75 = im 7. We also
must have |c|, |d| < 1, and by replacing 71 by —v; if necessary, we may assume that ¢ > 0.
This leaves 3 cases:

1. ¢=0: then |d|=1and a =d. So 79 =711 £ b, but |reTs —re1| < 1, so 7o = 7.

2. ¢=1,d =0: then b= —1 and |7| = 1. So 7y is on the unit circle and 75 = a — 1/7.
Fithera=0and =7 =4, ora=—1and =7 = p.

3. ¢c=1,|d| = 1: then |1y +d| =1, s0 71 = p, and im 7, = im 7y, = v/3/2 implies 7 = p.
O

Theorem 18.5. The restriction of the j-function to F defines a bijection from F to C.

Proof. Injectivity follows immediately from Lemmas 18.3 and 18.4. It remains to prove
surjectivity. We have

92(7) = GOanEz m + nt) = 00 QZ +anZ m + nt)?
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The second sum tends to 0 as im 7 — oco. Thus we have

li = 120 Z =120¢(4) = 120 w4
e 92(T) = - 1m - ~ o0 3
where ((s) is the Riemann zeta function. Similarly,
70 876



Thus
lim A(r) = i) 27 862—0
dm 8= (gr) -2 (gr*) o
(this explains the coefficients 60 and 140 in the definitions of g2 and g3; they are the
smallest pair of integers that ensure this limit is 0). Since A(7) is the denominator of j(7),
the quantity j(7) = g2(7)3/A(7) is unbounded as im 7 — oo.

In particular, j is a non-constant holomorphic function on the open set H. By the
open-mapping theorem [3, Thm. 3.4.4], j7(H) is an open subset of C.

We now show that j(H) is also a closed subset of C. Let j(71),j(72),... be an arbitrary
convergent sequence in j(H), converging to w € C. The j-function is I'-invariant, by
Lemma 18.3, so we may assume the 7, all lie in F. The sequence im 71,im 72, ... must be
bounded, since j(7) — oo as im7 — o0, thus the 7, all lie in a compact set 2 C F C H.
Thus there is a subsequence of the 7, that converges to some 7 € €2 C H. By continuity,
j(7) = w, thus the set j(H) contains all its limit points and is therefore closed.

The fact that the non-empty set j(H) C C is both open and closed implies that j(H) = C,
since C is connected. It follows that j(F) = C, since every element of H is equivalent to an
element of 7 (Lemma 18.4) and the j-function is I-invariant (Lemma 18.3). O

Corollary 18.6 (Uniformization Theorem). For every elliptic curve E/C there ezists a
lattice L such that E(C) is isomorphic to C/L.

Proof. Given E/C, pick 7 € H so that j(7) = j(F) and let L = [1,7]. Then E is isomorphic
to the elliptic curve corresponding to L, via Theorem 17.2, and therefore E(C) ~ C/L. O
18.3 Complex multiplication

Having established the correspondence between complex tori C/L and elliptic curves E/C,
we now wish to make explicit the relationship between endomorphisms of C/L and endo-
morphisms of E/C.

Theorem 18.7. Let L be a lattice, let E/C be the corresponding elliptic curve given by
Theorem 17.2, and let ®: C/L — E(C) be the isomorphism that sends z to (p(z), ¢'(2)).
For any o € C, the following are equivalent:

(1) aL C L;
(2) p(az) =u(p(2))/v(p(z)) for some polynomials u,v € Clz];

(3) There exists an endomorphism ¢ € End(E) such that the following diagram commutes:

where o denotes the map z +— az on C/L.

Moreover, every endomorphism ¢ in End(E) gives rise to an « € C satisfying (1)—(3), and
the map that sends ¢ to « is a ring isomorphism from End(E) to {o € C: oL C L}. In
particular, the endomorphism ¢ in (3) is unique, and N(a) = deg ¢ = degu = degv + 1.



Proof. Properties (1)—(3) clearly hold for a = 0, so assume « # 0.

(1) = (2): Let w € L. Then p(a(z+w)) = p(az+aw) = p(az). Thus p(az) is periodic,
and p(az) is clearly meromorphic, so it is an elliptic function (with respect to L). It is also
even, since p(z) is, so it is a rational function of @(z), by Lemma 18.10 below.

(2) = (1): We have v(p(z))p(az) = u(p(z)). Both p(z) and p(az) have a double pole
at 0. Thus u(p(z)) has a pole of order 2degu at 0 and v(p(z))p(az) has a pole of order
2degv + 2 at 0, hence degu = degv + 1. Thus u(p(z)) has a pole of order 2degv + 2 at
every w € L, so p(az) must have a double pole at every w € L. It follows that p(z) has a
double pole at aw for all w € L, and therefore oL C L.

(2) = (3): Let ¢ be the rational map

_ (ul=) s(x)
o= (5 )
where u and v are given by (2), and s = (uv/v — v'u) and t = av?, so that
L (oY _sloled

v(p(2) t(p(2))

To verify that the diagram commutes, we note that going around the square clockwise yields
u(p(z)) s(p(2)) )

; ©'(2) ),
w(e(2) o)
and going around the square counter-clockwise yields
u(p(2)) s(p(z)) )

, ©'(2) -
v(p(2)) tp(2))

(3) = (1). Let ¢ € End(FE) satisfy (3). For any w € L we have ¢(®(w)) = 0, and by
commutativity of the diagram, ®(aw) = ¢(®(w)) = 0, thus aw € L. Therefore oL C L.
We now prove the “moreover” part of the theorem. For any ¢ € End(E), the map

6(8(=)) = 6((0(2), () = (

B(az) = (plaz). ¢/ (a2)) = (

=0 logpod

is an endomorphism of C/L. By taking a small neighborhood U of 0 in C, we obtain a map
from U to C that is holomorphict away from 0. Since ¢* € End(C/L), we have

¢ (21 + 22) = ¢"(21) + ¢*(22) mod L,

and ¢*(0) € L. By replacing ¢* with ¢* — ¢*(0) if necessary, we may assume that ¢*(0) = 0.
By continuity, ¢*(z) is arbitrarily close to 0 when z is close to 0, so by making U sufficiently
small, we have

¢* (21 + 22) = ¢"(21) + ¢"(22)
for all z; € U. We now use the definition of the derivative to compute

6o — i CEER Q) L S W) =) 6 () = ¢(0)

h—0 h h—0 h h—0 h

= (¢1)/(0).

! An analog of the inverse function theorem holds for holomorphic functions.



Thus the derivative of ¢* is equal to some constant « = (¢*)'(0) at all z € U. Thus
¢*(2) = az for all z € U. For any z € C, we may choose n € Z such that = € U. Thus

¢*(z) = no* <E) = na’ = az.
n n
The map ¢* sends lattice points to lattice points, and we have just shown that ¢* is the
“multiplication-by-a” map. Thus oL C L, and « satisfies the equivalent conditions (1)-(3).
We now show that the map ¥: End(E) — {a € C: oL C L} that sends ¢ to a = (¢*)’(0)
is a ring homomorphism. Clearly, ¥(0) = 0 and ¥(1) = 1. Let ¢1, ¢2 € End(E). Then

(p14+¢2)" = @ o(dr+¢2)o® = ogio®+ P ogyod = ¢} + ¢5,

since ® is an isomorphism. It follows that W(¢p1 + ¢2) = V(p1) + ¥(¢p2), since we have
(6% + ¢5)(0) = (63)(0) + (¢5)/(0). Similarly,

(p1o¢e) = ® o(prope)o® =D logodod logyod = ¢} o g3,

and (¢70¢3)"(0) = (67)'(¢3(0))(#3)'(0) = (67)'(0)(¢3)'(0), thus ¥(¢1 0 d) = V(¢1) o ¥(¢2).

Thus ¥ is a ring homomorphism. If ¥(¢) = 0, then ¢* = 0, and in this case the identity
® o ¢p* = ¢ o @ implies that ¢ = 0, since ® is an isomorphism. Therefore W is injective. If
aL C L, then for the ¢ given by (3) we have ¢*(2) = az, and therefore ¥(¢) = (¢*)'(0) = «,
so W is surjective. Thus W is an isomorphism.

It follows that for any ¢ € End(FE), the complex number o = ¥(¢) satisfies the equation
X2 — (tr¢) X + deg ¢ = 0, which has integer coefficients. Therefore « is a quadratic integer
with trace T'(a) = o + @ = tr(¢) and norm N(a) = aa = deg ¢ = degu = degv + 1. O

Corollary 18.8. Let E be an elliptic curve defined over C. Then End(FE) is commutative
and therefore isomorphic to either Z or an order in an imaginary quadratic field.

Proof. Let L be the lattice corresponding to E. The ring End(E) ~ {a € C: aL C L} is
clearly commutative, and therefore not an order in a quaternion algebra. The result then
follows from Corollary 14.16. O

Remark 18.9. Corollary 18.8 applies to elliptic curves over QQ, and over number fields,
since these are subfields of C, and it can be extended to arbitrary fields of characteristic 0
via the Lefschetz principle; see [2, Thm. VI.6.1].

Lemma 18.10. Let f(2) be an elliptic function with respect to a lattice L. Then f(z) can
be written as a rational function of p(z) = p(z; L) and ¢'(2) = ¢'(z; L). Moreover, if f(2)
is an even function, then it can be written as a rational function of p(z) alone.

Proof. Every function f(z) can be written as the sum of an even and an odd function,
namely, f(2) = fu(z) + fol2), where
zZ)+ f(—=2 z)— f(—=
It thus suffices to consider the cases where f is even or odd. We first consider the case that
f is even, and we assume that f is nonzero, since the lemma clearly holds for f = 0.
Suppose that f is holomorphic at all points not in L. Then it has a Laurent expansion
about 0 of the form

f2) = awz™,

k=—n



where 2n is the order of f. If n > 0, then f is holomorphic on C, and since f is periodic with
respect to L it is bounded, so by Liouville’s theorem it is a constant function f(z) = f(0).
If n > 0, then f(2) — a_2,9"(2) is an even elliptic function of order at most 2(n — 1) that
is holomorphic except at points in L. By repeating the process until n = 0, we obtain a
function of the form f(z) — P(p(z)), for some polynomial p € C[z], and this function must
be equal to a constant ag € C. Thus f(z) = p(p(2)) + f(0) is a polynomial in @(z).

Now suppose that f has a pole of order n at some w & L. If 2w € L, we first replace f
by a function of the form g = (af+b)/(cf+d), with a,b, ¢,d € C chosen so that ad—bc # 0,
such that g does has neither a zero nor a pole at w. This transformation is invertible, so if
we can write g as a rational function of p, then we can write f as a rational function of .
After repeating this process up to three times, if necessary, we may assume without loss of
generality that 2w ¢ L for every w ¢ L at which f has a pole.

Consider the function

(9(2) — p(w))"™.

Since 2w ¢ L, we have ©'(w) # 0, so w is a simple root of p(z) — p(w) and the function
(p(2)—p(w))™ has a zero of order n at w. This implies that (p(z)—p(w))™f(z) is holomorphic
at w. After repeating this process for all of the (finitely many) poles of f in a fundamental
domain, we obtain a polynomial v € C[z] such that v(p(z))f(z) is holomorphic at all points
not in L. By the argument above, we may write v(p(2))f(z) in the form u(p(z)), for some
polynomial u € C[z]. Thus f(z) = u(p(z))/v(p(z)) is a rational function of p(z).

If f(z) is instead an odd function, we may write

f(z)
o'(z)

f(z) =¢'(2)

The function f(2)/¢'(2) is even (f(2) and g'(z) are both odd), so we may write f(z)/¢'(2)
as a rational function of p(z), and f(z) is therefore a rational function of p(z) and ¢'(z). O
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