
18.783 Elliptic Curves Spring 2013
Lecture #18 04/18/2013

Andrew V. Sutherland

Our first goal for this lecture is to complete the proof of the uniformization theorem,
which states that every elliptic curve E/C is isomorphic to a torus C/L for some lattice L.
Given what we have already proved, it suffices to show that the map that sends a lattice L
to its j-invariant j(L) is surjective; every complex number is the j-invariant of some lattice.

18.1 The j -function

Every lattice [ω1, ω2] is homothetic to a lattice of the form [1, τ ], with τ in the upper half
plane H = {z ∈ C : im z > 0}; we may take τ = ±ω2/ω1 with the sign chosen so that
im τ > 0. This leads to the following definition of the j-function.

Definition 18.1. The j-function j : H → C is defined by j(τ) = j([1, τ ]). We similarly
define g2(τ) = g2([1, τ ]), g3(τ) = g3([1, τ ]), and ∆(τ) = ∆([1, τ ]).

Note that for any τ ∈ H, the quantities −1/τ and τ + 1 also lie in H.

Theorem 18.2. The j-function is holomorphic on H, and satisfies j(−1/τ) = j(τ) and
j(τ + 1) = j(τ).

Proof. From the definition of j(τ) = j([1, τ ]) we have

g 3
2(τ)

j(τ) = 1728
g2(τ)3

= 1728
∆(τ)

.
g2(τ)3 − 27g3(τ)2

The series defining

g2(τ) = 60
∑′ 1

m,n∈Z
(m+ nτ)4

and g3(τ) = 140
∑′

m,n∈Z

1

(m+ nτ)6

converge absolutely for any fixed τ ∈ H, by Lemma 16.11, and uniformly over τ in any
compact subset of H. The proof of this last fact is straight-forward but slightly technical;
see [1, Thm. 1.15] for the details. It follows that g2(τ) and g3(τ) are both holomorphic on H,
and therefore ∆(τ) = g2(τ)3 − 27g3(τ)2 is also holomorphic on H. Since ∆(τ) is nonzero
for all τ ∈ H, by Lemma 16.21, the j-function j(τ) is holomorphic on H as well.

The lattices [1, τ ] and [1,−1/τ ] = −1/τ [1, τ ] are homothetic, and the lattices [1, τ + 1]
and [1, τ ] are equal; thus j(−1/τ) = j(τ) and j(τ + 1) = j(τ), by Theorem 17.6.

18.2 The modular group

We now consider the modular group

a b
Γ = SL2(Z) =

{(
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

As proved in Problem Set 8, the group Γ acts on H via linear fractional transformations(
a b
c d

)
aτ + b

τ = ,
cτ + d

and Γ is generated by the matrices S =
(

0 −1
1 0

)
and T = ( 1 1

0 1 ). This implies that the
j-function is invariant under the action of the modular group. In fact, more is true.
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Figure 1: Fundamental domain F for the action of Γ = SL (Z) on H, with ρ = e2πi/3
2 .

Lemma 18.3. We have j(τ) = j(τ ′) if and only if τ ′ = γτ for some γ ∈ Γ.

Proof. We have j(Sτ) = j(−1/τ) = j(τ) and j(Tτ) = j(τ + 1) = j(τ), by Theorem 18.2, It
follows that if τ ′ = γτ then j(τ ′) = j(τ), since S and T generate Γ.

To prove the converse, let us suppose that j(τ) = j(τ ′). Then by Theorem 17.6, the
lattices [1, τ ] and [1, τ ′] must be homothetic So suppose [1, τ ′] = λ[1, τ ], for some λ ∈ C∗.
Then there exist integers a, b, c, and d such that

τ ′ = aλτ + bλ

1 = cλτ + dλ

From the second equation, we see that λ = 1 . Substituting this into the first, we havecτ+d

aτ + b
τ ′ = =

(
a b

γτ, where γ = .
cτ + d c d

)
Similarly, using [1, τ ] = λ−1[1, τ ′], we can write τ = γ′τ ′ for some integer matrix γ′. The
fact that τ ′ = γγ′τ ′ implies that det γ = ±1 (since γ and γ′ are integer matrices), and since
τ and τ ′ both lie in H, we must have det γ = 1, and therefore γ ∈ Γ as desired.

Lemma 18.3 implies that when studying the j-function, we are really only interested in
how it behaves on Γ-equivalence classes of H, that is, the orbits of H under the action of Γ.
We thus consider the quotient of H modulo Γ-equivalence, which we denote by H/Γ. Some
authors instead write Γ\H, to indicate that the action is on the left. The actions of γ and
−γ are identical, so taking the quotient by PSL2(Z) = SL2(Z)/{±1} yields the same result,
but for the sake of clarity we will stick with Γ = SL2(Z).

We now wish to determine a fundamental domain for H/Γ, a set of unique representatives
in H for each Γ-equivalence class. For this purpose we will use the set

F = {τ ∈ H : re(τ) ∈ [−1/2, 1/2) and |τ | ≥ 1, such that |τ | > 1 if re(τ) > 0}.

Lemma 18.4. The set F is a fundamental domain for H/Γ.
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Proof. We need to show that for every τ ∈ H, there is a unique τ ′ ∈ F such that τ ′ = γτ ,
for some γ ∈ Γ. We first prove existence. Let us fix τ ∈ H. For any γ = a b ∈ Γ we havec d(

aτ + b

( )
im(γτ) = im

im
=

cτ + d

) (
(aτ + b)(cτ̄ + d)

)
|cτ + d|2

=
(ad− bc) im τ

|cτ + d|2
=

im τ
(1)

|cτ + d|2

Let cτ + d be a shortest vector in the lattice [1, τ ]. Then c and d must be relativ
and we can pick integers a and b so that ad − bc = 1. The matrix γ0 =
maximizes the value of im(γτ) over γ ∈ Γ. Let us now choose γ = T kγ0, where
so that re(γτ) [1/2, 1/2), and note that im(γτ) = im(γ0τ) remains maximal.

(ely
a b
)prime,

thenc d
k is chosen

∈ We must
have |γτ | ≥ 1, since otherwise im(Sγτ) > im(γτ), contradicting the maximality of im(γτ).
Finally, if τ ′ = γτ 6∈ F , then we must have |γτ | = 1 and re(γτ) > 0, in which case we
replace γ by Sγ so that τ ′ = γτ ∈ F .

It remains to show that τ ′ is unique. This is equivalent to showing that any two Γ-
equivalen( t)points in F must coincide. So let τ1 and τ2 = γ1τ1 be two elements of , with
γ1 = a b

F
, and assume im τ1 ≤ im τ2. Then by (1), we must have |cτ1 + d 2

c d | ≤ 1, thus

1 ≥ |cτ1 + d|2 = (cτ 2 2
1 + d)(cτ̄1 + d) = c |τ1| + d2 + 2cd re(τ1) ≥ c2|τ1|2 + d2 − |cd|.

We cannot have c = d = 0, and we must have |τ1| ≥ 1, thus the RHS is at least 1. So
equality holds throughout and we have |cτ1 + d| = 1, which implies im τ2 = im τ1. We also
must have |c|, |d| ≤ 1, and by replacing γ1 by −γ1 if necessary, we may assume that c ≥ 0.
This leaves 3 cases:

1. c = 0: then |d| = 1 and a = d. So τ2 = τ1 ± b, but | re τ2 − re τ1| < 1, so τ2 = τ1.

2. c = 1, d = 0: then b = −1 and |τ1| = 1. So τ1 is on the unit circle and τ2 = a− 1/τ1.
Either a = 0 and τ2 = τ1 = i, or a = −1 and τ2 = τ1 = ρ.

3. c = 1, |d| = 1: then |τ1 + d
√

| = 1, so τ1 = ρ, and im τ2 = im τ1 = 3/2 implies τ2 = ρ.

Theorem 18.5. The restriction of the j-function to F defines a bijection from F to C.

Proof. Injectivity follows immediately from Lemmas 18.3 and 18.4. It remains to prove
surjectivity. We have

1
g2(τ) = 60

∑′

n,m∈Z
(m+ nτ)4

= 60

2

∞∑
m=1

1

m4
+
∑
n,m∈Z
n6=0

1

(m+ nτ)4


The second sum tends to 0 as im τ →∞. Thus we have



∞

lim g2(τ) = 120
imτ→∞

∑ 4

m−4 π
= 120 ζ(4) = 120

m=1
90

=
4π4

,
3

where ζ(s) is the Riemann zeta function. Similarly,

π6

lim g3(τ) = 280 ζ(6) = 280
imτ→∞ 945

=
8π6

27
.
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Thus

lim ∆(τ) =
imτ→∞

(
4 3

π4

3

)
− 27

(
8 2

π6

)
= 0.

27

(this explains the coefficients 60 and 140 in the definitions of g2 and g3; they are the
smallest pair of integers that ensure this limit is 0). Since ∆(τ) is the denominator of j(τ),
the quantity j(τ) = g2(τ)3/∆(τ) is unbounded as im τ →∞.

In particular, j is a non-constant holomorphic function on the open set H. By the
open-mapping theorem [3, Thm. 3.4.4], j(H) is an open subset of C.

We now show that j(H) is also a closed subset of C. Let j(τ1), j(τ2), . . . be an arbitrary
convergent sequence in j(H), converging to w ∈ C. The j-function is Γ-invariant, by
Lemma 18.3, so we may assume the τn all lie in F . The sequence im τ1, im τ2, . . . must be
bounded, since j(τ) → ∞ as im τ → ∞, thus the τn all lie in a compact set Ω ⊂ F ⊂ H.
Thus there is a subsequence of the τn that converges to some τ ∈ Ω ⊂ H. By continuity,
j(τ) = w, thus the set j(H) contains all its limit points and is therefore closed.

The fact that the non-empty set j(H) ⊆ C is both open and closed implies that j(H) = C,
since C is connected. It follows that j(F) = C, since every element of H is equivalent to an
element of F (Lemma 18.4) and the j-function is Γ-invariant (Lemma 18.3).

Corollary 18.6 (Uniformization Theorem). For every elliptic curve E/C there exists a
lattice L such that E(C) is isomorphic to C/L.

Proof. Given E/C, pick τ ∈ H so that j(τ) = j(E) and let L = [1, τ ]. Then E is isomorphic
to the elliptic curve corresponding to L, via Theorem 17.2, and therefore E(C) ' C/L.

18.3 Complex multiplication

Having established the correspondence between complex tori C/L and elliptic curves E/C,
we now wish to make explicit the relationship between endomorphisms of C/L and endo-
morphisms of E/C.

Theorem 18.7. Let L be a lattice, let E/C be the corresponding elliptic curve given by
Theorem 17.2, and let Φ: C/L → E(C) be the isomorphism that sends z to ℘(z), ℘′(z) .
For any α ∈ C, the following are equivalent:

( )
(1) αL ⊆ L;

(2) ℘(αz) = u
(
℘(z)

)
/v
(
℘(z)

)
for some polynomials u, v ∈ C[x];

(3) There exists an endomorphism φ ∈ End(E) such that the following diagram commutes:

C/L E(C)

C/L E(C)

Φ

α φ

Φ

where α denotes the map z 7→ αz on C/L.

Moreover, every endomorphism φ in End(E) gives rise to an α ∈ C satisfying (1)–(3), and
the map that sends φ to α is a ring isomorphism from End(E) to {α ∈ C : αL ⊆ L}. In
particular, the endomorphism φ in (3) is unique, and N(α) = deg φ = deg u = deg v + 1.

4



Proof. Properties (1)–(3) clearly hold for α = 0, so assume α 6= 0.
(1)⇒ (2): Let ω ∈ L. Then ℘(α(z+ω)) = ℘(αz+αω) = ℘(αz). Thus ℘(αz) is periodic,

and ℘(αz) is clearly meromorphic, so it is an elliptic function (with respect to L). It is also
even, since ℘(z) is, so it is a rational function of ℘(z), by Lemma 18.10 below.

(2) ⇒ (1): We have v(℘(z))℘(αz) = u(℘(z)). Both ℘(z) and ℘(αz) have a double pole
at 0. Thus u(℘(z)) has a pole of order 2 deg u at 0 and v(℘(z))℘(αz) has a pole of order
2 deg v + 2 at 0, hence deg u = deg v + 1. Thus u(℘(z)) has a pole of order 2 deg v + 2 at
every ω ∈ L, so ℘(αz) must have a double pole at every ω ∈ L. It follows that ℘(z) has a
double pole at αω for all ω ∈ L, and therefore αL ⊆ L.

(2)⇒ (3): Let φ be the rational map

φ =

(
u(x)

v(x)
,
s(x)

y
t(x)

)
,

where u and v are given by (2), and s = (u′v − v′u) and t = αv2, so that

1
℘′(αz) =

1
℘

α

(
(αz)

)′
=
α

(
u(℘(z))

v(℘(z)

)′
=
s(℘(z))

℘′(z).
t(℘(z))

To verify that the diagram commutes, we note that going around the square clockwise yields

φ(Φ(z)) = φ
( ))
(℘(z), ℘′(z))

) (
u(℘(z

=
v(℘(z))

,
s(℘(z))

℘′(z) ,
t(℘(z))

)
and going around the square counter-clockwise yields

u(℘(z))
Φ(αz) =

(
℘(αz), ℘′(αz)

)
=

(
v(℘(z))

,
s(℘(z))

℘′(z)
t(℘(z))

)
.

(3) ⇒ (1). Let φ ∈ End(E) satisfy (3). For any ω ∈ L we have φ(Φ(ω)) = 0, and by
commutativity of the diagram, Φ(αω) = φ(Φ(ω)) = 0, thus αω ∈ L. Therefore αL ⊆ L.

We now prove the “moreover” part of the theorem. For any φ ∈ End(E), the map

φ∗ = Φ−1 ◦ φ ◦ Φ

is an endomorphism of C/L. By taking a small neighborhood U of 0 in C, we obtain a map
from U to C that is holomorphic1 away from 0. Since φ∗ ∈ End(C/L), we have

φ∗(z1 + z2) ≡ φ∗(z1) + φ∗(z2) mod L,

and φ∗(0) ∈ L. By replacing φ∗ with φ∗−φ∗(0) if necessary, we may assume that φ∗(0) = 0.
By continuity, φ∗(z) is arbitrarily close to 0 when z is close to 0, so by making U sufficiently
small, we have

φ∗(z1 + z2) = φ∗(z1) + φ∗(z2)

for all zi ∈ U . We now use the definition of the derivative to compute

φ∗(z + h) )
(φ∗)′ z) = lim

− φ∗(z
(

h→0 h
= lim

h→0

φ∗(z) + φ∗(h)− φ∗(h)

h
= lim

h→0

φ∗(h)− φ∗(0)
= (φ∗)′(0).

h

1An analog of the inverse function theorem holds for holomorphic functions.
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Thus the derivative of φ∗ is equal to some constant α = (φ∗)′(0) at all z ∈ U . Thus
φ∗(z) = αz for all z ∈ U . For any z ∈ C, we may choose n ∈ Z such that z Un ∈ . Thus

φ∗(z) = nφ∗
( z
n

)
= nα

z
= αz.

n

The map φ∗ sends lattice points to lattice points, and we have just shown that φ∗ is the
“multiplication-by-α” map. Thus αL ⊆ L, and α satisfies the equivalent conditions (1)–(3).

We now show that the map Ψ: End(E)→ {α ∈ C : αL ⊆ L} that sends φ to α = (φ∗)′(0)
is a ring homomorphism. Clearly, Ψ(0) = 0 and Ψ(1) = 1. Let φ1, φ2 ∈ End(E). Then

(φ1 + φ2)∗ = Φ−1 ◦ (φ1 + φ 1
2) ◦ Φ = Φ− ◦ φ 1

1 ◦ Φ + Φ− ◦ φ2 ◦ Φ = φ∗1 + φ∗2,

since Φ is an isomorphism. It follows that Ψ(φ1 + φ2) = Ψ(φ1) + Ψ(φ2), since we have
(φ∗1 + φ∗2)′(0) = (φ∗1)′(0) + (φ∗2)′(0). Similarly,

(φ1 ◦ φ2)∗ = Φ−1 ◦ (φ1 ◦ φ2) ◦ Φ = Φ−1 ◦ φ1 ◦ Φ ◦ Φ−1 ◦ φ2 ◦ Φ = φ∗1 ◦ φ∗2,

and (φ∗1 ◦φ∗2)′(0) = (φ∗1)′(φ∗2(0))(φ∗2)′(0) = (φ∗1)′(0)(φ∗2)′(0), thus Ψ(φ1 ◦φ2) = Ψ(φ1)◦Ψ(φ2).
Thus Ψ is a ring homomorphism. If Ψ(φ) = 0, then φ∗ = 0, and in this case the identity

Φ ◦ φ∗ = φ ◦ Φ implies that φ = 0, since Φ is an isomorphism. Therefore Ψ is injective. If
αL ⊂ L, then for the φ given by (3) we have φ∗(z) = αz, and therefore Ψ(φ) = (φ∗)′(0) = α,
so Ψ is surjective. Thus Ψ is an isomorphism.

It follows that for any φ ∈ End(E), the complex number α = Ψ(φ) satisfies the equation
X2− (trφ)X + deg φ = 0, which has integer coefficients. Therefore α is a quadratic integer
with trace T (α) = α+ ᾱ = tr(φ) and norm N(α) = αᾱ = deg φ = deg u = deg v + 1.

Corollary 18.8. Let E be an elliptic curve defined over C. Then End(E) is commutative
and therefore isomorphic to either Z or an order in an imaginary quadratic field.

Proof. Let L be the lattice corresponding to E. The ring End(E) ' {α ∈ C : αL ⊆ L} is
clearly commutative, and therefore not an order in a quaternion algebra. The result then
follows from Corollary 14.16.

Remark 18.9. Corollary 18.8 applies to elliptic curves over Q, and over number fields,
since these are subfields of C, and it can be extended to arbitrary fields of characteristic 0
via the Lefschetz principle; see [2, Thm. VI.6.1].

Lemma 18.10. Let f(z) be an elliptic function with respect to a lattice L. Then f(z) can
be written as a rational function of ℘(z) = ℘(z;L) and ℘′(z) = ℘′(z;L). Moreover, if f(z)
is an even function, then it can be written as a rational function of ℘(z) alone.

Proof. Every function f(z) can be written as the sum of an even and an odd function,
namely, f(z) = fe(z) + fo(z), where

f(z) + f( )
fe( ) =

−z
z

f(z)
and fo(z) =

− f(−z)
2

.
2

It thus suffices to consider the cases where f is even or odd. We first consider the case that
f is even, and we assume that f is nonzero, since the lemma clearly holds for f = 0.

Suppose that f is holomorphic at all points not in L. Then it has a Laurent expansion
about 0 of the form

∞

f(z) =
∑

a2kz
2k,

k=−n
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where 2n is the order of f . If n ≥ 0, then f is holomorphic on C, and since f is periodic with
respect to L it is bounded, so by Liouville’s theorem it is a constant function f(z) = f(0).
If n > 0, then f(z)− a n

2n℘ (z) is an even elliptic function of order at most 2(n− − 1) that
is holomorphic except at points in L. By repeating the process until n = 0, we obtain a
function of the form f(z)− P ℘(z) , for some polynomial p ∈ C[x], and this function must
be equal to a constant a0 ∈ C

Now suppose that f has a

(
. Thus

)
f(z) = p(℘(z)) + f(0) is a polynomial in ℘(z).

pole of order n at some ω 6∈ L. If 2ω ∈ L, we first replace f
by a function of the form g = (af+b)/(cf+d), with a, b, c, d ∈ C chosen so that ad−bc 6= 0,
such that g does has neither a zero nor a pole at ω. This transformation is invertible, so if
we can write g as a rational function of ℘, then we can write f as a rational function of ℘.
After repeating this process up to three times, if necessary, we may assume without loss of
generality that 2ω ∈/ L for every ω 6∈ L at which f has a pole.

Consider the function
(℘(z)− ℘(ω))n.

Since 2ω 6∈ L, we have ℘′(ω) 6= 0, so ω is a simple root of ℘(z) − ℘(ω) and the function
(℘(z)−℘(ω))n has a zero of order n at ω. This implies that (℘(z)−℘(ω))nf(z) is holomorphic
at ω. After repeating this process for all of the (finitely many) poles of f in a fundamental
domain, we obtain a polynomial v ∈ C[x] such that v(℘(z))f(z) is holomorphic at all points
not in L. By the argument above, we may write v(℘(z))f(z) in the form u(℘(z)), for some
polynomial u ∈ C[x]. Thus f(z) = u(℘(z))/v(℘(z)) is a rational function of ℘(z).

If f(z) is instead an odd function, we may write

f(z)
f(z) = ℘′(z) .

℘′(z)

The function f(z)/℘′(z) is even (f(z) and ℘′(z) are both odd), so we may write f(z)/℘′(z)
as a rational function of ℘(z), and f(z) is therefore a rational function of ℘(z) and ℘′(z).
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