Our first goal for this lecture is to complete the proof of the uniformization theorem, which states that every elliptic curve E / \mathbb{C} is isomorphic to a torus \mathbb{C} / L for some lattice L. Given what we have already proved, it suffices to show that the map that sends a lattice L to its j-invariant $j(L)$ is surjective; every complex number is the j-invariant of some lattice.

18.1 The \boldsymbol{j}-function

Every lattice $\left[\omega_{1}, \omega_{2}\right]$ is homothetic to a lattice of the form $[1, \tau]$, with τ in the upper half plane $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{im} z>0\} ;$ we may take $\tau= \pm \omega_{2} / \omega_{1}$ with the sign chosen so that $\operatorname{im} \tau>0$. This leads to the following definition of the j-function.
Definition 18.1. The j-function $j: \mathbb{H} \rightarrow \mathbb{C}$ is defined by $j(\tau)=j([1, \tau])$. We similarly define $g_{2}(\tau)=g_{2}([1, \tau]), g_{3}(\tau)=g_{3}([1, \tau])$, and $\Delta(\tau)=\Delta([1, \tau])$.

Note that for any $\tau \in \mathbb{H}$, the quantities $-1 / \tau$ and $\tau+1$ also lie in \mathbb{H}.
Theorem 18.2. The j-function is holomorphic on \mathbb{H}, and satisfies $j(-1 / \tau)=j(\tau)$ and $j(\tau+1)=j(\tau)$.
Proof. From the definition of $j(\tau)=j([1, \tau])$ we have

$$
j(\tau)=1728 \frac{g_{2}(\tau)^{3}}{\Delta(\tau)}=1728 \frac{g_{2}(\tau)^{3}}{g_{2}(\tau)^{3}-27 g_{3}(\tau)^{2}} .
$$

The series defining

$$
g_{2}(\tau)=60 \sum_{m, n \in \mathbb{Z}}^{\prime} \frac{1}{(m+n \tau)^{4}} \quad \text { and } \quad g_{3}(\tau)=140 \sum_{m, n \in \mathbb{Z}}^{\prime} \frac{1}{(m+n \tau)^{6}}
$$

converge absolutely for any fixed $\tau \in \mathbb{H}$, by Lemma 16.11, and uniformly over τ in any compact subset of \mathbb{H}. The proof of this last fact is straight-forward but slightly technical; see [1, Thm. 1.15] for the details. It follows that $g_{2}(\tau)$ and $g_{3}(\tau)$ are both holomorphic on \mathbb{H}, and therefore $\Delta(\tau)=g_{2}(\tau)^{3}-27 g_{3}(\tau)^{2}$ is also holomorphic on \mathbb{H}. Since $\Delta(\tau)$ is nonzero for all $\tau \in \mathbb{H}$, by Lemma 16.21 , the j-function $j(\tau)$ is holomorphic on \mathbb{H} as well.

The lattices $[1, \tau]$ and $[1,-1 / \tau]=-1 / \tau[1, \tau]$ are homothetic, and the lattices $[1, \tau+1]$ and $[1, \tau]$ are equal; thus $j(-1 / \tau)=j(\tau)$ and $j(\tau+1)=j(\tau)$, by Theorem 17.6.

18.2 The modular group

We now consider the modular group

$$
\Gamma=\mathrm{SL}_{2}(\mathbb{Z})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}
$$

As proved in Problem Set 8 , the group Γ acts on \mathbb{H} via linear fractional transformations

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \tau=\frac{a \tau+b}{c \tau+d},
$$

and Γ is generated by the matrices $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. This implies that the j-function is invariant under the action of the modular group. In fact, more is true.

Figure 1: Fundamental domain \mathcal{F} for the action of $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$ on \mathbb{H}, with $\rho=e^{2 \pi i / 3}$.

Lemma 18.3. We have $j(\tau)=j\left(\tau^{\prime}\right)$ if and only if $\tau^{\prime}=\gamma \tau$ for some $\gamma \in \Gamma$.
Proof. We have $j(S \tau)=j(-1 / \tau)=j(\tau)$ and $j(T \tau)=j(\tau+1)=j(\tau)$, by Theorem 18.2, It follows that if $\tau^{\prime}=\gamma \tau$ then $j\left(\tau^{\prime}\right)=j(\tau)$, since S and T generate Γ.

To prove the converse, let us suppose that $j(\tau)=j\left(\tau^{\prime}\right)$. Then by Theorem 17.6, the lattices $[1, \tau]$ and $\left[1, \tau^{\prime}\right]$ must be homothetic So suppose $\left[1, \tau^{\prime}\right]=\lambda[1, \tau]$, for some $\lambda \in \mathbb{C}^{*}$. Then there exist integers a, b, c, and d such that

$$
\begin{aligned}
\tau^{\prime} & =a \lambda \tau+b \lambda \\
1 & =c \lambda \tau+d \lambda
\end{aligned}
$$

From the second equation, we see that $\lambda=\frac{1}{c \tau+d}$. Substituting this into the first, we have

$$
\tau^{\prime}=\frac{a \tau+b}{c \tau+d}=\gamma \tau, \quad \text { where } \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

Similarly, using $[1, \tau]=\lambda^{-1}\left[1, \tau^{\prime}\right]$, we can write $\tau=\gamma^{\prime} \tau^{\prime}$ for some integer matrix γ^{\prime}. The fact that $\tau^{\prime}=\gamma \gamma^{\prime} \tau^{\prime}$ implies that $\operatorname{det} \gamma= \pm 1$ (since γ and γ^{\prime} are integer matrices), and since τ and τ^{\prime} both lie in \mathbb{H}, we must have $\operatorname{det} \gamma=1$, and therefore $\gamma \in \Gamma$ as desired.

Lemma 18.3 implies that when studying the j-function, we are really only interested in how it behaves on Γ-equivalence classes of \mathbb{H}, that is, the orbits of \mathbb{H} under the action of Γ. We thus consider the quotient of \mathbb{H} modulo Γ-equivalence, which we denote by \mathbb{H} / Γ. Some authors instead write $\Gamma \backslash \mathbb{H}$, to indicate that the action is on the left. The actions of γ and $-\gamma$ are identical, so taking the quotient by $\operatorname{PSL}_{2}(\mathbb{Z})=\mathrm{SL}_{2}(\mathbb{Z}) /\{ \pm 1\}$ yields the same result, but for the sake of clarity we will stick with $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$.

We now wish to determine a fundamental domain for \mathbb{H} / Γ, a set of unique representatives in \mathbb{H} for each Γ-equivalence class. For this purpose we will use the set

$$
\mathcal{F}=\{\tau \in \mathbb{H}: \operatorname{re}(\tau) \in[-1 / 2,1 / 2) \text { and }|\tau| \geq 1 \text {, such that }|\tau|>1 \text { if } \operatorname{re}(\tau)>0\} .
$$

Lemma 18.4. The set \mathcal{F} is a fundamental domain for \mathbb{H} / Γ.

Proof. We need to show that for every $\tau \in \mathbb{H}$, there is a unique $\tau^{\prime} \in \mathcal{F}$ such that $\tau^{\prime}=\gamma \tau$, for some $\gamma \in \Gamma$. We first prove existence. Let us fix $\tau \in \mathbb{H}$. For any $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma$ we have

$$
\begin{equation*}
\operatorname{im}(\gamma \tau)=\operatorname{im}\left(\frac{a \tau+b}{c \tau+d}\right)=\frac{\operatorname{im}((a \tau+b)(c \bar{\tau}+d))}{|c \tau+d|^{2}}=\frac{(a d-b c) \operatorname{im} \tau}{|c \tau+d|^{2}}=\frac{\operatorname{im} \tau}{|c \tau+d|^{2}} \tag{1}
\end{equation*}
$$

Let $c \tau+d$ be a shortest vector in the lattice $[1, \tau]$. Then c and d must be relatively prime, and we can pick integers a and b so that $a d-b c=1$. The matrix $\gamma_{0}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then maximizes the value of $\operatorname{im}(\gamma \tau)$ over $\gamma \in \Gamma$. Let us now choose $\gamma=T^{k} \gamma_{0}$, where k is chosen so that $\operatorname{re}(\gamma \tau) \in[1 / 2,1 / 2)$, and note that $\operatorname{im}(\gamma \tau)=\operatorname{im}\left(\gamma_{0} \tau\right)$ remains maximal. We must have $|\gamma \tau| \geq 1$, since otherwise $\operatorname{im}(S \gamma \tau)>\operatorname{im}(\gamma \tau)$, contradicting the maximality of $\operatorname{im}(\gamma \tau)$. Finally, if $\tau^{\prime}=\gamma \tau \notin \mathcal{F}$, then we must have $|\gamma \tau|=1$ and $\operatorname{re}(\gamma \tau)>0$, in which case we replace γ by $S \gamma$ so that $\tau^{\prime}=\gamma \tau \in \mathcal{F}$.

It remains to show that τ^{\prime} is unique. This is equivalent to showing that any two Γ equivalent points in \mathcal{F} must coincide. So let τ_{1} and $\tau_{2}=\gamma_{1} \tau_{1}$ be two elements of \mathcal{F}, with $\gamma_{1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, and assume $\operatorname{im} \tau_{1} \leq \operatorname{im} \tau_{2}$. Then by (1), we must have $\left|c \tau_{1}+d\right|^{2} \leq 1$, thus

$$
1 \geq\left|c \tau_{1}+d\right|^{2}=\left(c \tau_{1}+d\right)\left(c \bar{c}_{1}+d\right)=c^{2}\left|\tau_{1}\right|^{2}+d^{2}+2 c d \operatorname{re}\left(\tau_{1}\right) \geq c^{2}\left|\tau_{1}\right|^{2}+d^{2}-|c d| .
$$

We cannot have $c=d=0$, and we must have $\left|\tau_{1}\right| \geq 1$, thus the RHS is at least 1 . So equality holds throughout and we have $\left|c \tau_{1}+d\right|=1$, which implies $\operatorname{im} \tau_{2}=\operatorname{im} \tau_{1}$. We also must have $|c|,|d| \leq 1$, and by replacing γ_{1} by $-\gamma_{1}$ if necessary, we may assume that $c \geq 0$. This leaves 3 cases:

1. $c=0$: then $|d|=1$ and $a=d$. So $\tau_{2}=\tau_{1} \pm b$, but $\left|\operatorname{re} \tau_{2}-\operatorname{re} \tau_{1}\right|<1$, so $\tau_{2}=\tau_{1}$.
2. $c=1, d=0$: then $b=-1$ and $\left|\tau_{1}\right|=1$. So τ_{1} is on the unit circle and $\tau_{2}=a-1 / \tau_{1}$. Either $a=0$ and $\tau_{2}=\tau_{1}=i$, or $a=-1$ and $\tau_{2}=\tau_{1}=\rho$.
3. $c=1,|d|=1$: then $\left|\tau_{1}+d\right|=1$, so $\tau_{1}=\rho$, and $\operatorname{im} \tau_{2}=\operatorname{im} \tau_{1}=\sqrt{3} / 2$ implies $\tau_{2}=\rho$.

Theorem 18.5. The restriction of the j-function to \mathcal{F} defines a bijection from \mathcal{F} to \mathbb{C}.
Proof. Injectivity follows immediately from Lemmas $\underline{18.3}$ and 18.4. It remains to prove surjectivity. We have

$$
g_{2}(\tau)=60 \sum_{n, m \in \mathbb{Z}}^{\prime} \frac{1}{(m+n \tau)^{4}}=60\left(2 \sum_{m=1}^{\infty} \frac{1}{m^{4}}+\sum_{\substack{n, m \in \mathbb{Z} \\ n \neq 0}} \frac{1}{(m+n \tau)^{4}}\right)
$$

The second sum tends to 0 as $\operatorname{im} \tau \rightarrow \infty$. Thus we have

$$
\lim _{\operatorname{im} \tau \rightarrow \infty} g_{2}(\tau)=120 \sum_{m=1}^{\infty} m^{-4}=120 \zeta(4)=120 \frac{\pi^{4}}{90}=\frac{4 \pi^{4}}{3}
$$

where $\zeta(s)$ is the Riemann zeta function. Similarly,

$$
\lim _{\operatorname{im} \tau \rightarrow \infty} g_{3}(\tau)=280 \zeta(6)=280 \frac{\pi^{6}}{945}=\frac{8 \pi^{6}}{27} .
$$

Thus

$$
\lim _{i m \tau \rightarrow \infty} \Delta(\tau)=\left(\frac{4}{3} \pi^{4}\right)^{3}-27\left(\frac{8}{27} \pi^{6}\right)^{2}=0
$$

(this explains the coefficients 60 and 140 in the definitions of g_{2} and g_{3}; they are the smallest pair of integers that ensure this limit is 0$)$. Since $\Delta(\tau)$ is the denominator of $j(\tau)$, the quantity $j(\tau)=g_{2}(\tau)^{3} / \Delta(\tau)$ is unbounded as $\operatorname{im} \tau \rightarrow \infty$.

In particular, j is a non-constant holomorphic function on the open set \mathbb{H}. By the open-mapping theorem [3, Thm. 3.4.4], $j(\mathbb{H})$ is an open subset of \mathbb{C}.

We now show that $j(\mathbb{H})$ is also a closed subset of \mathbb{C}. Let $j\left(\tau_{1}\right), j\left(\tau_{2}\right), \ldots$ be an arbitrary convergent sequence in $j(\mathbb{H})$, converging to $w \in \mathbb{C}$. The j-function is Γ-invariant, by Lemma 18.3, so we may assume the τ_{n} all lie in \mathcal{F}. The sequence $\operatorname{im} \tau_{1}, \operatorname{im} \tau_{2}, \ldots$ must be bounded, since $j(\tau) \rightarrow \infty$ as $\operatorname{im} \tau \rightarrow \infty$, thus the τ_{n} all lie in a compact set $\Omega \subset \mathcal{F} \subset \mathbb{H}$. Thus there is a subsequence of the τ_{n} that converges to some $\tau \in \Omega \subset \mathbb{H}$. By continuity, $j(\tau)=w$, thus the set $j(\mathbb{H})$ contains all its limit points and is therefore closed.

The fact that the non-empty set $j(\mathbb{H}) \subseteq \mathbb{C}$ is both open and closed implies that $j(\mathbb{H})=\mathbb{C}$, since \mathbb{C} is connected. It follows that $j(\mathcal{F})=\mathbb{C}$, since every element of \mathbb{H} is equivalent to an element of \mathcal{F} (Lemma 18.4) and the j-function is Γ-invariant (Lemma 18.3).

Corollary 18.6 (Uniformization Theorem). For every elliptic curve E / \mathbb{C} there exists a lattice L such that $E(\mathbb{C})$ is isomorphic to \mathbb{C} / L.

Proof. Given E / \mathbb{C}, pick $\tau \in \mathbb{H}$ so that $j(\tau)=j(E)$ and let $L=[1, \tau]$. Then E is isomorphic to the elliptic curve corresponding to L, via Theorem 17.2 , and therefore $E(\mathbb{C}) \simeq \mathbb{C} / L$.

18.3 Complex multiplication

Having established the correspondence between complex tori \mathbb{C} / L and elliptic curves E / \mathbb{C}, we now wish to make explicit the relationship between endomorphisms of \mathbb{C} / L and endomorphisms of E / \mathbb{C}.

Theorem 18.7. Let L be a lattice, let E / \mathbb{C} be the corresponding elliptic curve given by Theorem 17.2, and let $\Phi: \mathbb{C} / L \rightarrow E(\mathbb{C})$ be the isomorphism that sends z to $\left(\wp(z), \wp^{\prime}(z)\right)$. For any $\alpha \in \mathbb{C}$, the following are equivalent:
(1) $\alpha L \subseteq L$;
(2) $\wp(\alpha z)=u(\wp(z)) / v(\wp(z))$ for some polynomials $u, v \in \mathbb{C}[x]$;
(3) There exists an endomorphism $\phi \in \operatorname{End}(E)$ such that the following diagram commutes:

where α denotes the map $z \mapsto \alpha z$ on \mathbb{C} / L.
Moreover, every endomorphism ϕ in $\operatorname{End}(E)$ gives rise to an $\alpha \in \mathbb{C}$ satisfying (1)-(3), and the map that sends ϕ to α is a ring isomorphism from $\operatorname{End}(E)$ to $\{\alpha \in \mathbb{C}: \alpha L \subseteq L\}$. In particular, the endomorphism ϕ in (3) is unique, and $N(\alpha)=\operatorname{deg} \phi=\operatorname{deg} u=\operatorname{deg} v+1$.

Proof. Properties (1)-(3) clearly hold for $\alpha=0$, so assume $\alpha \neq 0$.
$(1) \Rightarrow(2)$: Let $\omega \in L$. Then $\wp(\alpha(z+\omega))=\wp(\alpha z+\alpha \omega)=\wp(\alpha z)$. Thus $\wp(\alpha z)$ is periodic, and $\wp(\alpha z)$ is clearly meromorphic, so it is an elliptic function (with respect to L). It is also even, since $\wp(z)$ is, so it is a rational function of $\wp(z)$, by Lemma 18.10 below.
$(2) \Rightarrow(1)$: We have $v(\wp(z)) \wp(\alpha z)=u(\wp(z))$. Both $\wp(z)$ and $\wp(\alpha z)$ have a double pole at 0 . Thus $u(\wp(z))$ has a pole of order $2 \operatorname{deg} u$ at 0 and $v(\wp(z)) \wp(\alpha z)$ has a pole of order $2 \operatorname{deg} v+2$ at 0 , hence $\operatorname{deg} u=\operatorname{deg} v+1$. Thus $u(\wp(z))$ has a pole of order $2 \operatorname{deg} v+2$ at every $\omega \in L$, so $\wp(\alpha z)$ must have a double pole at every $\omega \in L$. It follows that $\wp(z)$ has a double pole at $\alpha \omega$ for all $\omega \in L$, and therefore $\alpha L \subseteq L$.
$(2) \Rightarrow(3)$: Let ϕ be the rational map

$$
\phi=\left(\frac{u(x)}{v(x)}, \frac{s(x)}{t(x)} y\right)
$$

where u and v are given by (2), and $s=\left(u^{\prime} v-v^{\prime} u\right)$ and $t=\alpha v^{2}$, so that

$$
\wp^{\prime}(\alpha z)=\frac{1}{\alpha}(\wp(\alpha z))^{\prime}=\frac{1}{\alpha}\left(\frac{u(\wp(z))}{v(\wp(z)}\right)^{\prime}=\frac{s(\wp(z))}{t(\wp(z))} \wp^{\prime}(z) .
$$

To verify that the diagram commutes, we note that going around the square clockwise yields

$$
\phi(\Phi(z))=\phi\left(\left(\wp(z), \wp^{\prime}(z)\right)\right)=\left(\frac{u(\wp(z))}{v(\wp(z))}, \frac{s(\wp(z))}{t(\wp(z))} \wp^{\prime}(z)\right),
$$

and going around the square counter-clockwise yields

$$
\Phi(\alpha z)=\left(\wp(\alpha z), \wp^{\prime}(\alpha z)\right)=\left(\frac{u(\wp(z))}{v(\wp(z))}, \frac{s(\wp(z))}{t(\wp(z))} \wp^{\prime}(z)\right)
$$

$(3) \Rightarrow(1)$. Let $\phi \in \operatorname{End}(E)$ satisfy (3). For any $\omega \in L$ we have $\phi(\Phi(\omega))=0$, and by commutativity of the diagram, $\Phi(\alpha \omega)=\phi(\Phi(\omega))=0$, thus $\alpha \omega \in L$. Therefore $\alpha L \subseteq L$.

We now prove the "moreover" part of the theorem. For any $\phi \in \operatorname{End}(E)$, the map

$$
\phi^{*}=\Phi^{-1} \circ \phi \circ \Phi
$$

is an endomorphism of \mathbb{C} / L. By taking a small neighborhood U of 0 in \mathbb{C}, we obtain a map from U to \mathbb{C} that is holomorphic -1 away from 0 . Since $\phi^{*} \in \operatorname{End}(\mathbb{C} / L)$, we have

$$
\phi^{*}\left(z_{1}+z_{2}\right) \equiv \phi^{*}\left(z_{1}\right)+\phi^{*}\left(z_{2}\right) \bmod L
$$

and $\phi^{*}(0) \in L$. By replacing ϕ^{*} with $\phi^{*}-\phi^{*}(0)$ if necessary, we may assume that $\phi^{*}(0)=0$. By continuity, $\phi^{*}(z)$ is arbitrarily close to 0 when z is close to 0 , so by making U sufficiently small, we have

$$
\phi^{*}\left(z_{1}+z_{2}\right)=\phi^{*}\left(z_{1}\right)+\phi^{*}\left(z_{2}\right)
$$

for all $z_{i} \in U$. We now use the definition of the derivative to compute
$\left(\phi^{*}\right)^{\prime}(z)=\lim _{h \rightarrow 0} \frac{\phi^{*}(z+h)-\phi^{*}(z)}{h}=\lim _{h \rightarrow 0} \frac{\phi^{*}(z)+\phi^{*}(h)-\phi^{*}(h)}{h}=\lim _{h \rightarrow 0} \frac{\phi^{*}(h)-\phi^{*}(0)}{h}=\left(\phi^{*}\right)^{\prime}(0)$.

[^0]Thus the derivative of ϕ^{*} is equal to some constant $\alpha=\left(\phi^{*}\right)^{\prime}(0)$ at all $z \in U$. Thus $\phi^{*}(z)=\alpha z$ for all $z \in U$. For any $z \in \mathbb{C}$, we may choose $n \in \mathbb{Z}$ such that $\frac{z}{n} \in U$. Thus

$$
\phi^{*}(z)=n \phi^{*}\left(\frac{z}{n}\right)=n \alpha \frac{z}{n}=\alpha z .
$$

The map ϕ^{*} sends lattice points to lattice points, and we have just shown that ϕ^{*} is the "multiplication-by- α " map. Thus $\alpha L \subseteq L$, and α satisfies the equivalent conditions (1)-(3).

We now show that the map $\Psi: \operatorname{End}(E) \rightarrow\{\alpha \in \mathbb{C}: \alpha L \subseteq L\}$ that sends ϕ to $\alpha=\left(\phi^{*}\right)^{\prime}(0)$ is a ring homomorphism. Clearly, $\Psi(0)=0$ and $\Psi(1)=1$. Let $\phi_{1}, \phi_{2} \in \operatorname{End}(E)$. Then

$$
\left(\phi_{1}+\phi_{2}\right)^{*}=\Phi^{-1} \circ\left(\phi_{1}+\phi_{2}\right) \circ \Phi=\Phi^{-1} \circ \phi_{1} \circ \Phi+\Phi^{-1} \circ \phi_{2} \circ \Phi=\phi_{1}^{*}+\phi_{2}^{*},
$$

since Φ is an isomorphism. It follows that $\Psi\left(\phi_{1}+\phi_{2}\right)=\Psi\left(\phi_{1}\right)+\Psi\left(\phi_{2}\right)$, since we have $\left(\phi_{1}^{*}+\phi_{2}^{*}\right)^{\prime}(0)=\left(\phi_{1}^{*}\right)^{\prime}(0)+\left(\phi_{2}^{*}\right)^{\prime}(0)$. Similarly,

$$
\left(\phi_{1} \circ \phi_{2}\right)^{*}=\Phi^{-1} \circ\left(\phi_{1} \circ \phi_{2}\right) \circ \Phi=\Phi^{-1} \circ \phi_{1} \circ \Phi \circ \Phi^{-1} \circ \phi_{2} \circ \Phi=\phi_{1}^{*} \circ \phi_{2}^{*},
$$

and $\left(\phi_{1}^{*} \circ \phi_{2}^{*}\right)^{\prime}(0)=\left(\phi_{1}^{*}\right)^{\prime}\left(\phi_{2}^{*}(0)\right)\left(\phi_{2}^{*}\right)^{\prime}(0)=\left(\phi_{1}^{*}\right)^{\prime}(0)\left(\phi_{2}^{*}\right)^{\prime}(0)$, thus $\Psi\left(\phi_{1} \circ \phi_{2}\right)=\Psi\left(\phi_{1}\right) \circ \Psi\left(\phi_{2}\right)$.
Thus Ψ is a ring homomorphism. If $\Psi(\phi)=0$, then $\phi^{*}=0$, and in this case the identity $\Phi \circ \phi^{*}=\phi \circ \Phi$ implies that $\phi=0$, since Φ is an isomorphism. Therefore Ψ is injective. If $\alpha L \subset L$, then for the ϕ given by (3) we have $\phi^{*}(z)=\alpha z$, and therefore $\Psi(\phi)=\left(\phi^{*}\right)^{\prime}(0)=\alpha$, so Ψ is surjective. Thus Ψ is an isomorphism.

It follows that for any $\phi \in \operatorname{End}(E)$, the complex number $\alpha=\Psi(\phi)$ satisfies the equation $X^{2}-(\operatorname{tr} \phi) X+\operatorname{deg} \phi=0$, which has integer coefficients. Therefore α is a quadratic integer with trace $T(\alpha)=\alpha+\bar{\alpha}=\operatorname{tr}(\phi)$ and norm $N(\alpha)=\alpha \bar{\alpha}=\operatorname{deg} \phi=\operatorname{deg} u=\operatorname{deg} v+1$.

Corollary 18.8. Let E be an elliptic curve defined over \mathbb{C}. Then $\operatorname{End}(E)$ is commutative and therefore isomorphic to either \mathbb{Z} or an order in an imaginary quadratic field.

Proof. Let L be the lattice corresponding to E. The ring $\operatorname{End}(E) \simeq\{\alpha \in \mathbb{C}: \alpha L \subseteq L\}$ is clearly commutative, and therefore not an order in a quaternion algebra. The result then follows from Corollary 14.16.

Remark 18.9. Corollary $\underline{18.8}$ applies to elliptic curves over \mathbb{Q}, and over number fields, since these are subfields of \mathbb{C}, and it can be extended to arbitrary fields of characteristic 0 via the Lefschetz principle; see [2, Thm. VI.6.1].

Lemma 18.10. Let $f(z)$ be an elliptic function with respect to a lattice L. Then $f(z)$ can be written as a rational function of $\wp(z)=\wp(z ; L)$ and $\wp^{\prime}(z)=\wp^{\prime}(z ; L)$. Moreover, if $f(z)$ is an even function, then it can be written as a rational function of $\wp(z)$ alone.

Proof. Every function $f(z)$ can be written as the sum of an even and an odd function, namely, $f(z)=f_{e}(z)+f_{o}(z)$, where

$$
f_{e}(z)=\frac{f(z)+f(-z)}{2} \quad \text { and } \quad f_{o}(z)=\frac{f(z)-f(-z)}{2} .
$$

It thus suffices to consider the cases where f is even or odd. We first consider the case that f is even, and we assume that f is nonzero, since the lemma clearly holds for $f=0$.

Suppose that f is holomorphic at all points not in L. Then it has a Laurent expansion about 0 of the form

$$
f(z)=\sum_{k=-n}^{\infty} a_{2 k} z^{2 k}
$$

where $2 n$ is the order of f. If $n \geq 0$, then f is holomorphic on \mathbb{C}, and since f is periodic with respect to L it is bounded, so by Liouville's theorem it is a constant function $f(z)=f(0)$. If $n>0$, then $f(z)-a_{-2 n} \wp^{n}(z)$ is an even elliptic function of order at most $2(n-1)$ that is holomorphic except at points in L. By repeating the process until $n=0$, we obtain a function of the form $f(z)-P(\wp(z))$, for some polynomial $p \in \mathbb{C}[x]$, and this function must be equal to a constant $a_{0} \in \mathbb{C}$. Thus $f(z)=p(\wp(z))+f(0)$ is a polynomial in $\wp(z)$.

Now suppose that f has a pole of order n at some $\omega \notin L$. If $2 \omega \in L$, we first replace f by a function of the form $g=(a f+b) /(c f+d)$, with $a, b, c, d \in \mathbb{C}$ chosen so that $a d-b c \neq 0$, such that g does has neither a zero nor a pole at ω. This transformation is invertible, so if we can write g as a rational function of \wp, then we can write f as a rational function of \wp. After repeating this process up to three times, if necessary, we may assume without loss of generality that $2 \omega \notin L$ for every $\omega \notin L$ at which f has a pole.

Consider the function

$$
(\wp(z)-\wp(\omega))^{n} \text {. }
$$

Since $2 \omega \notin L$, we have $\wp^{\prime}(\omega) \neq 0$, so ω is a simple root of $\wp(z)-\wp(\omega)$ and the function $(\wp(z)-\wp(\omega))^{n}$ has a zero of order n at ω. This implies that $(\wp(z)-\wp(\omega))^{n} f(z)$ is holomorphic at ω. After repeating this process for all of the (finitely many) poles of f in a fundamental domain, we obtain a polynomial $v \in \mathbb{C}[x]$ such that $v(\wp(z)) f(z)$ is holomorphic at all points not in L. By the argument above, we may write $v(\wp(z)) f(z)$ in the form $u(\wp(z))$, for some polynomial $u \in \mathbb{C}[x]$. Thus $f(z)=u(\wp(z)) / v(\wp(z))$ is a rational function of $\wp(z)$.

If $f(z)$ is instead an odd function, we may write

$$
f(z)=\wp^{\prime}(z) \frac{f(z)}{\wp^{\prime}(z)} .
$$

The function $f(z) / \wp^{\prime}(z)$ is even $\left(f(z)\right.$ and $\wp^{\prime}(z)$ are both odd), so we may write $f(z) / \wp^{\prime}(z)$ as a rational function of $\wp(z)$, and $f(z)$ is therefore a rational function of $\wp(z)$ and $\wp^{\prime}(z)$.

References

[1] Tom M. Apostol, Modular functions and Dirichlet series in number theory, second edition, Springer, 1990.
[2] Joseph H. Silveman, The arithmetic of elliptic curves, second edition, Springer, 2009.
[3] Elias M. Stein and Rami Shakarchi, Complex analysis, Princeton University Press, 2003.

MIT OpenCourseWare
http://ocw.mit.edu

18.783 Elliptic Curves

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1} \mathrm{An}$ analog of the inverse function theorem holds for holomorphic functions.

