19.1 Elliptic curves with a given endomorphism ring

For a lattice L, let E_L denote the elliptic curve over \mathbb{C} corresponding to the torus \mathbb{C}/L . We proved in Theorem 18.7 that

$$\operatorname{End}(E_L) \simeq \{ \alpha \in \mathbb{C} : \alpha L \subseteq L \},\tag{1}$$

and we know that this ring is isomorphic to \mathbb{Z} or an order \mathcal{O} in an imaginary quadratic field K; in fact, the ring on the right is equal to \mathbb{Z} or \mathcal{O} (viewed as a subring of \mathbb{C}).¹ To simplify the discussion, we shall treat the isomorphism in (1) as an equality and view elements of $\operatorname{End}(E_L)$ as elements of \mathbb{Z} or \mathcal{O} .

How might we construct an elliptic curve with endomorphism ring \mathcal{O} ? An obvious way is to use the lattice $L = \mathcal{O}$. If $\alpha \in \text{End}(E_{\mathcal{O}})$, then $\alpha \mathcal{O} \subseteq \mathcal{O}$, by (1), and therefore $\alpha \in \mathcal{O}$, since the ring \mathcal{O} contains 1. Conversely, if $\alpha \in \mathcal{O}$, then $\alpha \mathcal{O} \subseteq \mathcal{O}$, since \mathcal{O} is closed under multiplication, and therefore $\alpha \in \text{End}(E_{\mathcal{O}})$, by (1); thus $\text{End}(E_{\mathcal{O}}) = \mathcal{O}$.

But are there any other (non-isomorphic) examples of elliptic curves with $\operatorname{End}(E) = \mathcal{O}$? To answer this question, we would like to classify, up to homethety, the lattices L for which $\{\alpha : \alpha L \subseteq L\} = \mathcal{O}$. Without loss of generality, we may assume $L = [1, \tau]$, and $\mathcal{O} = [1, \omega]$. If $\operatorname{End}(E_L) = \mathcal{O}$, then we must have $\omega \cdot 1 = \omega \in L$, so $\omega = m + n\tau$, for some $m, n \in \mathbb{Z}$. Thus $nL = [n, \omega - m] = [n, \omega]$ (and $\mathcal{O} = [1, n\tau + m] = [1, n\tau]$). So L is homothetic to a sublattice of \mathcal{O} , and this sublattice must be closed under multiplication by \mathcal{O} ; equivalently, L is homothetic to an \mathcal{O} -ideal (a subring of \mathcal{O} closed under multiplication by \mathcal{O}).

For any \mathcal{O} -ideal L, the set $\{\alpha \in \mathbb{C} : \alpha L \subseteq L\}$ is an order that contains \mathcal{O} , which we denote $\mathcal{O}(L)$. The same is true for any lattice homothetic to an \mathcal{O} -ideal, since $\mathcal{O}(L)$ depends only on the homethety class of L. We are interested in the cases where $\mathcal{O}(L) = \mathcal{O}$, since these are precisely the (homethety classes of) lattices that give rise to elliptic curves E_L/\mathbb{C} with $\operatorname{End}(E_L) = \mathcal{O}$. When the condition $\mathcal{O}(L) = \mathcal{O}$ holds, we say that L is a proper \mathcal{O} -ideal. Note that $\mathcal{O}(L)$ is always contained in the maximal order \mathcal{O}_K , so when $\mathcal{O} = \mathcal{O}_K$ every \mathcal{O} -ideal is proper, but otherwise this is not true (Problem Set 9 asks for a counter example).

Given that $\mathcal{O}(L)$ depends only on the homethety class of L, we shall regard two \mathcal{O} ideals as *equivalent* if they are homothetic as lattices; it follows that the ideals \mathfrak{a} and \mathfrak{b} are equivalent if and only if $(\alpha)\mathfrak{a} = (\beta)\mathfrak{b}$ for some $\alpha, \beta \in \mathcal{O}$. Since the elliptic curves E_L and $E_{L'}$ are isomorphic if and only if the lattices L and L' are homothetic, two proper \mathcal{O} -ideals \mathfrak{a} and \mathfrak{b} are equivalent if and only if $E_{\mathfrak{a}} \simeq E_{\mathfrak{b}}$.

As shown in Problem Set 9, the set $cl(\mathcal{O})$ of equivalence classes of proper \mathcal{O} -ideals form a finite abelian group that is isomorphic to the group cl(D) formed by the $SL_2(\mathbb{Z})$ -equivalence classes of binary quadratic forms

$$ax^2 + bxy + cy^2$$

of discriminant $D = \sqrt{b^2 - 4ac} = \operatorname{disc}(\mathcal{O})$, where $a, b, c \in \mathbb{Z}$ have no common divisor and a > 0 > D (such forms are said to be *integral*, *primitive*, and *positive definite*). This

¹Strictly speaking, there are two ways to embed K in \mathbb{C} ; we assume that a particular embedding has been chosen, say the one that sends $\sqrt{\operatorname{disc}(K)}$ to the upper half plane.

isomorphism is important for practical applications, as it is often easier to work with the group cl(D) rather than $cl(\mathcal{O})$ (in particular, it is easy to enumerate the elements of cl(D)).

Definition 19.1. The discriminant of $\mathcal{O} = [\alpha, \beta]$ is

$$\operatorname{disc}(\mathcal{O}) = \operatorname{det} \begin{pmatrix} \alpha & \beta \\ \bar{\alpha} & \bar{\beta} \end{pmatrix}^2.$$

We have $|\operatorname{disc}([\alpha, \beta])| = 4|\alpha \times \beta|^2$, which is 4 times the square of the area of the parallelogram formed by α and β .² Since every fundamental parallelogram of a lattice has the same area, the discriminant does not depend on the choice of α and β . We can always write $\mathcal{O} = [1, \tau]$, where τ is an algebraic integer satisfying an integer quadratic equation $x^2 + bx + c$ with $b^2 - 4c < 0$ not a perfect square. We then have

$$disc(\mathcal{O}) = det \begin{pmatrix} 1 & \tau \\ 1 & \bar{\tau} \end{pmatrix}^2 = (\bar{\tau} - \tau)^2 = \bar{\tau}^2 - 2\tau\bar{\tau} + \tau^2$$

= $-(b\bar{\tau} + c) - 2c - b(\tau + c) = -b(\tau + \bar{\tau}) - 4c$
= $b^2 - 4c$, (2)

which shows that $\operatorname{disc}(\mathcal{O})$ is a negative integer that is a square (0 or 1) modulo 4, depending on the parity of b. We call such integers D (imaginary quadratic) discriminants. If $D \equiv$ 1 mod 4 and D is square-free, or if $D \equiv 0 \mod 4$ and D/4 is square-free, then D is said to be a fundamental discriminant. Every discriminant can be written in the form $D = u^2 D_K$, where D_K is a fundamental discriminant and u is a positive integer.

There is a one-to-one relationship between discriminants and orders of imaginary quadratic fields; fundamental discriminants correspond to maximal orders.

Theorem 19.2. Let D be an imaginary quadratic discriminant. There is a unique quadratic order \mathcal{O} with disc $(\mathcal{O}) = D = u^2 D_K$, where D_K is the fundamental discriminant of the maximal order \mathcal{O}_K of $K = \mathbb{Q}(\sqrt{D})$, and $u = [\mathcal{O}_K : \mathcal{O}]$ is the conductor of \mathcal{O} .

Proof. Write D as $D = u^2 D_K$, with $u \in \mathbb{Z}_{>0}$ and D_K a fundamental discriminant. Let $K = \mathbb{Q}(\sqrt{D})$, and let \mathcal{O}_K be its maximal order. Choose a shortest non-integer vector $\omega \in \mathcal{O}_K$, with minimal polynomial $x^2 + bx + c$, so that $\mathcal{O}_K = [1, \omega]$. Then $b^2 - 4c$ must equal D_K (if not, we could make ω shorter), and from (2) we see that $\operatorname{disc}(\mathcal{O}_K) = D_K$. The order $\mathcal{O} = [1, u\omega]$ then has discriminant $(u\bar{\omega} - u\omega)^2 = u^2 D_K = D$.

Conversely, if $\mathcal{O} = [1, \tau]$ is any order with discriminant D, than τ must be the root of a quadratic equation with discriminant D, by (2); therefore $\tau \in K$ and $\mathcal{O} \subseteq \mathcal{O}_K$. We must have $[\mathcal{O}_K : \mathcal{O}] = u$, since $\operatorname{disc}(\mathcal{O}) = u^2 \operatorname{disc}(\mathcal{O}_K)$ and the discriminant is proportional to the square of the area of a fundamental parallelogram. Lemma 19.3 implies $u\mathcal{O}_k \subseteq \mathcal{O}$, so $u\omega \in \mathcal{O}$, and therefore $[1, u\omega] \subseteq [1, \tau]$. Equality must hold, since both orders have index u in \mathcal{O}_K . Thus $[1, \tau] = [1, u\omega]$, so $[1, u\omega]$ is the unique order of discriminant D.

Lemma 19.3. If L' is an index n sublattice of L then nL is an index n sublattice of L'.

Proof. Without loss of generality, we may assume $L = [1, \tau]$ and $L' = [a + b\tau, c + d\tau]$. Comparing areas of the fundamental parallelograms of L and L', we have

$$\begin{aligned} n|1 \times \tau| &= |(a+b\tau) \times (c+d\tau)| \\ n|\operatorname{im} \tau| &= |(a+b\operatorname{re} \tau)d\operatorname{im} \tau - b\operatorname{im} \tau (c+d\operatorname{re} \tau)| \\ n &= |ad-bc|, \end{aligned}$$

²Recall that $|\alpha \times \beta| = |\operatorname{re} \alpha \operatorname{im} \beta - \operatorname{im} \alpha \operatorname{re} \beta| = |\operatorname{im} (\alpha \overline{\beta} - \overline{\alpha} \beta)|/2.$

Thus $d(a + b\tau) - b(c + d\tau) = \pm n$ and $a(c + d\tau) - c(a + b\tau) = \pm n\tau$, therefore $nL \subseteq L'$. We then have [L:L'] = n and $[L:L'][L':nL] = [nL:L] = n^2$, so [L':nL] = n.

We now consider the set of isomorphism classes of elliptic curves E/\mathbb{C} with endomorphism ring \mathcal{O} , which we define as

$$\operatorname{Ell}_{\mathcal{O}}(\mathbb{C}) = \{j(E) : E \text{ is defined over } \mathbb{C} \text{ and } \operatorname{End}(E) = \mathcal{O}\}.$$

It follows from our discussion above that there is a bijection from $\operatorname{cl}(\mathcal{O})$ to $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$ that sends the equivalence class $[\mathfrak{a}]$ to the isomorphism class $j(E_{\mathfrak{a}})$. To get the reverse map, we note that every elliptic curve E/\mathbb{C} is isomorphic to a torus \mathbb{C}/L (by the Uniformization Theorem), and if $\operatorname{End}(E) = \mathcal{O}$, then L is homothetic to a proper \mathcal{O} -ideal \mathfrak{a} whose equivalence class $[\mathfrak{a}]$ is uniquely determined by $j(\mathfrak{a}) = j(L) = j(E)$. Since $\operatorname{cl}(\mathcal{O})$ is a finite group, $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$ is a finite set, and its cardinality is equal to the class number $h(\mathcal{O}) = |\operatorname{cl}(\mathcal{O})|$, which we may also write as h(D), where $D = \operatorname{disc}(\mathcal{O})$.

19.2 The action of the class group

Not only are the sets $cl(\mathcal{O})$ and $Ell_{\mathcal{O}}(\mathbb{C})$ in bijection, the group $cl(\mathcal{O})$ acts on the set $Ell_{\mathcal{O}}(\mathbb{C})$. To define this action, we first recall the definition of a fractional \mathcal{O} -ideal.

Let K be the imaginary quadratic field containing \mathcal{O} . Lattices of the form $\mathfrak{b} = \lambda \mathfrak{a}$, where $\lambda \in K^*$ and \mathfrak{a} is an \mathcal{O} -ideal, are called *fractional* \mathcal{O} -*ideals*. If \mathfrak{b} is any fractional \mathcal{O} -ideal, we let $\mathcal{O}(\mathfrak{b}) = \{\alpha : \alpha \mathfrak{b} \subseteq \mathfrak{b}\}$ be the order of \mathfrak{b} , and say that \mathfrak{b} is proper if $\mathcal{O}(\mathfrak{b}) = \mathcal{O}$. We say that \mathfrak{b} is *invertible* if there exists a fractional \mathcal{O} -ideal \mathfrak{b}^{-1} for which $\mathfrak{b}\mathfrak{b}^{-1} = \mathcal{O}$.

Lemma 19.4. Let \mathfrak{a} be an \mathcal{O} -ideal, and let $\mathfrak{b} = \lambda \mathfrak{a}$ be a fractional \mathcal{O} -ideal. Then \mathfrak{a} is proper if and only if \mathfrak{b} is proper, and \mathfrak{a} is invertible if and only if \mathfrak{b} is invertible.

Proof. For the first statement, note that $\{\alpha : \alpha \mathfrak{b} \subseteq \mathfrak{b}\} = \{\alpha : \alpha \lambda \mathfrak{a} \subseteq \lambda \mathfrak{a}\} = \{\alpha : \alpha \mathfrak{a} \subseteq \mathfrak{a}\}$. For the second, if \mathfrak{a} is invertible, then $\mathfrak{b}^{-1} = \lambda^{-1}\mathfrak{a}^{-1}$, and if \mathfrak{b} is invertible then $\mathfrak{a}^{-1} = \lambda \mathfrak{b}^{-1}$, since we have $\mathfrak{a}\mathfrak{a}^{-1} = \mathfrak{a}\lambda\mathfrak{b}^{-1} = \mathfrak{O}$.

We now prove that the invertible \mathcal{O} -ideals are precisely the proper \mathcal{O} -ideals and give an explicit formula for the inverse; the proof below follows [2, Ch. 7].

Theorem 19.5. Let $\mathfrak{a} = [\alpha, \beta]$ be an \mathcal{O} -ideal. Then \mathfrak{a} is proper if and only if \mathfrak{a} is invertible. Whenever \mathfrak{a} is invertible we have $\mathfrak{a}\overline{\mathfrak{a}} = N(\mathfrak{a})\mathcal{O}$, where $N(\mathfrak{a}) = [\mathcal{O} : \mathfrak{a}]$ and $\overline{\mathfrak{a}} = [\overline{\alpha}, \overline{\beta}]$, and the inverse of \mathfrak{a} is then the fractional \mathcal{O} -ideal $\mathfrak{a}^{-1} = \frac{1}{N(\mathfrak{a})}\overline{\mathfrak{a}}$.

Proof. We first assume that $\mathbf{a} = [\alpha, \beta]$ is a proper \mathcal{O} -ideal and show that $\mathbf{a}\overline{\mathbf{a}} = N(\mathfrak{a})\mathcal{O}$, hence \mathfrak{a} has $\mathfrak{a}^{-1} = \frac{1}{N(a)}\overline{\mathfrak{a}}$ as an inverse. Let $\tau = \beta/\alpha$, so that $\mathfrak{a} = \alpha[1, \tau]$, and let $ax^2 + bx + c$ be the minimal polynomial of τ , with gcd(a, b, c) = 1. The fractional ideal $[1, \tau]$ is homothetic to \mathfrak{a} , and we have $\mathcal{O}([1, \tau]) = \mathcal{O}(\mathfrak{a}) = \mathcal{O}$, since \mathfrak{a} is proper.

Let $\mathcal{O} = [1, \omega]$. We must have, so $\omega \in [1, \tau]$, so $\omega = m + n\tau$ for some integers m and n; replacing ω with $\omega - m$, we may assume $\omega = n\tau$. We must also have $\omega\tau \in [1, \tau]$, so $n\tau^2 \in [1, \tau]$, which implies that a|n, else the minimal polynomial of τ would have leading coefficient smaller than a. But note that $a\tau[1,\tau] \subseteq [1,\tau]$, so $\alpha\tau \in \mathcal{O}([1,\tau]) = \mathcal{O}$, therefore n = a and $\mathcal{O} = [1, a\tau]$. We than have $N(\mathfrak{a}) = [\mathcal{O}:\mathfrak{a}] = [[1, a\tau]: \alpha[1, \tau]] = N(\alpha)/a$, and

$$\mathfrak{a}\bar{\mathfrak{a}} = \alpha \bar{\alpha}[1,\tau][1,\bar{\tau}] = N(\alpha)[1,\tau,\bar{\tau},\tau\bar{\tau}].$$

Since $a\tau^2 + b\tau + c = 0$, we have $\tau + \bar{\tau} = -b/a$, and $\tau\bar{\tau} = c/a$, with gcd(a, b, c) = 1, so

$$\mathfrak{a}\bar{\mathfrak{a}} = N(\alpha)\frac{1}{a}[a, a\tau, -b, c] = N(\mathfrak{a})[1, a\tau] = N(\mathfrak{a})\mathcal{O}.$$

Conversely, if \mathfrak{a} is invertible, then for any $\gamma \in \mathbb{C}$ we have

$$\gamma \mathfrak{a} \subseteq \mathfrak{a} \implies \gamma \mathfrak{a} \mathfrak{a}^{-1} \subseteq \mathfrak{a} \mathfrak{a}^{-1} \implies \gamma \mathcal{O} \subseteq \mathcal{O} \implies \gamma \in \mathcal{O},$$

so $\mathcal{O}(\mathfrak{a}) \subseteq \mathcal{O}$, and therefore \mathfrak{a} is a proper \mathcal{O} -ideal.

Now let E/\mathbb{C} be an elliptic curve with $\operatorname{End}(E) = \mathcal{O}$. Then E is isomorphic to $E_{\mathfrak{b}}$, for some proper \mathcal{O} -ideal \mathfrak{b} . For any proper \mathcal{O} -ideal \mathfrak{a} we define the action of \mathfrak{a} on $E_{\mathfrak{b}}$ via

$$\mathfrak{a}E_{\mathfrak{b}} = E_{\mathfrak{a}^{-1}\mathfrak{b}} \tag{3}$$

(the reason for using $E_{\mathfrak{a}^{-1}\mathfrak{b}}$ rather than $E_{\mathfrak{a}\mathfrak{b}}$ will become clear later). The action of the equivalence class $[\mathfrak{a}]$ on the isomorphism class $j(E_{\mathfrak{b}})$, is then defined by

$$[\mathfrak{a}]j(E_{\mathfrak{b}}) = j(E_{\mathfrak{a}^{-1}\mathfrak{b}}),\tag{4}$$

which we could also write as $[\mathfrak{a}]j(\mathfrak{b}) = j(\mathfrak{a}^{-1}\mathfrak{b})$, and it is clear that this does not depend on the choice of representatives \mathfrak{a} and \mathfrak{b} .

If \mathfrak{a} is a principal \mathcal{O} -ideal, then the lattices \mathfrak{a} and $\mathfrak{a}^{-1}\mathfrak{b}$ are homothetic, and we have $\mathfrak{a}E_{\mathfrak{b}} \simeq E_{\mathfrak{b}}$. Thus the identity element of $\mathrm{cl}(\mathcal{O})$ acts trivially on $\mathrm{Ell}_{\mathcal{O}}(\mathbb{C})$. For any proper \mathcal{O} -ideals $\mathfrak{a},\mathfrak{b}$, and \mathfrak{c} we have

$$\mathfrak{a}(\mathfrak{b} E_{\mathfrak{c}}) = \mathfrak{a} E_{\mathfrak{b}^{-1}\mathfrak{c}} = E_{\mathfrak{a}^{-1}\mathfrak{b}^{-1}\mathfrak{c}} = E_{(\mathfrak{b}\mathfrak{a})^{-1}\mathfrak{c}} = (\mathfrak{b}\mathfrak{a})E_{\mathfrak{c}} = (\mathfrak{a}\mathfrak{b})E_{\mathfrak{c}}.$$

Thus we have a well-defined group action of $cl(\mathcal{O})$ on $Ell_{\mathcal{O}}(\mathbb{C})$. Only principal \mathcal{O} -ideals act trivially, so the $cl(\mathcal{O})$ -action is faithful. The fact that the sets $cl(\mathcal{O})$ and $Ell_{\mathcal{O}}(\mathbb{C})$ have the same cardinality implies that the action is also transitive (there is just one $cl(\mathcal{O})$ -orbit).

A group action that is both faithful and transitive is called *regular*. The action of a group G on a set X is regular if and only if for all $x, y \in X$ there is a unique $g \in G$ for which gx = y. In this situation the set X is said to be a *principal homogenous space* for G, or simply a *G*-torsor. With this terminology, the set $\text{Ell}_{\mathcal{O}}(\mathbb{C})$ is a $\text{cl}(\mathcal{O})$ -torsor.

If we fix a particular element x of a G-torsor X, we can then view X as a group that is isomorphic to G under the map that sends $y \in X$ to the unique element $g \in G$ for which gx = y. Note that this involves an arbitrary choice of the identity element x; rather than thinking of elements of X as group elements, it is perhaps more appropriate to think of the "difference" or "ratios" of elements of X as group elements. In the case of the $cl(\mathcal{O})$ -torsor $Ell_{\mathcal{O}}(\mathbb{C})$ there is an obvious choice for the identity element: the isomorphism class $j(E_{\mathcal{O}})$. But when we reduce to a finite field \mathbb{F}_q and work with the $cl(\mathcal{O})$ -torsor $Ell_{\mathcal{O}}(\mathbb{F}_q)$, as we shall soon do, we cannot readily distinguish the element of $Ell_{\mathcal{O}}(\mathbb{F}_q)$ that corresponds to $j(E_{\mathcal{O}})$.

19.3 Isogenies over the complex numbers

To better understand the $cl(\mathcal{O})$ -action on $Ell_{\mathcal{O}}(\mathbb{C})$ we need to look at isogenies between elliptic curves over the complex numbers. Let $L \subseteq L'$ be lattices, and let E and E' be the elliptic curves corresponding to \mathbb{C}/L and \mathbb{C}/L' , respectively. The map $\iota : \mathbb{C}/L \to \mathbb{C}/L'$ that lifts $z \in \mathbb{C}/L$ to \mathbb{C} and then reduces it modulo L' induces an isogeny $\phi : E \to E'$ that makes the following diagram commute:

$$\begin{array}{c} \mathbb{C}/L \longrightarrow \mathbb{C}/L' \\ | & | \\ \Phi & \Phi' \\ \downarrow & \downarrow \\ E(\mathbb{C}) \longrightarrow \phi \longrightarrow E'(\mathbb{C}) \end{array}$$

The isomorphism Φ sends $z \in \mathbb{C}/L$ to the point $(\wp(z; L), \wp'(z; L))$ on E, and the isomorphism Φ' sends $z \in \mathbb{C}/L'$ to the point $(\wp(z; L'), \wp'(z; L'))$ on E'.

It is clear that the map $\phi = \Phi' \circ \iota \circ \Phi^{-1}$ is a group homomorphism, and in fact it is a rational map and therefore an isogeny. To see this, notice that the meromorphic function $\wp(z; L')$ is periodic with respect to L', and since $L \subseteq L'$ it is also periodic with respect to L. It is thus an elliptic function for L, and since it is an even function, it may be expressed as a rational function of $\wp(z; L)$, by Lemma 18.10. Thus $\wp(z; L') = u(\wp(z; L))/v(\wp(z; L))$ for some polynomials $u, v \in \mathbb{C}[x]$. Similarly, $\wp'(z; L')$ is an odd elliptic function for L and may be written in the form $\wp'(z, L') = (s(\wp(z; L))/s(\wp(z; L)))\wp'(z; L))$ for some $s, t \in \mathbb{C}[x]$. Thus

$$\phi(x,y) = \left(\frac{u(x)}{v(x)}, \frac{s(x)}{t(x)}y\right).$$

The points in the kernel of ϕ are precisely the points $(\wp(z; L), \wp'(z; L))$ for which $z \in L'$. It follows that the size of the kernel is the index of L in L', and since we are in characteristic zero, the isogeny ϕ must be separable and we have deg $\phi = |\ker \phi| = [L' : L]$.

We now note that the homothetic lattice L'' = nL' has index n in L, by Lemma 19.3. If we let E''/\mathbb{C} be the elliptic curve corresponding to \mathbb{C}/L'' (which is isomorphic to E'), then the inclusion map $\iota: \mathbb{C}/L'' \to \mathbb{C}/L'$ induces an isogeny $\tilde{\phi}: E'' \to E$ of degree n. Composing $\tilde{\phi}$ with the isomorphism from E' to E'', we obtain the dual isogeny $\hat{\phi}: E' \to E$, since the composition $\phi \circ \hat{\phi}$ is precisely the multiplication-by-n map on E'.

If \mathfrak{a} and \mathfrak{b} are proper \mathcal{O} -ideals, there is an isogeny from $E_{\mathfrak{b}}$ to $\mathfrak{a}E_{\mathfrak{b}} = E_{\mathfrak{a}^{-1}\mathfrak{b}}$ induced by the lattice inclusion $\mathfrak{b} \subseteq \mathfrak{a}^{-1}\mathfrak{b}$. Thus there is always an isogeny $\phi_{\mathfrak{a}}$ associated to the action of \mathfrak{a} on $E_{\mathfrak{b}}$ defined in (3). Given any elliptic curve E/\mathbb{C} with endomorphism ring \mathcal{O} and an \mathcal{O} -ideal \mathfrak{a} , we define the \mathfrak{a} -torsion subgroup

$$E[\mathfrak{a}] = \{ P \in E(\mathbb{C}) : \alpha P = 0 \text{ for all } \alpha \in \mathfrak{a} \},\$$

where we view $\alpha \in \mathfrak{a} \subset \mathcal{O} \simeq \operatorname{End}(E)$ as the multiplication-by- α endomorphism.

Theorem 19.6. Let \mathcal{O} be an imaginary quadratic order, let E/\mathbb{C} be an elliptic curve with endomorphism ring \mathcal{O} , let \mathfrak{a} be a proper \mathcal{O} -ideal, and let ϕ be the corresponding isogeny from E to $\mathfrak{a}E$. The following hold:

(i) ker
$$\phi = E[\mathfrak{a}];$$

(ii) $\deg \phi = N(\mathfrak{a}).$

Proof. By composing ϕ with an isomorphism if necessary, we may assume without loss of generality we assume $E = E_{\mathfrak{b}}$ for some proper \mathcal{O} -ideal \mathfrak{b} . Let Φ be the isomorphism from

 $\mathbb{C}/\mathfrak{b}\to E_\mathfrak{b}$ that sends z to $(\wp(z),\wp'(z)).$ We have

$$\Phi^{-1}(E[\mathfrak{a}]) = \{z \in \mathbb{C}/\mathfrak{b} : \alpha z = 0 \text{ for all } \alpha \in \mathfrak{a}\} \\ = \{z \in \mathbb{C} : \alpha z \in \mathfrak{b} \text{ for all } \alpha \in \mathfrak{a}\}/\mathfrak{b} \\ = \{z \in \mathbb{C} : z\mathfrak{a} \subseteq \mathfrak{b}\}/\mathfrak{b} \\ = \{z \in \mathbb{C} : z\mathcal{O} \subseteq \mathfrak{a}^{-1}\mathfrak{b}\}/\mathfrak{b} \\ = (\mathfrak{a}^{-1}\mathfrak{b})/\mathfrak{b} \\ = \ker\left(\mathbb{C}/\mathfrak{b} \xrightarrow{z \to z} \mathbb{C}/\mathfrak{a}^{-1}\mathfrak{b}\right) \\ = \Phi^{-1}(\ker \phi).$$

This proves (i). We then note that

$$\#E[\mathfrak{a}] = \#(\mathfrak{a}^{-1}\mathfrak{b})/\mathfrak{b} = [\mathfrak{a}^{-1}\mathfrak{b}:\mathfrak{b}] = [\mathfrak{b}:\mathfrak{a}\mathfrak{b}] = [\mathcal{O}:\mathfrak{a}\mathcal{O}] = [\mathcal{O}:\mathfrak{a}] = N(\mathfrak{a}),$$

which proves (ii).

References

[2] David A. Cox, Primes of the form $x^2 + ny^2$: Fermat, class field theory, and complex multiplication, Wiley, 1989.

18.783 Elliptic Curves Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.