19.1 Elliptic curves with a given endomorphism ring

For a lattice L, let E_{L} denote the elliptic curve over \mathbb{C} corresponding to the torus \mathbb{C} / L. We proved in Theorem 18.7 that

$$
\begin{equation*}
\operatorname{End}\left(E_{L}\right) \simeq\{\alpha \in \mathbb{C}: \alpha L \subseteq L\}, \tag{1}
\end{equation*}
$$

and we know that this ring is isomorphic to \mathbb{Z} or an order \mathcal{O} in an imaginary quadratic field K; in fact, the ring on the right is equal to \mathbb{Z} or \mathcal{O} (viewed as a subring of $\mathbb{C}) . \mathfrak{1}^{1}$ To simplify the discussion, we shall treat the isomorphism in (1) as an equality and view elements of $\operatorname{End}\left(E_{L}\right)$ as elements of \mathbb{Z} or \mathcal{O}.

How might we construct an elliptic curve with endomorphism ring \mathcal{O} ? An obvious way is to use the lattice $L=\mathcal{O}$. If $\alpha \in \operatorname{End}\left(E_{\mathcal{O}}\right)$, then $\alpha \mathcal{O} \subseteq \mathcal{O}$, by (1), and therefore $\alpha \in \mathcal{O}$, since the ring \mathcal{O} contains 1 . Conversely, if $\alpha \in \mathcal{O}$, then $\alpha \mathcal{O} \subseteq \mathcal{O}$, since \mathcal{O} is closed under multiplication, and therefore $\alpha \in \operatorname{End}\left(E_{\mathcal{O}}\right)$, by (1); thus $\operatorname{End}\left(E_{\mathcal{O}}\right)=\mathcal{O}$.

But are there any other (non-isomorphic) examples of elliptic curves with $\operatorname{End}(E)=\mathcal{O}$? To answer this question, we would like to classify, up to homethety, the lattices L for which $\{\alpha: \alpha L \subseteq L\}=\mathcal{O}$. Without loss of generality, we may assume $L=[1, \tau]$, and $\mathcal{O}=[1, \omega]$. If $\operatorname{End}\left(E_{L}\right)=\mathcal{O}$, then we must have $\omega \cdot 1=\omega \in L$, so $\omega=m+n \tau$, for some $m, n \in \mathbb{Z}$. Thus $n L=[n, \omega-m]=[n, \omega]$ (and $\mathcal{O}=[1, n \tau+m]=[1, n \tau]$). So L is homothetic to a sublattice of \mathcal{O}, and this sublattice must be closed under multiplication by \mathcal{O}; equivalently, L is homothetic to an \mathcal{O}-ideal (a subring of \mathcal{O} closed under multiplication by \mathcal{O}).

For any \mathcal{O}-ideal L, the set $\{\alpha \in \mathbb{C}: \alpha L \subseteq L\}$ is an order that contains \mathcal{O}, which we denote $\mathcal{O}(L)$. The same is true for any lattice homothetic to an \mathcal{O}-ideal, since $\mathcal{O}(L)$ depends only on the homethety class of L. We are interested in the cases where $\mathcal{O}(L)=\mathcal{O}$, since these are precisely the (homethety classes of) lattices that give rise to elliptic curves E_{L} / \mathbb{C} with $\operatorname{End}\left(E_{L}\right)=\mathcal{O}$. When the condition $\mathcal{O}(L)=\mathcal{O}$ holds, we say that L is a proper \mathcal{O}-ideal. Note that $\mathcal{O}(L)$ is always contained in the maximal order \mathcal{O}_{K}, so when $\mathcal{O}=\mathcal{O}_{K}$ every \mathcal{O}-ideal is proper, but otherwise this is not true (Problem Set 9 asks for a counter example).

Given that $\mathcal{O}(L)$ depends only on the homethety class of L, we shall regard two \mathcal{O} ideals as equivalent if they are homothetic as lattices; it follows that the ideals \mathfrak{a} and \mathfrak{b} are equivalent if and only if $(\alpha) \mathfrak{a}=(\beta) \mathfrak{b}$ for some $\alpha, \beta \in \mathcal{O}$. Since the elliptic curves E_{L} and $E_{L^{\prime}}$ are isomorphic if and only if the lattices L and L^{\prime} are homothetic, two proper \mathcal{O}-ideals \mathfrak{a} and \mathfrak{b} are equivalent if and only if $E_{\mathfrak{a}} \simeq E_{\mathfrak{b}}$.

As shown in Problem Set 9 , the set $\operatorname{cl}(\mathcal{O})$ of equivalence classes of proper \mathcal{O}-ideals form a finite abelian group that is isomorphic to the group $\operatorname{cl}(D)$ formed by the $\mathrm{SL}_{2}(\mathbb{Z})$-equivalence classes of binary quadratic forms

$$
a x^{2}+b x y+c y^{2}
$$

of discriminant $D=\sqrt{b^{2}-4 a c}=\operatorname{disc}(\mathcal{O})$, where $a, b, c \in \mathbb{Z}$ have no common divisor and $a>0>D$ (such forms are said to be integral, primitive, and positive definite). This

[^0]isomorphism is important for practical applications, as it is often easier to work with the group $\operatorname{cl}(D)$ rather than $\operatorname{cl}(\mathcal{O})$ (in particular, it is easy to enumerate the elements of $\operatorname{cl}(D)$).

Definition 19.1. The discriminant of $\mathcal{O}=[\alpha, \beta]$ is

$$
\operatorname{disc}(\mathcal{O})=\operatorname{det}\left(\begin{array}{ll}
\alpha & \beta \\
\bar{\alpha} & \bar{\beta}
\end{array}\right)^{2}
$$

We have $|\operatorname{disc}([\alpha, \beta])|=4|\alpha \times \beta|^{2}$, which is 4 times the square of the area of the parallelogram formed by α and $\beta .{ }_{-}^{2}$ Since every fundamental parallelogram of a lattice has the same area, the discriminant does not depend on the choice of α and β. We can always write $\mathcal{O}=[1, \tau]$, where τ is an algebraic integer satisfying an integer quadratic equation $x^{2}+b x+c$ with $b^{2}-4 c<0$ not a perfect square. We then have

$$
\begin{align*}
\operatorname{disc}(\mathcal{O}) & =\operatorname{det}\left(\begin{array}{ll}
1 & \tau \\
1 & \bar{\tau}
\end{array}\right)^{2}=(\bar{\tau}-\tau)^{2}=\bar{\tau}^{2}-2 \tau \bar{\tau}+\tau^{2} \\
& =-(b \bar{\tau}+c)-2 c-b(\tau+c)=-b(\tau+\bar{\tau})-4 c \\
& =b^{2}-4 c, \tag{2}
\end{align*}
$$

which shows that $\operatorname{disc}(\mathcal{O})$ is a negative integer that is a square (0 or 1) modulo 4 , depending on the parity of b. We call such integers D (imaginary quadratic) discriminants. If $D \equiv$ $1 \bmod 4$ and D is square-free, or if $D \equiv 0 \bmod 4$ and $D / 4$ is square-free, then D is said to be a fundamental discriminant. Every discriminant can be written in the form $D=u^{2} D_{K}$, where D_{K} is a fundamental discriminant and u is a positive integer.

There is a one-to-one relationship between discriminants and orders of imaginary quadratic fields; fundamental discriminants correspond to maximal orders.
Theorem 19.2. Let D be an imaginary quadratic discriminant. There is a unique quadratic order \mathcal{O} with $\operatorname{disc}(\mathcal{O})=D=u^{2} D_{K}$, where D_{K} is the fundamental discriminant of the maximal order \mathcal{O}_{K} of $K=\mathbb{Q}(\sqrt{D})$, and $u=\left[\mathcal{O}_{K}: \mathcal{O}\right]$ is the conductor of \mathcal{O}.
Proof. Write D as $D=u^{2} D_{K}$, with $u \in \mathbb{Z}_{>0}$ and D_{K} a fundamental discriminant. Let $K=\mathbb{Q}(\sqrt{D})$, and let \mathcal{O}_{K} be its maximal order. Choose a shortest non-integer vector $\omega \in \mathcal{O}_{K}$, with minimal polynomial $x^{2}+b x+c$, so that $\mathcal{O}_{K}=[1, \omega]$. Then $b^{2}-4 c$ must equal D_{K} (if not, we could make ω shorter), and from (2) we see that $\operatorname{disc}\left(\mathcal{O}_{K}\right)=D_{K}$. The order $\mathcal{O}=[1, u \omega]$ then has discriminant $(u \bar{\omega}-u \omega)^{2}=u^{2} D_{K}=D$.

Conversely, if $\mathcal{O}=[1, \tau]$ is any order with discriminant D, than τ must be the root of a quadratic equation with discriminant D, by (2); therefore $\tau \in K$ and $\mathcal{O} \subseteq \mathcal{O}_{K}$. We must have $\left[\mathcal{O}_{K}: \mathcal{O}\right]=u, \operatorname{since} \operatorname{disc}(\mathcal{O})=u^{2} \operatorname{disc}\left(\mathcal{O}_{K}\right)$ and the discriminant is proportional to the square of the area of a fundamental parallelogram. Lemma 19.3 implies $u \mathcal{O}_{k} \subseteq \mathcal{O}$, so $u \omega \in \mathcal{O}$, and therefore $[1, u \omega] \subseteq[1, \tau]$. Equality must hold, since both orders have index u in \mathcal{O}_{K}. Thus $[1, \tau]=[1, u \omega]$, so $[1, u \omega]$ is the unique order of discriminant D.

Lemma 19.3. If L^{\prime} is an index n sublattice of L then $n L$ is an index n sublattice of L^{\prime}.
Proof. Without loss of generality, we may assume $L=[1, \tau]$ and $L^{\prime}=[a+b \tau, c+d \tau]$. Comparing areas of the fundamental parallelograms of L and L^{\prime}, we have

$$
\begin{aligned}
n|1 \times \tau| & =|(a+b \tau) \times(c+d \tau)| \\
n|\operatorname{im} \tau| & =|(a+b \operatorname{re} \tau) d \operatorname{im} \tau-b \operatorname{im} \tau(c+d \operatorname{re} \tau)| \\
n & =|a d-b c|,
\end{aligned}
$$

[^1]Thus $d(a+b \tau)-b(c+d \tau)= \pm n$ and $a(c+d \tau)-c(a+b \tau)= \pm n \tau$, therefore $n L \subseteq L^{\prime}$. We then have $\left[L: L^{\prime}\right]=n$ and $\left[L: L^{\prime}\right]\left[L^{\prime}: n L\right]=[n L: L]=n^{2}$, so $\left[L^{\prime}: n L\right]=n$.

We now consider the set of isomorphism classes of elliptic curves E / \mathbb{C} with endomorphism ring \mathcal{O}, which we define as

$$
E l_{\mathcal{O}}(\mathbb{C})=\{j(E): E \text { is defined over } \mathbb{C} \text { and } \operatorname{End}(E)=\mathcal{O}\} .
$$

It follows from our discussion above that there is a bijection from $\operatorname{cl}(\mathcal{O})$ to $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$ that sends the equivalence class $[\mathfrak{a}]$ to the isomorphism class $j\left(E_{\mathfrak{a}}\right)$. To get the reverse map, we note that every elliptic curve E / \mathbb{C} is isomorphic to a torus \mathbb{C} / L (by the Uniformization Theorem), and if $\operatorname{End}(E)=\mathcal{O}$, then L is homothetic to a proper \mathcal{O}-ideal \mathfrak{a} whose equivalence class $[\mathfrak{a}]$ is uniquely determined by $j(\mathfrak{a})=j(L)=j(E)$. Since $\operatorname{cl}(\mathcal{O})$ is a finite group, $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$ is a finite set, and its cardinality is equal to the class number $h(\mathcal{O})=|\mathrm{cl}(\mathcal{O})|$, which we may also write as $h(D)$, where $D=\operatorname{disc}(\mathcal{O})$.

19.2 The action of the class group

Not only are the sets $\operatorname{cl}(\mathcal{O})$ and $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$ in bijection, the group $\operatorname{cl}(\mathcal{O})$ acts on the set $E l l_{\mathcal{O}}(\mathbb{C})$. To define this action, we first recall the definition of a fractional \mathcal{O}-ideal.

Let K be the imaginary quadratic field containing \mathcal{O}. Lattices of the form $\mathfrak{b}=\lambda \mathfrak{a}$, where $\lambda \in K^{*}$ and \mathfrak{a} is an \mathcal{O}-ideal, are called fractional \mathcal{O}-ideals. If \mathfrak{b} is any fractional \mathcal{O}-ideal, we let $\mathcal{O}(\mathfrak{b})=\{\alpha: \alpha \mathfrak{b} \subseteq \mathfrak{b}\}$ be the order of \mathfrak{b}, and say that \mathfrak{b} is proper if $\mathcal{O}(\mathfrak{b})=\mathcal{O}$. We say that \mathfrak{b} is invertible if there exists a fractional \mathcal{O}-ideal \mathfrak{b}^{-1} for which $\mathfrak{b b}{ }^{-1}=\mathcal{O}$.

Lemma 19.4. Let \mathfrak{a} be an \mathcal{O}-ideal, and let $\mathfrak{b}=\lambda \mathfrak{a}$ be a fractional \mathcal{O}-ideal. Then \mathfrak{a} is proper if and only if \mathfrak{b} is proper, and \mathfrak{a} is invertible if and only if \mathfrak{b} is invertible.

Proof. For the first statement, note that $\{\alpha: \alpha \mathfrak{b} \subseteq \mathfrak{b}\}=\{\alpha: \alpha \lambda \mathfrak{a} \subseteq \lambda \mathfrak{a}\}=\{\alpha: \alpha \mathfrak{a} \subseteq \mathfrak{a}\}$. For the second, if \mathfrak{a} is invertible, then $\mathfrak{b}^{-1}=\lambda^{-1} \mathfrak{a}^{-1}$, and if \mathfrak{b} is invertible then $\mathfrak{a}^{-1}=\lambda \mathfrak{b}^{-1}$, since we have $\mathfrak{a} \mathfrak{a}^{-1}=\mathfrak{a} \lambda \mathfrak{b}^{-1}=\mathfrak{b b}^{-1}=\mathcal{O}$.

We now prove that the invertible \mathcal{O}-ideals are precisely the proper \mathcal{O}-ideals and give an explicit formula for the inverse; the proof below follows [2, Ch. 7].

Theorem 19.5. Let $\mathfrak{a}=[\alpha, \beta]$ be an \mathcal{O}-ideal. Then \mathfrak{a} is proper if and only if \mathfrak{a} is invertible. Whenever \mathfrak{a} is invertible we have $\mathfrak{a} \overline{\mathfrak{a}}=N(\mathfrak{a}) \mathcal{O}$, where $\mathrm{N}(\mathfrak{a})=[\mathcal{O}: \mathfrak{a}]$ and $\overline{\mathfrak{a}}=[\bar{\alpha}, \bar{\beta}]$, and the inverse of \mathfrak{a} is then the fractional \mathcal{O}-ideal $\mathfrak{a}^{-1}=\frac{1}{N(\mathfrak{a})} \overline{\mathfrak{a}}$.

Proof. We first assume that $\mathfrak{a}=[\alpha, \beta]$ is a proper \mathcal{O}-ideal and show that $\mathfrak{a} \overline{\mathfrak{a}}=N(\mathfrak{a}) \mathcal{O}$, hence \mathfrak{a} has $\mathfrak{a}^{-1}=\frac{1}{N(a)} \overline{\mathfrak{a}}$ as an inverse. Let $\tau=\beta / \alpha$, so that $\mathfrak{a}=\alpha[1, \tau]$, and let $a x^{2}+b x+c$ be the minimal polynomial of τ, with $\operatorname{gcd}(a, b, c)=1$. The fractional ideal $[1, \tau]$ is homothetic to \mathfrak{a}, and we have $\mathcal{O}([1, \tau])=\mathcal{O}(\mathfrak{a})=\mathcal{O}$, since \mathfrak{a} is proper.

Let $\mathcal{O}=[1, \omega]$. We must have, so $\omega \in[1, \tau]$, so $\omega=m+n \tau$ for some integers m and n; replacing ω with $\omega-m$, we may assume $\omega=n \tau$. We must also have $\omega \tau \in[1, \tau]$, so $n \tau^{2} \in[1, \tau]$, which implies that $a \mid n$, else the minimal polynomial of τ would have leading coefficient smaller than a. But note that $a \tau[1, \tau] \subseteq[1, \tau]$, so $\alpha \tau \in \mathcal{O}([1, \tau])=\mathcal{O}$, therefore $n=a$ and $\mathcal{O}=[1, a \tau]$. We than have $N(\mathfrak{a})=[\mathcal{O}: \mathfrak{a}]=[[1, a \tau]: \alpha[1, \tau]]=N(\alpha) / a$, and

$$
\mathfrak{a} \overline{\mathfrak{a}}=\alpha \bar{\alpha}[1, \tau][1, \bar{\tau}]=N(\alpha)[1, \tau, \bar{\tau}, \tau \bar{\tau}] .
$$

Since $a \tau^{2}+b \tau+c=0$, we have $\tau+\bar{\tau}=-b / a$, and $\tau \bar{\tau}=c / a$, with $\operatorname{gcd}(a, b, c)=1$, so

$$
\mathfrak{a} \overline{\mathfrak{a}}=N(\alpha) \frac{1}{a}[a, a \tau,-b, c]=N(\mathfrak{a})[1, a \tau]=N(\mathfrak{a}) \mathcal{O} .
$$

Conversely, if \mathfrak{a} is invertible, then for any $\gamma \in \mathbb{C}$ we have
so $\mathcal{O}(\mathfrak{a}) \subseteq \mathcal{O}$, and therefore \mathfrak{a} is a proper \mathcal{O}-ideal.

Now let E / \mathbb{C} be an elliptic curve with $\operatorname{End}(E)=\mathcal{O}$. Then E is isomorphic to $E_{\mathfrak{b}}$, for some proper \mathcal{O}-ideal \mathfrak{b}. For any proper \mathcal{O}-ideal \mathfrak{a} we define the action of \mathfrak{a} on $E_{\mathfrak{b}}$ via

$$
\begin{equation*}
\mathfrak{a} E_{\mathfrak{b}}=E_{\mathfrak{a}^{-1}} \mathfrak{b} \tag{3}
\end{equation*}
$$

(the reason for using $E_{\mathfrak{a}^{-1} \mathfrak{b}}$ rather than $E_{\mathfrak{a b}}$ will become clear later). The action of the equivalence class $[\mathfrak{a}]$ on the isomorphism class $j\left(E_{\mathfrak{b}}\right)$, is then defined by

$$
\begin{equation*}
[\mathfrak{a}] j\left(E_{\mathfrak{b}}\right)=j\left(E_{\mathfrak{a}^{-1} \mathfrak{b}}\right), \tag{4}
\end{equation*}
$$

which we could also write as $[\mathfrak{a}] j(\mathfrak{b})=j\left(\mathfrak{a}^{-1} \mathfrak{b}\right)$, and it is clear that this does not depend on the choice of representatives \mathfrak{a} and \mathfrak{b}.

If \mathfrak{a} is a principal \mathcal{O}-ideal, then the lattices \mathfrak{a} and $\mathfrak{a}^{-1} \mathfrak{b}$ are homothetic, and we have $\mathfrak{a} E_{\mathfrak{b}} \simeq E_{\mathfrak{b}}$. Thus the identity element of $\operatorname{cl}(\mathcal{O})$ acts trivially on $\mathrm{Ell}_{\mathcal{O}}(\mathbb{C})$. For any proper \mathcal{O}-ideals $\mathfrak{a}, \mathfrak{b}$, and \mathfrak{c} we have

$$
\mathfrak{a}\left(\mathfrak{b} E_{\mathfrak{c}}\right)=\mathfrak{a} E_{\mathfrak{b}-1}=E_{\mathfrak{a}^{-1} \mathfrak{b}-1}=E_{(\mathfrak{b a})^{-1} \mathfrak{c}}=(\mathfrak{b a}) E_{\mathfrak{c}}=(\mathfrak{a b}) E_{\mathfrak{c}} .
$$

Thus we have a well-defined group action of $\operatorname{cl}(\mathcal{O})$ on $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$. Only principal \mathcal{O}-ideals act trivially, so the $\operatorname{cl}(\mathcal{O})$-action is faithful. The fact that the sets $\operatorname{cl}(\mathcal{O})$ and $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$ have the same cardinality implies that the action is also transitive (there is just one $\operatorname{cl}(\mathcal{O})$-orbit).

A group action that is both faithful and transitive is called regular. The action of a group G on a set X is regular if and only if for all $x, y \in X$ there is a unique $g \in G$ for which $g x=y$. In this situation the set X is said to be a principal homogenous space for G, or simply a G-torsor. With this terminology, the set $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$ is a $\operatorname{cl}(\mathcal{O})$-torsor.

If we fix a particular element x of a G-torsor X, we can then view X as a group that is isomorphic to G under the map that sends $y \in X$ to the unique element $g \in G$ for which $g x=y$. Note that this involves an arbitrary choice of the identity element x; rather than thinking of elements of X as group elements, it is perhaps more appropriate to think of the "difference" or "ratios" of elements of X as group elements. In the case of the $\mathrm{cl}(\mathcal{O})$-torsor $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$ there is an obvious choice for the identity element: the isomorphism class $j\left(E_{\mathcal{O}}\right)$. But when we reduce to a finite field \mathbb{F}_{q} and work with the $\operatorname{cl}(\mathcal{O})$-torsor $E l_{\mathcal{O}}\left(\mathbb{F}_{q}\right)$, as we shall soon do, we cannot readily distinguish the element of $E l_{\mathcal{O}}\left(\mathbb{F}_{q}\right)$ that corresponds to $j\left(E_{\mathcal{O}}\right)$.

19.3 Isogenies over the complex numbers

To better understand the $\operatorname{cl}(\mathcal{O})$-action on $\operatorname{Ell}_{\mathcal{O}}(\mathbb{C})$ we need to look at isogenies between elliptic curves over the complex numbers. Let $L \subseteq L^{\prime}$ be lattices, and let E and E^{\prime} be the elliptic curves corresponding to \mathbb{C} / L and \mathbb{C} / L^{\prime}, respectively. The map $\iota: \mathbb{C} / L \rightarrow \mathbb{C} / L^{\prime}$ that lifts $z \in \mathbb{C} / L$ to \mathbb{C} and then reduces it modulo L^{\prime} induces an isogeny $\phi: E \rightarrow E^{\prime}$ that makes the following diagram commute:

The isomorphism Φ sends $z \in \mathbb{C} / L$ to the point $\left(\wp(z ; L), \wp^{\prime}(z ; L)\right)$ on E, and the isomorphism Φ^{\prime} sends $z \in \mathbb{C} / L^{\prime}$ to the point $\left(\wp\left(z ; L^{\prime}\right), \wp^{\prime}\left(z ; L^{\prime}\right)\right)$ on E^{\prime}.

It is clear that the map $\phi=\Phi^{\prime} \circ \iota \circ \Phi^{-1}$ is a group homomorphism, and in fact it is a rational map and therefore an isogeny. To see this, notice that the meromorphic function $\wp\left(z ; L^{\prime}\right)$ is periodic with respect to L^{\prime}, and since $L \subseteq L^{\prime}$ it is also periodic with respect to L. It is thus an elliptic function for L, and since it is an even function, it may be expressed as a rational function of $\wp(z ; L)$, by Lemma 18.10. Thus $\wp\left(z ; L^{\prime}\right)=u(\wp(z ; L)) / v(\wp(z ; L))$ for some polynomials $u, v \in \mathbb{C}[x]$. Similarly, $\wp^{\prime}\left(z ; L^{\prime}\right)$ is an odd elliptic function for L and may be written in the form $\wp^{\prime}\left(z, L^{\prime}\right)=(s(\wp(z ; L)) / s(\wp(z ; L))) \wp^{\prime}(z ; L)$ for some $s, t \in \mathbb{C}[x]$. Thus

$$
\phi(x, y)=\left(\frac{u(x)}{v(x)}, \frac{s(x)}{t(x)} y\right) .
$$

The points in the kernel of ϕ are precisely the points $\left(\wp(z ; L), \wp^{\prime}(z ; L)\right)$ for which $z \in L^{\prime}$. It follows that the size of the kernel is the index of L in L^{\prime}, and since we are in characteristic zero, the isogeny ϕ must be separable and we have $\operatorname{deg} \phi=|\operatorname{ker} \phi|=\left[L^{\prime}: L\right]$.

We now note that the homothetic lattice $L^{\prime \prime}=n L^{\prime}$ has index n in L, by Lemma 19.3. If we let $E^{\prime \prime} / \mathbb{C}$ be the elliptic curve corresponding to $\mathbb{C} / L^{\prime \prime}$ (which is isomorphic to E^{\prime}), then the inclusion map $\iota: \mathbb{C} / L^{\prime \prime} \rightarrow \mathbb{C} / L^{\prime}$ induces an isogeny $\tilde{\phi}: E^{\prime \prime} \rightarrow E$ of degree n. Composing $\tilde{\phi}$ with the isomorphism from E^{\prime} to $E^{\prime \prime}$, we obtain the dual isogeny $\hat{\phi}: E^{\prime} \rightarrow E$, since the composition $\phi \circ \hat{\phi}$ is precisely the multiplication-by-n map on E^{\prime}.

If \mathfrak{a} and \mathfrak{b} are proper \mathcal{O}-ideals, there is an isogeny from $E_{\mathfrak{b}}$ to $\mathfrak{a} E_{\mathfrak{b}}=E_{\mathfrak{a}^{-1} \mathfrak{b}}$ induced by the lattice inclusion $\mathfrak{b} \subseteq \mathfrak{a}^{-1} \mathfrak{b}$. Thus there is always an isogeny $\phi_{\mathfrak{a}}$ associated to the action of \mathfrak{a} on $E_{\mathfrak{b}}$ defined in (3). Given any elliptic curve E / \mathbb{C} with endomorphism ring \mathcal{O} and an \mathcal{O}-ideal \mathfrak{a}, we define the \mathfrak{a}-torsion subgroup

$$
E[\mathfrak{a}]=\{P \in E(\mathbb{C}): \alpha P=0 \text { for all } \alpha \in \mathfrak{a}\},
$$

where we view $\alpha \in \mathfrak{a} \subset \mathcal{O} \simeq \operatorname{End}(E)$ as the multiplication-by- α endomorphism.
Theorem 19.6. Let \mathcal{O} be an imaginary quadratic order, let E / \mathbb{C} be an elliptic curve with endomorphism ring \mathcal{O}, let \mathfrak{a} be a proper \mathcal{O}-ideal, and let ϕ be the corresponding isogeny from E to $\mathfrak{a} E$. The following hold:
(i) $\operatorname{ker} \phi=E[\mathfrak{a}]$;
(ii) $\operatorname{deg} \phi=N(\mathfrak{a})$.

Proof. By composing ϕ with an isomorphism if necessary, we may assume without loss of generality we assume $E=E_{\mathfrak{b}}$ for some proper \mathcal{O}-ideal \mathfrak{b}. Let Φ be the isomorphism from
$\mathbb{C} / \mathfrak{b} \rightarrow E_{\mathfrak{b}}$ that sends z to $\left(\wp(z), \wp^{\prime}(z)\right)$. We have

$$
\begin{aligned}
\Phi^{-1}(E[\mathfrak{a}]) & =\{z \in \mathbb{C} / \mathfrak{b}: \alpha z=0 \text { for all } \alpha \in \mathfrak{a}\} \\
& =\{z \in \mathbb{C}: \alpha z \in \mathfrak{b} \text { for all } \alpha \in \mathfrak{a}\} / \mathfrak{b} \\
& =\{z \in \mathbb{C}: z \mathfrak{a} \subseteq \mathfrak{b}\} / \mathfrak{b} \\
& =\left\{z \in \mathbb{C}: z \mathcal{O} \subseteq \mathfrak{a}^{-1} \mathfrak{b}\right\} / \mathfrak{b} \\
& =\left(\mathfrak{a}^{-1} \mathfrak{b}\right) / \mathfrak{b} \\
& =\operatorname{ker}\left(\mathbb{C} / \mathfrak{b} \xrightarrow{z \rightarrow z} \mathbb{C} / \mathfrak{a}^{-1} \mathfrak{b}\right) \\
& =\Phi^{-1}(\operatorname{ker} \phi) .
\end{aligned}
$$

This proves (i). We then note that

$$
\# E[\mathfrak{a}]=\#\left(\mathfrak{a}^{-1} \mathfrak{b}\right) / \mathfrak{b}=\left[\mathfrak{a}^{-1} \mathfrak{b}: \mathfrak{b}\right]=[\mathfrak{b}: \mathfrak{a b}]=[\mathcal{O}: \mathfrak{a} \mathcal{O}]=[\mathcal{O}: \mathfrak{a}]=N(\mathfrak{a}),
$$

which proves (ii).

References

[2] David A. Cox, Primes of the form $x^{2}+n y^{2}$: Fermat, class field theory, and complex multiplication, Wiley, 1989.

MIT OpenCourseWare
http://ocw.mit.edu

18.783 Elliptic Curves

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Strictly speaking, there are two ways to embed K in \mathbb{C}; we assume that a particular embedding has been chosen, say the one that sends $\sqrt{\operatorname{disc}(K)}$ to the upper half plane.

[^1]: ${ }^{2}$ Recall that $|\alpha \times \beta|=|\operatorname{re} \alpha \operatorname{im} \beta-\operatorname{im} \alpha \operatorname{re} \beta|=|\operatorname{im}(\alpha \bar{\beta}-\bar{\alpha} \beta)| / 2$.

