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19.1 Elliptic curves with a given endomorphism ring

For a lattice L, let EL denote the elliptic curve over C corresponding to the torus C/L. We
proved in Theorem 18.7 that

End(EL) ' {α ∈ C : αL ⊆ L}, (1)

and we know that this ring is isomorphic to Z or an order O in an imaginary quadratic
field K; in fact, the ring on the right is equal to Z or O (viewed as a subring of C).1

To simplify the discussion, we shall treat the isomorphism in (1) as an equality and view
elements of End(EL) as elements of Z or O.

How might we construct an elliptic curve with endomorphism ring O? An obvious way
is to use the lattice L = O. If α ∈ End(E ), then αO O ⊆ O, by (1), and therefore α ∈ O,
since the ring O contains 1. Conversely, if α ∈ O, then αO ⊆ O, since O is closed under
multiplication, and therefore α ∈ End(E ), by (1); thus End(E ) =O O O.

But are there any other (non-isomorphic) examples of elliptic curves with End(E) = O?
To answer this question, we would like to classify, up to homethety, the lattices L for which
{α : αL ⊆ L} = O. Without loss of generality, we may assume L = [1, τ ], and O = [1, ω].
If End(EL) = O, then we must have ω · 1 = ω ∈ L, so ω = m + nτ , for some m,n ∈ Z.
Thus nL = [n, ω −m] = [n, ω] (and O = [1, nτ + m] = [1, nτ ]). So L is homothetic to a
sublattice of O, and this sublattice must be closed under multiplication by O; equivalently,
L is homothetic to an O-ideal (a subring of O closed under multiplication by O).

For any O-ideal L, the set {α ∈ C : αL ⊆ L} is an order that contains O, which
we denote O(L). The same is true for any lattice homothetic to an O-ideal, since O(L)
depends only on the homethety class of L. We are interested in the cases where O(L) = O,
since these are precisely the (homethety classes of) lattices that give rise to elliptic curves
EL/C with End(EL) = O. When the condition O(L) = O holds, we say that L is a proper
O-ideal. Note that O(L) is always contained in the maximal order OK , so when O = OK
every O-ideal is proper, but otherwise this is not true (Problem Set 9 asks for a counter
example).

Given that O(L) depends only on the homethety class of L, we shall regard two O-
ideals as equivalent if they are homothetic as lattices; it follows that the ideals a and b are
equivalent if and only if (α)a = (β)b for some α, β ∈ O. Since the elliptic curves EL and
EL′ are isomorphic if and only if the lattices L and L′ are homothetic, two proper O-ideals
a and b are equivalent if and only if Ea ' Eb.

As shown in Problem Set 9, the set cl(O) of equivalence classes of proper O-ideals form a
finite abelian group that is isomorphic to the group cl(D) formed by the SL2(Z)-equivalence
classes of binary quadratic forms

ax2 + bxy + cy2

of discriminant D =
√
b2 − 4ac = disc(O), where a, b, c ∈ Z have no common divisor and

a > 0 > D (such forms are said to be integral, primitive, and positive definite). This

1Strictly speaking, there are two√ways to embed K in C; we assume that a particular embedding has
been chosen, say the one that sends disc(K) to the upper half plane.
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isomorphism is important for practical applications, as it is often easier to work with the
group cl(D) rather than cl(O) (in particular, it is easy to enumerate the elements of cl(D)).

Definition 19.1. The discriminant of O = [α, β] is

2
α β

disc(O) = det

(
¯ᾱ β

)
.

We have |disc([α, β])| = 4|α×β
2

|2, which is 4 times the square of the area of the parallelogram
formed by α and β. Since every fundamental parallelogram of a lattice has the same area,
the discriminant does not depend on the choice of α and β. We can always write = [1, τ ],
where τ is an algebraic integer satisfying an integer quadratic equation x2

O
+ bx + c with

b2 − 4c < 0 not a perfect square. We then have

2
1 τ

disc(O) = det = (τ̄ τ2

1 τ̄
− τ)2 = τ̄2 − 2τ τ̄ +

= (

( )
− bτ̄ + c)− 2c− b(τ + c) = −b(τ + τ̄)− 4c

= b2 − 4c, (2)

which shows that disc(O) is a negative integer that is a square (0 or 1) modulo 4, depending
on the parity of b. We call such integers D (imaginary quadratic) discriminants. If D ≡
1 mod 4 and D is square-free, or if D ≡ 0 mod 4 and D/4 is square-free, then D is said to
be a fundamental discriminant. Every discriminant can be written in the form D = u2DK ,
where DK is a fundamental discriminant and u is a positive integer.

There is a one-to-one relationship between discriminants and orders of imaginary quadratic
fields; fundamental discriminants correspond to maximal orders.

Theorem 19.2. Let D be an imaginary quadratic discriminant. There is a unique quadratic
order O with disc(O) = D = u2

√ DK , where DK is the fundamental discriminant of the
maximal order OK of K = Q( D), and u = [OK : O] is the conductor of O.

Proof. W√rite D as D = u2DK , with u ∈ Z>0 and DK a fundamental discriminant. Let
K = Q( D), and let OK be its maximal order. Choose a shortest non-integer vector
ω ∈ OK , with minimal polynomial x2 + bx + c, so that OK = [1, ω]. Then b2 − 4c must
equal DK (if not, we could make ω shorter), and from (2) we see that disc( K) = DK . The
order O = [1, uω] then has discriminant (uω̄ − uω)2 = u2

O
DK = D.

Conversely, if O = [1, τ ] is any order with discriminant D, than τ must be the root of a
quadratic equation with discriminant D, by (2); therefore τ ∈ K and O ⊆ OK . We must
have [OK : O] = u, since disc(O) = u2disc(OK) and the discriminant is proportional to
the square of the area of a fundamental parallelogram. Lemma 19.3 implies uOk ⊆ O, so
uω ∈ O, and therefore [1, uω] ⊆ [1, τ ]. Equality must hold, since both orders have index u
in OK . Thus [1, τ ] = [1, uω], so [1, uω] is the unique order of discriminant D.

Lemma 19.3. If L′ is an index n sublattice of L then nL is an index n sublattice of L′.

Proof. Without loss of generality, we may assume L = [1, τ ] and L′ = [a + bτ, c + dτ ].
Comparing areas of the fundamental parallelograms of L and L′, we have

n|1× τ | = |(a+ bτ)× (c+ dτ)|
n| im τ | = |(a+ b re τ)d im τ − b im τ(c+ d re τ)|

n = |ad− bc|,
2Recall that |α× β| = | reα imβ − ¯imα reβ| = | im(αβ − ᾱβ)|/2.
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Thus d(a+ bτ)− b(c+ dτ) = ±n and a(c+ dτ)− c(a+ bτ) = ±nτ , therefore nL ⊆ L′. We
then have [L : L′] = n and [L : L′][L′ : nL] = [nL : L] = n2, so [L′ : nL] = n.

We now consider the set of isomorphism classes of elliptic curves E/C with endomor-
phism ring O, which we define as

Ell (C) = j(E) : E is defined over C and End(E) = .O { O}

It follows from our discussion above that there is a bijection from cl(O) to Ell (C) thatO
sends the equivalence class [a] to the isomorphism class j(Ea). To get the reverse map,
we note that every elliptic curve E/C is isomorphic to a torus C/L (by the Uniformization
Theorem), and if End(E) = O, then L is homothetic to a properO-ideal a whose equivalence
class [a] is uniquely determined by j(a) = j(L) = j(E). Since cl(O) is a finite group, Ell (C)O
is a finite set, and its cardinality is equal to the class number h(O) = |cl(O)|, which we may
also write as h(D), where D = disc(O).

19.2 The action of the class group

Not only are the sets cl(O) and Ell (C) in bijection, the group cl(O O) acts on the set Ell (C).O
To define this action, we first recall the definition of a fractional O-ideal.

Let K be the imaginary quadratic field containing O. Lattices of the form b = λa, where
λ ∈ K∗ and a is an O-ideal, are called fractional O-ideals. If b is any fractional O-ideal, we
let O(b) = {α : αb ⊆ b} be the order of b, and say that b is proper if O(b) = O. We say
that b is invertible if there exists a fractional O-ideal b−1 for which bb−1 = O.

Lemma 19.4. Let a be an O-ideal, and let b = λa be a fractional O-ideal. Then a is proper
if and only if b is proper, and a is invertible if and only if b is invertible.

Proof. For the first statement, note that {α : αb
1 1

⊆ b} = {α : αλa ⊆ λa} =
1

{α : αa ⊆ a}.
For the second, if a is invertible, then b− = λ− a− , and if b is invertible then a−1 = λb−1,
since we have aa−1 = aλb−1 = bb−1 = O.

We now prove that the invertible O-ideals are precisely the proper O-ideals and give an
explicit formula for the inverse; the proof below follows [2, Ch. 7].

Theorem 19.5. Let a = [α, β] be an O-ideal. Then a is proper if and only if a is invertible.
¯ O O ¯Whenever a is invertible we have aa = N(a) , where N(a) = [ : a] and ā = [ᾱ, β], and

the inverse of a is then the fractional O-ideal a−1 = 1 ā.N(a)

Proof. We first assume that a = [α, β] is a proper
1

O-ideal and show that aā = N(a)O, hence
a has a− = 1 ā as an inverse. Let τ = β/α, so that a = α[1, τ ], and let ax2 + bx+ c beN(a)

the minimal polynomial of τ , with gcd(a, b, c) = 1. The fractional ideal [1, τ ] is homothetic
to a, and we have O([1, τ ]) = O(a) = O, since a is proper.

Let O = [1, ω]. We must have, so ω ∈ [1, τ ], so ω = m + nτ for some integers m and
n; replacing ω with ω − m, we may assume ω = nτ . We must also have ωτ

2
∈ [1, τ ], so

nτ ∈ [1, τ ], which implies that a|n, else the minimal polynomial of τ would have leading
coefficient smaller than a. But note that aτ [1, τ ] ⊆ [1, τ ], so ατ ∈ O([1, τ ]) = O, therefore
n = a and O = [1, aτ ]. We than have N(a) = [O : a] =

[
[1, aτ ] : α[1, τ ]

]
= N(α)/a, and

aā = αᾱ[1, τ ][1, τ̄ ] = N(α)[1, τ, τ̄ , τ τ̄ ].
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Since aτ2 + bτ + c = 0, we have τ + τ̄ = −b/a, and τ τ̄ = c/a, with gcd(a, b, c) = 1, so

1
aā = N(α) [a, aτ,−b, c] = N(a)[1, aτ ] = N(a)O.

a

Conversely, if a is invertible, then for any γ ∈ C we have

γa ⊆ a =⇒ γaa−1 ⊆ aa−1 =⇒ γO ⊆ O =⇒ γ ∈ O,

so O(a) ⊆ O, and therefore a is a proper O-ideal.

Now let E/C be an elliptic curve with End(E) = O. Then E is isomorphic to Eb, for
some proper O-ideal b. For any proper O-ideal a we define the action of a on Eb via

aEb = Ea−1b (3)

(the reason for using Ea 1b rather than E− ab will become clear later). The action of the
equivalence class [a] on the isomorphism class j(Eb), is then defined by

[a]j(Eb) = j(Ea−1b), (4)

which we could also write as [a]j(b) = j(a−1b), and it is clear that this does not depend on
the choice of representatives a and b.

If a is a principal O-ideal, then the lattices a and a−1b are homothetic, and we have
aEb ' Eb. Thus the identity element of cl(O) acts trivially on Ell (C). For any properO
O-ideals a,b, and c we have

a(bEc) = aEb 1c = E =− a−1b−1c E(ba)−1c = (ba)Ec = (ab)Ec.

Thus we have a well-defined group action of cl(O) on Ell (C). Only principal -ideals actO O
trivially, so the cl(O)-action is faithful. The fact that the sets cl(O) and Ell (C) have theO
same cardinality implies that the action is also transitive (there is just one cl(O)-orbit).

A group action that is both faithful and transitive is called regular. The action of a
group G on a set X is regular if and only if for all x, y ∈ X there is a unique g ∈ G for
which gx = y. In this situation the set X is said to be a principal homogenous space for G,
or simply a G-torsor. With this terminology, the set Ell (C) is a cl( )-torsor.O O

If we fix a particular element x of a G-torsor X, we can then view X as a group that is
isomorphic to G under the map that sends y ∈ X to the unique element g ∈ G for which
gx = y. Note that this involves an arbitrary choice of the identity element x; rather than
thinking of elements of X as group elements, it is perhaps more appropriate to think of the
“difference” or “ratios” of elements of X as group elements. In the case of the cl(O)-torsor
Ell (C) there is an obvious choice for the identity element: the isomorphism class j(E ).O O
But when we reduce to a finite field Fq and work with the cl(O)-torsor Ell (Fq), as we shallO
soon do, we cannot readily distinguish the element of Ell (Fq) that corresponds to j(E ).O O

19.3 Isogenies over the complex numbers

To better understand the cl(O)-action on Ell (C) we need to look at isogenies betweenO
elliptic curves over the complex numbers. Let L ⊆ L′ be lattices, and let E and E′ be the
elliptic curves corresponding to C/L and C/L′, respectively. The map ι : C/L→ C/L′ that
lifts z ∈ C/L to C and then reduces it modulo L′ induces an isogeny φ : E → E′ that makes
the following diagram commute:
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C/L C/L′

E(C) E′(C)

ι

Φ Φ′

φ

The isomorphism Φ sends z ∈ C/L to the point ℘(z;L), ℘′(z;L) on E, and the isomor-
phism Φ′ sends z ∈ C/L′ to the point ℘(z;L′), ℘′(z;L′) on E′.

It is clear that the map φ = Φ′ a

(
◦ ι is

)
◦ Φ−1 group homomorphism, and in fact it is a

rational map and therefore an isogeny

(
. To see this, notice

)
that the meromorphic function

℘(z;L′) is periodic with respect to L′, and since L ⊆ L′ it is also periodic with respect to L.
It is thus an elliptic function for L, and since it is an even function, it may be expressed as
a rational function of ℘(z;L), by Lemma 18.10. Thus ℘(z;L′) = u ℘(z;L) /v ℘(z;L) for
some polynomials u, v ∈ C[x]. Similarly( , ℘′(z;L′) is an odd elliptic function for L and may
be written in the form ℘′(z, L′) = s(℘(z;L))/s(℘(z;L)) L) for

(
)
℘′(z; some s,

)
t

( )
∈ C[x]. Thus

)
φ(x, y)

(
u(x

=
v(x)

,
s(x)

y
t(x)

)
.

The points in the kernel of φ are precisely the points
(
℘(z;L), ℘′(z;L) for which z ∈ L′. It

follows that the size of the kernel is the index of L in L′, and since we
zero, the isogeny φ must be separable and we have deg φ = kerφ = [

)
are in characteristic

| | L′ : L].
We now note that the homothetic lattice L′′ = nL′ has index n in L, by Lemma 19.3. If

we let E′′/C be the elliptic curve corresponding to C/L′′ (which is isomorphic to E′), then
the inclusion map ι : C/L′′ → C/L′ ˜induces an isogeny φ : E′′ → E of degree n. Composing
φ̃ with the isomorphism from E′ ˆto E′′, we obtain the dual isogeny φ : E′

ˆ
→ E, since the

composition φ ◦ φ is precisely the multiplication-by-n map on E′.
If a and b are proper O-ideals, there is an isogeny from Eb to aEb = Ea−1b induced by

the lattice inclusion b ⊆ a−1b. Thus there is always an isogeny φa associated to the action
of a on Eb defined in (3). Given any elliptic curve E/C with endomorphism ring O and an
O-ideal a, we define the a-torsion subgroup

E[a] = {P ∈ E(C) : αP = 0 for all α ∈ a},

where we view α ∈ a ⊂ O ' End(E) as the multiplication-by-α endomorphism.

Theorem 19.6. Let O be an imaginary quadratic order, let E/C be an elliptic curve with
endomorphism ring O, let a be a proper O-ideal, and let φ be the corresponding isogeny
from E to aE. The following hold:

(i) kerφ = E[a];

(ii) deg φ = N(a).

Proof. By composing φ with an isomorphism if necessary, we may assume without loss of
generality we assume E = Eb for some proper O-ideal b. Let Φ be the isomorphism from
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C/b→ Eb that sends z to (℘(z), ℘′(z)). We have

Φ−1(E[a]) = {z ∈ C/b : αz = 0 for all α ∈ a}
= {z ∈ C : αz ∈ b for all α ∈ a}/b
= {z ∈ C : za ⊆ b}/b
= {z ∈ C : zO ⊆ a−1b}/b
= (a−1b)/b

z
= ker C/b −→→z C/a−1b

= Φ−1

(
(kerφ).

)

This proves (i). We then note that

#E[a] = #(a−1b)/b = [a−1b : b] = [b : ab] = [O : aO] = [O : a] = N(a),

which proves (ii).
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