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2.1 The elliptic curve group law

Recall from Lecture 1 the defining property of the group law for an elliptic curve defined
by a Weierstrass equation y2 = x3 + Ax + B:

Three points on a line sum to zero, which is the point at infinity.

It is easy to determine the inverse of a point (just negate the y coordinate), and it is
obvious that group operation is commutative. Associativity is not obvious, and while it can
be rigorously proven algebraically, this is a tedious task that does not yield much insight.
So we will give two proofs. The first will only apply to the generic case but it is short and
provides some explanation as to why the group operation is associative. The second will be
algebraic and fully rigorous, but we will let Sage do all the dirty work for us.

2.1.1 A geometric proof of associativity in the generic case

This is an adaptation of the proof in [2, p. 28]. Let P , Q, and R be three points on an
elliptic curve E(k) for some field k that we may assume is algebraically closed. We shall
also assume that P , Q, R, and the zero point O are all in general position (this means that
in the diagram below there are no relationships among the points other than those that
necessarily exist by construction).

The line `0 through P and Q meets the curve E at a third point, −(P + Q), and the
line m2 through O and −(P +Q) meets E at P +Q. Similarly, the line m0 through P and
R meets E at −(P +R), and the line `2 through O and −(P +R) meets E at P +R. Let S
be the third point where the line `1 through Q + P and R meets E, and let T be the third
point where the line m1 through Q and P + R meets E. See the diagram below.
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We have S = −(Q + P ) + R and T = −(Q + (P + R)). It suffices to show S = T .
Suppose not. Let g(x, y, z) be the cubic polynomial formed by the product of the lines
`0, `1, `2 in homogeneous coordinates, and similarly let h(x, y, z) = m0m1m2. We may
assume g(T ) 6= 0 and h(S) 6= 0, since the points are in general position and S 6= T . Thus
g and h are linearly independent elements of the k-vector space V of homogeneous cubic
polynomials in k[x, y, z]. The space V has dimension 10, thus the subspace of homogeneous
cubic polynomials that vanish at the eight points O, P , Q, R, ±(Q+P ), and ±(P +R) has
dimension 2 and is spanned by g and h. The polynomial f(x, y, z) = x3 +Axz2 +Bz3− zy2
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that defines E is a nonzero element of this subspace, so we may write f = ag + bh as a
linear combination of g and h. But f(S) = f(T ) = 0, since S and T are both points on E,
which implies that a and b are both zero. This contradicts the linear independence of g
and h, since f is not the zero polynomial.

2.1.2 The group law in algebraic terms

Let P = (x1, y1, z1) and Q = (x2, y2, z2) be two points on E. We will compute the sum
P + Q = R = (x3, y3, z3) by expressing the coordinates of R as rational functions of the
coordinates of P and Q. If either P or Q is the point at infinity, then R is simply the other
point, so we assume that P and Q are affine points with z1 = z2 = 1. There are two cases:

Case 1. x1 6= x2. The line PQ has slope m = (y2 − y1)/(x2 − x1), which yields the
equation y − y1 = m(x − x1). The point −R = (x3,−y3, 1) is on this line, thus
−y3 = m(x3 − x1) + y1. Substituting for y3 in the Weierstrass equation for E yields

(m(x − x ) + y )2 3
3 1 1 = x3 + Ax3 + B.

Simplifying, we obtain 0 = x33−m2x23+ · · · , where the ellipsis hides lower order terms.
The values x1 and x2 satisfy the same cubic equation, thus its roots are x1, x2, and x3,
and the sum of these roots is equal to the negation of the quadratic coefficient −m2.
Thus x3 = m2 − x1 − x2. To sum up, we have

m = (y2 − y1)/(x2 − x1),

x 2
3 = m − x1 − x2,

y3 = m(x1 − x3)− y1.

Thus to compute P +Q = R, we need to perform three multiplications (one of which
is a squaring) and one inversion in the field k. We’ll denote this cost 3M+I.

Case 2. x1 = x2. If y1 6= y2, then they must be opposite points and R = 0. Otherwise
P = Q, and we compute the slope of the tangent line by implicitly differentiating the

Weierstrass equation for E. This yields 2y dy = 3x2 dx + Adx, so m = dy
dx =

3x2
1+A

.2y1
The formulas for x3 and y3 are then the same as before. Note that we require an extra
multiplication (a squaring) here, so computing R = 2P has a cost of 4M+I.

With these equations in hand, we can now prove associativity as a formal identity,
treating x1, y1, z1, x2, y2, z2, x3, y3, z3, A,B as indeterminants subject to the three relations
implied by the fact that P , Q, and R all lie on the curve E. See the Sage worksheet

for details, which includes checking all the special cases.
The equations above can be converted to projective coordinates by replacing x1, y1, x2,

and y2 with x1/z1, y1/z1, x2/z2, and y2/z2 respectively, and then writing the resulting
expressions for x3/z3 and y3/z3 with a common denominator. This has the advantage of
avoiding inversions, which are more costly than multiplications (in a finite field of crypto-
graphic size inversions may be 50 or even 100 times more expensive than multiplications).
This increases the number of multiplications to 12M in case 1 (general addition) and 14M
in case 2 (doubling).
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2.2 Edwards curves

There are many alternative representations of elliptic curves that have been proposed. We
give just one example here, Edwards curves [1, 3], which have two significant advantages
over Weierstrass equations. Let d be a non-square element of a field k (assumed to have
characteristic not equal to 2, as usual). Then the equation

x2 + y2 = 1 + dx2y2

defines an elliptic curve with distinguished point (0, 1).1 The group operation is given by(
x1y2 + x2y1

(x3, y3) =
1 + dx1x2y1y2

,
y1y2 − x1x2

1

)
.

− dx1x2y1y2

As written, this involves five multiplications and two inversions (ignoring the multiplication
by d, which we can choose to be small), which is greater than the cost of the group operation
in Weierstrass form. However, in projective coordinates we have

x3 z1z2(x1y2 + x2y1)
=

z3 z21z
2
2 + dx1x2y1y2

,
y3
z3

=
z1z2(y1y2 − x1x2)

.
z21z

2
2 − dx1x2y1y2

There are a bunch of common subexpressions here, and in order to compute z3, we need
a common denominator. Let r = z1z2, let s = x1y2 + x2y1, let t = dx1y2x2y1, and let
u = y1y2 − x1x2. We then have

x3 = rs(r2 − t), y 2 2 2
3 = ru(r + t), z3 = (r + t)(r − t).

This yields a cost of 12M. If we compute s as s = (x1 + y1)(x2 + y2)−x1x2− y1y2, the cost
is reduced to 11M.

The remarkable thing about these formulas is that they handle every case; there are
not separate formulas for addition and doubling, and adding opposite points or the identity
element works the same as the general case. Such formulas are called complete, and they
have two distinct advantages. First, they can be implemented very efficiently because there
is no branching. Second, they protect against what is known as a side-channel attack. If
an adversary can distinguish whether you are doubling or adding points, e.g. by monitoring
the CPU and noticing the difference in the time required by each operation, they can break
a cryptosystem that performs scalar multiplication by an integer that is meant to be secret.

Having said that, if you know you are going to be doubling and are not concerned about
a side-channel attack, there are several optimizations that can be made (these include
replacing 1 + dx2y2 with x2 + y2). This reduces the cost of doubling a point on an Edwards
curves to 7M, which is a huge improvement over the 14M cost of doubling a point in
Weierstrass coordinates.

The explicit formulas database contains optimized formulas for Edwards curves and
various generalizations, as well as many other forms of elliptic curves. Operation counts
and verification scripts are provided with each set of formulas.

We should note that, unlike Weierstrass equations, not every elliptic curve can be put
into Edwards form. In particular, an Edwards curve always has a rational point of order 4,
the point (1, 0), but this is not true of many elliptic curves.

1Technical point: there are two points at infinity, both of which are singular, violating our requirement
that an elliptic curve be smooth. However, this plane curve can be desingularized by embedding it in P3(k).
The points at infinity are then no longer rational, and do not play a role in the group operation on E(k).
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