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21.1 Modular curves

Definition 21.1. The principal congruence subgroup Γ(N) is defined by

Γ(N) =
{(

a b
)
∈ SL2(Z) : a ≡ d ≡ 1 mod N and b ≡ c 0 moc d ≡ d N .

A congruence subgroup (of level N) is any subgroup of SL2(Z) that contains

}
Γ(N). A

modular curve is a quotient of H∗ (or just H) by a congruence subgroup.

Two families of congruence subgroups are of particular interest:

Γ1(N) =
{(

a b{( ∈ SLc 2(Z) : ad
a b

≡ d ≡ 1 mod N and c ≡ 0 mod N ;

Γ0(N) = SL ( ) : c 0 mod N ;c d

)
∈ 2 Z ≡

}
Note that Γ(1) = Γ1(1) = Γ

)
0(1) = SL2(Z). We now define

}
the modular curves

X(N) = H∗/Γ(N), X1(N) = H∗/Γ1(N), X0(N) = H∗/Γ0(N).

and similarly define Y (N), Y1(N), and Y0(N), with H∗ replaced by H. Following the same
strategy we used for X(1), one can show that these are all compact Riemann surfaces.

Having defined the modular curves X(N), X1(N), and X0(N), we now want to consider
the meromorphic functions on these curves. We are specifically interested in X0(N), for
reasons that will become clear shortly, but we begin with the general setup.

21.2 Modular functions

Modular functions are meromorphic functions on a modular curve. To make this statement
more precise, we first need to discuss q-expansions. The map q : H→ D defined by

q(τ) = e2πiτ = e−2π im τ (cos(2π re τ) + i sin(2π re τ))

bijectively maps each vertical strip {τ : n ≤ im τ > n+ 1} of the upper half plane H to the
open unit disk D. If f : H → C is a meromorphic function that satisfies f(τ + 1) = f(τ)
for all τ ∈ H, then we can write f in the form f(τ) = f∗(q(τ)), where f∗ is a meromorphic
function on the punctured unit disk D\{0}. The q-series for f(τ) is the Laurent-series
expansion of f∗ about 0 composed with q(τ):

∑+∞ +∞

f(τ) = f∗(q(τ)) = a q(τ)n = n
n

n=−∞ n=

∑
anq ,

−∞

where we typically just write q for q(τ) (as we will henceforth). We say that that f is
meromorphic at ∞ whenever f∗ is meromorphic at 0 (note that limim τ q(τ) = 0). When→∞
this condition holds, we can write

∞

f(τ) =
n

∑
a n
nq ,

=n0

with an0 6= 0. The integer n0 is the order of f at ∞.
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More generally, if f satisfies f(τ +N) = f(τ) for all τ ∈ H, then we can write f as

∞

f(τ) = f∗(q(τ)1/N ) = a
n=

∑
nq
n/N , (1)

−∞

and we say that f is meromorphic at ∞ if f∗ is meromorphic at 0.
If Γ is a congruence subgroup( of )level N , then for any Γ-invariant function f we have

f(τ +N) = f(τ) (consider γ = 1 N
0 1 ), so f can be written in the form (1), and the same

is true of the function f(γτ), for any fixed γ ∈ Γ.

Definition 21.2. Let Γ be a congruence subgroup and let f : H → C be a Γ-invariant
meromorphic function. The function f(τ) is said to be meromorphic at the cusps if for
every γ ∈ SL2(Z) the function f(γτ) is meromorphic at ∞.

In terms of the extended upper half-plane H∗, notice that for any γ ∈ SL2(Z),

lim γτ ∈ H∗\H = P1(Q).
im τ→∞

Thus to say that f(γτ) is meromorphic at ∞ is the same thing as saying that f(τ) is
meromorphic at the cusp γ∞. Note that since f is Γ-invariant, in order to check whether
or not f is meromorphic at the cusps, it suffices to consider a set of cusp representatives
γ0∞, γ1∞, . . . , γk∞ for Γ, which is a finite set, since Γ has finite index in Γ(1).

Definition 21.3. Let Γ be a congruence subgroup. A modular function for Γ is a meromor-
phic function g : H∗/Γ → C, equivalently, a Γ-invariant meromorphic function f : H → C
that is meromorphic at the cusps.

It is straight-forward to check that constant functions and all sums, products, and
quotients of modular functions Γ are also modular functions for Γ, thus the set of all modular
functions for Γ forms a field. Notice that if f(τ) is a modular function for a congruence
subgroup Γ, then f(τ) is also a modular function for every congruence subgroup Γ′ contained
in Γ: clearly f(τ) is Γ′-invariant since Γ′ ⊆ Γ, and f(τ) is meromorphic at the cusps since
f(γτ) is meromorphic at ∞ for every γ ∈ Γ, which includes all γ ∈ Γ′.

21.3 Modular Functions for Γ(1)

We first consider the modular functions for Γ(1) = SL2(Z). In Lecture 18 we proved that
the j-function is SL2(Z)-invariant and holomorphic (hence meromorphic) on H. To show
that the j(τ) is a modular function for Γ(1) we just need to show that it is meromorphic
at the cusps. In this case the cusps are all Γ(1)-equivalent, so it suffices to show that the
j(τ) is meromorphic at ∞, which we do by computing its q-expansion. We first note the
following lemma, part of which was used in Problem Set 8.

Lemma 21.4. Let σ (n) =
∑

dkk d n , and let q = e2πiτ . We have|

4π4
g2(τ) = σ

n

∑∞
1

3

(
+ 240 3(n)qn

=1

)
,

8π6
g3(τ) = σ

n

∑∞
1

27

(
− 504 5(n)qn

=1

)
,

∞

∆(τ) = g32(τ)− 27g23(τ) = (2π)12q
n

∑
(1

=1

− qn)24.
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Proof. See Washington [4, pp. 273-274].

Corollary 21.5. With q = e2πiτ we have

1
j(τ) = a

n

∑∞
+ 744 + nq

n,
q

=1

where the an are integers.

Proof. We have

g3
64

2(τ) =
64

π12(1 + 240q +O(q2))3 =
27

π12(1 + 720q +O(q2)),
27

64
∆(τ) = π12(33 · 26)q(1− 24q +O(q2)),

27

where each O(q2) denotes sums of higher order terms with integer coefficients. Thus

1728g3
j(τ) = 2(τ) 1

=
∆(τ)

a
q

∑∞
+ 744 + nq

n,
n=1

for some integers an, as desired. Note that the factor 1728 = 33 · 26 in the definition of the
j-function is the smallest integer that makes all the an integers.

The corollary implies that the j-function is a modular function for Γ(1), with a simple
pole at ∞. We proved in Theorem 18.5 that the j-function defines a holomorphic bijection
from Y (1) = H/Γ to C. If we extend the domain of j to H∗ by defining j(∞) = ∞,
then the j-function defines an isomorphism from X(1) to the Riemann sphere S = P1(C)
that is holomorphic everywhere except for a simple pole at ∞. In fact, if we fix j(ρ) = 0,
j(i) = 1728, and j(∞) = ∞, then the j-function is uniquely determined by this property
(fixing j(i) = 1728 ensures that it has an integeral q-expansion, a fact we will use shortly).
It is for this reason that the j-function is sometimes referred to as the modular function.
Indeed, every modular function for SL2(Z) can be expressed in terms of the j-function.

Theorem 21.6. Every modular function for Γ(1) is a rational function of j(τ). Equiva-
lently, C(j) is the field of modular functions for Γ(1).

Proof. Let g : X(1) → C be a modular function for Γ(1). Then f = g ◦ j−1 : S → C is
meromorphic. By Lemma 21.7 below, this implies that f is a rational function. Therefore
g = f ◦ j ∈ C(j), as desired.

Lemma 21.7. If f : S → C is meromorphic, then f(z) is a rational function.

Proof. We assume without loss of generality that f has no zeros or poles at ∞ (the north
pole): if not, rotate it by replacing f(z) by f(z − c) with an appropriate constant c (in
terms of P1(C) this corresponds to applying a linear fractional transformation).

Let {pi} be the set of poles of f , and let mi be the order of pole pi. Similarly, let {qj}
be the set of zeros of f , and let nj be the order of zero qj . We must have

∑
imi = j nj ,

since f is a meromorphic function on S (to prove this, triangulate S so that all the
and

∑
poles

zeros of f lie in the interior of a triangle and note that the sum of the contour integrals
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of f about all of the triangles (oriented counter-clockwise) must be zero). The function
h : S → C defined by

z
h(z) = f( ) ·

∏
i( − p i

i)
m

z

has no zeros or poles at points P =6 ∞, and since

∏
− qj)njj(z∑
imi =

∑
j nj it cannot have a zero or

pole at infinity. By Liouville’s theorem, h is a constant function. Therefore

j

f(z) =

∏
j(z − qj)n

c

for

∏ ,
i(z − pi)mi

some constant c, which is indeed a rational function.

Corollary 21.8. Every modular function f(τ) for Γ(1) that is holomorphic on H is a
polynomial in j(τ).

Proof. Theorem 21.6 implies that f is a rational function in j, which we may write as∏
i(j(τ) )

(τ) = c
− αi

f ,
k(j(τ)− βk)

for some c, αi, βk ∈ C. Recall that j : F

∏
→ C is a bijection, so f has a pole at each

j−1(βk) ∈ F . But f is holomorphic on F and therefore has no poles in F , so the denominator
must be 1 and f is a polynomial in j.

21.3.1 Modular functions for Γ0(N)

We now consider the modular functions for the congruence subgroup Γ0(N).

Theorem 21.9. The function jN (τ) = j(Nτ) is a modular function for Γ0(N).

Proof. The function jN is obviously meromorphic (in fact holomorphic) on H. That jN is
meromorphic at the cusps follows from the fact that j is meromorphic at the cusps, since τ
is a cusp if and( on) ly if Nτ is. We just need to show that jN is Γ0(N)-invariant.

Let γ = a b
c d ∈ Γ0(N). We have

N(aτ + b)
jN (γτ) = j(Nγτ) = j

(
cτ + d

)
= j

(
aNτ + bN
c τ

d

)
= j(γ′N ),

Nτ +N

where

γ′ =

(
a bN
c/N d

)
.

We now note that γ′ ∈ SL2(Z), since det(γ′) = det(γ) = 1 and c ≡ 0 (mod N) implies that
c/N is an integer. But, j is SL2(Z)-invariant, therefore

jN (γτ) = j(γ′Nτ) = j(Nτ) = jN (τ),

hence jN is Γ0(N)-invariant, as desired.

Theorem 21.10. C(j, jN ) is the field of modular functions for Γ0(N).

Cox gives a very concrete proof of this result in [1, Thm. 11.9]; here we give a simpler,
but somewhat more abstract proof that is adapted from Milne [3, Thm. V.2.3].
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Proof. Let {γ1, · · · , γm} ⊂ Γ = SL2(Z) be a set of right coset representatives for Γ0(N) as a
subgroup of Γ; this means that the cosets Γ0(N)γ1, · · · ,Γ0(N)γm are distinct and cover Γ.
Let KN denote the field of modular functions for Γ0(N). The field KN is an extension of
the field C(j), since the j-function is a modular function for Γ0(N) for any N , and KN

contains jN , by Theorem 21.9, so it is also an extension of C(j, jN ), we just need to show
that it is an extension of degree 1.

Consider any function f ∈ KN . For all γ ∈ Γ, the set of functions {f(γiγτ)} is equal
to the set {f(γiτ)}, since multiplying the right cosets by γ simply permutes them. Thus
any symmetric polynomial in the f(γiτ) is Γ-invariant, and therefore a rational function of
j(τ), by Theorem 21.6. Now let

P (Y ) =
∏

(Y − f(γiτ)).

i∈{1,··· ,m}

Then f is a root of P , since f(τ) = f(γiτ) for the right coset Γ0(N)γi = Γ0(N), and the
coefficients of P (Y ) lie in C(j), since they are all symmetric polynomials in the f(γiτ).
Since every f ∈ KN is the root of a monic polynomial over C(j) of degree m, it follows from
the primitive element theorem that [KN : C(j)] ≤ m.

Let F ∈ C(j)[Y ] be the minimal polynomial for f , so that F (j(τ), f(τ)) = 0, where F
is monic and irreducible in C(j)[Y ]. If we replace τ with γiτ then we have

F (j(γiτ), f(γiτ)) = F (j(τ), f(γiτ)) = 0,

so the functions f(γiτ) all have the same minimal polynomial as f(τ).
Now consider f = jN . If we can show that the functions jN (γiτ) are distinct, then the

minimal polynomial of jN must have degree equal to m, meaning that [C(j, jN ) : C(j)] = m,
and therefore [K : C(j, jN )] = 1.

Assume to the contrary that j(Nγiτ) = j(Nγkτ) (as functions of τ), for some i 6= k.
Then, since j is injective on F , there is a γ ∈ Γ such that Nγiτ = γNγiτ for all τ ∈ H.
Indeed, pick α, β ∈ Γ so that αNγiτ, βNγjτ ∈ F , and then note that j(αNγiτ) = j(βNγkτ)
if and only if αNγ 1 1 a b

i = βNγk. So we may take γ = α− β =
( )

. We then havec d(
N 0

)
N

γi = ±
(
a b 0

γk,0 1 c d

)(
0 1

)
and therefore

γ γ−1
N

i

(
1/N 0

)(
a b

)
N 0 a b/

= ±
0

(
= .k 1 c d 0 1

)
±
(
cN d

)
The matrix γiγ

−1 lies in Γ, since γi, γk ∈ Γ, so b/N is an integer, and cNk ≡ 0 mod N , so
in fact γ 1

iγk
− ∈ Γ0(N). But then γi and γk lie in the same right coset, a contradiction.

1Here we are thinking of N as the matrix (N 0
0 1 ), so that Nτ = Nτ+0

0τ+1
.
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21.4 The modular polynomial

Definition 21.11. The modular polynomial ΦN is the minimal polynomial of jN over C(j).

As in the proof of Theorem 21.10, we can write ΦN ∈ C(j)(Y ) as

m

ΦN (Y ) =
∏

(Y − jN (γiτ)),
i=1

where the γi are right coset representatives for Γ0(N). The coefficients of ΦN (Y ) are
symmetric polynomials in jN (γiτ), so, as in the proof of Theorem 21.10 they are Γ-invariant,
and they are holomorphic on H, and so they are polynomials in j, by Corollary 21.8. Thus
ΦN ∈ C[j, Y ], and we may regard ΦN as a polynomial in two variables write it as ΦN (X,Y ).

Our next task is to prove that the coefficients of ΦN are integers. To simplify the
presentation, we will only prove this for prime N , which is all we need in most practi-
cal applications and suffices to prove the main theorem of complex multiplication. The
proof for composite N is essentially the same, but explicitly writing down a set of right
coset representatives γi and computing the q-expansions of the functions jN (γiτ) is more
complicated.

Lemma 21.12. If N is prime, then the right cosets of Γ0(N) in Γ are

Γ0(N) ∪ Γ0(N)ST k : 0 ≤ k < N ,

where S = 0

} { }
( −1 and

{
1 0

)
T = 1 1

0 1 .

Proof. We first show that the

(
union

)
of the cosets is Γ. Let γ =

(
A B CD

)
∈ Γ. IfC ≡ 0 mod N ,

then γ ∈ Γ0(N) lies in the first coset. Otherwise, we note that

ST k =

(
0 −1

)
k 1

and (ST k)−1 =
1 k

(
−1 0

)
,

and for C 6≡ 0 mod N , we may pick k such that kC ≡ D mod N , since N is prime. Then

k 1

(
kA−B A

γ0 = γ(ST )− =
kC −D C

)
∈ Γ0(N),

so γ = γ k k
0(ST ) ∈ Γ0(N)ST .

We now show the cosets are distinct. Suppose not. Then there must exist γ1, γ2 ∈ Γ0(N)
such that either (a) γ1 = γ k

2ST for some 0 ≤ k < N , or (b) γ1ST
j = γ2ST

k with
0 ≤ j < k < N . Let γ2 = a b . In case (a) we havec d

a b 0 1 b bk a
γ1 =

( )
( )(

−
1 k

)
=

c

(
−

,
d dk

∈ Γ (N)
d − c

)
0

and therefore d ≡ 0 mod N . But then det γ2 = ad−bc ≡ 0 mod N , which is a contradiction.
In case (b), with m = k − j we have

γ1 = γ2ST
mS−1 =

(
a b

)(
0 −1

)(
0 −1 b

−

)
∈ Γ−

)
=

(
a− bm −

− 0(N).
c d 1 m 1 0 c dm d

Thus c− dm ≡ 0 mod N , so d ≡ 0 mod N , and we again have det γ2 = ad− bc ≡ 0 mod N ,
which is a contradiction.
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Theorem 21.13. ΦN ∈ Z[X,Y ].

Proof (for N prime). Let γ k
k = ST . By Lemma 21.12 we have

N−1

ΦN (Y ) = Y − jN (τ)
∏

Y − jN (γkτ) .
k=0

Let f(τ) be a coefficient of Φ

( ) ( )
N (Y ). Then f(τ) is holomorphic function on H, since j(τ) is,

f(τ) is Γ(1)-invariant, since, as in the proof of Theorem 21.10, it is symmetric polynomial
in jN (τ) and the functions jN (γkτ), corresponding to a set of right coset representatives
for Γ0(N), and f(τ) is meromorphic at the cusps, since it is a polynomial in functions that
are meromorphic at the cusps. Thus f(τ) is a modular function for Γ(1) and therefore
a polynomial in j(τ), by Corollary 21.8. By Lemma 21.14 below, if we can show that
the q-expansion of f(τ) has integer coefficients, then it will follow that f(τ) is an integer
polynomial in j(τ) and therefore ΦN ∈ Z[X,Y ].

We first show that f(τ) has have rational coefficients. We have

1
jN (τ) = j(Nτ) =

q

∑∞
+ 744 + a nN

nq ,
N

n=1

where the an are integers, thus jN ∈ Z((q)).
For jN (γkτ), we have

jN (γkτ) = j(Nγkτ) = j
((

N 0
0 1

)
ST kτ

= j S 1 0 1 k

)
( ( τ + k1 k

0 N

) (
0 1

)
τ
)

= j
((

0 N

)
τ
)

= j

(
,

N

)
2πi

where we are able to drop the S because j(τ) is Γ-invariant. If we let ζN = e N , then

e2πi(
τ+k 2
N ) = e πi k 1

N q /N = ζkNq
1/N ,

and
ζ−k

jN (γkτ) = N a
n

∑∞
+ nζ

kn
N qn/N ,

q1/N
=0

thus j 1/N
N (γkτ) ∈ Q(ζN )((q )). Note that Gal(Q(ζN )/Q) permutes the jN (γkτ) and fixes

j 1
N (τ); it follows that f ∈ Q((q /N )). But the coefficients of f(τ) are also algebraic integers,

since the coefficients of jN (τ) and the jN (γk) are, so in fact f(τ) ∈ Z((q1/N )), and f(τ)
is a polynomial in j(τ), so its q-expansion has only integral powers of q, and therefore
f(τ) ∈ Z((q)), as desired.

Lemma 21.14 (Hasse q-expansion principal). Let f(τ) be a modular function for Γ(1)
that is holomorphic on H and whose q-expansion has coefficients that lie in an additive
subgroup A of C. Then f(τ) = P (j(τ)), for some polynomial P ∈ A[X].

Proof. By Corollary 21.8, we know that f(τ) = P (j(τ)) for some P ∈ C[X], we just need
to show that P ∈ A[X]. We proceed by induction on d = degP . The lemma clearly
holds for d = 0, so assume d > 0. The q-expansion∑ of the j-function begins with q−1, so
the q-expansion of f(τ) must have the form ∞ n

n= ,−d anq with an ∈ A and a = 0. Let
d

−d 6
P1(X) = P (X)− a dX , and let f1(τ) = P1(j(τ)) = f(τ)− a (−dj τ)d. The q-expansion of−
the function f1(τ) has coefficients in A, and by the inductive hypothesis, so does P1(X),
and therefore P (X) = P (X) + a Xd

1 −d also has coefficients in A.

7



21.5 Isogenies

Recall from Lecture 19 that if L1 is a sublattice of L2, and E1 ' C/L1 and E2 ' C/L2

are the corresponding elliptic curves, then there is an isogeny φ : E1 → E2 whose kernel is
isomorphic to the finite abelian group L2/L1. Indeed, we have the commutative diagram

C/L1 C/L2

E1(C) E2(C)

ι

' '

φ

where the top map is induced by the inclusion L1 ⊆ L2 (lift from C/L1 to C then quotient
by the finer lattice L2). The relationship between E1(C) and E2(C) is symmetric, since if
we replace L1 by the homothetic lattice 1 L1, where N = [L2 : L1] is the degree of φ, thenN

ˆL2 is a sublattice of L1 and we obtain the dual isogeny φ : E2 → E1.

Definition 21.15. If L1 is a sublattice of L2 for which the group L2/L1 is cyclic, then we
say that L1 is a cyclic sublattice of L2, and call the corresponding isogeny φ : E1 → E2 a
cyclic isogeny.

Cyclic isogenies are of particular interest to us they are effectively parameterized by the
modular polynomial ΦN . We will prove this in the case that N is prime, but it holds for
all N . We first want to describe the cyclic sublattices of prime index in a given lattice.

Lemma 21.16. Let L = [1, τ ] be a lattice with τ ∈ H. The cyclic sublattices of L with
prime index N are precisely the lattice [1, Nτ ] and the lattices [N, τ + k], for 0 ≤ k < N .

Proof. The lattices [1, Nτ ] and [N, τ+k] are clearly index N sublattices of L, and they must
be cyclic sublattices, since N is prime. Conversely, any sublattice L′ ⊆ L can be written as
[d, aτ + k], where d is the least positive integer in L′ and the index of L′ in L is equal to ad.
If [L : L′] = N is prime, then either d = 1 and a = N , in which case L′ = [1, Nτ ], or d = N
and a = 1, in which case L′ = [N, τ + k] and we may assume 0 ≤ k < N .

Theorem 21.17. For all j1, j2 ∈ C, we have ΦN (j1, j2) = 0 if and only if j1 and j2 are the
j-invariants of elliptic curves related by a cyclic isogeny of degree N .

Proof for N prime. We will prove the equivalent statement that ΦN j(L1), j(L2) = 0 if
and only if L2 is homothetic to a cyclic sublattice of L1 with index N . We may assume
without loss of generality that L1 = [1, τ1] and L2 = [1, τ2], where τ1, τ2

(
∈ H. With γk

)
= ST k

as in the proof of Theorem 21.13, we have

ΦN

( N−1

j(τ), Y
)

=
(
Y − j(Nτ)

) ∏ (
Y − j(Nγkτ)

k=0

)
,

where

j
(
Nγkτ

)
= j
((

N 0
0 1

)
ST kτ

)
= j
(
S
(
1 k
0 N

)
0

) k
τ
)

= j
((

1 k τN

)
= j
(τ +

.
N

Thus

)
ΦN

(
j(L1), j(L1)

)
= ΦN

(
j([1, τ1]), j([1, τ2])

)
= ΦN

(
j(τ1), j(τ2)

)
= 0

if and only if τ2 is Γ(1)-equivalent to Nτ1 or (τ1 +k)/N , with 0 ≤ k < N . By Lemma 21.16,
this is true precisely when L2 is homothetic to a cyclic sublattice of L1 with index N .
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Remark 21.18. We should note that if φ : E1 → E2 is a cyclic N -isogeny, the pair
(j(E1), j(E2)) does not uniquely determine φ, even up to isomorphism. As an example,
suppose End(E1) ' O and p is an unramified proper O-ideal of prime norm p such that [p]
has order 2 in the class group cl(O). Then pE1 ' p̄E1, and there are two distinct p-isogenies
from E 2

1 to E2 = pE1. These isogenies are not isomorphic (there is no automorphism we
can compose with one to get the other). In this situation the polynomial Φp(j(E1), Y ) will
have j(E2) as a double root (this corresponds to a singularity on the curve ΦN (X,Y ) = 0).

Corollary 21.19. ΦN (X,Y ) = ΦN (Y,X)

Proof. This follows immediately from the existence of the dual isogeny.

In the same way that the j-function defines a bijection from Y (1) = H/Γ(1) to C (which
we may regard as an affine curve), the functions j(τ) and jN (τ) define a bijection from
Y0(N) = H/Γ0(N) to the affine curve CN defined by ΦN (X,Y ) = 0. Each τ ∈ H is mapped
to the point

(
j(τ), jN (τ)

)
. If we take as a fundamental region for Γ0(N) the union of the

translates γiF , where F is a fundamental region for Γ(1) and Γ0(N)γ1, . . . ,Γ0(N)γm are a
set of right coset representatives for Γ0(N), then(every point in )H is Γ0(N)-equivalent to
some γiτ with τ ∈ F . The p(oint γiτ is mapp) ed to j(γiτ), jN (γiτ) , but since j(γiτ) = j(τ),
this is the same thing as j(τ), jN (γiτ) . For any τ ∈ H, the roots of ΦN (j(τ), Y ) are
the images under jN of the m translates γ1τ, . . . , γmτ , each of which corresponds to an
isomorphism class of elliptic curves that is related to j(τ) by a cyclic isogeny of degree N .

The map from Y0(N) to CN extends uniquely to a map from X0(N) to the projective
closure CN of CN , but the curve CN is not smooth, so this is not an isomorphism of
Riemann surfaces (it is everywhere except for a finite set of singular points). This defect can
be remedied by “desingularizing” CN (this involves embedding CN in a higher dimensional
projective space), and this yields a canonical map fromX0(N) to the desingularization of CN
that is an isomorphism of compact Riemann surfaces. In this sense, the curve defined by
ΦN (X,Y ) = 0 can be viewed as a canonical model for X0(N) defined over Q. This is a
remarkable feature of the modular curves X0(N) that distinguishes them from most other
modular curves.

21.6 Modular curves as moduli spaces

We have seen that the modular curve X0(N) can be viewed as parameterizing (isomorphism
classes of) cyclic N -isogenies between elliptic curves over C. This point of view gives an
alternative way to define X0(N): it is the moduli space of cyclic N -isogenies of elliptic
curves.3 This may sound rather abstract, but it can be made quite rigorous in the language
of algebraic geometry. Doing so is well beyond the scope of this course, but it is useful to
have this perspective in mind, since it applies to other modular curves.

We have already seen that the modular curve X(1) is the moduli space of all ellip-
tic curves, and the modular curve X(N) is the moduli space of triples (E,P1, P2), where
{P1, P2} is a basis for the N -torsion subgroup of E. The modular curve X1(N) is the moduli
space of pairs (E,P ), where P is a point of order N in E(C). Of course one needs to define
a suitable notion of isomorphism in each case.

2Recall that if E1 ' C/L then pE1 denotes the elliptic curve E2 ' C/p−1L, see Lecture 19.
3Here we have specified the isomorphism class of an N -isogeny as the pair of j-invariants of its domain

and codomain. Equivalently, X0(N) can be defined as the moduli space of (isomorphism classes of) pairs
(E,C), where E is an elliptic curve and C is a cyclic subgroup of E(C) of order N (any such C is the kernel
of a cyclic N -isogeny), which is often done.
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From our perspective the most critical fact about moduli spaces is that they can be
interpreted over any field, not just C. In the case of X0(N), the modular polynomial
ΦN (X,Y ) has integer coefficients, so it defines a curve ΦN (X,Y ) = 0 over any field. In
particular, in any finite field Fq, two elements j1, j2 ∈ Fq satisfy ΦN (j1, j2) = 0 if and only
if they are the j-invariants of elliptic curves E1/C and E2/C that are related by a cyclic
N -isogeny. One note of caution: over a non-algebraically closed field one needs to choose
the curves E1 and E2 appropriately, the fact that ΦN (j(E1), j(E2)) = 0 does not guarantee
that E1 and E2 are related by a cyclic N -isogeny, it only guarantees that there is a twist
Ẽ2 of E 4

2 for which this holds.
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