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22.1 The Hilbert class polynomial

We now turn our attention back to the Hilbert class polynomial introduced in Lecture 20.
Recall that for each imaginary quadratic order O, we define the set

Ell (C) = {j(E) ∈ C : End(E)O ' O}

of equivalence classes of elliptic curves with endomorphism ring O (we say such elliptic
curves have CM by O). By Theorem 19.2, we can uniquely identify O by its discriminant D.

Definition 22.1. The polynomial

HD(X) = X − j(E)

j(E)∈

∏
Ell (C)O

( )
is the Hilbert class polynomial (of discriminant D).

The appellation “Hilbert” is sometimes reserved for cases where D is a fundamental
discriminant (in which case HD(X) is more generally called a ring class polynomial), but we
shall use the term Hilbert class polynomial to refer to HD(X) in general. Our first objective
is to use the fact that ΦN ∈ Z[X,Y ] to prove that HD ∈ Z[X]. We require the following
lemma.

Lemma 22.2. If N is prime then the leading coefficient of ΦN (X,X) is −1.

Proof. We have

N−1
τ + k

ΦN

(
j(τ), j(τ)

)
=
(
j(τ)− j(Nτ)

)
k

∏
j(τ)− j

=0

( (
.

N

))
Recall from the proof of Theorem 21.13 that

1
j(Nτ) = +

qN
· · · ,

j
(τ + k

N

)
=

ζ−kN +
q1/N

· · · ,

where q = e2πiτ , ζN = e2πi/N , and each ellipsis denotes terms with positive powers of q.
Thus

1
j(τ)− j(Nτ) = −

qN
+

1
+

q
· · · ,

j(τ)− j
(τ + k

N

)
=

1

q
−
ζ−kN +
q1/N

· · · ,

which implies that the q-expansion of f(τ) = ΦN

(
j(τ), j(τ)

)
is − 1

q2N
+ · · · . Since f(τ) is a

polynomial in j(τ) = 1
q + · · · , the leading term of ΦN (X,X) must be −X2N .
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Remark 22.3. Lemma 22.2 does not hold for composite N ; in particular, when N is square
ΦN (X,X) is not even primitive (its coefficients have a non-trivial common divisor).

Before proving that HD ∈ Z[X], we note the following classical number-theoretic result,
which is a consequence of the Chebotarev1 density theorem (the result stated here actually
follows from earlier work of Dirichlet and Weber, see [2, p. 190]).

Theorem 22.4. Let O be an imaginary quadratic order. Every ideal class in cl(O) contains
infinitely many ideals of prime norm.

Proof. This follows from Theorems 7.7 and 9.12 in [2].

Theorem 22.5. The coefficients of the Hilbert class polynomial HD(X) are integers.

Proof. Let O be the imaginary quadratic order of discriminant D, let E/C be an elliptic
curve wih CM by O, and let p be a principal O-ideal of prime norm p (the existence of p is
guaranteed by Theorem 22.4). Then [p] is the identity in cl[O] and therefore acts the acts
trivially on Ell (C). Thus the elliptic curve pE = E corresponding to the torus C/p−1

O p−1

is isomorphic to E. It follows that there exists a p-isogeny from E to itself. Such an isogeny
is necessarily cyclic, since it has prime degree, so we must have Φp j(E), j(E) = 0. Thus
j(E) is the root of the polynomial −Φp(X,X), which has integer
monic, by Lemma 22.2. Therefore j(E) is an algebraic integer, and

(
coefficients

)
and is also

E can be defined by a
Weierstrass equation y2 = x3 +Ax+B whose coefficients lie in the number field Q(j(E)).

The group Gal(Q/Q) acts on elliptic curves defined over number fields via its action
on the Weierstrass coefficients A and B: for σ ∈ Gal(Q/Q) the curve Eσ is defined by
the equation y2 = x3 + σ(A)x + σ(B). Similarly, σ acts on isogenies between such curves
via its action on the coefficients of the rational map defining the isogeny. If φ : E → E is
an endomorphism, then so is φσ : Eσ → Eσ. Note that for any φ, ψ

σ σ σ σ σ σ
∈ End(E) we have

(φ + ψ) = φ + ψ and (φ ◦ ψ) = φ ◦ ψ , thus we have a ring homomorphism from
End(E) to End(Eσ), and it is invertible (apply σ−1 to End(Eσ)), so End(E) ' End(Eσ).

It follows that for any σ ∈ Gal(Q/Q) we have j(Eσ) = j(E)σ ∈ Ell (C). Thus the set ofO
roots of HD(X) is fixed by Gal(Q/Q), therefore HD ∈ Q[X]. Every root of HD(X) is a root
of Φp(X,X), thus HD(X) divides Φp(X,X) in Q[X]. But Φp(X,X) has integer coefficients
and it is primitive, by Lemma 22.2, so by Gauss’s lemma its divisors in Q[X] all lie in Z[X].
Therefore HD ∈ Z[X].

Corollary 22.6. Let E/C be an elliptic curve with complex multiplication. Then j(E) is
an algebraic integer.

We now turn to our main goal for this lecture. We wish to prove the first main theorem
of complex multiplication, which states that the Galois group of the splitting field L of
HD(X) over K = Q(

√
D) is isomorphic to the class group cl(O), and moreover, that the

CM action of cl(O) on Ell (C) is precisely the Galois action of Gal(L/K) on the rootsO
of HD(X). Note that cl(O) acts transitively on Ell (C), so this result implies that HO D(X)
is irreducible over K and is therefore the minimal polynomial of each j(E) ∈ Ell (C) over KO
(and over Q).

Let O be the imaginary quadratic order of discriminant D, and fix an elliptic curve E1

with CM by O. As in the proof of Theoerem 22.5, if σ ∈ Gal(K/K), then Eσ1 has CM by O,
1Many different transliterations of Chebotarev’s name appears in the literature, including Chebotaryov

Čebotarev, Chebotarëv, Čhebotarëv, Tchebotarev, and Tschebotaröw. In Russian, his name is Qebotar�v.
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and therefore Eσ1 ' aE1 for some proper O-ideal a. If E2 ' bE1 is any other elliptic curve
with CM by O, we have

Eσ2 ' (bE1)σ = bσEσ1 = bEσ1 ' baE1 = abE1 ' aE2. (1)

Two comments are in order. First, the innocent looking identity (bE1)σ = bσEσ1 used in (1)
is not immediate; see [6, Prop. II.2.5] for a proof. Second, the identity bσ = b is immediate,
because b ⊂ K and σ ∈ Gal(K/K) fixes every element of K; but this would not be true if
we had instead used σ ∈ Gal(Q/Q).

Since our choice of E2 was arbitrary, it follows from (1) that the action of σ on Ell (C)O
is the same as the action of a on Ell (C). Because Ell (C) is a cl( -torsor,O O) the map thatO
sends each σ ∈ Gal(K/K) to the corresponding class [a] for which Eσ1 = aE1 defines a group
homomorphism from Gal(K/K) to cl(O). Restricting this homomorphism to the splitting
field L of HD(X) over K yields an injective homomorphism

Ψ: Gal(L/K)→ cl(O).

To show injectivity, note that if Ψ(σ) acts trivially on Ell (C) then Ψ(σ) is the identityO
in cl(O), and σ must fix every root of HD(X) and is therefore the identity in Gal(L/K).

We summarize this discussion with the following theorem.

Theorem 22.7. Let O be an imaginary quadratic order of discriminant D and let√ L be the
splitting field of HD(X) over K = Q( D). The map Ψ : Gal(L/K) → cl(D) that sends σ
to the unique α ∈ cl(O) for which j(E)σ = αj(E) for all j(E) ∈ Ell (E) is well-defined andO
is an injective group homomorphism.

Thus we have embedded Gal(L/K) in cl(O) in a way that is compatible with each
group’s action on Ell (C). It remains only to prove that Ψ is surjective. To do this weO
need to introduce the Artin map, which will allow us to associate to each O-ideal p of prime
norm (subject to certain constraints), an element of σ ∈ Gal(L/K) whose action on Ell (C)O
corresponds to the action of [p]. In order to define the Artin map we need to briefly delve
into some algebraic number theory, but we will restrict ourselves to the absolute minimum
we need; those who want to learn more may wish to consult [2] or [4]. Those who prefer to
simply treat the Artin map as a “black box" are welcome to do so.

22.2 The Artin map

Let L be a finite abelian extension of a number field K (this means L/K is Galois and
Gal(L/K) is a finite abelian group). Let p be a prime ideal of K (an OK-ideal). We can
factor the OL-ideal pOL as a product of prime OL-ideals. When these prime ideals are
all distinct, we say that p is unramified in L. This holds for all but a finite set of prime
ideals p, and we now assume that this is the case. Let P be a prime ideal of L in the prime
factorization of pOL; this means P contains pOL, and we say that P lies above p.

The subgroup DP = {σ ∈ Gal(L/K) : Pσ = P} is called the decomposition group
of P. Each σ ∈ DP induces an automorphism σ̄ of the finite field FP = OL/P that fixes
the subfield Fp = OK/p. Thus there is a homomorphism from DP to Gal(FP/Fp). This
homomorphism is surjective [4, Prop. I.9.4], and our assumption that p is unramified means
that it is also injective [4, Prop. I.9.5], and therefore an isomorphism.

The group Gal(FP/Fp) is cyclic, generated by the Frobenius automorphism x → xq,
where q = #Fp = N(p). The unique σP ∈ DP ⊆ Gal(L/K) for which σ̄P is the Frobenius
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automorphism is called the Frobenius element. In general, for any given p the Frobenius
element σP depends on our choice of P. But the σP are all conjugate in Gal(L/K), and
in our situation Gal(L/K) is abelian, so they must all be equal. Thus there is a unique
Frobenius element σp that does not depend on our choice of P. The map p 7→ σp is known
as the Artin map (it extends multiplicatively to a map defined on all OK-ideals, but this is
irrelevant to us). The automorphism σp is uniquely characterized by the fact that

σp(x) ≡ xN(p) mod P, (2)

for all x ∈ OL and primes P that lie above p.

22.3 The first main theorem of complex multiplication

We are now ready to prove that Ψ: Gal(L/K) → cl(O) is an isomorphism. Note that we
have already shown that it is injective, and this implies that Gal(L/K) is abelian, so we
have the desired setup for applying the Artin map.

Since we have proved that the roots of HD(X) are all algebraic integers that lie in its
splitting field L over K = Q(

√
D), we now write Ell (L) in place of Ell (C) to emphasizeO O

that we are working with j-invariants that lie in a number field. Any elliptic curve E/C with
CM by O can thus be defined over L, and we can further assume that the coefficients of the
equation defining E lie in the ring of integers OL (by clearing denominators). If P is any
prime of L (a prime OL-ideal), then it makes sense to reduce elements of OL modulo P to
obtain elements of the finite field FP = OL/P. Thus for an elliptic curve E/L we may speak
of the reduction E mod P, the elliptic curve Ē/FP obtained by reducing the coefficients of
E modulo P. We say that E has good reduction at P if the discriminant of Ē is not zero.

Theorem 22.8. Let O be an imaginary quadratic order of discriminant D and let L be
the splitting field of HD(X) over K = Q(

√
D). The map Ψ: Gal(L/K) → cl(O) given by

Theorem 22.7 is a group isomorphism that commutes with the group actions of Gal(L/K)
and cl(O) on Ell (L).O

Proof. In view of Theorem 22.7, we just need to show that Ψ is surjective. So let α be an
arbitrary element of cl(O). We will show that α is in the image of Ψ.

Let us fix an elliptic curve E/L with CM by O, and let p be an OK-ideal of prime norm p
such that

(i) p ∩ O is a proper O-ideal contained in α.

(ii) p is unramified in L;

(iii) The elliptic curves E, p∗E, and p̄∗E have good reduction modulo every prime P of L
lying above p.

(iv) The elements of Ell (L) are distinct modulo every prime P of L lying above p.O

The existence of such a p is guaranteed by Theorem 22.4; there are infinitely many p for
which (i) holds, and conditions (ii)-(iv) prohibit only finitely many primes. To ease the
notation, we will also use p to denote the O-ideal p ∩ O; it will be clear from context
whether we are viewing p as a prime of K or as an O-ideal.

Let us now fix a prime P of L that lies above p, and let Ē/FP be the reduction of E
modulo P. It follows from (2) that the action of σp on E corresponds to the action of the
-power Frobenius map on ¯ ¯p π E, which gives an inseparable p-isogeny from E to Ēσ̄p . The
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CM action of the O-ideal p corresponds to an isogeny of degree N(p) = p from E to pE,
and induces an isogeny φ from Ē to pE. Let us now consider the possibilities for φ.

If φ is inseparable, then φ = φsep ◦ π, by Corollary 5.16, and deg φ = deg π implies
deg φsep = 1, which means that φ and π are isomorphic; thus pE ' Ēσp . We must then have
j(pE) = j(Ēσp) and therefore j(pE) = j(Eσ), by (iv). It follows that Ψ(σp) = [p] = α, since
each element of cl(O) is determined by its action on any element of the cl(O)-torsor Ell (L).O

So now suppose φ is separable. Then the reduction of any isogeny induced by the
action of p on an elliptic curve with CM by O must also be separable, since we get an
inseparable isogeny if and only if Ψ(σp) = [p], and this does not depend on the choice of E.
In characteristic p, the dual of a separable p-isogeny must be inseparable, since the order of
E[p] is at most p. Thus the isogenies induced by p̄, which are always dual to those induced
by p, must have inseparable reductions. Therefore Ψ(σ−1

p ) = α.2

Corollary 22.9. The Hilbert class polynomial HD(x) is irreducible over K = Q(
√
D) and

each of its roots j(E) generates an abelian extension K(j(E))/K with Galois group isomor-
phic to cl(O).

Proof. The class group cl(O) acts transitively on the roots of HD(X) (the set Ell (C)). ByO
Theorem 22.8, the splitting field L of HD(x) over K must also act transitively on the roots
of HD(X), which implies that HD(X) is irreducible over K. Thus each root j(E) of HD(X)
is an algebraic integer of degree h(D) = |cl(O)| = |Gal(L/K)| = [L : K], and therefore
generates L, and we have Gal(L/K) ' cl(O), which is abelian.

Theorem 22.10. Let O be an imaginary quadratic order with discriminant D and ring
class field L. Let p be a prime that is unramified in L. The following are equivalent:

(i) p is the norm of a principal O-ideal;

(ii)
(
D = 1 and HD(X)p splits completely in Fp[X];

(iii) p splits

)
completely in L;

(iv) 4p = t2 − v2D for some integers t and v.

When we say that p splits completely in L, we mean that the the principal OL-ideal (p)
factors into a product of prime OL-ideals of norm p (degree-1 primes of L).

Proof. If p is a principal O-ideal of norm p, then [p], and therefore σp, acts trivially on the
roots of HD(X), which means that HD(X) splits into linear factors over Fp = Fp. The
converse also holds, thus (i) and (ii) are equivalent.

If
(
D
p

)
= 1, then p = pp̄ splits into degree-1 primes in K, and if HD(X) splits completely

over Fp, then its roots are all fixed by σp. But then [FP : Fp] = 1, and we therefore have
N(P) = [OL : P] = [OK : p] = p for every prime P of L lying above p. So p splits completely
in L. The converse also holds, thus (ii) and (iii) are equivalent.

Write D = f2DK , where f = [OK : O] and DK = disc(O√ K). Then OK = [1, ωK ], where
ωK = (DK + DK)/2, and O = [1, fωK ]. If (α) is a principal O-ideal of norm p, then
α = a+ bfωK , for some a, b ∈ Z, and

4p = 4N(α) = 4αᾱ = 4(a+ bfω )(a+ bfω̄ ) = (2a+ bfD )2 2
K K K − b D.

2In fact this never happens; we defined pE = Ep p−1 rather than E = Ep precisely so that we would
always have Ψ(σp) = [p], but we haven’t actually proved this and don’t need to.
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Thus 4p = t2 − v2D holds for the integers t = 2a + bfDK and v = b. Conversely, if
4p = t2 − v2D, then let a = (t − vfDK)/2 and b = v, and set α = a + bfωK . If D is odd
then t ≡ v mod 2, and if D is even then t ≡ fDK mod 2. In either case, a ∈ Z, so α ∈ O
generates a O-principal ideal of norm N(α) = p. Thus (i) and (iv) are equivalent.

22.4 Ring class fields

The theory of complex multiplication was originally motivated not by the study of elliptic
curves, but as a way to construct abelian Galois extensions. A famous theorem of Kronecker
and Weber states that every finite abelian extension of Q lies in a cyclotomic field (a field
of the form Q(ζn), for some nth root of unity ζn). The effort to generalize this result to
fields other than Q led to the development of class field theory, a branch of algebraic number
theory that represents one of the major advances of early 20th century number theory.

In 1898 Hilbert conjectured that every number field K has a unique maximal abelian
extension L/K that is unramified at every prime3 of K, and it satisfies Gal(L/K) ' cl(OK).
This conjecture was proved shortly thereafter by Furtwängler, and the field L is known as
the Hilbert class field of K. While its existence was proved, the problem of explicitly
constructing L, say, by specifying a generator for L in terms of its minimal polynomial
over K, remained an open problem (and for general K it still is).

After Q, the simplest fields K to consider are imaginary quadratic fields. As a gener-
alization of the Hilbert class field, rather than requiring L/K to be unramified at every
prime OK-ideal, we might instead only require L/K to be unramified at every prime that
is a proper O-ideal, for some order O ⊆ OK . This leads to the definition of the ring class
field L of the order .O O The ring class field of OK is then the Hilbert class field.

The ring class field L is uniquely characterized by the infinite setO SL /Q of rationalO
primes p that split completely in L , and with finitely many exceptions, these are preciselyO
the primes that satisfy the equation 4p = t2−v2D for some t, v ∈ Z, where D = disc(O); see
[2, Thm. 9.2, Ex, 9.3]. The Chebotarev density theorem implies that any extension M/K
for which the set SM/Q matches SL /Q with only finitely many exceptions must in fact beO
equal to L , by [2, Thm. 8.19]. Thus we have the following corollary of Theorem 22.10,O
which completely solves the problem of explicitly constructing the Hilbert class field, and
ring class fields, in the case that K is an imaginary quadratic field.

Corollary 22.11. Let be an imaginary quadratic order with discriminant and let
K =

√ O D
D. The splitting field of HD(X) over K is the ring class field of the order O.

22.5 The CM method

The equation
4p = t2 − v2D

in part (iv) of Theorem 22.10 is known as the norm equation, since it arises from the
principal ideal of norm p given by part (i). For D < −4, the integers t2 and v2 are uniquely
determined by p and D. If the norm equation is satisfied and j(E) is a root of HD(X)
over Fp, then the Frobenius endomorphism π of E/Fp satisfies the characteristic polynomial

3This includes not only all prime OK-ideals, but also the infinite primes of K (embeddings of K into C).
Only real infinite primes (embeddings of K into R) can ramify, so for imaginary quadratic fields K we can
safely ignore the infinite primes.
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x2 − tr(π)x+N(π). Viewing π as an element of End(E) ' O, we can apply the quadratic
formula to compute

tr(π)
π =

±
√

tr(π)2 − 4p
,

2

where
√

tr(π)2 − 4p lies in O and can written as v
√
D for some integer v. It follows that

tr(π) = ±t. The two possible signs correspond to quadratic twists of E.
Thus given the Hilbert class polynomial HD(X) and a prime p for which the norm

equation holds, we can find a root j0 of HD(X) over Fp and then write down the equation
y2 = x3 + Ax + B of an elliptic curve E with j(E) = j0, using A = 3j(1728 − j) and
B = 2j(1728 − j)2. The Frobenius endomorphism πE then satisfies tr(πE) = ±t, and by
Hasse’s theorem we have

#E(Fp) = p+ 1− tr(πE).

The sign of tr(πE) can be uniquely determined using the formulas in [5]. A more expedient
method is to simply pick a random point P ∈ E(Fp) and check whether (p+ 1− t)P = 0 or
(p+1+t)P = 0 both hold (at least one must). If only one of these equations is satisfied, then
tr(π) is determined. By Mestre’s theorem (see Lecture 8), for p > 229 we are guaranteed
that this will work either for E or its quadratic twist, for most of the random points P we
pick (when p is large the first random point P that we try is almost certain to work).

This method of constructing an elliptic curve E/Fp using a root of the Hilbert class
polynomial is known as the CM method. Its key virtue is that #E(Fp) = p+ 1− t is known
in advance. This has many applications, one of which is an improved version of elliptic curve
primality proving developed by Atkin and Morain [1], which is explored in Problem Set 11.

The main limitation of the CM method is that it requires computing (or having precom-
puted) the Hilbert class polynomial HD(X), which becomes very difficult when |D| is large.
The√ degree of HD(X) is the class number h(D), which is asymptotically on the order of
|D|, and the size of its largest coefficient is on the order of

√
|D| log |D| bits.4 Thus the

total size of HD(X) is on the order of |D| log |D| bits, which makes it impractical to even
write down if |D| is large (in general, |D| may be as large as the prime p we are working
with). An efficient algorithm for computing HD(X) is outlined in Problem Set 11, and with
a suitable implementation, it can practically handle |D| > 1013, where the size of HD(X)
is several terabytes [7]. Using class polynomials associated to alternative modular functions
(which may be smaller by a large constant factor), discriminants as large as |D| ≈ 1015 can
be addressed [3]; with more advanced techniques even |D| ≈ 1016 is possible [8].

22.6 Summing up the theory of complex multiplication

E L a ax2 + bxy + cy2

j(E) j(L) [a] reduced form

Ell (C)O {j(L) : O(L) = O} cl(O) cl(D)

isomorphism homethety mod principal ideals SL2(Z)-equivalence

4Under the Generalized Riemann Hypothesis, these bounds are accurate to within an O(log log |D|) factor.
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The figure above illustrates four different objects that have been our focus of study for the
last several weeks:

1. Elliptic curves E/C with CM by O.

2. Lattices L (which define tori C/L that correspond to elliptic curves).

3. Proper O-ideals a (which may be viewed as lattices).

4. Primitive positive definite binary quadratic forms ax2 + bxy + cy2 of discriminant D
(which correspond to proper O-ideals of norm a).

Here O is an imaginary quadratic order of discriminant D.
In each case we have defined a notion of equivalence: isomorphism, homethety, equiv-

alence modulo prinicipal ideals, and equivalence modulo an SL2(Z)-action, respectively,
and modulo this equivalence we obtain a finite set of objects with the same cardinality
h(O) = h(D) in each case. The two sets on the right, cl(O) and cl(D), are finite abelian
groups that on the two sets on the left, both of which are equal to Ell (C). This action isO
free and transitive, so that Ell (C) is a cl(O O)-torsor.

The integer polynomials HD(X) and ΦN (X,Y ) allow us to realize the CM torsor over
any field k containing

√
D where HD(X) splits completely: the roots of HD(X) form the

set Ell (k), and the action of [a] ∈ cl( ) sends j(E) Ell (k) to a root of Φ (j(E), Y )O O ∈ O N(a)

that also lies in Ell (k), via a cyclic isogeny of degree N(a).O
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