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23.1 Isogenies between elliptic curves with complex multiplication

Let E/k be an elliptic curve with CM by an order O of discriminant D in an imaginary
quadratic field K, and let ` be a prime not equal to the characteristic of k. The roots of
Φ`(j(E), Y ) correspond to ` + 1 distinct `-isogenies from E to elliptic curves E′, not all
of which may be defined over k; this depends on whether the roots lie in k or a proper
extension of k. Of these ` + 1 roots, 0, 1, or 2 may correspond to elliptic curves that also
have CM by O, depending on whether ` divides the conductor [OK : O] and whether ` is
inert, ramified, or split in K, as you proved on Problem Set 10. We note that any such
curves can be defined over k, since the set Ell (k) is either empty or includes the j-invariantO
of every elliptic curve with CM by O. This is clear in characteristic 0, since the ring class
field for O is the splitting field of HD(X) over Q (and over K). For finite fields Fp it follows
from Theorem 22.10, and in fact it holds for all fields of characteristic p.

But what about elliptic curves that that are `-isogenous to E but don’t have CM by O?
We know that over a suitable extension of k at least `− 1 such curves exist. These elliptic
curves have CM by a different imaginary quadratic order O′ in the same field K, and O′
either contains or is contained by O, with index `.

Theorem 23.1. Let E/k be an elliptic curve with CM by an order O in an imaginary
quadratic field K, and suppose that there exists an isogeny ϕ : E → E′ of prime degree `.
Then E′ has CM by an order O′ in K, and one of the following holds:

(i) O = O′, (ii) [O : O′] = `, (iii) [O′ : O] = `.

Proof. For any φ ∈ End(E), the composition ϕ ◦ τ ◦ ϕ̂ lies in End(E′), and conversely, for
any φ′ ∈ End(E′), the composition ϕ̂ ◦ τ ◦ ϕ lies in End(E). It follows that the endomor-
phism algebras End0(E) and End0(E′) are the same, so E′ has CM by an order O′ in K.
Furthermore, both `O ⊆ O′ and `O ⊆ O′ hold; since is prime, the theorem follows.1`

Definition 23.2. We use the following terminology to distinguish the three possibilities for
the `-isogeny ϕ of Theorem 23.1:

(i) when O = O′ we say that ϕ is a horizontal,

(ii) when [O : O′] we say that ϕ is descending,

(iii) when [O′ : O] we say that ϕ is ascending.

In both of the last two cases, we also say that ϕ is a vertical isogeny.

Horizontal `-isogenies correspond to the CM action of a proper O-ideal of norm `. You
determined the number of horizontal `-isogenies for an elliptic curve with CM by O in
Problem Set 10.

Lemma 23.3. Let E/k be an elliptic curve with CM by an order O in an imaginary quadratic
field K. If ` divides [OK : O] then there are no horizontal isogenies from E, and otherwise
the number of horizontal `-isogenies is 1 +

(
D
`

)
, where D = disc(O).

1Note that O′ is an order, hence a ring, so it contains 1. Thus if `O ⊆ O′ with O = [1, τ ], then the
index-` suborder [1, `τ ] of O lies in O′ (and vice versa).
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Proof. See Problem 2.4 on Problem Set 10.

Earlier we defined the set Ell (C) of elliptic curves over C with CM byO O. We now
extend this definition to arbitrary fields k

Definition 23.4. For any field k, the set Ell (k) consists of the j-invariants of all ellipticO
curves defined over k whose endomorphism ring is isomorphic to O.

Over a non-algebraically closed field k, the set Ell (k) may be empty, but if it is non-emptyO
then it is as large as possible.

Lemma 23.5. The cardinality of Ell (k) is either 0 or h( ).O O

Proof. In characteristic 0 the prime field of k is isomorphic to Q, and the lemma follows from
the fact that Q(j(E)) is the splitting field of HD(X) over Q. In characteristic p the lemma is
implied by the Duering lifting theorem and related results (see Theorems 12-14 in Chapter
13 of [5]). Duering proved that in characteristic p not only does every elliptic curve with CM
by O arise as the reduction of an elliptic curve over Q with CM by O, there is a one-to-one
correspondence between j-invariants (in particular, their reductions are distinct).

Remark 23.6. Lemma 23.5 does not imply that HD(X) must either be irreducible or split
completely over k; it is possible for HD(X) to have some, but not all, of its roots in k. In
this situation the roots of√ HD(X) do not correspond to elliptic curves with CM by O. It is
true that if D ∈ k and HD(X) splits completely, then its roots must be the set Ell (k),O
this follows from Theorem 22.10 and the Duering lifting theorem.

We now wish to determine the number of ascending `-isogenies that an elliptic curve
with CM by an imaginary quadratic order may have. To set things up, let us suppose that
[O : O′] = `, so that `-isogenies from elliptic curves with CM by O′ to elliptic curves with CM
by O are ascending. There is a norm-preserving map ρ that sends each invertible O′-ideal a
to the (necessarily invertible) O-ideal aO, and ρ induces a surjective group homomorphism
from cl(O′) to cl(O). This is more or less obvious, but see [2, Prop. 7.20] for a proof when
O = OK , and see [1, §3] for the general case.

Theorem 23.7. Let E′/k be an elliptic curve with CM by an imaginary quadratic order O′
that is an index-` suborder of O, with disc(O) < −4 and ` 6= char(k) prime. Up to isomor-
phism, there is a unique `-isogeny from E to an elliptic curve E′/k with CM by O.

Proof. We first note that the existence of E′/k implies that Ell (k) is non-empty, and
2
O′

since O contains O′, it follows that Ell (k) is also non-empty. Thus the cardinality ofO
Ell (k) is h( ) and the cardinality of Ell (k) is h( ′), by Lemma 23.5.O O O′ O

Suppose there exists an ascending `-isogeny φ1 : E1
′ → E1, for some elliptic curve E1

′

with CM by O′. Twisting E1 if necessary, we may choose an invertible O′-ideal a′ so that
the horizontal isogeny ϕa′ corresponding to the CM-action of a′ on E1 maps E1

′ to E′. If
we now set a = ρ(a′) and let E be the image of ϕa ◦ φ1, then E has CM by O, and there
is a unique isogeny φ : E′ → E such that φ ◦ ϕa′ = ϕa ◦ φ1, by [7, Cor. 4.11]. We have
deg φ = degϕa deg φ1/degϕa′ = `, thus φ is an ascending `-isogeny. It follows that if any
E1
′ /k with CM by O′ admits an ascending `-isogeny, then so does every such elliptic curve.
2One way to see this is to note that k contains the roots of the Hilbert class polynomial for O′, hence

it must contain the roots of the Hilbert class polynomial for O, since the ring class field of O′ contains the
ring class field of O.
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We now proceed by induction on d = ν`([OK : O]), where OK is the maximal order
in the imaginary quadratic field K containing O, and ν`(n) is the `-adic valuation (the
largest e for which `e divides n). Let DK = disc(OK). For d = 0,(every elliptic curve E/k
with CM by O admits ` + 1 k-rational `-isogenies, of which D1 + K

`

)
are horizontal and

none are ascending. The remaining ` −
(DK > 0
`

must be descending, and their duals are
ascending( `-isogenies from elliptic curves with

D

)
CM by O′. It follows that there are a total of

(`− K `
`

)
)h(O) ascending -isogenies from Ell ′(k) to Ell (k). By Lemma 23.8 below, thisO O

is equal to the cardinality h(O′) of Ell ′(k). Since there is at least one ascending `-isogenyO
from each elliptic curve E′/k with CM by O′, there must be exactly one in each case.

The argument for d > 0 is similar. By the inductive hypothesis, every elliptic curve E/k
with CM by O admits exactly one ascending `-isogeny, and since ` now divides [OK : O],
there are no horizontal isogenies from E, and all ` of the remaining `-isogenies from E must
by descending. There are thus a total of `h(O) ascending `-isogenies from Ell (k), whichO′

equals the cardinality h(O′) of Ell ′(k), again by Lemma 23.8.O

Lemma 23.8. Let ` be a prime, let O′ be an index-` suborder of an imaginary quadratic
order O of discriminant D < −4, and let OK be the maximal order containing O, with
discriminant DK . If ` divides [OK : O], then h(O′) = `h(O), and otherwise

h(O′) D
= `

h(O)
−
(

K
.

`

)
Proof. This follows directly from the class number formula for non-maximal orders, a stan-
dard result that won’t prove here; see [2, Thm. 7.24].

Remark 23.9. The reason for requiring D < −4 in Theorem 23.7 and Lemma lem:hcard is
that the unit group of an imaginary quadratic order with discriminant less than −4 is

2
{±1},

but the orders Z[e π/3] and Z[i] with discriminants −3 and −4 have larger unit groups (of
order 6 and 4, respectively), and these extra units correspond to extra automorphisms of
the elliptic curves with j-invariants 0 and 1728 (respectively) that have CM by these orders.

If φ ∈ Aut(E), then whenever we have an `-isogeny λ : E → E′, we also have the `-
isogeny λ ◦ φ. Now if φ = ±1, then ker(λ ◦ φ) = kerλ and we regard these two isogenies
as equivalent, but if φ 6= ±1, then ker(λ ◦ φ) 6= kerλ and these really are inequivalent
isogenies; the polynomial Φ`(j(E), Y ) will have j(E′) as a root with multiplicity equal to
|Aut(E)|/2. But the isogenies dual to λ and φ ◦ λ will have the same kernel. Thus when
considering isogenies up to equivalence, we do not have a 1-to-1 correspondence between
isogenies and their duals when j(E) ∈ {0, 1728}, but otherwise we do. For this reason we
will often exclude the j-invariants 0 and 1728 in what follows (the special cases 0 and 1728
can be handled by taking Aut(E) into account).

23.2 Isogeny volcanoes

We now define the `-isogeny graph of the field k. As above ` 6= char(k) is a prime.

Definition 23.10. The `-isogeny graph G`(k) is the directed graph with vertex set k and
edges (j1, j2) present with multiplicity equal to the multiplicity of j2 as a root of Φ`(j1, Y ).

Note that G`(k) may contain multiple edges between the same pair of vertices, and it
may contain self-loops (edges from a vertex to itself). The vertices of G`(k) correspond to
j-invariants of elliptic curves, and its edges correspond to (isomorphism classes of) isogenies.
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Edges (j1, j2) that are not incident to 0 or 1728 occur with the same multiplicity as (j2, j1)
(the reverse edges correspond to dual isogenies). Thus the subgraph on k\{0, 1728} is bi-
directed and we may regard it as an undirected graph. For any fixed k, the graphs G`(k)
all have the same vertex set but different edge sets, depending on the prime `. Given an
elliptic curve E/k, we may view j(E) as a vertex in any of these graphs.

If follows from Theorem 23.1 and its proof that the edges of G`(k) are always between
(isomorphism classes of) elliptic curves with the same endomorphism algebra. When k
is a finite field, this means that we can classify each component of G`(k) as ordinary or
supersingular. In this lecture we will focus on the ordinary components; you will have a
chance to explore the supersingular components on Problem Set 12.

Figure 1 depicts a typical ordinary component of an `-isogeny graph.

Figure 1: An ordinary component of G3(k).

Figure 2 shows the same graph from a different perspective. With a bit of imagination,
one can see that the graph looks like a volcano: there is a crater formed by the cycle at the
top, and the trees handing down from each edge form the sides of the volcano.

Definition 23.11. An `-volcano V is a connected undirected graph whose vertices are
partitioned into one or more levels V0, . . . , Vd such that the following hold:

1. The subgraph on V0 (the surface) is a regular graph of degree at most 2.

2. For i > 0, each vertex in Vi has exactly one neighbor in level Vi−1, and this accounts
for every edge not on the surface.

3. For i < d, each vertex in Vi has degree `+ 1.

Level Vd is called the floor of the volcano; the floor and surface coincide when d = 0.

As with G`(K), we allow multiple edges and self-loops, but now we work with an undi-
rected graph. Note that if the surface of an `-volcano has more than two vertices, it must
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Figure 2: A 3-volcano of depth 2.

be a simple cycle. Two vertices may be connected by one or two edges, and a single vertex
may have 0, 1, or 2 self-loops. Note that, as an abstract graph, an `-volcano is completely
determined by the integers `, d, and |V0|.

Remarkably, if we ignore exceptions at the j-invariants 0 and 1728, the ordinary com-
ponents of G`(k) are all `-volcanoes. This was proved by David Kohel in his 1996 PhD
thesis.3

Theorem 23.12 (Kohel). Let V be an ordinary component of G`(Fq) that does not contain
the j-invariants 0 or 1728. Then V is an `-volcano for which the following hold:

(i) The vertices in level Vi all have the same endomorphism ring Oi.

(ii) The subgraph on V0 has degree 1 +
(D0 D
`

)
, where 0 = disc(O0).

(iii) If
(D0 ]
`

)
≥ 0, then |V0| is the order of [l in cl(O0); otherwise |V0| = 1.

(iv) The depth of V is d = ν
(
(t2 − 4q)/D

)
/2, where t2 = (trπ )2` 0 E for j(E) ∈ V .

(v) ` - [OK : O0] and [Oi : Oi+1] = ` for 0 ≤ i < d.

Proof. The theorem follows easily from the results we have already proved. Let V be an
ordinary component of G`(Fq) that does not contain 0 or 1728. Then, as previously noted, V
is bi-directed and can be viewed as an undirected graph. It follows from Theorem 22.1 that
every vertex of V has the same endomorphism algebra, an imaginary quadratic field K, and
that the orders O in K that arise as endomorphism rings of vertices in V differ only in the
power of ` that divides their conductor. Furthermore, if `d is the largest power of ` that
divides the conductor of any of the orders O, then we may partition V into levels V0, . . . , Vd
corresponding to orders O0, . . . ,Od for which ν`([OK : Oi]) = `, This addresses (i) and (v).

Parts (ii) and (iii) follow from Lemma 23.3 and the CM action of cl(O0), and part (iv)
follows from Theorem 22.10 (which can be generalized to prime powers q) and Lemma 23.5:
if we have 4q = t2 − v2D0 then the sets Ell i(k) are all non-empty but the set Ell (k)

d+1
O Od+1

must be empty since ` does not divide v.
Finally, Theorem 22.1 and Lemma 23.5 together imply that for i > d every v ∈ Vi must

have degree `+ 1, because the roots of Φ`(v, Y ) (which has degree `+ 1) all lie in EllOi(Fq),
EllOi+1(Fq), or, for i > 0, EllOi−1(Fq). This, together with (ii) and Theorem 22.1, proves
that V is indeed an `-volcano.

3The term “volcano" was not used by Kohel, it was introduced by Fouquet and Morain in [3].
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Remark 23.13. Theorem 23.12 is easily extended to the case where V contains 0 or 1728,
via Remark 23.9 Parts (i)-(v) still hold, the only necessary modification is the claim that V
is an `-volcano. When V contains 0, if V1 is non-empty then it contains 1

3

(
`−

(−3
`

vertices,
and each vertex in V1 has three incoming edges from 0 but only one outgoing
When

))
edge to 0.

V contains 1728, if V1 is non-empty then it contains 1
2

(
` −

(−1
`

))
vertices, and each

vertex in V1 has two incoming edges from 1728 but only one outgoing edge to 1728. This
3-to-1 (resp. 2-to-1) discrepancy arises from the action of Aut(E) on the cyclic subgroups of
E[`] when j(E) = 0 (resp. 1728). Otherwise, V satisfies all the requirements of an `-volcano,
and most of the algorithms designed for `-volcanoes work just as well on ordinarycomponents
of G`(Fq) that contain 0 or 1728.

23.3 Finding the floor

The vertices that lie on the floor of an `-volcano V are distinguished by their degree.

Lemma 23.14. Let v be a vertex in an ordinary component V of depth d in G`(Fq). Either
deg v ≤ 2 and v ∈ Vd, or deg v = `+ 1 and v 6∈ Vd.

Proof. If d = 0 then V = V0 = Vd is a regular graph of degree at most 2 and v ∈ Vd.
Otherwise, either v ∈ Vd and v has degree 1, or v 6∈ Vd and v has degree `+ 1.

Given an arbitrary vertex v ∈ V , we would like to find a vertex on the floor of V . Our
strategy is very simple: if v0 = j(E) is not already on the floor then we will construct a
random path from v0 to a vertex vs on the floor. By a path, we mean a sequence of vertices
v0, v1, . . . , vs such that each pair (vi 1, vi) is an edge and v =− i 6 vi−2 (no backtracking is
allowed).

Algorithm FindFloor
Given an ordinary vertex v0 ∈ G`(Fq), find a vertex on the floor of its component.

1. If deg v0 ≤ 2 then output v0 and terminate.

2. Pick a random neighbor v1 of v0 and set s← 1.

3. While deg vs > 1: pick a random neighbor vs+1 6= vs of−1 vs and increment s.

4. Output vs.

Remark 23.15 (Removing known roots). As a minor optimization, rather than picking
vs+1 as a root of φ(Y ) = Φ`(vs, Y ) in step 3 of the FindFloor algorithm, we may use
φ(Y )/(Y − vs 1)

e, where e is the multiplicity of v as a root of φ(Y ). This is slightly− s−1
faster and eliminates the need to check that vs+1 6= vs−1.

Notice that once FindFloor picks a descending edge (one leading closer to the floor),
every subsequent edge must also be descending, because it is not allowed to backtrack along
the single ascending edge and there are no horizontal edges below the surface. It follows that
the expected length of the path chosen by FindFloor is δ +O(1), where δ is the distance
from v0 to the floor along a shortest path. With a bit more effort we can find a path of
exactly length δ, a shortest path to the floor. The key to doing so is observe that all but
at most two of the ` + 1 edges incident to any vertex above the floor must be descending
edges. Thus if we construct three random paths from v0 that all start with a different initial
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edge, then one of the initial edges must be a descending edge, which necessarily leads to a
shortest path to the floor.

Algorithm FindShortestPathToFloor
Given an ordinary v0 ∈ G`(Fq), find a shortest path to the floor of its component.

1. Let v0 = j(E). If deg v0 ≤ 2 then output v0 and terminate.

2. Pick three neighbors of v0 and extend paths from each of these neighbors in parallel,
stopping as soon as any of them reaches the floor.4

3. Output a path that reached the floor.

The main virtue of FindShortestPathToFloor is that it allows us to compute δ,
which tells us the level Vd δ of j(E) relative to the floor Vd. It effectively gives us an−
“altimeter” δ(v) that we may be used to navigate V . We can determine whether a given
edge (v1, v2) is horizontal, ascending, or descending, by comparing δ(v1) to δ(v2), and we
can determine the exact level of any vertex.5

There are many practical applications of isogeny volcanoes, some of which you will
explore on Problem Set 12. See the survey paper [8] for further details and references.
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