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Andrew V. Sutherland

In this lecture we give a brief overview of modular forms, focusing on their relationship
to elliptic curves. This connection is crucial to Wiles’ proof of Fermat’s Last Theorem [7];
the crux of his proof is that every semistable elliptic curve over Q is modular.1 In order to
explain what this means, we need to delve briefly into the theory of modular forms. Our
goal in doing so is simply to understand the definitions and the terminology; we will omit
all but the most trivial proofs.

24.1 Modular forms

Definition 24.1. A holomorphic function f : H → C is a weak modular form of weight k
for a congruence subgroup Γ if

f(γτ) = (cτ + d)kf(τ)

for all γ =
(
a b Γ.c d ∈

The j-function

)
j(τ) is a weak modular form of weight 0 for Γ0(1) = SL2(Z), and j(Nτ)

is a weak modular form of weight 0 for Γ0(N). As an example of a weak modular form of
positive weight, consider the Eisenstein series

′ 1
Gk(τ) = Gk([1, τ ]) =

∑
,

(m+ nτ)k

which, for k ≥ 3, is a weak modular form of weight k for Γ0(1). To see this, recall that
SL2(Z) is generated by the matrices S =

(
0 −1 ) and T = ( 1 1

0 1 ), and note that1 0

1
Gk(Sτ) = Gk(−1/τ) =

∑′

(m− n

τ
=

)kτ

∑′ k

= τkG τ
mτ − k( ),

( n)k

Gk(Tτ) = Gk(τ + 1) = Gk(τ) = 1kG(τ).

Note that if Γ contains −I, we must have f(τ) = (−1)kf(τ), which implies that the only
weak modular form of odd weight for Γ is the zero function. We are specifically interested in
the case Γ = Γ0(N), which does contain −I, thus we will restrict our attention to modular
forms of even weight (some authors use 2k in place of k for precisely this reason).

As with modular functions (see Lecture 21), if Γ is a congruence subgroup of level N
(meaning that it contains Γ(N)), then Γ contains the matrix TN =

(
1 N
0 1

)
, and every weak

modular form f(τ) for Γ must satisfy f(τ +N) = f(τ) for τ ∈ H, since for the matrix TN

we have c = 0 and d = 1, so (cτ + d)k = 1k = 1. It follows that f(τ) has a q-expansion of
the form

∞

f(τ) = f∗(q1/N ) =
∑

anq
n/N ,

n=−∞

where q = e2πiτ . We say that f is holomorphic at ∞ if f∗ is holomorphic at 0, equivalently,
an = 0 for all n < 0. We say that f is holomorphic at the cusps if f(γτ) is holomorphic
at ∞ for all γ ∈ SL2(Z). As with modular functions, we only need to check this condition
at a finite set of cusp representatives for Γ.

1We now know that every elliptic curve over Q is modular [1], whether it is semistable or not.
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Definition 24.2. A modular form f is a weak modular form that is holomorphic at the
cusps. Equivalently, f extends to a holomorphic function on the extended upper half plane
H∗ = H ∪ P1(Q).

The only modular forms of weight 0 are constant functions. This is main motivation for
introducing the notion of weight, it allows us to generalize the notion of a modular function
in an interesting way, by strengthening its analytic properties (it must be holomorphic, not
just meromorphic) at the expense of weakening its congruence properties (modular forms
of positive weight are not Γ-invariant due to the factor (cτ + d)k).

The j-function is not a modular form, since it has a pole at ∞, but the Eisenstein
function GK(τ) are modular forms. For Γ0(1) we have just one cusp orbit, so to show that
GK(τ) is holomorphic at the cusps we just need to check that

1
lim Gk(τ) = lim

im τ im(τ)→∞

∑′

→∞ (m+ nτ)k
= 2

∞∑
n=1

1
= 2ζ(k) < ,

nk
∞

which holds for all even k ≥ 4 (recall that the series converges absolutely, which justifies
rearranging the terms of the sum).

Definition 24.3. A modular form is called a cusp form if it vanishes at all the cusps.
Equivalently, its q-expansion at every cusp has constant coefficient a0 = 0

The Eisenstein series Gk(τ) is not a cusp form, but the discriminant function

∆(τ) = g 3
2(τ) − 27g3(τ)2,

with g2(τ) = 60G4(τ) and g3(τ) = 140G6(τ), is a cusp form of weight 12, since

4π4
g2(∞) = 120ζ(4) =

3
, g3(∞) = 280ζ(6) =

8π6
, ∆(∞) = 0,

27

as shown in Lecture 18 (see Theorem 18.5).

Definition 24.4. The set of all modular forms of weight k for Γ0(N) is denoted Mk(Γ0(N)).
The subset of cusp forms in Mk(Γ0(N)) is denoted Sk(Γ0(N)).

It is clear that the sets MK(Γ0(N)) and Sk(Γ0(N)) are both C-vector spaces; in fact,
they are finite dimensional vector spaces. The modular forms in Mk(Γ0(N)) are said to be
modular forms of level N

Example 24.5. Every modular form in Mk(Γ0(1)) is a linear combination of products
Ga4G

b
6 where 4a+ 6b = k. The dimension of Mk(Γ0(1)) is therefore equal to the number of

solutions to 4a + 6b = k in non-negative integers. The dimension of M2(Γ0(1)) is zero, so
there are no nonzero modular forms of weight 2 and level 1, and Mk(Γ0(1)) is 1-dimensional
for k = 4, 6, 8, 10. Asymptotically, the dimension of Mk(Γ0(1)) approaches k/12.

For the vector space Sk(Γ0(N)), there is a particular choice of basis that has some very
nice properties. In order to define this basis, we need to introduce the Hecke operators.
For each positive integer n, the Hecke operator T (n) is a linear operator on the vector
space Mk(Γ0(N)) that fixes the subspace of cusp forms, so it is also a linear operator on
Sk(Γ0(N)). Our interest in the Hecke operators is that, if we normalize things appropriately,
there is a unique basis for Sk(Γ0(N)) whose elements are simultaneous eigenvectors (called
eigenforms) for all of the Hecke operators.

2



24.2 Hecke operators

In order to motivate the definition of the Hecke operators on modular forms, we first define
them in terms of lattices. For each positive integer n, the Hecke operator Tn sends a lattice
L = [ω1, ω2] to the formal sum of its index-n sublattices:

TnL =

[L:

∑
L′ = [dω1, aω1 + bω2]. (1)

L′]=n ad=n,

∑
0≤b<d

More formally, let L be the set of all (rank 2) lattices in the complex plane, and let Div(L) be
the free abelian group generated by L. Then Tn is the endomorphism of Div(L) determined
by (2). Another important set of endomorphisms of Div(L) are the homethety operators
Rλ defined by

RλL = λL, (2)

for each λ ∈ C∗. This setup might seem overly abstract, but it allows one to easily prove
some essential properties of the Hecke operators that are applicable in many settings.

Theorem 24.6. The operators Tn and Rλ satisfy the following:

(i) TnRλ = RλT (n) and RλRµ = Rλµ.

(ii) Tmn = TmTn for all m ⊥ n.

(iii) Tpn+1 = TpnTp − pTpn 1R p− p for all primes .

Moreover, the commutative algebra generated by the Rλ and the Tp contains all the Tn.

Proof. See [3, Prop. VII.5.1].

Remark 24.7. Recall that if E/C is the elliptic curve isomorphic to the torus C/L, the
index-n sublattices of L correpsond to n-isogenous elliptic curves. The fact that the Hecke
operators average over sublattices is related to the fact that the relationship between mod-
ular forms and elliptic curves occurs at the level of isogeny classes.

24.3 Hecke operators for modular forms of level 1

We now consider the action of the Hecke operators on modular forms for Γ0(1). The
situation for modular forms of level N > 1 is entirely analogous, but the details are more
complicated, so for the sake of simplicity we fix N = 1 throughout §24.3-24.5. We will
address the issues involved in generalizing to N > 1 in §24.6

Recall that we originally define the Eisenstein series Gk(L) = ′ ω−k as a sum over
the nonzero points ω in the lattice L, and then defined the function Gk(τ) = G([1, τ ])
on the upper half plane. Thus we can view Gk(L) as a function on

∑
lattices that satisfies

G (λL) = λ−kk Gk(L).
Applying this perspective in reverse, we can view any modular function f(τ) as a func-

tion of the lattice [1, τ ], and then extend this to arbitrary lattices L = [ω1, ω2] by defining

f([ω1, ω2]) = f(ω−11 [1, ω2/ω
k

1]) = ω1f([1, ω2/ω1]),

where k is the weight of f and we order ω1 and ω2 so that ω2/ω1 is in the upper half plane.
It then makes sense to define Rλf as

(Rλf)(τ) = f(λ[1, τ ]) = λ−kf(τ).
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We define T (n)f similarly, but introduce a scaling factor of nk−1 that will be convenient in
what follows. Thus

(T k 1 k 1 k aτ + b
nf)(τ) = n −

∑
f(L) = n − d

[L ]=n ad=n,

∑
− f

:L′ 0≤b<d

( )
.

d

It is a straight-forward exercise to verify that if f is a modular form of weight k and level
1, then so is T (n)f , and that T (n) maps cusp forms to cusp forms. It is clear that T (n)
acts linearly, so it is a linear operator on the vector spaces Mk(Γ0(1)) and Sk(Γ0(1)). As
an immediate consequence of Theorem 24.6, we have the following corollary.

Corollary 24.8. Tmn = TmTn for m ⊥ n and Tpr+1 = TpTpr − pk−1Tpr−1 for p prime.

The corollary implies that it suffices to understand the behavior of Tp for p prime. Let
us compute the the q-series expansion of T f , where f(τ) =

∑∞ a qnp n=1 n is a cusp form of
weight k and level 1.

aτ + b
(Tpf)(τ) = pk−1

ad

∑
d−kf

=p, 0≤b<d

(
d

)
p−1

= pk−1f(pτ) + p−1
∑

f
b=0

(
τ + b

p

)
∞

= pk−1
∑ p−1 ∞

anq
pn + p−1

n=1

∑
a n/p
nζ

bn
p q

b=0 n

∑
=1

∞

= pk−1
∑ ∞ p−1

a qn + p−1 bn
n/p a

n

∑
n

n=1 =1

(∑
ζp qn/p

b=0

)
∞

=
n

∑
=1

(
apn + pk−1an/p

)
qn

where ζp = e2πi/p and an/p = 0 if p does not divide n. This calculation yields the following
theorem and corollary.

Theorem 24.9. Let f ∈ Sk(Γ0(1) have q-expansion ∞
n=1 anq

n, and let ∞
n=1 bnq

n be the
q-expansion of Tpf , with p prime. Then

∑ ∑

bn =

{
apn if p - n,
a k
pn + p −1an/p if p | n.

Corollary 24.10. Let f ∈ Sk(Γ0(1) have q-expansion ∞
n=1 anq

n, and let ∞
n=1 bnq

n be
the q-expansion of Tn. Then b1 = an.

∑ ∑
Proof. This follows immediately from Theorem 24.9 and Corollary 24.8.

24.4 Eigenforms of level 1

The Hecke operators Tn form an infinite family of linear operators on the vector space
Sk(Γ0(1). We are interested in the elements f ∈ Sk(Γ0(1)) that are simultaneous eigenvec-
tors for all of the Hecke operators; this means that Tnf = λnf for some eigenvalue λn ∈ C∗
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of Tn, for all n ≥ 1. When such an f(τ) =
∑∞

n=1 anq
n has leading coefficient a1 = 1, we call

it an eigenform. Our goal is to construct a basis of eigenforms for Sk(Γ0(1)), and to prove
that it is unique. In order to do so, we need to introduce the Peterson inner product.

Definition 24.11. The Peterson inner product on Sk(Γ0(1)) is defined by

〈f, g〉 =

∫
f(τ)

F
g(τ)yk−2dxdy, (3)

where the integral ranges over points τ = x+ yi in a fundamental region F for Γ0(1).

It is easy to check that 〈f, g〉 is a positive definite Hermitian form (it is a bilinear form
that satisfies 〈f, g〉 = 〈g, f〉 and 〈f, f〉 ≥ 0 with equality only when f = 0), thus it defines
an inner product for the complex vector space Sk(Γ0(1)).

The Hecke operators are all self-adjoint with respect to the Peterson inner product, that
is, they satisfy 〈f, Tng〉 = 〈Tnf, g〉. The Tn are thus Hermitian (normal) operators, and
by Corollary 24.8, they all commute with each other. This makes it possible to apply the
following lemma.

Lemma 24.12. Let V be a finite-dimensional C-vector space equipped with a positive def-
inite Hermition form, and let α1, α2, . . . be a sequence of commuting Hermitian operators.
Then V = ⊕Vi, where each Vi is an eigenspace of every αn.

Proof. The matrix for α1 is Hermitian, therefore diagonalizable, so we can decompose V
as a direct sum of eigenspaces for α1, writing V = ⊕V (λi), where the λi are the distinct
eigenvalues of α1. Because α1 and α2 commute, α2 must fix each subspace V (λi), since
for each v ∈ V (λi) we have α1α2v = α2α1v = α2λiv = λiα2v, and therefore α2v is an
eigenvector for α1 with eigenvalue λi, so α2v ∈ V (λi). Thus we can decompose each V (λi)
as a direct sum of eigenspaces for α2, and may continue in this fashion for all the αn.

So let us apply Lemma 24.12, and decompose Sk(Γ0(1)) = ⊕Vi as a direct sum of
eigenspaces for the Hecke operators Tn. If f(τ) = ∞ n

n=1 anq is a nonzero element of one of
the Vi, then by Corollary 24.8, the coefficient b1 in the q-expansion of (Tnf)(τ) = ∞

n 1 bnq
n

−
is an. But we also have Tnf = λnf , for some eigen

∑
value λn of Tn, and therefore an = λna1.

This implies a1 6= 0, since otherwise f = 0, and if we normalize f so that a

∑
1 = 1, we

have an = λn for all n ≥ 1, and f is then uniquely determined by the sequence of Hecke
eigenvalues λn for Vi. It follows that each Vi is one-dimensional and contains element with
a1 = 1, that is, an eigenform. We record this result in the following theorem.

Theorem 24.13. The vector space Sk(Γ0(1)) can be written as a direct sum of 1-dimensional
eigenspaces for the Hecke operators Tn and has a unique basis of eigenforms f(τ) =

∑∞ n
n=1 anq ,

where each an is the eigenvalue of Tn on the 1-dimensional subspace generated by f .

Corollary 24.14. Let f(τ) =
∑∞

n=1 anq
n be an eigenform in Sk(Γ0(1). Then amn = aman

for all m ⊥ n, and apr+1 = apapr − pk−1apr−1 for all primes p.

In the case k = 2, the prime-power recurrence in 24.14 should look familiar — it is
exactly the same as the recurrence satisfied by the Frobenius traces apr = pr + 1−#E(Fpr)
of an elliptic curve E/Fp, which you proved in Problem Set 7.
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24.5 L-series associated to modular forms

Our interest in cusp forms is that there is an L-series associated to each cusp form.

Definition 24.15. The L-series of a cusp form f(τ) = ∞
n=1 anq

n is the function

∞

∑
Lf (s) =

∑
a s
nn
− ,

n=1

which converges uniformly for Re(s) > 1 + k/2, where k is the weight of f .

The function Lf (s) is an example of a Dirichlet L-series. Before examining its properties,
we first recall some general facts about Dirichlet series and Dirichlet L-series.

Definition 24.16. A Dirichlet series is a complex function of the form f(s) = ∞

A

∑
n=1 ann

−s.
Dirichlet L-series is a Dirichlet series of the form

L(s, χ) =
n

∑∞
χ(n)n−s,

=1

where χ is a Dirichlet character, a completely multiplicative function χ : Z→ C that restricts
to a group character on (Z/mZ)∗, for some positive integer m for which χ(n) 6= 0⇔ n ⊥ m
(when m = 1 then χ(n) = 1 is the trivial character). This series converges for re s > 1 and
can be analytically continued to a meromorphic function on C.

Example 24.17. The Riemann zeta function

∞

ζ(s) =
n

∑
n−s

=1

is the Dirichlet L-series for the trivial character. It’s analytic continuation is holomorphic
everywhere except at s = 1, where it has a simple pole.

The following theorems illustrate two key properties of Dirichlet L-series in the particular
case of ζ(s). The first is the existence of an Euler product.

Theorem 24.18. For Re(s) > 1 we have

ζ(s) =
∏

(1
p

− p−s)−1,

where the product is over primes.

Proof. Since ζ(s) converges absolutely for Re(s) > 1, we have

∏ ∞

(1− p−s)−1 =
∏

(1 + p−s + p−2s + . . . ) =
p p n

∑
n−s = ζ(s).

=1

The Euler product for a general Dirichlet L-series L(x, χ) is

L(s, χ) =
∏

(1− χ(p)p−s)−1 (Re(s) > 1).
p

The second key property of a Dirichlet L-series is its functional equation.
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Theorem 24.19. Let
ζ̃(s) = π−s/2Γ(s/2)ζ(s),

where Γ(s) =
∫∞

e−tts−1dt is the gamma function. Then0

˜ ˜ζ(s) = ζ(1− s).

˜We can think of the function ζ(s) as a “normalized” ζ(s); different Dirichlet L-series
have different normalization factors, but once they are suitably normalized they all satisfy
a functional equation similar to the one given above, with an evaluation at s on one side
and an evaluation at 1− s on the other.

Returning to our discussion of modular forms, the L-series Lf (s) of a cusp form f for
Γ0(1) also satisfies a functional equation.

Theorem 24.20. Let f ∈ Sk(Γ0(1)) be a cusp form with L-series Lf (s). Then Lf (s)
extends analytically to a holomorphic function on C, and

L̃ (s) = (2π)−sf Γ(s)Lf (s).

satisfies the functional equation

˜ ˜Lf (s) = (−1)k/2Lf (k − s).

In the case that f is an eigenform, we get an Euler product for Lf (s). This is not true
for arbitrary cusp forms, and as we shall see shortly, in order to relate elliptic curves to
modular forms, the existence of an Euler product is crucial.

Theorem 24.21. Let Tn denote the nth Hecke operator on Sk(Γ0(1)). Then

∑∞
T −s
nn =

∏
(1− T p s k

p
− + p −1p−2s)−1,

n=1 p

and if f ∈ Sk(Γ0(1)) is an eigenform with L-series Lf (s), we have the Euler product

∞

L s
f (s) =

∑
ann

− =
∏

(1
n=1 p

− a −2s
pp
−s + pk−1p )−1.

24.6 Eigenforms of level N.

So far we have dealt only with cusp forms of level 1. Everything we have seen can be
generalized to arbitrary level N , but there are two issues that arise when doing so.

The first issue is that when considering cusp forms for Γ0(N), we really want to restrict
our attention to cusp forms that are “new” at level N , meaning that they are not also
cusp forms for Γ0(d), for some d|N . The reason for this is that while it is still true that
Sk(Γ0(N)) is spanned by eigenforms of the Hecke operators, the eigenspaces will not be
1-dimensional unless we restrict to the subspace of newforms.

To define the subspace of new⋃ forms, we first deal with the “old” forms’. Let Soldk (Γ0(N))
be the subspace spanned by Sk(N

′) where N ′ ranges over all N ′ properly dividing N .
Now let Snewk (Γ0(N)) be the subspace orthogonal to Soldk (Γ0(N)) in Sk(Γ0(N)). The Hecke

7



eigenspaces of Snewk (Γ0(N)) are then 1-dimensional, and each eigenspace is generated by a
uniquely determined (normalized) eigenform that we call a newform.2

The second issue is that the primes p that divide N require special attention. To deal
with this, we let χ be the trivial character for (Z/NZ)∗; that is, χ(m) = 1 if gcd(m,N) = 1,
and χ(m) = 0 otherwise. Then the Euler product identity for a newform in Snew

k (Γ0(N)) is

L (s) =
∏

(1− a p−s + χ(p)pk−1p−2s 1
f p )− . (4)

p

24.7 The L-series of an elliptic curve

What does all this have to do with elliptic curves? Like eigenforms, elliptic curves over Q
also have an L-series with an Euler product. In fact, with elliptic curves, we use the Euler
product to define the L-series.

Definition 24.22. The L-series of an elliptic curve E/Q is

LE(s) =
∏ 1

Lp(p
−s)−1 =

∏(
1− a p−s + χ(p)pp−2sp

p

)−
, (5)

p

where the Dirichlet character χ(p) is 0 if E has bad reduction at p, and 1 otherwise.3 For
primes p where E has good reduction (all but finitely many), ap is the Frobenius trace
p + 1 −#Ep(Fp), where Ep is the reduction of E modulo p. Equivalently, the polynomial
Lp(T ) is the numerator of the zeta function(∑∞ Tn

Z(Ep;T ) = exp #Ep(Fpn)
n=1

n

)
=

1− apT + T 2

,
(1− T )(1− pT )

that appeared in Problem Set 7. For primes p where E has bad reduction, the polynomial
Lp(T ) is defined by

Lp(T ) =

1 if E has additive reduction at p.

1− T if E has split mulitiplicative reduction at p.

1 + T if E has non-split multiplicative reduction at p.

according to the type of bad reduction E has at p, as described in the next section. This
means that ap ∈ {0,±1} at bad primes.

The L-series LE(s) converges for <(s) > 3/2. As we will see shortly, the question of
whether or not LE(s) has an analytic continuation is intimately related to the question of
modularity (we now know the answer is yes, since every elliptic curve over Q is modular).

24.8 Determining the reduction type of an elliptic curve

When computing LE(s), it is important to use a minimal Weierstrass equation for E, one
that has good reduction at as many primes as possible. To see why this is necessary, note

2In the interest of full disclosure, we should note that the formulas for the action of the Hecke operators
become rather more complicated for level N > 1, but this does not concern us here; all we need to know is
that they exist and satisfy Corollary 24.8.

3As explained in §24.8, this assumes we are using a minimal Weierstrass equation for E.
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that if y2 = x3 + Ax + B is a Weierstrass equation for E, then, up to isomorphism, so is
y2 + u4Ax+ u6B, for any integer u, and this equation will have bad reduction at all primes
p|u. Moreover, even though the equation y2 = x3 +Ax+B always has bad reduction at 2,
there may be an isomorphic equation in general Weierstrass form that has good reduction
at 2. For example, the elliptic curve defined by y2 = x3 + 16 is isomorphic to the elliptic
curve defined by y2 + y = x3 (replace x by 4x, divide by 64, and then replace y by y+ 1/2).

Definition 24.23. Let E/Q be an elliptic curve. A minimal Weierstrass equation for E is
a general Weierstrass equation

y2 + a 3 2
1xy + a3y = x + a2x + a4x+ a6

with a1, a2, a3, a4, a6 ∈ Z that defines an elliptic curve E′/Q that is isomorphic to E over Q
whose discriminant ∆(E′) divides the discriminant of every other such elliptic curve. The
discriminant ∆(E′) is called the minimal discriminant of E and is denoted ∆min(E).

It is not immediately obvious that an elliptic curve necessarily has a minimal Weierstrass
equation, but for elliptic curves over Q this is indeed the case; see [4, Prop. VII.1.3]. It can
be computed in Sage via E.minimal model(); see [2] for algorithm details.

We now address the three cases of bad reduction. To simplify matters, we will ignore
the prime 2. At any odd prime p of bad reduction we can represent Ep/Fp by an equation
of the form y2 = f(x), for some cubic f ∈ Fp[x] that has a repeated root. We can choose
f(x) so that this repeated root is at 0, and it is easy to verify that there is then exactly on
singular point of Ep, which occurs at the affine point (0, 0).

If we exclude the point (0, 0), the standard algebraic formulas for the group law on
E(Fp) still work, and the set

Ens
p (Fp) = Ep(Fp)\{0, 0}

of non-singular points of Ep(Fp) is actually closed under the group operation. Thus Ens
p (Fp)

is a finite abelian group, and we define

ap = p−#Ens
p (Fp).

This is completely analogous to the nonsingular case, where ap = p + 1 − #E(Fp); we
have removed the point (0, 0) from consideration, so we should “expect” the cardinality of
Ens
p (Fp) to be p, rather than p+ 1, and ap measures the deviation from this value.

There are two cases to consider, depending on whether 0 is a double or triple root of
f(x), and these give rise to three possibilities for the group Ens

p (Fp).

• Case 1: triple root (y2 = x3)

We have the projective curve zy2 = x3. After removing the singular point (0 : 0 : 1),
every other projective point has non-zero y coordinate, so we can normalize the points
so that y = 1, and work with the affine curve z = x3. There are p-solutions to this
equation (including x = 0 and z = 0, which corresponds to the projective point
(0 : 1 : 0) at infinity on our original curve). It follows that Ens

p (Fp) is a cyclic group of
order p, which is isomorphic to the additive group of Fp; see [6, §2.10] for an explicit
isomorphism. In this case we have ap = 0 and say that E has additive reduction at p.
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• Case 2: double root y2 = x3 + ax2, a 6= 0.

We have the projective curve zy2 = x3 + ax2z, and the point (0 : 1 : 0) at infinity is
the only non-singular point on the curve whose x-coordinate is zero. Excluding the
point at infinity for the moment, let us divide both sides by x2, introduce the variable
t = y/x, and normalize z = 1. This yields the affine curve t2 = x+a, and the number
of points with x 6= 0 is∑ a

6=0

(
1 +

(
x+

x
p

))
= −

(
1 +

(
a

p

))
+
∑
x

(
1 +

(
x+ a

p

))

= −
(

1 +

(
a

p

))
+
∑
x

(
1 +

(
x

p

))
= −

(
1 +

(
a
))

+ p
p

where
(
a
p

)
is the Kronecker symbol. If we now add the point at infinity back in we

get a total of p−
(
a
p

)
points, thus ap =

(
a .p

In this case we say that E has multiplicative

)
reduction at p, and further distinguish

the cases ap = 1 and ap = −1 as split and non-split respectively. One can show that
in the former case Ens

p (Fp) is isomorphic to the multiplicative group F∗p, and in the
latter case it is isomorphic to the multiplicative subgroup of Fp2 = Fp[x]/(x2 − a)
made up by the elements of norm 1; see [6, §2.10].

To sum up, there are three possibilities for ap = p−#Ens
p (Fp):

0

ap =

 additive reduction,

+1 split multiplicative reduction,

−1 non-split multiplicative reduction.

There is one further issue


to consider. It could happen that the reduction type of E at a

prime p changes when we consider E as an elliptic curve over an extension of Q (this gives
us more flexibility when looking for a minimal Weierstrass equation). It turns out that this
can only happen when E has additive reduction at p. This leads to the following definition.

Definition 24.24. An elliptic curve E/Q is semi-stable if it does not have additive reduc-
tion at any prime.

As we shall see, for the purposes of proving Fermat’s Last Theorem, we can restrict our
attention to semi-stable elliptic curves.

24.9 L-series of elliptic curves and L-series of modular forms

Having fully defined the L-series LE(s) =
∏
p(Lp(p

−s)−1 = ∞
n=1 ann

−s of an elliptic curve
E/Q, we now note that the coefficients an satisfy all the relations satisfied by the coefficients
of a weight-2 eigenform. We have a1 = 1, and, as in Corollary

∑
24.8, we have amn = aman

for all m ⊥ n, and a k 1
pr+1 = apapr − p − apr−1 for all primes p, with k = 2.
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So now we might ask, given an elliptic curve E/Q, is there a modular form f for which
LE(s) = Lf (s)? Or, to put it more simply, let LE(s) = ∞

n=1 ann
−s, and define

∞

fE(τ) = anq
n.

∑
n=1

Our question then becomes: is fE(τ) a modular

∑
form?

It’s clear from the recurrence relation for apr that if fE(τ) is a modular form, then it
must be a modular form of weight 2; but there are additional constraints. For k = 2 the
equations (4) and (5) both give the Euler product

1− a p−s + χ(p)pp−2s
1

p
−
,

p

and it is essential that the Diric

∏
hlet

(
character χ is the same

)
in both cases. No elliptic curve

over Q has good reduction at every prime, so we cannot use eigenforms of level 1, we need
to consider newforms of some level N , in which case χ is the trivial character for (Z/NZ)∗.

For LE(s) we know that χ(p) = 0 if and only if p divides ∆min(E). This suggests
taking N to be the product of the prime divisors of ∆min(E), but we should note that
any N with the same set of prime divisors would have the same property. In turns out that
for semi-stable elliptic curves, simply taking the product of the prime divisors of ∆min(E)
is the right thing to do, and this is all we need for the proof of Fermat’s Last Theorem.

Definition 24.25. Let E/Q be a semi-stable elliptic curve with minimal discriminant ∆min.
The conductor NE of E is the product of the prime divisors of ∆min.

Remark 24.26. For elliptic curves that are not semistable, at primes p > 3 where E has
additive reduction we simply replace the factor p in NE by p2. But the primes 2 and 3
require special treatment (as usual), and the details can get quite technical; see [5, IV.10].
In any case, the conductor of an elliptic curve E/Q is squarefree if and only if it is semistable.

We can now say precisely what it means for an elliptic curve over Q to be modular.

Definition 24.27. E/Q is modular if fE(τ) is a modular form of weight 2 for Γ0(NE).
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