
18.783 Elliptic Curves Spring 2013
Lecture #3 02/12/2013

3.1 Arithmetic in finite fields

To make explicit computations with elliptic curves over finite fields, we need to know how
to perform arithmetic operations in finite fields, and we would like to do so as efficiently as
possible. In the applications we will consider, the finite fields involved may be very large,
so it is important to understand the asymptotic complexity of finite field operations.

This is a huge topic, one to which an entire course could be devoted. However, we
will spend just one week on finite field arithmetic (this lecture and the next), with the
goal of understanding the most commonly used algorithms and analyzing their asymptotic
complexity. This will force us to omit many details.

For they sake of brevity, we will focus on fields of large characteristic (and primes fields
in particular), although the algorithms we describe will generally work in any finite field of
odd characteristic. Fields of characteristic 2 are quite important in practical applications
and there are specialized algorithms that are optimized for such fields, but we will not
consider them here.

We may represent elements of a prime field Fp ' Z/pZ as integers in the interval [0, p−1].
For finite fields Fq with q = pd, we may pick any irreducible monic polynomial f ∈ Fp[x]
of degree d and represent Fq as the quotient Fp[x]/(f) ' (Z/pZ)[x]/(f), whose elements
may be uniquely represented as polynomials of degree less than d with integer coefficients in
[0, p−1]. The choice of the polynomial f impacts the cost of reducing a polynomials in Fp[x]
modulo f ; ideally we would like f to have as few nonzero coefficients as possible. We can
choose f to be a binomial if (and only if) d divides p−1: let f = xd−a where a is a generator
of F∗p. We can often, but not always, choose f to be a trinomial; see [5] for necessary criteria.
It is also useful (but not necessary) for f to be a primitive polynomial; this means that f
is the minimal polynomial of a generator for F∗q , equivalently, the polynomial x generates
the multiplicative group of Fp[x]/(f).

Having fixed a representation for Fq as described above, every finite field operation can
be reduced to arithmetic operations on integers, which we now consider.

Remark 3.1. There are other ways to represent finite fields. For example, if we pick a
generator α for the cyclic group F∗q we can uniquely represent every nonzero element of Fq

in the form αk for some integer k ∈ [0, q−2]. This representation makes multiplication very
easy (just add exponents modulo q− 1), but addition then becomes quite complicated. We
will not consider this representation here.

3.2 Addition

n 1Every nonnegative integer a has a unique binary representation a = − a 2ii=0 i , where the
binary digits ai ∈ {0, 1} are called bits, and we say that a is an n-bit

apply

∑
integer. To add two

integers, we write out their binary representations and the “schoolbook” method,
adding bits and carrying when needed. As an example, let us compute 43+37=80 in binary.

101111

101011
+100101

Andrew V. Sutherland

1010000

1

The carry bits are shown in red. To see how this might implemented in a computer,
consider a 1-bit adder that takes two bits ai and bi to be added, along with a carry bit ci.

1-bit
adder

ai bi

ci ci+1

ci+1 = (b1 ∧ b2) ∨ (c ∧ b1) ∨ (c ∧ b2)

si = ai ⊗ bi ⊗ ci
si

The symbols ∧, ∨, and ⊗ denote the boolean functions AND, OR, and XOR (exclusive-or)
respectively, which we may regard as primitive components of a boolean circuit. By chaining
n + 1 of these 1-bit adders together, we can add two n-bit numbers using 7n + 7 = O(n)
boolean operations on individual bits.

Remark 3.2. Chaining adders is known as ripple addition and is no longer commonly
used, since it forces a sequential computation (each carry bit depends on the one before
it). In practice more sophisticated methods such as carry-lookahead are used to facilitate a
parallel implementation. This allows most modern microprocessors to add 64 (or even 128)
bit integers in a single clock cycle.

We could instead represen∑ t the same integer⌈a as a sequence of words rather than bits.
kFor example, write a = −1 n
i=0 a

64i
i2 , where k = . We may then add two integers using

64
a sequence of O(k), equivalently, O(n), operations

⌉
on 64-bit words. Each word operation

is ultimately implemented as a boolean circuit that involves operations on individual bits,
but since the word-size is fixed, the number of bit operations required to implement any
particular word operation is a constant. So the number of bit operations is again O(n), and
if we ignore constant factors it does not matter whether we count bit or word operations.

Subtraction is analogous to addition (now we need to borrow rather than carry), and
has the same complexity, so we will not distinguish these operations when analyzing the
complexity of algorithms. With addition and subtraction of integers, we have everything
we need to perform addition and subtraction in a finite field. To add two elements of
Fp ' Z/pZ that are uniquely represented as integers in the interval [0, p− 1] we simply add
the integers and check whether the result is greater than or equal to p; is so we subtract
p to obtain a value in [0, p − 1]. Similarly, after subtracting two integers we add p if the
result is negative. The total work involved is still O(n) bit operations, where n = log2 p is
the size of a finite field element.

To add or subtract two elements of Fq ' (Z/pZ[x])/(f) we simply add or subtract the
corresponding coefficients of the polynomials, for a total cost of O(d log p) bit operations,
where d = deg f , which is O(n) bit operations, where n = log2 q is again the size of a finite
field element.

3.3 A quick refresher on asymptotic notation

Let us assume that f and g are functions from the positive integers to the positive real
numbers. The notation “f(n) = O(g(n))” is shorthand for the statement

There exist constants c and N such that for all n ≥ N we have f(n) ≤ cg(n).

2

This is equivalent to
f(n)

lim sup
n→∞

<
g(n)

∞.

Strictly speaking, this notation is a horrible abuse of the symbol “=”. When speaking
in words we would say “f(n) is O(g(n)),” where the word “is” does not imply equality (e.g.,
“Aristotle is a man”). It is often better to write this way. Symbolically, it would make
more sense to write f(n) ∈ O(g(n)), regarding O(g(n)) as a set of functions. Some do, but
the notation f(n) = O(g(n)) is far more common and we will use it in this course, with
one caveat: we will never write a big-O expression on the left of an “equality”. It may be
true that f(n) = O(n log n) implies f(n) = O(n2), but we avoid writing O(n log n) = O(n2)
because O(n2) 6= O(n log n).

We also have the big-Ω notation “f(n) = Ω(g(n)”, which is equivalent to writing g(n) =
O(f(n)). Then there is the little-o notation “f(n) = o(n),” which is shorthand for

f(n)
lim
n→∞

= 0.
g(n)

An alternative notation that is sometimes used is f � g, but depending on the author this
may mean f(n) = o(g(n)) or f(n) = O(g(n)) (computer scientists tend to mean the former,
but number theorists usually mean the latter). There is also a little-omega notation, but
the symbol ω already has many uses in number theory so we will not burden it further
(we can always use little-o notation instead). The notation f(n) = Θ(n) means that both
f(n) = O(g(n)) and f(n) = Ω(g(n)) hold.

Big-O notation can also be used for multi-variable functions: f(m,n) = O(g(m,n)) is
shorthand for

There exist constants c and N such that for all m,n ≥ N we have f(m,n) ≤ cg(m,n).

This statement is weaker than it appears. For example, it says nothing about the relation-
ship between f(m,n) and g(m,n) if we fix one of the variables. However, in virtually all
of the examples we will see it will actually be true that if we regard f(m,n) = fm(n) and
g(m,n) = gm(n) as functions of n with a fixed parameter m, we have fm(n) = O(gm(n))
(and similarly fn(m) = O(gn(m))).

So far we have spoken only of time complexity, but space complexity plays a crucial
role in many algorithms that we will see in later lectures. Space complexity measures the
amount of memory an algorithm requires. The space complexity of an algorithm can never
be greater than its time complexity (it takes time to use space), but it may be less. When we
speak of “the complexity” of an algorithm, we should really consider both time and space.
An upper bound on the time complexity is also an upper bound on the space complexity
but it is often possible (and desirable) to obtain a better bound for the space complexity.

For more information on asymptotic notation and algorithmic complexity, see [1].

3.4 Multiplication

3.4.1 Schoolbook method

Let us compute 37×43 = 1591 with the “schoolbook” method, using a binary representation.

3

101011
× 100101

101011
101011

+101011

11000110111

Multiplying individual bits is easy (just use an AND-gate), but we need to do n2 bit mul-
tiplications, followed by n additions of n-bit numbers (suitably shifted). The complexity of
this algorithm is thus Θ(n2). This gives us an upper bound on the time M(n) to multiply
two n-bit integers, but we can do better.

3.4.2 Karatsuba’s algorithm

Rather than representing n-bit integers using n digits in base 2, we may instead represent
them using 2 digits in base 2n/2. We may then compute their product as follows

a = a0 + 2n/2a1

b = b0 + 2n/2b1

ab = a b + 2n/20 0 (a1b0 + b1a0) + 2na1b1

Naively, this requires four multiplications of (n/2)-bit integers and three additions of O(n)-
bit integers (note that multiplying an intermediate result by a power of 2 can be achieved
by simply writing the binary output “further to the left” and is effectively free). However,
we can use the following simplification:

a0b1 + b0a1 = (a0 + a1)(b0 + b1)− a0b0 − a1b1.

By reusing the common subexpressions a0b0 and a1b1, we can multiply a and b using three
multiplications and six additions (we count subtractions as additions). We can use the same
idea to recursively compute the three products a0b0, a1b1, and (a0 + a1)(b0 + b1). This is
known as Karatsuba’s algorithm.

If we let T (n) denote the running time of this algorithm, we have

T (n) = 3T (n/2) +O(n)

= O(nlg 3)

Thus M(n) = O(nlg 3) ≈ O(n1.59).1

3.4.3 The Fast Fourier Transform (FFT)

The fast Fourier transform is generally considered one of the top ten algorithms of the
twentieth century [2, 4], with applications throughout applied mathematics. Here we focus
on the discrete Fourier transform (DFT), and its application to multiplying integers and
polynomials, following the presentation in [6, §8]. It is actually more natural to address the
problem of polynomial multiplication first.

Let R be a commutative ring containing a primitive nth root of unity ω, by which we
mean that ωn = 1 and ωi − ωj is not a zero divisor for 0 ≤ i, j < n (when R is a field

1We write lg n for log2 n.

4

this coincides with the usual definition). We shall identify the set of polynomials in R[x]
of degree less than n∑with the set of all n-tuples with entries in R. Thus we represent the

n 1polynomial f(x) = i=0
− fix

i by its coefficient vector (f , . . . , f) ∈ Rn
0 n−1 and may speak

of the polynomial f(x) and the vector f interchangeably.
The discrete Fourier transform DFTω : Rn → Rn is the R-linear map

(f , . . . , f) −DFT−−−→ω (0
0 n 1 f(ω), . . . , f(ωn−1)).−

This map is invertible; if we consider the Vandermonde matrix
1 ω ω2 ωn−11 ω2 4

· · ·
ω −2

1 ω3
· · · ω2n

ω6 ω3n
Vω =

−3

 , . . .

· · ·
.. · · · .. .

2

1 ωn−1 ω2n−2 · · · ω(n−1)

then DFT t

ω(f) = Vωf . The inverse of the matrix Vω is 1Vn ω−1 , and it follows that DFT−1ω =
1DFTω 1 . Thus if we have an algorithm to compute DFTω we can also use it to computen −

DFT−1ω : simply replace ω by ω−1 and multiply the result by 1 .n
We now define the cyclic convolution f ∗ g of two vectors f, g ∈ Rn:

f ∗ g = fg mod (xn − 1).

Reducing the product on the right modulo xn−1 ensure that f ∗g is a polynomial of degree
less than n∑, thus we may regard the cyclic convolution as a map from Rn to Rn. If h = f ∗g,
then hi = fjgk, where the sum is over j + k ≡ i mod n. If f and g both have degree less
than n/2, then f ∗ g = fg; thus the cyclic convolution of f and g can be used to compute
their product, provided that we make n big enough.

We also define the pointwise product f · g of two vectors in f, g ∈ Rn:

f · g = (f0g0, f1g1, . . . , fn−1gn−1).

Theorem 3.3. DFTω(f ∗ g) = DFTω(f) ·DFTω(g).

Proof. Since f ∗ g = fg mod (xn − 1), we have

f ∗ g = fg + q × (xn − 1),

for some polynomial q ∈ R[x]. For every integer i from 0 to n− 1 we then have

(f ∗ g)(ωi) = f(ωi)g(ωi) + q(ωi)(ωin − 1)

= f(ωi)g(ωi),

where we have used (ωin − 1) = 0, since ω is an nth root of unity.

The theorem implies that if f and g are polynomials of degree less then n/2 then

fg = f ∗ g = DFT−1ω DFTω(f) ·DFTω(g) , (1)

which allows us to multiply polynomials using

(
the discrete Fourier

)
transform. To put this

into practice, we need an efficient way to compute DFTω. This is achieved by the following
algorithm.

5

Algorithm: Fast Fourier Transform (FFT)
Input: A positive integer n = 2k, a vector f ∈ Rn, and the vector (ω0, . . . , ωn−1) ∈ Rn.
Output: DFTω(f) ∈ Rn.

1. If n = 1 then return (f0) and terminate.
n

2. Write the polynomial f(x) in the form f(x) = g(x) + x 2 h(x), where g, h ∈ R
n
2 .

3. Compute the vectors r = g + h and s = (g − h) ·
n

(ω0, . . . , ω 2
−1) in R

n
2 .

4. Recursively compute DFTω2(r) and DFTω2(s) using (ω0, ω2, . . . , ωn−2).

5. Return (r(ω0), s(ω0), r(ω2), s(ω2), . . . , r(ωn−2), s(ωn−2))

Let T (n) be the number of operations in R used by the FFT algorithm. Then T (n) satisfies
the recurrence T (n) = 2T (n) +O(n), and therefore T (n) = O(n lg n).2

Theorem 3.4. The FFT algorithm outputs DFTω(f).

Proof. We must verify that the kth entry of the output vector is f(ωk), for 0 ≤ k < n. For
the even values of k = 2i we have:

f(ω2i) = g(ω2i) + (ω2i)n/2h(ω2i)

= g(ω2i) + h(ω2i)

= r(ω2i).

And for the odd values of k =

f(ω2i+1) =
∑2i+ 1 we have:

f f (2 j)
jω

(2i+1)j +
∑

i+1)(n/2+
n/2+jω

0≤j<n/2 0≤j<n/2

=
∑

g ω2ijωj
j + h

0≤j<n/2 0≤

∑
jω

2ijωinωn/2ωj

∑ j<n/2

= (gj − hj)ωjω2ij

0≤j<n/2

=
∑

s 2ij
jω

0≤j<n/2

= s(ω2i),

where we have used the fact that ωn/2 = −1.

We can use the FFT to multiply polynomials over any ring R that contains a suitable
nth root of unity using O(n log n) operations in R. But how does this help us to multiply
integers?

To any integer a =
∑n

i=0
−1 ai2

i nwe may associate the polynomial fa(x) = i=0 aix
i, so

that a = fa(2). Then we can multiply integers a and b via ab = fab(2) = (fafb)(2); in
practice one typically uses base 264 rather than base 2. In order to get the

∑
required nth

root of unity ω, Schönhage and Strassen [7] adjoin a “virtual” root of unity to Z[x], and
this yields an algorithm to multiply integers in time O(n log n log log n), which gives us a
new upper bound

M(n) = O(n log n log logn).

This bound has recently been improved to O(n log n 2O(log∗n)) by Furer¨ [3], but this im-
provement is primarily of theoretical interest and is not currently used in practice.

6

3.5 Kronecker substitution

We also note an important converse of the above: we can use integer multiplication to
multiply polynomials. This is quite useful in practice, as it allows us take advantage of
very fast implementations of FFT-based integer multiplication that are available. If f is a
polynomial in F ˆ

p[x], we can “lift” f to f in Z[x] by representing its coefficients as integers in

[0, p− ˆ1]. If we then consider the integer f(2m), wherem = 2 lg p+dlg2 deg fe, the coefficients
ˆ ˆof f will appear in the binary representation of f(2m) separated by blocks of m zeroes. If

ˆg is a polynomial of similar degree, we can easily recover the coefficients of h = fĝ
ˆ m m

∈ Z[x]
in the integer product N = f(2)ĝ(2); the key point is that m is large enough to ensure
that the kth block of m binary digits in N contains the binary representation of the kth
coefficient of h. We then reduce the coefficients of h modulo p to recover fg ∈ Fp[x]. This
technique is known as Kronecker substitution, and it allows us to multiply two polynomials
of degree d in Fp[x] in time O(M(d(n + log d)), where n = log p. Typically log d = O(n)
and this simplifies to O(M(dn) In particular, we can multiply elements of Fq ' Fp[x]/(f)
in time O(M(n)), where n = log q, provided that either log deg f = O(n) or log p = O(1),
which are the two most typical cases.

Remark 3.5. Under the standard assumption that the cost M(n) of multiplication grows
super-linearly, using Kronecker substitution is strictly superior to the more conventional
approach of multiplying coefficients of the polynomials individually, which would yield the
asymptotic bound O(M(d)M(n)) rather than O(M(dn)).

3.6 Complexity of arithmetic operations

To sum up, we have determined the following complexities for integer arithmetic:

addition/subtraction O(n)
multiplication (schoolbook) O(n2)
multiplication (Karatsuba) O(nlg 3)
multiplication (FFT) O(n log n log log n)

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Intro-
duction to algorithms, third edition, MIT Press, 2009.

[2] Jack Dongarra, Francis Sullivan,Top ten algorithms of the century, Computing in Science
and Engineering 2:1 (2000), 22–23.

[3] Martin Furer,¨ Faster integer multiplication, Proceedings of the thirty-ninth annual ACM
Symposium on the Theory of Computing (STOC), 2007.

[4] Dan Givoli, The top 10 computational methods of the 20th century, IACM Expressions
11 (2001), 5–9.

[5] Jaochim von zur Gathen, Irreducible trinomials over finite fields, Mathematics of Com-
putation 72 (2003), 1787–2000.

[6] Joachim von zur Gathen and Jurgen¨ Gerhard, Modern Computer Algebra, second edi-
tion, Cambridge University Press, 2003.

7

[7] A. Schönhage and V. Strassen, ‘Schnelle Multiplikation großer Zahlen’, Computing , 7
(1971), 281–292.

8

MIT OpenCourseWare
http://ocw.mit.edu

18.783 Elliptic Curves
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Arithmetic in finite fields
	Addition
	A quick refresher on asymptotic notation
	Multiplication
	Schoolbook method
	Karatsuba's algorithm
	The Fast Fourier Transform (FFT)

	Kronecker substitution
	Complexity of arithmetic operations

