
18.783 Elliptic Curves Spring 2013
Lecture #6 02/26/2013

Andrew V. Sutherland

In this lecture we continue our study of isogenies and introduce the division polynomials.
Recall that an isogeny is a rational map that is also a group homomorphism. In the last
lecture we showed that every nonzero isogeny α : E1 E2 between elliptic curves in short
Weierstrass form y2 3

→
= x +Ax+B can be written as

)
α(x, y =

(
u(x

)
v(x)

,
s(x)

y
t(x)

)
where u ⊥ v and s ⊥ ¯t are pairs of relatively prime polynomials in k[x].1 For any affine

¯point (x0, y0) ∈ E1(k), we have α(x0, y0) = 0 if and only if x0 is a a root of v(x) (recall that
v and t always have the same set of roots), and of course α(0) = 0. We defined the degree
of α to be max{deg u,deg v}, and said that α is separable whenever

(
u
v

)′ 6= 0.

6.1 The kernel of an isogeny

¯The polynomial v(x) allows us to determine the points in E(k) that lie in the kernel of α.
Indeed, we have

kerα = {(x0, y0) ∈ ¯E(k) : v(x0) = 0} ∪ {0}.

If E1 is defined by y2 = f(x) = x3 + Ax + B, then we get one point in kerα for each root
of v that is also a root of f (these are points (x0, 0) of order 2), two points for every other
distinct root of v (since α(x0, y0) = 0 implies α(x0,−y0) = −α(x0, y0) = 0), and the point 0
(the point at infinity). Thus the polynomial v(x) completely determines kerα, and we will
see later in the course that separable isogenies are effectively determined by their kernel.

We now wish to show that when α is separable, the number of points in its kernel is
exactly equal to its degree. We first prove an important intermediate result: every nonzero
isogeny is surjective.

Theorem 6.1. Let α : E1 → ¯E2 be a nonzero isogeny. Then α surjects onto E2(k).

u(x)Proof. Let α = ( v(x) ,
s(x) ¯y) be in standard form. Let (a, b) be any nonzero point in E2(k),t(x)

and let f be the polynomial u− av. There are two cases:

¯Case 1: f has a root x0 ∈ k.
¯Pick 0 ∈ ¯ ¯y k so that (x0, y0) ∈ E1(k) (this is possible, since k is algebraically closed). We

have f(x0) = u(x0) − av(x0) = 0 with v(x0)
¯

=6 0, since u ⊥ v implies f v. Thus
¯

⊥
a = u(x0)/v(x0), so α(x0, y0) = (a, b′) ∈ E2(k) for some b′ ∈ k. If E2 is defined by the
equation y2 = x3 +Ax+B, then we have

b′2 = a3 +Aa+B = b2.

Thus b′ = ±b and (a, b) = α(x0,±y0), so (a, b) lies in the image of α.

¯Case 2: f has no roots in k.
¯This means that f is constant (since k is algebraically closed). But u and v cannot both

1The assumption that E1 and E2 are in short Weierstrass form implies that we are not in characteristic 2
(and rules out some curves in characteristic 3). Most of the results we will prove can be extended to curves
in general Weierstrass form and therefore apply to any elliptic curve. Where this is true we will state our
theorems generally, but our proofs will use elliptic curves in short Weierstrass form.
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¯be constant, otherwise there would be a point (u/v, y0) ∈ E2(k) with infinite pre-image
¯in E1(k), which is impossible since the kernel of any nonzero isogeny is finite. It follows

that a is uniquely determined as the ratio of the leading coefficients of u and v.
Since a is unique, at most two points (a,±b) do not lie in the image of α (all others fall

into Case 1). Choose (a′, b′) = α(P1) so that (a, b) + (a′, b′) 6= (a,±b); this is possible since
¯ ¯E1(k) and E2(k) are infinite. Then (a, b) + (a′, b′) lies in the image of α and is equal to

¯α(P2) for some P2 ∈ E1(k). But then

α(P1 − P2) = −(a, b) = (a,−b) and α(P2 − P1) = (a, b),

so (a, b) and (a,−b) are both in the image of α. Therefore α is surjective.

We now show that the degree of a nonzero separable isogeny is equal to the size of
its kernel. More generally, we will prove that the separable degree of any nonzero isogeny
is equal to the size of its kernel. Recall that every inseprable isogeny α can be uniquely
decomposed as α = αsep ◦ πn, where αsep is a separable isogeny and π(x, y) = (xp, yp) is
the p-power Frobenius map and p is the characteristic of k. The separable degree of α is
defined to be degαsep, or simply degα when α is separable.

Theorem 6.2. Let α : E1 → E2 be a nonzero isogeny. The cardinality of kerα is equal to
the separable degree of α.

Proof. If α = αsep ◦ πn is inseparable, then # kerα = # kerαsep, since the kernel of πn is
)trivial (if we put πn u(xin standard form ( v(x) ,
s(x)y), then v(x) = 1 has no roots), and πnt(x)

is surjective, by the previous theorem. Thus it is enough to consider the case where α is
separable, which we now assume.

u(x)Let α be in standard form ( v(x) ,
s(x)y). Let (a, b) be a point in the image of α witht(x)

a, b 6= 0 and such that a is not equal to the ratio of the leading coefficients of u and v (this
is possible since the image of α is infinite). We now consider the set

S(a, b) = {(x, y) ∈ E1 : α(x, y) = (a, b)}

of points in the pre-image of (a, b). Since α is a group homomorphism, #S(a, b) = # kerα.
If (x0, y0) ∈ S(a, b) then

u(x0) s(x0)
= a,

v(x0)
y0 = b.

t(x0)

We must have t(x0) 6= 0, since α is defined at (x0, y0), and b 6= 0 implies s(x0) 6= 0. It
t(x )follows that y0 = 0 b is uniquely determined by x0. Thus to compute #S(a, b) it sufficess(x0)

to count the number of distinct values of x0 that occur among the points in S(a, b).
As in the proof of Theorem 6.1, we let f = u− av so that α(x0, y0) = (a, b) if and only

if f(x0) = 0. We must have deg f = degα, since a is not equal to the ratio of the leading
coefficients of u and v (so their leading terms do not cancel). The cardinality of S(a, b) is
then equal to the number of distinct roots of f .

Any x0 ∈ k̄ is a multiple root of f if and only if f(x0) = f ′(x0) = 0, equivalently, if
and only if av(x0) = u(x0) and av′(x0) = u′(x0). If we multiply opposing sides of these
equations and cancel the a’s we get

u′(x0)v(x0) = v′(x0)u(x0). (1)
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If α is separable, then u′v − v′u is not the zero polynomial and has only finitely many
roots. Thus we may assume that (a, b) was chosen so that (1) is not satisfied for any (x0, y0)
in S(a, b). Then every root of f is distinct and #S(a, b) = deg f = degα, as desired.

For a given elliptic curve E/k, we use [n] to denote the map that sends each point P to
the scalar multiple nP = P + · · ·+P . This is clearly a group homomorphism, and, since the
group operation is defined by rational functions, it is also a rational map and therefore an
isogeny. It is an isogeny from E to itself (and therefore an endomorphism). We wish to put
the isogeny [n] into standard form. In order to to this it turns out to be more convenient
to work with weighted projective coordinates.

6.2 Jacobian coordinates

Recall that points in standard projective coordinates are nonzero triples (x : y : z) subject
to the equivalence relation

(x : y : z) ∼ ¯(λx : λy : λz) (for λ ∈ k∗).

We will instead work with the equivalence relation

(x : y : z) ∼ (λ2 ¯x : λ3y : λz) (for λ ∈ k∗),

which corresponds to assigning weights 2 and 3 to the variables x and y. Projective coor-
dinates with these weights are also called Jacobian coordinates. The homogeneous curve
equation for E in Jacobian coordinates then has the form

y2 = x3 +Axz4 +Bz6,

which explains the motivation for giving x weight 2 and y weight 3: the leading terms
for x and y do not involve z. In Jacobian coordinates, each point (x : y : z) with z

2
=6 0

corresponds to the affine point (x/z , y/z3), and the point at infinity is still (0 : 1 : 0).

Remark 6.3. As an aside, the general Weierstrass form of an elliptic curve in Jacobian
coordinates is

y2 + a xyz + a yz3 = x3 + a x2z + a xz4 6
1 3 2 4 + a6z ,

which is a weighted homogeneous equation of degree 6. Each ai is the coefficient of the term
with degree i in z. This explains the otherwise mysterious fact that there is no Weierstrass
coefficient a5.

6.3 The group law in Jacobian coordinates

We now compute formulas for the elliptic curve group law in Jacobian coordinates, beginning
with addition. Recall that in affine coordinates, to compute the sum P3 = (x3, y3) of two
affine points P1 = (x1, y1) and P2 = (x2, y2) with P1 6= ±P2 we use the formulas

x3 = m2 − (x1 + x2) and y3 = m(x1 − x3)− y1,
ywhere m = 1−y2 is the slope of the line through P
1− 1 and P2. In Jacobian coordinates wex x2

have P 2 3
i = (xi/zi , yi/zi ) and the formula for the x-coordinate becomes

x3 y
=

z23

(
1/z

3
1 − y2/z32

x1/z21 − x2/z22

)2

−
(
x1
z21

+
x2
z22

)
=

(y1z
3
2 − y2z31)2 − (x1z

2
2 + x2z

2
1)(x1z

2
2 − x2z21)2

(x1z22 − x2z21)2z21z
2
2

.
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This formula can be simplified by using y2i x3i = Axiz
4
i + Bz6i to get rid of the terms in

the numerator containing y2 3
−

i or xi . This makes the numerator divisible by z21z
2
2 allowing us

to cancel this with the corresponding factor in the denominator. We have

x3 (y2z6 6 z61 2 − x31z2) + (y22z
6
1 − x32 1) + x2x z2z4 + x x2z4z2 − 2y y z3z31 2 1 1

= 2 1 2 1 2 2 1 2

z23 (x1z2 − x 2
2 2z1)2z21z

2
2

(Ax1z
4
1 +Bz61)z62 + (Ax2z

4
2 +Bz6)z6 + x2x z2z4 + x x2z4 2

2
= 2 1 1 1 2 1 2 1z2 − 2y1y2z

3
1z

3
2

(x1z22 − x2z21)2z21z
2
2

(Az2 2
1z

2
2 + x1x

2 4 4
2)(x1z

= 2 + x2z1) + 2Bz1z2 − 2y1y2z1z2
.

(x1z22 − x2z21)2

For the y-coordinate, using y3 = m(x 3
1 − x3)− y1 = m(2x1 + x2)−m − y1 we obtain

y3 y
=

z33

(
1/z

3
1 − y2/z

3
2

x1/z21 − x2/z22

)(
2x1

z21
+

x2

z22

)
−

(
y1/z

3
1 − y2/z

3
2

x1/z21 − x2/z22

)3

− y1
z31

(y z3 − y z3)(2x z2 + x z2)(x z2 − x z2)2 − (y z3 − y z3)3 − y z3(x z2 2
1 2 1 1 2 1 2 2 2

= 2 2 1 2 1 1 1 1 2 1 2 − x2z1)
3

(x1z22 − x2z21)
3z31z

3
2

(y3

= 2z
9
1 − x3

2y2z
9
1)− (y3

1z
9
2 − x3

1y1z
9
2) 2(x3y z3 − x3y z3) + 3x x z z (x y z − x y z ) + 3y y (y 3 3

2 1 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1z
+ 2

(x1z22 − x z2)3z3z3
− y2z1)

2 1 1 2 (x1z22 − x2z21)
3

(Ax2z
4

= 2 +Bz6 9 4 6 9
2)y2z1 − (Ax1z1 +Bz1)y1z2 2(x3y z3 − x3y z3) + 3x x z z (x y z − x y z ) + 3y y (y 3 3

2 1 1 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1z
+ 2

(x1z22 − x z2)3z3z3
− y2z1)

2 1 1 2 (x1z2 x 2
2 2z1)

3

(Ax z +Bz3)y z6 − (Ax z +Bz3)y z6 + 2(x3y z3 3 3

−
3 3

2 2 2 2 1 1 1 1 1 2 2 1 1 − x1y2z2) + 3x1x2z1z2(x1y2z1 y
=

− x2y1z2) + 3y1y2(y1z2 − 2z1)

(x1z22 − x2z21)
3

These formulas look quite complicated, but the key point is that we have

z3 = x1z
2
1 − x2z21 , (2)

which is simpler than it would have otherwise been.
The doubling formulas are simpler. In affine coordinates the slope of the tangent line is

m = (3x21 +A)/(2y1). For the x-coordinate we have

x3 3(
=

z23

(
x1/z

2
1)2 +A

2y1/z31

)2

− 2
x1
z21

=
(3x21 +Az41)2 − 8x1y

2
1

(2y1z1)2
=
x41 − 2Ax21z

4
1 − 8Bx1z

6
1 +A2z81

(2y1z1)2

and for the y-coordinate we get

y3 3(
=

z33

(
x1/z

2
1)2 +A

2y1/z31

)
3x1
z21
−
(

3(x1/z
2
1)2 +A

2y1/z31

)3

− y1
z31

3x1(3x
2

= 1 +Az41) (3x2

2y1z31
− 1 +Az41)3

(2y1z1)3
− y1
z31

12x1y
2

= 1(3x21 +Az4 2 4 3 4
1)− (3x1 +Az1) − 8y1
(2y1z1)3

x6 4
1 + 5Ax1z

4
1 + 20Bx31z

6
1 − 5A2x2

= 1z
8
1 − 4ABx1z

10
1 − (A3 + 8B2)z121 .

(2y1z1)3

Thus we have
z3 = 2y1z1. (3)

4



6.4 Division polynomials

We now wish to apply our addition formulas to a “generic” point P = (x : y : 1) on the
elliptic curve E defined by y2 = x3 +Ax+B, and use them to compute 2P, 3P, 4P, . . . , nP .
In Jacobian coordinates, the point nP has the form (φn : ωn : ψn), where φn, ωn, and ψn
are integer polynomials in x, y,A, and B that we reduce modulo the curve equation so that
the degree in y is at most 1. In affine coordinates we then have

nP =

(
φn
ψ2
n

,
ωn

.
ψ3
n

)
(4)

The sage worksheet computes nP for the first several
values of n.

Remark 6.4. Another way to think of this is to view E as an elliptic curve over its function
field. In concrete terms, let k be the field Q(A,B), let F be the fraction field of the ring
k[x, y]/(y2 − x3 −Ax−B), and consider the point P = (x, y) ∈ E(F ).

The polynomial ψn is known as the nth division polynomial. So far we have really only
defined the ratios φn/ψ

2
n and ω 3

n/ψn, since we have been working in projective coordinates.
In order to nail down φn ωn and ψn precisely, we make the following recursive definition.
Let ψ0 = 0, and let ψ1, ψ2, ψ3, ψ4 be as computed in Sage (up to a sign):

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6Ax2A+ 12Bx−A2,

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx−A3 − 8B2).

We then define the division polynomials ψn via the recurrences

ψ2m+1 = ψ 3 3
m+2ψm − ψm−1ψm+1,

1
ψ2m = ψ (ψ ψ2 − ψ ψ2

m m+2
y m−1 m−2

2 m+1),

where we reduce the result modulo the curve equation so that ψn is at most linear in y. It
is not difficult to show that ψm(ψ 2

m+2ψm 1 − ψm 2ψ
2
m+1) is always divisible by 2y, so that− −

ψ2m is a polynomial; see Lemma 6.5 below. The recurrences above hold for all integers m,
and one finds that ψ−n = −ψn for all n.

We then define φn and ωn via

φn := xψ2
n − ψn+1ψn−1,

1
ωn := (ψn+2ψ

2

4y n−1 − ψn−2ψ2
n+1).

These equations hold for all integers n, and we have φn = φ−n and ωn = ω−n. As above,
we always reduce φn and ωn modulo the curve equation to make them at most linear in y.

Lemma 6.5. For every integer n,

Z[x,A,B] n odd
ψn lies in

{
2yZ[x,A,B] n even,

φn lies in

ωn lies in

{Z[x,A,B] for all n,

Z[x,A,B] n even

yZ[x,A,B] n odd.
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Proof. These are easy inductions; see Lemmas 3.3 and 3.4 in Washington [2].

It follows from the lemma that ψ2
n lies in Z[x,A,B] for all positive n, so we think of φn

and ψ2
n as a polynomial in x alone, whereas there is always exactly one of ωn and ψ3

n that
depends on y.

6.5 Multiplication-by-n maps

At this point it is not at all obvious that the polynomials φn, ωn, and ψn actually satisfy
equation (4) for nP . But this is indeed the case.

Theorem 6.6. Let E/k be an elliptic curve defined by the equation y2 = x3 +Ax+B and
let n be a nonzero integer. The rational map

[n x, y) =

(
φn(x)

](
ψ2
n(x)

,
ωn(x, y)

ψ3
n(x, y)

)
sends each point P ∈ ¯E(k) to nP .

Proof. We have

φ
[−n]( y) =

(
)−n(x

x,
ψ2
−n(x)

,
ω−n(x, y)

ψ3
−n(x, y)

)
=

(
φn(x)

(−ψn)2(x)
,

ωn(x, y)

(−ψn)3(x, y)

)
= −

(
φn(x)

ψ2
n(x)

,
ωn(x, y)

,
ψ3
n(x, y)

)
so it suffices to consider positive n. The proof given by Washington [2, Thm. 9.33] uses
complex analysis and the Weierstrass ℘-function, which we will see later in the course
However, one can give a purely algebraic proof by induction, using the formulas for the
group law (as noted by Silverman [1, Ex. 3.7]). This approach has the virtue of being
completely elementary, but it is computationally intensive (and really should be done with
a computer algebra system). Here we will just verify that the formulas for ψn are correct.

For 1 ≤ n ≤ 4 the formulas given for ψn match our computations in Sage using the
group law. To verify the formula for ψn when n = 2m + 1 > 4 is odd, we let Pm be the
point (φm, ωm, ψm) in Jacobian coordinates and compute Pm + Pm+1 using the group law.
The z-coordinate of the sum is given by the formula z3 = x1z

2
2−x2z21 from (2). Substituting

φm for x1, ψm for z1, φm+1 for x2, and ψm+1 for z2 yields

φ ψ2 2
m m+1 − φm+1ψm,

which we wish to show is equal to ψ2m+1. Applying the formulas for φm and φm+1 gives

φmψ
2
m+1 − φm+1ψ

2
m = (xψ2

m − ψm+1ψm 1)ψ
2
m+1 − (xψ2

m+1 − ψm+2ψ− m)ψ2
m

= ψm+2ψ
3
m − ψ 3

m−1ψm+1

= ψ2m+1,

as desired.
To verify the formula for ψn when n = 2m > 4 is even, we now compute Pm +Pm. The

z-coordinate of the sum is given by the formula z3 = 2y1z1 from (3). We then have

1
2ωmψm = 2 · (ψm+2ψ

2

4y m−1 − ψm−2ψ2
m+1)ψm

= ψ2m.

as desired. This completes the verification for ψn. To complete the proof one performs a
similar verification for φn and ωn using the group law formulas for x3 and y3.
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Theorem 6.7. For every postive integer n the polynomials φn and ψn satisfy

2
φn(x) = xn + · · · ,

1

ψn(x) =

 2n −
nx


2 + · · · , n odd

y

(
nx

n2−4
2 + · · ·

)
, n even.

where each ellipsis hides terms of lower degree in x.

Proof. We first prove the formula for ψn by induction on n. By inspection, the formulas hold
for n = 1, 2, 3, 4. There are then four cases to consider, depending on the value of n mod 4.
For any polynomial f(x, y) we let ltxf denote the leading term of f as a polynomial in x.
Case 0: n ≡ 0 mod 4.
Let n = 2m, with m even. We have

1
ltxψ2m = ltx

(
2y
ψm(ψm+2ψ

2
m−1 − ψm−2ψ2

m+1)

)
=

1 2m

y
2y
·

−4

mx 2

(
y(m+ 2)x

(m+2)2−4
2 (m− 1)2x

2(m−1)2−2
2 − y(m− 2)x

(m−2)2−4 22(m+1)
2

−2
2 (m+ 1) x 2

ym

)
=

2

(
(m− 1)2(m+ 2)x

m2−4+m2+4m+4−4+2m2−4m
2 − (m− 2)(m+ 1)2x

m2−4+m2−4m+4−4+2m2+4m
2

ym

)
=

24

(
2

(
m− 1)2(m+ 2)− (m− 2)(m+ 1)2

) m −4

x 2

24m −4

= y(2m)x 2 = ynx
n2−4

2

Case 1: n ≡ 1 mod 4.
Let n = 2m+ 1, with m even. We have

ltxψ2m+1 = lt 3
x

(
ψm+2ψm − ψm−1ψ3( m+1

2(m+2) −4

= ltx y(m+ 2)x

)
2 y3m3x

3m2−12
2 − (m− 1)x

(m−1)2−1
2 (m+ 1)3x

3(m+1)2−3
2

2 2

)
= (m+ 2)m3x6

m +4m+3m −12

x 2 − (m− 1)(m+ 1)3x
m2−2m+3m2+6m

2

24m +4m

= (2m+ 1)x 2 = nx
n2−1

2

Here we used the curve equation to replace y4 with x6, the leading term of (x3 +Ax+B)2.
Case 2: n ≡ 2 mod 4.
Let n = 2m, with m odd. We have

1
ltxψ2m = ltx

(
ψm(ψm+2ψ

2

2y m−1 − ψm−2ψ2
m+1)

1

)
=

2m −1

mx
2y

2

(
(m+ 2)x

(m+2)2−1
2 y2(m− 1)2x

2(m−1)2−8
2 − (m− 2)x

(m−2)2−1
2 y2(m+ 1)2x

2(m+1)2−8
2

y

)
=

2m

m
2

(
(m+ 2)(m− 1)2

− 21+(m+2) −1+2(m− 21) −8

x 2 − (m− 2)(m+ 1)2x
m2−1+(m−2)2−1+2(m+1)2−8

2

)
=
y 24

m
2

(
(m+ 2)(m− 1)2 − (m− 2)(m+ 1)2

) m −4

x 2

24m −4

= y(2m)x 2 = ynx
n2−4

2
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Case 3: n ≡ 3 mod 4.
Let n = 2m+ 1, with m odd. We have

ltxψ2m+1 = lt 3
x

(
ψm+2ψm − ψm−1ψ3( m+1

2(m+2) −1

= ltx (m+ 2)x

)
2

3 3m
2

−3

m x
2(

2 − y(m−
m−1) −4

1)x
23(m+1)

3
2 y (m+ 1)3

−12

x 2

24m +4m

)
= (2m+ 1)x 2

2n −1

= nx 2

Here we have again used the curve equation to replace y4 with x6.
Now that we have verified the formulas for ψn, we need to check φn. There are two

cases, depending on the parity of n. If n is even we have

ltxφn = ltx
(
xψ2( n − ψn+1ψn−1

2

= ltx xy2n2
2n −8

x

)
2 − (n+ 1)x

(n+1)2−1
2 (n− 1)x

(n−1)2−1
2

)
= n2xn

2 − (n2 − 1)xn
2

= xn
2
,

and if n is odd we have

ltxφn = lt 2
x

(
xψn − ψn+1ψn−1

−

)(
2

2 −
(n+1) −4

= lt xn2xn 1
x y(n+ 1)x 2 y(n− 1)x

(n−1)2−4
2

)
= n2xn

2 − (n2 − 1)xn
2

= xn
2
,

where we have used the curve equation to replace y2 with x3.

Lemma 6.8. Let E/k be an elliptic curve defined by y2 = x3 + Ax+ B. The polynomials
¯φn(x) and ψ2

n(x) are relatively prime in k[x].

Proof. Suppose not. Let x0 be a common root, and let P = (x0, y0) be a nonzero point in
¯E(k). Then nP = 0, since ψ2

n(x0) = 0, and we also have

φn(x0) = x0ψ
2
n(x0)− ψn+1(x0, y0)ψn−1(x0, y0)

0 = 0− ψn+1(x0, y0)ψn−1(x0, y0),

so at least one of ψn+1(x0, y0) and ψn−1(x0, y0) is zero. But then either (n − 1)P = 0 or
(n + 1)P = 0, and after subtracting nP = 0 we see that either −P = 0 or P = 0. Thus
P = 0, which is a contradiction.

Theorem 6.9. Let E/k be an elliptic curve. The multiplication-by-n map [n] : E → E
is an endomorphism of degree n2. It is separable if and only it n is not divisible by the
characteristic of k.

8



Proof. The fact that deg [n] = n2 follows immediately from the previous lemma and its
2

corollary. If n is not divisible b(y the characteristic of p then the leading term n2xn −1 of

φ′ φ )
n(x) is and therefore n(xnonzero

′
= 0 and [n] is separable. If n is divisible by the

ψ2
n(x)

)
6

characteristic of k then the degree of ψ2
n(x) is strictly smaller than n2 − 1, which implies

that the kernel of [n] is smaller than its degree n2, and therefore [n] is inseparable.
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