
18.783 Elliptic Curves Spring 2013
Lecture #9 03/07/2013

Andrew V. Sutherland

9.1 Schoof’s Algorithm

In the early 1980’s, René Schoof [3] introduced the first polynomial-time algorithm to com-
pute #E(Fq). Extensions of Schoof’s algorithm remain the point-counting method of choice
when the characteristic of Fq is large (e.g., when q is a cryptographic size prime).1

Schoof’s basic strategy is very simple: compute the the trace of Frobenius tmodulo many
small primes ` and use the Chinese remainder theorem to obtain t; this then determines
#E(Fq) = q + 1− t. The high-level structure of the algorithm appears below.

Algorithm 9.1. Given an elliptic curve E over a finite field Fq compute #E(Fq) as follows:

1. Set M = 1 and tM = 0.

2. While M ≤ 4
√
q, for increasing primes ` = 2, 3, 5, . . . that do not divide q:

a. Compute (t` = t mod `.

b. Set tM = (M−1 mod `)Mt` + (`−1 mod M)`tM
)

mod `M ,
and then set M = `M .

3. If tM > M/2 then set tM = tM −M .

4. Return q + 1− tM .

Step 2b uses an iterative version of the Chinese remainder theorem to ensure tM = t mod M
holds throughout.2 Once M exceeds 4

√
q (the width of the Hasse interval), tM uniquely

determines the integer t. The key to the algorithm is the implementation of step 2a, which
is described in the next section. Let us first consider the primes ` that the algorithm uses.

Let `max be the largest prime ` for which the algorithm computes t`. The Prime Number
Theorem implies

primes

∑
log ` ∼ x,

`≤x

so `max ≈ log 4
√
q ≈ 1

2n = O (n), and we need O
(

n primes ` (as usual, n = log q).logn
The cost of updating tM and M is bounded by O(M(n) log n), thus if we can compute t` in
polynomial time, then the whole algorithm will run in polynomial

)
time.

9.2 Computing the trace of Frobenius modulo a prime `.

We first consider the case ` = 2. Then q must be odd, and t = q + 1−#E(Fq) is divisible
by 2 if and only if #E(Fq) is divisible by 2, equivalently, if and only if E(Fq) contains a
point of order 2. If E has Weierstrass equation y2 = f(x), the points of order 2 in E(Fq)
are those of the form (x0, 0), where x0 ∈ Fq is a root f(x). So t ≡ 0 mod 2 if f(x) has a
root in Fq, and t ≡ 1 mod 2 otherwise.

1There are deterministic p-adic algorithms for computing #E(Fq) that are faster than Schoof’s algorithm
when the characteristic p of Fq is very small; see [2]. But their running times are exponential in log p.

2There are faster ways to apply the Chinese remainder theorem; see [1, §10.3]. They are not needed here
because the complexity is overwhelmingly dominated by step 2a.

1



The algorithm that we saw in Lecture 4 for finding roots of polynomials over finite fields
is probabilistic, and we want to compute t mod 2 deterministically. But we don’t actually
need to find the roots of f(x) in Fq, we just need to determine whether any such roots
exist. For this we only need the first step of the root-finding algorithm, which computes
gcd(xq − x, f(x)). The degree of this gcd is equal to the number of distinct roots of f , so
t ≡ 0 mod 2 if and only if the degree is positive. This is a deterministic computation, and
since the degree of f is fixed at 3, it takes just O(nM(n)) time.

This addresses the case ` = 2; henceforth we assume that the prime ` is odd.

9.3 The characteristic equation of Frobenius modulo `

Recall that the Frobenius endomorphism π (x, y) = (xq, yq) satisfies the equation

π2 − tπ + q = 0

in the endomorphism ring End(E). If we restrict π to the `-torsion subgroup E [`], then

π2` − t`π` + q` = 0 (1)

holds in End(E[`]), where t` ≡ t mod ` and q` ≡ q mod ` may be viewed either as restrictions
of the scalar multiplication maps [t] and [q], or simply as scalars in Z/`Z multiplied by the
restriction of the identity endomorphism [1]`. We shall take the latter view, regarding q` as
q`[1]`, the sum of q` copies of [1]` (which we can compute using double-and-add).

The key lemma we need is that equation (1) not only uniquely determines t`, it suffices
to verify (1) at any nonzero point in E[`].

Lemma 9.2. Let E/Fq be an elliptic curve with Frobenius endomorphism π, let t = trπ,
let ` be a prime, and let P be a nonzero point in E[`]. Suppose that for some integer c the
equation

π2` (P )− cπ`(P ) + q`P = 0

holds. Then c ≡ t mod `.

Proof. From equation (1) we have

π2` (P )− tπ`(P ) + q`P = 0,

and we are given that
π2` (P )− cπ`(P ) + q`P = 0.

Subtracting these equations, we obtain (c− t)π`(P ) = 0. Since π`P is a nonzero element of
E[`] and ` is prime, the point π`P has order `, which must divide c− t. So c ≡ t mod `.

Let h = ψ` be the `-th division polynomial of E; since ` is odd, we know that ψ` does
not depend on the y-coordinate, and we have h ∈
Fq[x]. As we proved in Lecture 6, a nonzero point P = (x0, y0) ∈ E(Fq) lies in E[`] if and
only if h(x0) = 0. Thus we may represent endomorphisms in End(E[`]) as elements of the
ring

F 2
q [x, y] /(h(x), y − f(x)),

where y2 = f(x) = x3 +Ax+B is the Weierstrass equation for E.

2



In the case of the Frobenius endomorphism, we have

π`(x, y) =
(
xq mod h(x), yq( mod (h(x), y2 − f(x))

= xq mod h(x),
(
f (q−1)/2 mod h(x)

)
y ,

))
(2)

and similarly

π2` = xq
2 (mod h(x), f q2−1)/2 mod h(x) y . (3)

We also note that [1]` = (x

(
mod h(x),

( ) )
(
1 mod h(x)

)
y). Thus we can represent all of the

nonzero endomorphisms that appear in equation (1) in the form (a(x), b(x)y), where a
and b are elements of the polynomial ring R = Fq[x]/(h(x)).

Let us consider how to add and multiply elements of( End(E[`]) that are represented in
this form. Multiplication is easy: the composition of a1(x), b1(x)y

)( ) with a2(x), b2(x)y
has the form a3(x), b3(x)y , where the polynomials

( )
a3(x) = a1(a2(x)),

b3(x) = b1(a2(x))b2(x)

are again elements of R (so we reduce them modulo h(x)). We now address addition.

9.4 Adding endomorphisms in End(E[`]).

Recall that addition of endomorphisms is defined in terms of the group law on the elliptic
curve: (α1 + α2)(P ) = α1(P ) + α2(P ). Let us assume that α1 and α2 are represented
in the form α1 =

(
a1(x), b1(x)y

)
and α2 =

(
a2(x), b2(x)y

)
, where a1, a2, b1, b2 are reduced

elements in the ring R = Fq[x]/(h(x)). To compute α3 = α1 + α2, we simply apply the
formulas for point addition. Let us first assume α1 6= ±α2; if α1 = −α2 then α1 + α2 = 0,
and we will consider the case α1 = α2 below.

The general formula for computing (x3, y3) = (x1, y1) + (x2, y2) on the elliptic curve
E : y2 = x3 +Ax+B is

y1
m =

− y2
, x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1.

x1 − x2

Applying these to the coordinates x1 = a1(x), x2 = a2(x), y1 = b1(x)y, and y2 = b2(x)y, we
compute

b1(x) )
m(x, y =

− b2(x
) y = r(x)y,

a1(x)− a2(x)

where r = (b1 − b2)/(a1 − a2). Using the curve equation y2 = f(x) = x3 +Ax+B we have

a3(x) = m(x, y)2 − a1(x)− a2(x)

= r(x)2y2 − a1(x)− a2(x)

= r(x)2f((x)− a1(x)− a2(x),

b3(x)y = (m(x, y) a1(x)− a3(x) − b1(x)y

= r(x)(a1(x)− a3(x))−

)
b1(x) y,

Thus α3 = (a3(x), b3(x)y), where a3 = r2f

)
− a1 − a2 and b3 = r(a1 − a3)− b1.

3



The case α1 = α2 is similar, except that now we use

3a1(x)2 +A
m(x, y) =

3a1(x)2 +A
=

2b1(x)y
y = r(x)y,

2b1(x)f(x)

where r = (3a21 +A)/(2b1f).
In both cases, provided that the polynomial in the denominator of r is invertible in

the ring R = Fq[
α1 + α2 = α3 =

(x]/(h(x)), we can reduce r to a polynomial modulo h and obtain the sum
a3(x), b3(x)y in our desired form, with a3, b3 ∈ R.

The case where the denominator
but

)
of r is not invertible might appear to pose a problem,

it actually turns out to be good news, since if this occurs than we can obtain a proper
factor g of h by computing g as the gcd of h with the denominator of r. The polynomial g
must have positive degree (otherwise the denominator would be invertible), and we argue
that its degree is also strictly less than the degree of h. This is clear when the denominator
of r is a1− a2, since both a1 and a2 are reduced modulo h and therefore have lower degree.
If the denominator is 2b1f , we note that f and h must be relatively prime, since roots of
f correspond to points of order 2, while roots of h correspond to points of odd order `;
therefore g must be a factor of b1, which is reduced modulo h.

Having found a proper factor g of h, our strategy is to replace h by g and restart the
computation. Before explaining why this works, let us first give the algorithm.

9.5 Algorithm to compute t modulo `

We now give an algorithm to compute t`, the trace of Frobenius modulo `.

Algorithm 9.3. Given an elliptic curve E/Fq and an odd prime `, compute t` as follows:

1. Compute the `th division polynomial h = ψ` ∈ Fq[x] for E.

2. Compute π` and π2` via (2) and (3).

3. Use scalar multiplication to compute q` = q`[1]`, and then compute π2` + q`.
(If an uninvertible denominator arises, replace h by a proper factor and go to step 2).

4. Compute 0, πl, 2πl, 3πl, . . . , cπ`, until cπl = π2l + ql.
(If an uninvertible denominator arises replace h by a proper factor and go to step 2).

5. Return t` = c.

Throughout the algorithm, elements of End(E[`]) are represented in the form (a(x), b(x)y),
with a, b ∈ R = Fq[x]/(h(x)), and all polynomial operations take place in the ring R.

The correctness of the algorithm follows from equation (1) and Lemma 9.2. The algo-
rithm is guaranteed to find cπl = π2l + ql in step 4 with c < `, since c = t` works, by (1).
Although we may be working modulo a proper factor g of h, every root x0 of g is a root
of h and therefore corresponds to a pair of nonzero points P = (x0,±y0) ∈ E[`] for which
π2` (P )−cπ`(P )+q`P = 0 holds (there is at least one such root, since g has positive degree),
and by Lemma 9.2, we must have c = t`.

An implementation of Schoof’s algorithm can be found in the Sage worksheet

4

18.783 Lecture 9: Schoof's Algorithm.sws



9.6 Finding factors of h

As we saw when running our implementation of Schoof’s algorithm in Sage, we do occasion-
ally find a proper factor of the `th division polynomial h(x). This is not too surprising, since
there is no reason why h should be irreducible; indeed, if it happens that E[`] = E[`](Fq)
then h must split into linear factors. But it is worth noting that when the algorithm finds
a factor g of h, the polynomial g always has degree (`− 1)/2. Why is this the case?

Any point P = (x0, y0) for which g(x0) = 0 lies both in E[`] and in the kernel of some
endomorphism α (since x0 is a root of the denominator of a rational function defining α).
The point P is nonzero, so it generates a cyclic group C of order `, and C must lie in the
kernel of α (since α(mP ) = mα(P ) = 0 for all m). It follows that g must have at least
(`− 1)/2 roots, one for each pair of nonzero points (xi,±yi) in C (note that ` is odd). On
the other hand, if g has any other roots, then there is another point Q that lies in the
intersection of E[`] and kerα, and then we must have kerα = E[`], since E[`] has `-rank 2.
But this would imply that every root of h is a root of g, which is not the case, since g is
a proper divisor of h and all of h’s roots are distinct. So g has exactly (` − 1)/2 roots.
Reducing the polynomials that define our endomorphism modulo g corresponds to working
in the subring End(C) of End(E[`]).

Once we have found such a g, note that the algorithm speeds up by a factor of `, since we
are working with polynomials of lower degree. While we are unlikely to stumble across such
a g by chance once ` is large, it turns out that in fact such a g does exist for approximately
half of the primes `. Not long after Schoof published his result, Noam Elkies found a way to
systematically find such factors g of h as polynomials representing the kernels of isogenies,
which allows one to speed up Schoof’s algorithm quite dramatically. We will learn about
Elkies’ technique later in the course when we cover modular polynomials.

9.7 Some historical remarks

As a historical footnote, when Schoof originally developed this algorithm, it was not clear
to him that it had any practical use. This is in part because he (and others) were unduly
pessimistic about its practical efficiency (efficient computer algebra implementations were
not widely available). Even the simple Sage implementation given in the worksheet is
already noticeably faster than baby-steps giant-steps for q ≈ 280 and can readibly handle
computations over fields of cryptographic size (it would likely take about half a day for
q ≈ 2256, but this could be substantially improved with a lower-level implementation).

To better motivate his algorithm, Schoof gave an application that is of purely theoretical
interest: he showed that it could be used to deterministically compute the square root of an
integer x modulo a prime p in time that is polynomial in log p, for a fixed value of x (we will
see exactly how this works when we cover the theory of complex multiplication). Previously,
no deterministic polynomial time algorithm was known for this problem, unless one assumes
the extended Riemann hypothesis. But Schoof’s square-root application is really of no
practical use; there are fast probabilistic algorithms to compute square roots modulo a
prime, and unless the extended Riemann hypothesis is false, there are even deterministic
algorithms that are much faster than Schoof’s approach.

By contrast, in showing how to compute #E(Fq) in polynomial-time, Schoof solved a
practically important problem for which the best previously known algorithms were fully
exponential (including probabilistic approaches), despite the efforts of many working in the
field. While perhaps not fully appreciated at the time, this has to be regarded as a major

5



breakthrough, both from a theoretical and practical perspective. Improved versions of
Schoof’s algorithm (the Schoof-Elkies-Atkin or SEA algorithm) are now the method of choice
for computing #E(Fq) in fields of large characteristic and are widely used. In particular,
the PARI library that is used by Sage for point-counting includes an implementation of the
SEA algorithm.

References

[1] Joachim von zur Gathen and Jurgen¨ Gerhard, Modern Computer Algebra,
second edition, Cambridge University Press, 2003.

[2] Takakazu Satoh, On p-adic point counting algorithms for elliptic curves over
finite fields, ANTS V, LNCS 2369 (2002), 43–66.

[3] René Schoof, Elliptic curves over finite fields and the computation of square
roots mod p. Mathematics of Computation 44 (1985), 483–495.

6



MIT OpenCourseWare
http://ocw.mit.edu

18.783 Elliptic Curves
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Schoof's Algorithm
	Computing the trace of Frobenius modulo a prime bold0mu mumu . 
	The characteristic equation of Frobenius modulo bold0mu mumu 
	Adding endomorphisms in bold0mu mumu End(E[])End(E[])End(E[])End(E[])End(E[])End(E[]).
	Algorithm to compute bold0mu mumu tttttt modulo bold0mu mumu 
	Finding factors of bold0mu mumu hhhhhh
	Some historical remarks



