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A key ingredient to improving the efficiency of elliptic curve primality proving (and
many other algorithms) is the ability to directly construct an elliptic curve E/Fq with a
specified number of rational points, rather than generating curves at random until a suitable
curve is found. To do this we need to develop the theory of complex multiplication.

Recall from Lecture 7 that for any elliptic curve E/k, the multiplication-by-n maps [n]
form a subring of the endomorphism ring End(E). This subring is isomorphic to Z, and it
is notationally convenient to simply identify it with Z.1 Thus the inclusion Z ⊆ End(E)
always holds. For curves with complex multiplication, this inclusion is strict.

Definition 14.1. An elliptic curve E/k has complex multiplication (CM) if End(E) 6= Z.

As we shall see in later lectures, the term arises from the fact that endomorphisms of elliptic
curves over C can be viewed as “multiplication-by-α” maps, for some complex number α.
If End(E) = Z then α is an integer, and in general, α is an algebraic integer.

14.1 Endomorphism rings of elliptic curves

Our first objective is to classify the different endomorphism rings that are possible. We
will consider this problem in its full generality, for an elliptic curve E over a field k of
characteristic p (possibly p = 0). We begin by summarizing some of the basic facts about
End(E) that we will need, several of which we saw previously in Lecture 7.

Lemma 14.2. Z lies in the center of End(E).

¯Proof. (nφ)(P ) = nφ(P ) = φ(nP ) = (φn)(P ) for all n ∈ Z, φ ∈ End(E), and P ∈ E(k).

Lemma 14.3. End(E) has no zero divisors.

Proof. Recall that every nonzero isogeny α has a finite kernel, since | kerα| ≤ degα. If
α, β ∈ End(E) are both nonzero, then both have finite kernels, and therefore αβ has a
finite kernel, since the preimage of kerβ under α must be finite. Therefore αβ 6= 0.

Recall that every nonzero isogeny α : E1 → E2 has a unique dual isogeny α̂ : E2 → E1

for which α̂α = [degα]. The dual of an endomorphism is clearly an endomorphism, and for
every nonzero n ∈ Z we have n̂ = n. We analogously define 0̂ = 0, and note that 0̂0 = deg 0.

ˆThe trace of an endomorphism is defined as trφ = φ + φ, and for all φ ∈ End(E) and all
positive integers n prime to p we have

deg φ ≡ detφn mod n and trφ ≡ trφn mod n,

where φn denotes the restriction of φ to E[n] ' Z/nZ⊕ Z/nZ; see Theorem 7.14.

Lemma 14.4. For all φ, λ ∈ End(E), we have deg(φλ) = deg φ deg λ.

1With this identification in mind, we often write n instead of [n]. Note that nφ = φ+ · · ·+φ is the same
endomorphism as the composition [n] ◦ φ, so there is no risk of confusion.
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Proof. For any φ and λ we may pick an integer n ⊥ p such that n is strictly greater than
both deg(φλ) and deg φ deg λ. We then have

deg(φλ) ≡ det(φnλn) ≡ detφn detλn ≡ deg φ deg λ mod n,

and therefore the nonnegative integers deg(φλ) and deg φ deg λ must be equal.

We now now show that, as an operator on End(E), the dual map is an anti-commutative
linear involution, also called an anti-involution.

Theorem 14.5. Let φ and λ be elements of End(E) and let a and b be integers. The
following properties hold:

ˆ̂
(i) φ = φ, (ii) φλ̂ ˆ ˆ ˆ ˆ= λφ, (iii) aφ̂+ bλ = aφ+ bλ.

ˆProof. Property (i) was proved in Lecture 7 for nonzero isogenies, and note that 0̂ = 0̂ = 0.
Property (ii) is immediate if either endomorphism is zero, and otherwise we have

ˆ ˆ ˆ ˆ(λφ)(φλ) = λ(deg φ)λ = (deg φ)λλ = deg φ deg λ = deg(φλ),

ˆ ˆwhich implies φλ̂ = λφ, by definition. For property (iii) we use Lemma 7.9 to obtain

ˆ ˆ ˆ ˆaφ̂+ bλ = aφ̂+ bλ̂ = φa+ λb = aφ+ bλ,

which completes the proof.

Finally, we recall Theorem 7.13, which states that every endomorphism φ satisfies the
characteristic equation

φ2 − tr(φ)φ+ deg φ = 0. (1)

14.2 The endomorphism algebra of an elliptic curve

The additive group of End(E), like all abelian groups, is a Z-module. Thus we can think
of the ring End(E) as a Z-module with a multiplication operation that is distributive and
commutes with scalar multiplication by elements of Z. We now want to “upgrade” our
Z-module with multiplication to a Q-vector space with multiplication, that is, a Q-algebra,
where the multiplication must be compatible with the vector field operations, but need not
be commutative. To do this we take the tensor product of End(E) with Q.

Definition 14.6. The endomorphism algebra of E is End0(E) = End(E)⊗Z Q.

General tensor product constructions can be rather abstract (see [1, p. 22] for a quick
review of tensor products), but tensoring a Z-module with Q is the simplest possible case;
all we are really doing is extending our ring of scalars Z to the field Q. With this in mind,
we write the tensor φ⊗s as sφ. In general, not every element of a tensor product R ⊗ S is
of the form r⊗s (an elementary tensor), but in the case of End0(E) this is true.

Lemma 14.7. Every element of End0(E) can be written as sφ, with s ∈ Q and φ ∈ End(E).

Proof. It suffices to show that s1φ1 + stφ2 can be written as s3φ3, where s1, s2, s3 ∈ Q and
φ1, φ2, φ3 ∈ End(E). Let s1 = a/b and s2 = c/d with a, b, c, d ∈ Z. Then

a
s1φ1 + s2φ2 =

c
φ1 +
b d

φ2 =
ad

bd
φ2 +

bc

bd
φ2 =

1
adφ

bd

(
1 + bcφ2

)
,

so we may take s3 = 1
bd and φ3 = adφ1 + bcφ2.
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ˆWe now extend the dual map to End0(E) by scalars, defining sφ̂ = sφ for all s ∈ Q.
ˆThis implies that ŝ = s for all s ∈ Q (take φ = 1), thus α̂ = α holds for all α ∈ End0(E).

ˆWe also have α̂β = βα̂ for all α, β ∈ End0(E), since this holds for elements of End(E)
and scalars commute. The fact that the dual map is Z-linear on End(E) implies that it is
Q-linear on End0(E). Thus all three properties of Theorem 14.5 hold for the dual map on
End0, and it is an anti-involution, also known as the Rosati involution.

The Rosati involution allows us to extend the notions of degree and trace on End(E) to
a norm N and a trace T defined on all of End0(E).

Definition 14.8. Let α ∈ End0(E). The (reduced) norm of α is Nα = αα̂ and the trace
of α is Tα = α+ α̂.

With these definitions the characteristic equation (1) also holds in End0(E), since for
any α ∈ End0(E) we have

α2 − T (α)α+Nα = α2 − (α+ α̂)α+ αα̂

= α2 − α2 − α̂α+ αα̂

= 0.

Here we have used the fact that α commutes with its dual α̂ (this is true in End(E), and
scalars commute with every element of End0(E)).

We now show that both Nα and Tα lie in Q, and derive some other useful properties
of the norm and the trace.

Lemma 14.9. For all α ∈ End0(E) we have Nα ∈ Q 0, with Nα = 0 if and only if α = 0.≥

Proof. Write α = cφ, with c ∈ Q and φ ∈ End(E). Then Nα = αα̂ = c2 deg φ ≥ 0. If either
c or φ is zero then α = 0 and Nα = 0, and otherwise Nα > 0.

Corollary 14.10. Every nonzero α ∈ End0(E) has a multiplicative inverse α−1.

Proof. Let β = α̂/Nα. Then αβ = αα̂/Nα = Nα/Nα = 1 (and we similarly have βα =
(α̂/Nα)α = α̂α/Nα = αα̂/Nα = Nα/Nα = 1), so β = α−1.

The corollary implies that End0(E) is a division ring (also known as a skew field). Thus
End0(E) is a field if and only if it is commutative. As we saw in Problem Set 4, End(E),
and therefore End0(E), need not be commutative, so End0(E) is not necessarily a field.

Lemma 14.11. Let α, β ∈ End0(E) and c, d ∈ Q. The following hold:

(i) Tα = 1 +Nα−N(1− α) ∈ Q;

(ii) T (cα+ dβ) = cTα+ dTβ;

(iii) If Tα = 0 then α2 = −Nα ∈ Q≤0.

Proof. For (i) we have 1 + αα̂ − (1 − α)(1 − α̂) = α + α̂ = Tα, which must lie in Q since
Nα and N(1− α) lie in Q. For (ii) we note that the trace map on End(E) is Z-linear and
the Rosati involution fixes Q. For (iii) we apply α2 − (Tα)α+Nα = 0.

We are now ready to prove our main result, which classifies the possible endomorphism
algebras of an elliptic curve.
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Theorem 14.12. End0(E) is isomorphic to one of the following:

(i) The field of rational numbers Q;

(ii) An imaginary quadratic number field Q(α), with α2 < 0;

(iii) A quaterion algebra of the form2

Q + αQ + βQ + αβQ,

where α2 < 0, β2 < 0, and αβ = −βα.

Note that End0(E) is commutative if and only if we are in one of the first two cases.

Proof. The Q-algebra End0(E) obviously contains Q. If it equals Q, then we are in case (i).
Otherwise, choose α ∈ End0(E)\Q. By replacing α with α− 1Tα, we may assume without2
loss of generality that Tα = 0. Then, by Lemma 14.11, α2 < 0, so Q(α) is an imaginary
quadratic number field. If End0(E) = Q(α), then we are in case (ii).

Otherwise, choose β ∈ End0(E)\Q(α). As above, we assume without loss of generaility
that Tβ = 0 (so β2 < 0). Furthermore, by replacing β with

T (αβ)
β − α (2)

2α2

we can assume that T (αβ) = 0 (one can check this by multiplying (2) by α and taking
ˆthe trace). Thus Tα = Tβ = T (αβ) = 0. This means that α = −α̂, β = −β, and

αβ = −α̂β = −β̂α̂. Substituting the first two equalities into the third, αβ = −βα.
To prove that Q(α, β) is a quaternion algebra, it only remains to show that 1, α, β, and

αβ are linearly independent over Q. By construction, 1, α, and β are linearly independent.
Now suppose for the sake of contradiction that

αβ = a+ bα+ cβ,

for some a, b, c ∈ Q. We then have

(αβ)2 = (a2 + b2α2 + c2β2) + 2a(bα+ cβ).

The LHS lies in Q, since T (αβ) = 0, as does the first term on the RHS, since Tα = Tβ = 0.
Thus bα+cβ must lie in Q, and it follows that both b and c are nonzero, since α, β 6∈ Q. But
if we let d = bα+ cβ, then β = (d− bα)/c lies ∈ Q(α), which is our desired contradiction.

We now claim that End0(E) = Q(α, β). Suppose not. Let γ ∈ End0(E) \ Q(α, β). As
with β, we may assume without loss of generality that Tγ = 0 and T (αγ) = 0, which
implies αγ = −γα, as above. Then αβγ = −βαγ = βγα, so α commutes with βγ. By
Lemma 14.13 below, βγ ∈ Q(α). But then γ ∈ Q(α, β), which is a contradiction.

Lemma 14.13. Suppose that α, β ∈ End0(E) commute and that α 6∈ Q. Then β ∈ Q(α).

Proof. As in the proof of the Theorem 14.12, we can linearly transform α and β to some
α′ = α + a and β′ = β + bα + c, where a, b, c ∈ Q, so that Tα′ = Tβ′ = T (α′β′) = 0,
and therefore α′β′ = −β′α′ (set a = 1Tα and use (2) to determine b and c). We also have2
α′β′ = β′α′, since if α and β commute then so do α′ and β′, since they are polynomials in
α and β. But then 2α′β′ = 0, which means α′ = 0 or β′ = 0, since End0(E) has no zero
divisors. We cannot have α′ = 0, since α 6∈ Q, so β′ = 0, which implies β ∈ Q(α).

2A general quaternion algebra over Q has α2, β2 ∈ Q and αβ = −βα. The constraint α2, β2 < 0 make
this a definite quaternion algebra, which is the only kind of quaternion algebra we shall consider.
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14.3 Orders

Having classified the possible endomorphism algebras End0(E), our next task is to clas-
sify the possible endomorphism rings End(E). We begin with the following corollary to
Theorem 14.12.

Corollary 14.14. The additive group of End(E) is isomorphic to Zr, where r is 1, 2, or 4,
depending on whether End0(E) is isomorphic to Q, and imaginary quadratic field, or a
definite quaternion algebra, respectively.

Proof. It follows from Lemma 14.3 that the additive group of End(E) is torsion-free. The
fact that every element of End(E) satisfies a monic quadratic equation with integer coef-
ficients implies that End(E) is finitely generated (the proof is essentially the same as the
proof that the ring of integers of a number field is finitely generated, see either [1, Ch. 2] or
[3, Ch. 2]). Thus the additive group of End(E) is isomorphic to Zr for some r, and r must
equal to the dimension of End0(E) as a Q-vector space, since End0(E) = End(E)⊗Q. The
corollary follows.

Definition 14.15. Let K be a Q-algebra of finite dimension r as a vector space over Q.
An order O in K is a subring whose additive group is isomorphic to Zr. Equivalently, O is
a subring that is finitely generated as a Z-module and for which K = O ⊗Q.

It follows from Corollary 14.14 that the endomorphism ring End(E) is an order in
the Q-algebra End0(E) = End(E) ⊗ Q. Note that if End0(E) = Q, then we must have
End(E) = Z, since Z is the only order in Q.

Corollary 14.16. If E is an elliptic curve with complex multiplication then End(E) is
either an order in an imaginary quadratic field, or an order in a quaternion algebra.

Every order lies in some maximal order (an order that is not contained in any other);
this follows from Zorn’s lemma. In general, maximal orders need not be unique, but when
the Q-algebra K is a number field3 (a finite extension of Q), this is the case. In view of
Corollary 14.16, we are primarily interested in the case where K is an imaginary quadratic
field, but it is just as easy to prove this for all number fields. We first need to recall a few
standard results from algebraic number theory.4

Definition 14.17. An algebraic number α is a complex number that is the root of a
polynomial with coefficients in Q. An algebraic integer is a complex number that is the
root of a monic polynomial with coefficients in Z.

Two fundamental results of algebraic number theory are (1) the set of algebraic integers
in a number field form a ring, and (2) every number field has an integral basis (a basis whose
elements are algebraic integers). The following theorem gives a more precise statement.

Theorem 14.18. The set of algebraic integers OK in a number field K forms a finitely
generated ring whose additive group is isomorphic to Zr, where r = [K : Q] is the dimension
of K as a Q-vector space.

3Some authors define a number field as any subfield of C, distinguishing finite extensions of Q as algebraic
number fields. We adopt the more common convention that all number fields are algebraic number fields.

4Algebraic number theory is not a prerequisite for this course. We do presume some familiarity with
imaginary quadratic fields; these are covered in most algebra courses.
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Proof. See Theorems 2.9 and 2.16 in [3] (or see Theorem 2.1 and Corollary 2.30 in [1]), and
then apply the definition of an order.

Theorem 14.19. The ring of integers OK of a number field K is its unique maximal order.

Proof. The previous theorem implies that OK is an order. To show that it is the unique
maximal order, we need to show that every order O in K is contained in OK . It suffices to
show that every α ∈ O is an algebraic integer. Viewing O as a lattice of rank r = [K : Q],
consider the sublattice generated by all powers of α. Let [β1, . . . , βr] be a basis for this
sublattice, where each βi is a Z-linear combination of powers of α. Let n be an integer
larger than any of the exponents in any of the powers of α that appear in any βi. Then
αn = c1β1 + · · ·+ crβr, for some c1, . . . , cn ∈ Z, and this determines a monic polynomial of
degree n with α as a root. Therefore α is an algebraic integer.

Finally, we characterize the orders in imaginary quadratic fields, which are the number
fields we are most interested in.

Theorem 14.20. Let K be an imaginary quadratic field with ring of integers OK . The
orders in K are precisely the lattices Z + fOK , where f is any positive integer.

Proof. We first show that O = Z+fOK is a ring. The lattice O is contained in the ring OK

and contains 1. It suffices to show that O is closed under multiplication. So let a+ fα and
b+ fβ be arbitrary elements of O, with a, b ∈ Z and α, β ∈ OK . Then

(a+ fα)(b+ fβ) = ab+ afβ + bfα+ abf2αβ = ab+ f(aβ + bα+ abfαβ) ∈ O,

since ab ∈ Z and (aβ + bα + abfαβ) ∈ OK . So O is a subring of K. To see that O is an
order, note that O ⊗Q = OK ⊗Q = K.

Now let O be any order in K. The maximal order OK is a rank 2 lattice containing 1,
so we may write OK as [1, τ ] for some τ 6∈ Z for which OK = Z[τ ]. Let f be the least
positive integer for which fτ ∈ O. The lattice [1, fτ ] lies in O, and we claim that in fact
O = [1, fτ ]. Any element α of O must lie in OK and is therefore of the form α = a + bτ
for some a, b ∈ Z. The element bτ = α− a than lies in O, and the minimality of f implies
that f divides b. Thus O = [1, fτ ] = Z + fOK .

The integer f in Theorem 14.20 is called the conductor of the order O = Z + fOK .5 It
is equal to the index of O in OK .
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