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Mena , a quantitative method of metastasis
assessment, as a prognostic marker for axillary
node-negative breast cancer
Catherine L. Forse1, Seema Agarwal2,3, Dushanthi Pinnaduwage4, Frank Gertler5, John S. Condeelis6*, Juan Lin7,
Xiaonan Xue7, Kimberly Johung8, Anna Marie Mulligan1,9, Thomas E. Rohan7, Shelley B. Bull4,10

and Irene L. Andrulis1,4,11,12*
Abstract

Background: Menacalc is an immunofluorescence-based, quantitative method in which expression of the non-
invasive Mena protein isoform (Mena11a) is subtracted from total Mena protein expression. Previous work has found
a significant positive association between Menacalc and risk of death from breast cancer. Our goal was to determine
if Menacalc could be used as an independent prognostic marker for axillary node-negative (ANN) breast cancer.

Methods: Analysis of the association of Menacalc with overall survival (death from any cause) was performed for
403 ANN tumors using Kaplan Meier survival curves and the univariate Cox proportional hazards (PH) model with
the log-rank or the likelihood ratio test. Cox PH models were used to estimate hazard ratios (HRs) for the association
of Menacalc with risk of death after adjustment for HER2 status and clinicopathological tumor features.

Results: High Menacalc was associated with increased risk of death from any cause (P = 0.0199, HR (CI) = 2.18
(1.19, 4.00)). A similarly elevated risk of death was found in the subset of the Menacalc cohort which did not receive
hormone or chemotherapy (n = 142) (P = 0.0052, HR (CI) = 3.80 (1.58, 9.97)). There was a trend toward increased risk
of death with relatively high Menacalc in the HER2, basal and luminal molecular subtypes.

Conclusions: Menacalc may serve as an independent prognostic biomarker for the ANN breast cancer patient
population.

Keywords: Mena, Metastasis, Breast cancer, Axillary node negative, Prognostic marker
Background
The majority of women diagnosed with axillary node-
negative (ANN) breast cancer have a good prognosis;
however, approximately 20 % of patients will experience
a recurrence and die from systemic disease. Studies sug-
gest that the risk of recurrence may depend on biologic
subtype [1–3]. Gene expression and immunohistochemi-
cal marker profiling have been used to divide breast can-
cers into subtypes (i.e., luminal, basal-like, human
epidermal growth factor 2 (HER-2) positive) which differ
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in terms of prevalence, recurrence risk, and sensitivity to
chemotherapy [4–6]. The identification of prognostic
markers for ANN breast cancer in order to detect pa-
tients who would receive the most benefit from adju-
vant systemic therapy would improve survival and
decrease the number of patients exposed to unneces-
sary treatment.
Mena is a pro-motility protein that is a member of the

Enabled (Ena)/vasodilator-stimulated phosphoprotein
(VASP) family of actin polymerization regulators [7]. It
controls the geometry of assembling F-actin networks by
antagonizing the activity of capping proteins at elongat-
ing actin filaments [8]. The protein is overexpressed in
primary and metastatic breast cancers [9, 10], is particu-
larly over-expressed in migratory and disseminating sub-
populations of tumor cells in vivo [11], and has been
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shown to have an important role in breast cancer metas-
tasis in both in vitro and in vivo experimental models
[12]. It is an essential member of the Invasion Signature,
a collection of transiently expressed proteins that control
chemotactic and migratory behavior in primary rat,
mouse and human mammary tumors [13–16]. In mouse
models of breast cancer, forced overexpression of Mena
increased lung metastases [17–20], while Mena defi-
ciency decreased tumor burden by delaying tumor inva-
sion, intravasation and dissemination to the lungs [20].
Studies of breast cancer cell migration and dissemin-

ation during metastasis at single cell resolution using mul-
tiphoton imaging in both mouse and human mammary
tumors have led to the identification of microanatomic sites
called Tumor MicroEnvironment of Metastasis (TMEM)
[18, 19, 21, 22]. TMEM are sites of localized vascular perme-
ability induced by macrophage vascular endothelial growth
factor (VEGF) release where tumor cells intravasate [22].
Tumor cell migration toward TMEM in vivo occurs in

association with macrophages and involves epidermal
growth factor (EGF)/colony stimulating factor 1 (CSF-1)
paracrine signaling [18, 23]. Studies of these migratory
tumor cells led to the identification of the Invasion Sig-
nature which contains pathways up-regulated in gene
expression and/or protein activity in tumor cells, with
migration and TMEM assembly activity leading to trans-
endothelial migration at TMEM and dissemination to
distant sites [13, 16, 19, 24]. These pathways involve
epithelial-to-mesenchymal transition-associated differen-
tial expression of Mena isoforms [18, 19].
Mena is alternatively spliced into multiple isoforms with

MenaINV and Mena11a being the best characterized in
breast cancer [11, 17–19]. MenaINV, an invasive isoform, is
spontaneously over-expressed in the migratory and dis-
seminating subpopulation of tumor cells in primary mam-
mary tumors of rat, mouse and humans [11, 16]. It
confers a potent pro-invasion, pro-metastatic phenotype
when expressed in breast cancer cells by potentiating
their chemotactic invasion/migration response to EGF
and by promoting discohesive cell motility [11, 17–19].
Mena11a, which contains a 21 amino acid exon insertion,
is down-regulated in invasive breast tumor cells [11] and
is down-regulated when human mammary epithelial
cells undergo epithelial-to-mesenchymal transition [25].
Mena11a expression in breast cancer cells causes forma-
tion of a poorly metastatic tumor which does not re-
spond to EGF signaling in vivo [18]. Furthermore,
tumor cells with elevated transendothelial migration
activity, isolated from breast cancer patients by fine
needle aspiration, have spontaneously elevated
MenaINV and suppressed Mena 11a expression [26]. In
addition, patients with elevated MenaINV and decreased
Mena 11a expression have greatly elevated TMEM
counts [26].
Mena has shown promise as a prognostic marker for
breast cancer. Its expression as a component of TMEM
is associated with an increased risk of distant metastases
in breast cancer patients [27, 28].
Mena expression in Menacalc, a multiplexed quantitative

immunofluorescence-based method which takes into con-
sideration the differential expression of Mena protein iso-
forms, is also associated with poor outcome [29]. Menacalc

involves subtracting the protein expression of the non-
metastatic Mena11a isoform from total Mena expression
in tumors to give an estimate of the invasive Mena iso-
forms. In two tumor cohorts unselected for nodal status,
Menacalc was associated with decreased disease-specific
survival independent of patient age, receptor status and
tumor size [29]. While Menacalc was prognostic for poor
outcome in node-positive patients, its role as a prognostic
marker for ANN patients was unclear.
In this report, we evaluate the prognostic value of

Menacalc in a cohort of ANN patients. Our primary ob-
jective was to determine if there was an association be-
tween Menacalc and overall patient mortality. A secondary
objective was to determine if there was an association be-
tween Menacalc and mortality within subgroups defined by
(1) adjuvant treatment received, and (2) breast cancer mo-
lecular subtypes. These associations could help to identify
patient populations more likely to benefit from Menacalc

testing.

Methods
Patient cohort and clinical follow-up
The characteristics of a prospectively ascertained con-
secutive series of 1561 ANN cases enrolled from eight
Toronto hospitals between September 1987 and March
1993 and clinically followed for recurrence and death
have been described previously [30, 31]. In brief, all
women who had ANN invasive breast cancer pathologic-
ally confirmed at the participating centers were potentially
eligible. The pathology report was used to determine the
initial eligibility (which required clear resection margins
and at least four lymph nodes sampled), pathologic size of
the invasive component (centrally reviewed at Mount
Sinai Hospital, Toronto, ON, Canada), presence of vascu-
lar or lymphatic invasion by tumor cells, estrogen receptor
(ER) status, progesterone receptor (PgR) status, nuclear
grading, histologic grading, and histologic subtype of the
invasive and intraductal components (if present). Imaging
(bone scan and abdominal ultrasound or abdominal com-
puted tomography scan) and chest x-ray were required for
patients with T2 tumors. If the patient was eligible on the
basis of pathology, staging and age (between 18 and
75 years inclusive), the surgeon invited the patient to par-
ticipate and provided a signed consent form. Patients were
excluded from recruitment into this ANN cohort if (1) No
tumor specimen was provided for analysis, (2) no axillary
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dissection was performed as part of surgical management,
(3) less than four lymph nodes were biopsied and ana-
lyzed, (4) pathology revealed that the patient was diag-
nosed with carcinoma-in-situ disease (i.e., no invasive
component), (5) the patient had distant metastases at the
time of diagnosis, (6) the patient had synchronous primary
breast tumors, (7) the patient had a previous breast malig-
nancy, and (8) the patient had a secondary malignancy
other than non-melanoma of the skin and carcinoma-in-
situ of the cervix. Charts were reviewed every 3 months in
the first 2 years after diagnosis, every 6 months until
5 years after diagnosis, and annually thereafter. Patient
status on July 10, 2002 was used to determine survival
times and censoring status using clinical follow-up data.
Approval of the study protocol was obtained from the

research ethics boards of Mount Sinai Hospital (#01-
0313-U) and the University Health Network (#02-0881-
C), Toronto. Written-informed consent was received from
all study participants. In the preparation of this paper, we
used the reporting recommendations for tumor marker
prognostic studies (REMARK) to present our results [32].

TMA construction and IHC staining
Tissue microarrays (TMAs) were constructed from tu-
mors of 888 women and biomarker status was determined
as described below. Areas of invasive carcinoma were se-
lected from a hematoxylin and eosin-stained section of
each tumor and two 0.6-mm cores of tissue were taken
from the corresponding areas of the paraffin block. The
selected donor cores were embedded in a paraffin block
and 4-μm sections were cut from this recipient block and
used in series for immunohistochemical (IHC) staining.
Microwave antigen retrieval was carried out in a Micro-
med T/T Mega Microwave Processing Lab Station (ESBE
Scientific). Slides were pretreated at 115 °C for 12 minutes
in TTMega Tris (pH 9.0) and incubated with antibodies to
ER (clone 6 F11, 1:75 dilution, Vector, Burlington, ON,
Canada), PgR (clone PgR1294, 1:1000 dilution, DAKO,
Glostrup, Denmark), p53 (clone D.07, 1:400 dilution, ID
Lab), or CK5 (clone XM26, 1:400 dilution, Vector,
Burlington, ON, Canada). Alternatively, slides were pre-
treated with pepsin at 37 °C for 10 minutes and then
incubated with antibodies to EGFR (clone 31G7, 1:25
dilution, Zymed, South San Francisco, CA, U.S.A.) or
HER-2 (clone CB11/TAB250 (cocktail), 1:300 dilution,
Novocastra, Newcastle upon Tyne, U.K. and Zymed,
South San Francisco, CA, U.S.A.). Sections were devel-
oped with diaminobenzidine tetrahydrochloride and
counterstained in Mayer’s hematoxylin.

Antibodies and multiplexed immunofluorescence staining
for Mena
The TMAs were deparaffinized by melting at 60 °C in an
oven equipped with a fan for 20 minutes followed by 2x
xylene treatment for 20 minutes. Slides were then rehy-
drated and antigen retrieval was done in citrate buffer
(pH 6.0) at 97 °C for 20 minutes in a PT module
(Labvision, Kalamazoo, MI, U.S.A.). Endogenous perox-
idase was blocked by using 0.3 % hydrogen peroxide in
methanol followed by incubation of slides in a blocking
buffer (0.3 % bovine serum albumin in TBST (0.1 mol/
L of TRIS-buffered saline (pH 7.0) containing 0.05 %
Tween-20)) for 30 minutes at room temperature. Slides
were incubated with a cocktail of mouse anti-pan-Mena
(1:1000 dilution, BD Biosciences, San Jose, CA, U.S.A.,
catalog number 610693) mixed with rabbit anti-
Mena11a (1:500 dilution of 1 mg/ml stock, generated in
the lab of FG) in the blocking buffer overnight at 4 °C.
After washing away the primary antibodies, slides were
incubated with secondary antibody (goat anti-rabbit
conjugated to horseradish peroxidase, Jackson ImmunoR-
esearch Laboratories Inc., West Grove, PA, U.S.A.) to tar-
get Mena11a for one hour. After washing, slides were
incubated with biotinylated tyramide (Perkin Elmer,
Waltham, MA, U.S.A.) diluted at 1:50 in amplification
buffer for 10 minutes. After washing, peroxidase activity
was quenched by 2x treatment with benzoic hydrazide
(100 mM in PBS) with 50 mM hydrogen peroxide for
seven minutes each. After washing, slides were incubated
for an hour with goat anti-mouse envision (DAKO,
Carpinteria, CA, U.S.A.) followed by treatment with a
chicken anti-Pan cytokeratin (1:100 dilution, generated in
house) for 2 hours at room temperature. Slides were
washed and then incubated with goat anti-chicken conju-
gated to Alexa546 (Invitrogen, Grand Island, NY, U.S.A.) to
visualize cytokeratin and streptavidin conjugated to CY7
(750 nm, Invitrogen, Grand Island, NY, U.S.A.) to visualize
Mena11a for an hour. After washing, slides were treated
with CY5 conjugated tyramide (1:50 dilution; Perkin Elmer,
Waltham, MA, U.S.A.) in amplification buffer for 10 mi-
nutes to visualize pan-Mena. Slides were mounted with
ProLong gold mixed with DAPI (Molecular Probes, Grand
Island, NY, U.S.A.). Serial sections of the index array used
for assay standardization [33] were stained alongside each
cohort to assess the assay reproducibility. An additional ser-
ial section of the index array was stained with each experi-
ment with no primary antibodies as a negative control.
Of the 888 tumors submitted for Mena multiplex im-

munofluorescence staining, 403 had sufficient tumor
material to permit reliable interpretation of pan-Mena
and Mena11a.

Automated quantitative analysis (AQUA) and calculation
of Menacalc

The automated quantitative analysis (AQUA) technology
(HistoRx, Branford, CT, U.S.A.) allows quantitative
measurement of biomolecules in subcellular compart-
ments as described previously [34, 35]. Briefly, a series
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of monochromatic images for each histospot was cap-
tured using a PM-2000 microscope (HistoRx, Branford,
CT, U.S.A.) equipped with an automated stage. A binary
‘tumor mask’ was created using cytokeratin staining of
the histospot representing only epithelial cells and ex-
cluding stromal features. AQUA scores for both pan-
Mena and Mena11a were calculated by dividing the sig-
nal intensity by the area of the specific compartment (in
this case within the tumor mask area). Normalized
AQUA scores for both targets (pan-Mena and Mena11a)
were used to calculate the Menacalc fraction for each his-
tospot by subtracting the z score of Mena11a from the z
score of pan-Mena as described previously [29]. At the
end of this procedure, Menacalc was obtained for 403 tu-
mors from the ANN cohort.

Subgroup definitions
Treatment subgroups
The study group (n = 403) was divided into 2 groups
based on adjuvant treatment: those who received no sys-
temic adjuvant treatment and those who received any
systemic adjuvant treatment (hormonal and/or chemo-
therapy). The two groups were called untreated (n = 142)
and treated (n = 261) respectively.

Molecular subtypes
The tumors were divided into molecular subtypes using
IHC-TMA markers described in previous publications
[36–38]. Tumors positive for HER2 protein overexpres-
sion, regardless of ER status, were assigned to the HER2
subtype. Tumors negative for HER2 and ER and positive
for one or both of CK5 and EGFR were assigned to the
basal subtype. Tumors negative for HER2 but positive
for ER were assigned to the luminal subtype, regardless
of CK5 status.

Statistical analysis
Pearson’s correlation coefficient (R) was used to assess the
reproducibility of the multiplexed assay between near-
serial sections of the index assay as described previously
[29]. Pan-Mena and Mena11a AQUA scores, and Menacalc

values from two independent cores for each histospot
were averaged and the averages were used for final ana-
lysis. Menacalc scores were categorized as scores that were
at or above the median (Menacalc high) or below the me-
dian (Menacalc low). This median cutoff was selected be-
cause of the division noted in the Kaplan Meier (K-M)
survival curves generated from quartile groups. The chi-
square test or Fisher’s exact test was used to analyze the
Menacalc marker associations with clinical-pathological
tumor variables. Analysis of the association of overall sur-
vival (OS) with marker status was performed using K-M
survival curves and the univariate Cox proportional haz-
ards (PH) model with the log-rank or the likelihood
ratio test. Multivariate analyses by the Cox PH model
were conducted to assess the contribution of Menacalc,
in addition to HER2 status (using IHC data), hormone
receptors (using IHC data) and other clinical-
pathological tumor variables. Hazard ratios (HRs) and
95 % confidence intervals (CI) were also estimated, with
Firth’s bias corrected penalized Cox regression method
[39] applied for subgroup analyses with a small number
of events. A test with a P-value < 0.05 was considered
statistically significant. All tests were two-sided. P-
values were not adjusted for multiple testing. All statis-
tical analyses were performed using SAS 9.1 software
(SAS Institute, Inc.). Survival curves were plotted using
R statistical software, version 2.15.0 (http://www.r-
project.org/).

Results and discussion
Clinicopathological characteristics
The patient and tumor characteristics of the subgroup of
403 patients for which Menacalc was obtained and the
remaining subset of the TMA cohort (n = 888) are sum-
marized in Table 1. Compared to the remaining cohort
(n = 483), patients included in the Menacalc analysis were
of younger age, more likely to be pre-menopausal and
more likely to have larger tumors.
The patient and tumor characteristics of the Menacalc

high (at or above the median) and low (below the median)
groups are summarized in Table 2. Tumors with high
Menacalc values were more likely to be higher grade and
to have lymphatic invasion. These patients were also more
likely to have received hormonal therapy and/or chemo-
therapy. 58 deaths were observed during follow-up. Ex-
cluding deaths and a small number of drop-outs,
minimum and median follow-up times were 56.1 and
96.5 months respectively. Of the 54 recurrences observed,
15 patients presented with bone metastases alone, 14 pa-
tients presented with chest wall or regional lymph node
involvement (either axillary or supraclavicular), 8 patients
presented with lung metastases alone, 2 patients presented
with liver metastases alone, 1 patient presented with skin
metastases alone and 1 patient presented with a solitary
neck muscle deposit. 8 patients presented with bone and
liver metastases and 3 patients presented with bone and
lung metastases. 2 patients presented with widespread
multi-organ involvement (bone, liver and lung). The aver-
age time to recurrence was 41.8 months (s.d. = 23 months).
A table outlining the average time and range of time to re-
currence for each metastases subgroup is included as
Additional file 1: Table S1.

Association of Menacalc with patient survival
Full group (n = 403)
Women in the Menacalc low group had significantly bet-
ter overall survival compared to women in the Menacalc

http://www.r-project.org/
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Table 1 Association between clinical markers and Menacalc expression availability in the TMA cohort (n = 888)

Characteristic Menacalc score available Menacalc score unavailable P-valued

(n = 403a) (n = 483)

Number % Number %

Menopausal status

pre 151 37.5 141 29.2 0.0330

peri 19 4.7 25 5.2

post 233 57.8 317 65.6

Tumor Size

<0.5 cm 5 1.2 11 2.3 0.0198

0.5 to < 1.0 cm 41 10.2 81 16.8

1.0 to < 2.0 cm 174 43.2 199 41.2

2 to 5 cm 164 40.7 179 37.0

>5 cm 19 4.7 13 2.7

Estrogen receptor

Positive 239 59.3 307 63.6 0.2806

Negative/Equivocal 104 25.8 103 21.3

NDb 60 14.9 73 15.1

Progesterone receptor

Positive 215 53.3 280 58.0 0.2699

Negative/Equivocal 128 31.8 130 26.9

NDb 60 14.9 73 15.1

Histological grade

1c 99 24.6 174 36.0 <0.0001

2 147 36.4 152 31.5

3 132 32.8 100 20.7

NDb 25 6.2 57 11.8

Adjuvant treatment

Hormonal 169 41.9 205 42.4 0.0571

Chemotherapy 78 19.4 64 13.3

Both 14 3.5 14 2.9

None 142 35.2 200 41.4

Lymphatic Invasion

Yes 70 17.4 47 9.7 0.0008

No 332 82.6 436 90.3

Missing 1e 0

Age group

<50 yrs 157 39.0 149 30.9 0.0115

≥50 yrs 246 61.0 334 69.1
awithout patients with most baseline unavailable data
bUnknown, not done or missing
cIncludes mucinous, lobular and tubular subtypes
dChi-square test
(ewithout missing category)
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high group (Fig. 1: K-M survival curves; Log-Rank P =
0.0227). In univariate Cox regression analysis, when
Menacalc status was considered alone, there was a 1.84-
fold (CI = (1.08, 3.14), P = 0.0248) higher risk of death in
the Menacalc high group (Table 3). The magnitude and
significance of the Menacalc high association with death



Table 2 Association between clinical markers and Menacalc

expression (n = 403)

Characteristic Menacalc low Menacalc high P-
valuec(n = 202) (n = 201)

Number % Number %

Death

Yes 22 10.9 36 17.9 0.0447

No 180 89.1 165 82.1

Menopausal status

pre 72 35.6 79 39.3 0.6969

peri 9 4.5 10 5.0

post 121 59.9 112 55.7

Tumor Size

<0.5 cm 2 1.0 3 1.5 0.8845

0.5 to < 1.0 cm 21 10.4 20 10.0

1.0 to < 2.0 cm 91 45.0 83 41.2

2 to 5 cm 80 39.6 84 41.8

>5 cm 8 4.0 11 5.5

Estrogen receptor

Positive 124 61.4 115 57.2 0.3701

Negative/Equivocal 46 22.8 58 28.9 0.1926d

NDa 32 15.8 28 13.9

Progesterone receptor

Positive 112 55.5 103 51.3 0.4136

Negative/Equivocal 58 28.7 70 34.8 0.2245d

NDa 32 15.8 28 13.9

Histological grade

1b 58 28.7 41 20.4 0.2389

2 71 35.2 76 37.8

3 60 29.7 72 35.8

NDa 13 6.4 12 6.0

Adjuvant treatment

Hormonal 76 37.6 93 46.3 0.0985

Chemotherapy 37 18.3 41 20.4

Both 10 5.0 4 2.0

None 79 39.1 63 31.3

Lymphatic Invasion

Yes 27 13.4 43 21.5 0.0315

No 175 86.6 157 78.5

Missing 0 1

Age group

<50 yrs 73 36.1 84 41.8 0.2447

≥50 yrs 129 63.9 117 58.2
aUnknown, not done or missing
bIncludes mucinous, lobular and tubular subtypes
cBy Chi-square test (without Missing category)
dWithout ND group

Forse et al. BMC Cancer  (2015) 15:483 Page 6 of 10
persisted with adjustment for HER2 status, hormone re-
ceptor status and other clinicopathological tumor vari-
ables (HR = 2.18, CI = (1.19, 4.00), P = 0.0199) (Table 3).
A similar association to the full group findings was ob-

served when the analysis was restricted to patients who
had received no systemic adjuvant treatment (Log-Rank
P = 0.0353, Fig. 1). When Menacalc status was considered
alone, there was a 2.14-fold (CI = (1.05, 4.58), P =
0.0445) higher risk of death in the Menacalc high group
(Table 4). The magnitude and the significance of the as-
sociation of high Menacalc with death persisted with ad-
justment for the same variables as for the full group
(HR = 3.80, CI = (1.58, 9.97), P = 0.0052) (Table 4). An
association was not detected in the treated group
(Fig. 1), but a test comparing the Menacalc association
in the treated versus the untreated group (MV HR =
1.38 versus HR = 3.37) was equivocal due to low power
to detect interaction (ratio of treated versus untreated
MV HRs = 0.41, CI = (0.12, 1.32), P = 0.1500) (data not
shown).

Molecular subtypes (n = 233)
When the tumors were subdivided into immunohisto-
chemical subtypes, 8.5 % were classified as HER2, 20.5 %
were classified as basal, and 70.5 % were classified as lu-
minal. Fig. 2 shows K-M survival curves for the associ-
ation between the Menacalc status (high vs. low) and
survival in the three main subtype groups: HER2 (n =
20), basal (n = 48) and luminal (n = 165). Although the
subtype tests of association did not attain nominal 5 %
significance, the plots show the same trend of high
Menacalc association with worse survival.

Conclusions
The findings of this study suggest that Menacalc is prog-
nostic for ANN breast cancer. While high Menacalc

values were correlated with poor prognostic features
(i.e., high tumor grade, lymphatic invasion), they were
also associated with decreased overall survival in our co-
hort of 403 ANN breast cancer patients, independent of
standard prognostic variables. These results complement
our previous findings in two independent cohorts of
breast cancer patients which indicated that relatively
high Menacalc values were associated with increased risk
of death from breast cancer [29]. However, in the previ-
ous study, where the number of ANN patients was con-
siderably less than in the present study, Menacalc was
not associated with risk of death from breast cancer in
the ANN subgroup.
While Menacalc may have clinical utility, there were two

main limitations which may impact interpretation of our
results. First of all, due to limited tumor material, the co-
hort was skewed to consist primarily of young women
with larger tumors and a luminal immunohistochemical



Fig. 1 Kaplan-Meier analysis of Menacalc in the ANN patient cohort (n = 403, top left), in a subset of patients who received chemotherapy and/or
hormone therapy (n = 261, top right) and in a subset of the patient population that did not receive chemotherapy or hormone therapy (n = 142,
bottom left). Menacalc scores were categorized as Menacalc high if they were at or above the median and Menacalc low if they were below the
median. In brackets is the total number of patients followed by the number of patient deaths for each group

Table 3 Results of Overall Survival Analysis by Cox Proportional Hazards Model for the full dataset

Prognostic Factor Univariate (n = 403) Multivariate (n = 360c)

HR (95 % CI) P-value HR (95 % CI) P-value

Menacalc

High vs. Low 1.84 (1.08, 3.14) 0.0248 2.18 (1.19, 4.00) 0.0199

Her2a

Positive vs. Negative 1.71 (0.77, 3.79) 0.1855 1.43 (0.58, 3.53) 0.4341

Tumor Size

≥2 cm vs. <2 cm 1.40 (0.83, 2.35) 0.2024 1.45 (0.80, 2.66) 0.2234

ERa

Negative vs. Positive 1.18 (0.65, 2.13) 0.5858 1.09 (0.57, 2.08) 0.7952

PRa

Positive vs. Negative 2.36 (1.32, 4.25) 0.0040 NAb NAb

Histological grade

Grade 2-3 vs. Grade 1 1.62 (0.82, 3.22) 0.1682 1.27 (0.59, 2.72) 0.5450

ND vs. Grade 1 1.06 (0.33, 3.42) 0.9264 0.75 (0.22, 2.49) 0.6354

Lymphatic invasion

Present vs. Absent 1.78 (0.97, 3.26) 0.0614 1.67 (0.85, 3.30) 0.1359

Treatment

Yes vs. No 0.60 (0.35, 1.00) 0.0514 0.54 (0.29, 0.99) 0.0454

Age, years

≥50 vs. <50 1.90 (1.06, 3.43) 0.0319 1.93 (1.02, 3.65) 0.0425
aIHC marker
bPR was not included as ER and PR are correlated
cTumors excluded if missing data for either Her2 or ER
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Table 4 Results of Overall Survival Analysis by Cox Proportional Hazards Model for the untreated subgroup

Prognostic Factor Univariate (n = 142) Multivariate (n = 129c)

HR (95 % CI) P-value HR (95 % CI) P-value

Menacalc

High vs. Low 2.14 (1.05, 4.58) 0.0445 3.80 (1.58, 9.97) 0.0052

Her2a

Positive vs. Negative 1.59 (0.43, 4.31) 0.4234 1.35 (0.34, 4.02) 0.6376

Tumor Size

≥2 cm vs. <2 cm 2.05 (1.01, 4.22) 0.0508 1.41 (0.62, 3.23) 0.4178

ERa

Negative vs. Positive 1.62 (0.68, 3.51) 0.2504 0.99 (0.36, 2.51) 0.9863

PR*

Positive vs. Negative 2.84 (1.27, 7.05) 0.0173 NAb NAb

Histological grade

Grade 2-3 vs. Grade 1 2.61 (1.09, 7.43) 0.0505 1.85 (0.67, 5.84) 0.2719

ND vs. Grade 1 1.46 (0.39, 5.23) 0.5667 1.34 (0.33, 5.03) 0.6763

Lymphatic invasion

Present vs. Absent 2.11 (0.81, 4.75) 0.0993 1.63 (0.54, 4.16) 0.3537

Age, years

≥50 vs. <50 2.41 (1.03, 6.77) 0.0666 3.03 (1.17, 9.11) 0.0348
aIHC marker
bPR was not included as ER and PR are correlated
cTumors excluded if missing data for either Her2 or ER

Fig. 2 Kaplan-Meier analysis of Menacalc for ANN tumors subclassified by immunohistochemical subtype: HER2 amplified (n = 20, top left), basal
(n = 48, top right) and luminal (n = 165, bottom left). In brackets is the total number of patients followed by the number of patient deaths for
each group
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profile. Although Menacalc may be able to subdivide these
patients into low and high risk of recurrence groups, these
patients are already considered to be at high risk of nega-
tive outcome and are usually managed aggressively. Sec-
ond of all, this study did not have a validation cohort
which would have helped to better assess the prognostic
capabilities of Menacalc.
Menacalc has been shown to be an independent nega-

tive prognostic marker in three breast cancer patient co-
horts, including this ANN cohort. Taken together, these
findings strongly suggest that Menacalc should be investi-
gated further as a potential clinical tool. Future studies
could explore the predictive capabilities of Menacalc in
older ANN patients with a lower risk of recurrence (i.e.,
smaller tumor size). Also, investigating the prognostic
value of Menacalc in a cohort with larger proportions of
the other molecular subtypes (i.e., basal, HER2) may un-
cover an association with specific biological/ clinical be-
havior. Finally, while findings on TMA specimens are
promising, future work could compare the performance
of Menacalc on TMAs to that seen on whole slide speci-
mens as a step towards use in clinical practice.

Additional file

Additional file 1: Table S1. Time to disease recurrence for the sites of
metastasis in the ANN cohort.
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