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Abstract— This paper proposes a new inspection planning
algorithm, called Random Inspection Tree Algorithm (RITA).
Given a perfect model of a structure, sensor specifications,
robot’s dynamics, and an initial configuration of a robot, RITA
computes the optimal inspection trajectory that observes all
points on the structure. Many inspection planning algorithms
have been proposed, most of them consist of two sequential
steps. In the first step, they compute a small set of observation
points such that each point on the structure is visible. In the
second step, they compute the shortest trajectory to visit all
observation points at least once. The robot’s kinematic and
dynamic constraints are taken into account only in the second
step. Thus, when the robot has differential constraints and
operates in cluttered environments, the observation points may
be difficult or even infeasible to reach. To alleviate this difficulty,
RITA computes both observation points and the trajectory to
visit the observation points simultaneously. RITA uses sampling-
based techniques to find admissible trajectories with decreasing
cost. Simulation results for 2-D environments are promising.
Furthermore, we present analysis on the probabilistic complete-
ness and asymptotic optimality of our algorithm.

I. INTRODUCTION

Efficient methods for structural inspection have become
increasingly important to ensure safety. Higher shipping
traffic and increased terrorist threats demand faster and
more frequent ship and harbor inspection. Likewise, greater
demands on land infrastructure create the need for faster
bridge and road network inspection. The need for faster and
more frequent structural inspection has increased the demand
for structural inspection using autonomous robots.

An efficient inspection planning algorithm is critical for
developing such autonomous robots. Inspection planning
is the problem of finding an inspection trajectory, i.e., a
trajectory for the robot to scan all points on the structures.
In this paper, we focus on the inspection planning problem
where the model of the structure and the environment are
perfectly known prior to planning, and the robot has no
control nor sensing error.

Although many inspection planning methods have been
proposed, most are not suitable for robots with differential
constraints. Most methods [6], [7], [8], [9] separate the
inspection planning problem into two NP-hard problems
and then solve each sub-problem sequentially. The first sub-
problem is the art gallery problem, which finds the smallest
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set of observation points that the robot needs to visit to
guarantee 100% coverage. The second sub-problem is the
traveling salesman problem (TSP), which finds the shortest
trajectory to visit all observation points that have been
generated by the art gallery solver. This separation approach
is difficult to apply when the robot is non-holonomic and
operates in cluttered environments, as the observation points
generated by the art gallery problem may not be reachable
from other observation points in the set. Furthermore, even if
we generate the smallest set of observation points and even
if we find the shortest trajectory to visit all points in the
set of observation points, the generated inspection trajectory
may not be the shortest trajectory for scanning all points
on the boundary of the structure. In short, most existing
inspection planning methods are often not suitable to find
a short inspection trajectory for robots with non-holonomic
constraints.

This paper proposes a new inspection planning algorithm,
called Random Inspection Tree Algorithm (RITA), that does
not separate the problem into the art-gallery problem and
the TSP. RITA uses a sampling-based motion planner to
directly find the shortest valid inspection trajectory, where all
points on the structure are seen by at least one point in the
trajectory. To easily account for differential constraints, RITA
performs its sampling in the control space. It finds inspection
trajectories with decreasing cost, and in the limit, converges
to the optimal inspection trajectory with probability one.

This paper is organized as follows: In the next section,
we discuss related work. In Section III, we formally define
the inspection planning problem. In Section IV we describe
RITA. We discuss its probabilistic completeness and its
convergence to the optimal inspection trajectory in Section
V. In Section VI, we provide simulation results and we close
with conclusions and future work.

II. RELATED WORK

The Problem of Inspection planning has attracted the
interest of several researchers over the last 15 years. Choset’s
group proposed planners for coverage and exploration using
cell decomposition methods [1], [3], [5] and various heuris-
tics [2]. Their approaches yield good results but are restricted
to low dimensional state spaces.

Most of today’s inspection planning methods can be
divided into two approaches. One approach [6], [7], [8],



[9] separates the problem into two sub-problems, the art-
gallery problem and the TSP. Methods based on this separa-
tion approach often have difficulties to plan trajectories for
robots with non-holonomic constraints operating in cluttered
environments, because some observation points generated
by art-gallery solvers may be difficult or even impossible
to reach from other observation points. Furthermore, these
methods do not provide optimality guarantees, even if each
sub-problem is solved optimally. Although [9] provides a
probabilistic completeness analysis of the algorithm and
proposes a smoothing algorithm that shortens the inspection
paths by taking advantage of the asymptotically optimal
RRT∗ algorithm; however, this method cannot guarantee
global optimality. By addressing the inspection planning
problem as a whole, RITA guarantees that, in the limit, it
converges to the global optimal solution with probability one.

Another approach (e.g., [11]) relies on a sub-modular ob-
jective function to guarantee that greedy algorithms generate
near-optimal solutions. However, when the objective is to
minimize the length of the inspection trajectory, as in our
case, the problem is not sub-modular, and a greedy method
may have difficulties as described in Figure (1).

Fig. 1. An illustration of greedy strategy that
always choose to move to a configuration within
R radius from its current position, that can see the
largest unseen structure. The environment contains
two structures, i.e., the ”U” shaped at the bottom
and the line at the top. In this example, greedy may
fluctuate moving down and up, while the shortest
trajectory would move to cover the structure on the
top first, before going down.

III. PROBLEM DEFINITION

Let us first discuss the structures to be inspected and
the workspace. The workspace contains the structure to be
inspected and obstacles. Obstacles will not be inspected,
however they effect the complexity of the problem by
changing the properties of the inspection problem and the
free space as defined below. We model each structure and
obstacle as a simple polygon for 2D workspaces and as
simple polyhedra for 3D workspaces.

To inspect the structures, we use a robot with first-order
differential constraints equipped with a visibility sensor.
The proposed approach can be used for both discrete and
continuous sensing actions. Suppose the set of all possible
robot configurations is C and the set of all possible control
inputs is U . The motion constraints of the robot are described
by

q̇ = g(q, u) (1)

where q ∈ C, u ∈ U , q̇ is the first derivative of q with respect
to time, and g is a smooth function. Assuming that C and
U are manifolds of dimensions n and m where m ≤ n,
using appropriate charts we can treat C as a subset of Rn
and U as a subset of Rm. Although we only discuss robots
with first-order differential constraints, our algorithm can be

extended to robots with higher order-differential constraints
in a straightforward manner.

Suppose S is the union of all points that lie on the
boundary of the structures in the workspace. Our goal is
to generate the shortest collision-free trajectory γ∗ from a
given initial configuration q0 ∈ C, such that when the robot
follows γ∗, it can see all points in S from at least one point
in γ∗. Let us define this objective more formally. Suppose
Cfree is the collision-free subset of C. Let trajectory γ :
[0, T ] → Cfree be a time-parameterized path induced by
the function u : [0, T ] → U through Equation (1). Suppose
V (γ(t)) ⊆ S is the set of points on the boundary of the
structures that are visible to the robot at configuration γ(t)
for t ∈ [0, T ]. An admissible trajectory is a collision-free
trajectory that covers S, in the sense that

⋃
t∈[0,T ] V (γ(t)) =

S. The proposed framework is flexible enough to define any
objective function that spans any subset of the state space
and visibility space. In this particular paper, we define the
optimal trajectory based on its workspace length. Suppose
D(γ) is the workspace length of γ. Then, the optimal
trajectory is defined as γ∗ = arg minγ∈ΓD(γ), where Γ is
the set of all admissible trajectories. Now, since the changes
in configurations depend on the control input through the
equation of motion (Equation (1)), our goal is to find the
control function u∗(t) that induces γ∗.

IV. RANDOM INSPECTION TREE ALGORITHM (RITA)

Contrary to many inspection planning methods, RITA does
not separate the inspection planning problem into the art
gallery and the TSP problems. Instead, it approximates the
optimal inspection trajectory γ∗ by addressing the control
and visibility aspects of the in inspection planning problem
simultaneously.

RITA approximates the optimal trajectory (if one exists)
incrementally. It uses sampling-based motion planning to
search the control space U to first find an admissible tra-
jectory, and then improve it subsequently by continuing to
search for shorter admissible trajectories.

RITA constructs a tree T = {M,E}, where the root of
the tree is the initial configuration q0. Each node q ∈ M in
the tree corresponds to a collision-free configuration while
each edge qq′ ∈ E corresponds to a control input u ∈ U that
drives the robot from q to q′ in a unit time, without colliding
with any of the structures and obstacles while satisfying
the equation of motion, Equation (1). Each node q ∈ M
is annotated with the cost of reaching q from q0, and with
a set of visible points, i.e., the set of points S′ ⊆ S that
the robot sees if it moves according to the path from q0 to
q in T. The proposed framework is flexible enough to use
both continuous and discrete (on the nodes) scanning actions;
results in this paper are taken using discrete scanning actions.
A path from q0 to a node q in T is an admissible trajectory
whenever q is annotated with S as its set of visible points.

To construct the tree, any sampling-based motion planning
algorithm [4] can be used. In this paper, we use the planner
in [12], as it samples the control space directly, and hence
does not require inverse-dynamic computation, which may



be difficult to compute for systems with complex dynamics.

Algorithm 1 Path Planning for inspection
1: Initialize: Set Initial configuration, Set Structure and Obstacle data

structure, BestCost=+∞
2: while (PlanningTime=TRUE) do
3: [Child, Parent, TrajFromParent, u]=ExpandTree(T);
4: if (CollisionFree(TrajFromParent) ∧ PossiblyOptimal(Child) then
5: NodeCost=Cost(Parent)+Cost(TrajFromParent)
6: if (NodeCost<BestCost) then
7: NodeList=NodeList ∪ Child
8: EdgeList=EdgeList ∪ ParentChild
9: NewVisibility=Visib(Child)

10: Child.GlobalVisib=Parent.GlobalVisib∪NewVisibility
11: Child.Unseen=S \ Child.GlobalVisib
12: if (Child.Unseen=∅) then
13: BestCost=NodeCost
14: BestNode=Child
15: end if
16: end if
17: end if
18: end while

Algorithm 2 ExpandTree(T)
1: Compute the number of nodes in the neighborhood: Dn(q), ∀q ∈ M
2: Probability to choose a node: Pn(q) ∝ 1/(Dn(q)), ∀q ∈ M
3: Sample a node: q′ ← rand(Pn(q))
4: Sample control input: u′ ← rand()

5: Propagate: [qnew, T raFromParent]←
R ∆t
0 g(q′, u′)dt

6: return qnew, q′, T raFromParent, u′

The tree T is constructed incrementally (Algorithm 1).
At each iteration of the algorithm, we try to expand the
tree using the “ExpandTree()”, which expands the tree by
randomly choosing a node to expand and a control input
to apply. The node to expand q′ is chosen with probability
proportional to the inverse of the number of nodes within its
neighborhood (a small ball with q′ as its center, Figure (2)).
ExpandTree() function takes as its input the current Tree and
returns a candidate new node qnew, the new node’s parent q′,
the node’s trajectory from q′ to qnew, and the control input
used. If qnew and the trajectory from q′ to qnew are obstacle
free, then we compute the cost to reach qnew through q′. The
cost for the best admissible solution found up to the current
time is recorded and used to reject node candidates if they
result in trajectories longer than the best one found up to
that point. If the new node qnew is not rejected, then RITA
inserts qnew as a child of q′ in T, annotates the edge qnewq
with u, and computes the set of points S′ ⊆ S that is visible
when the robot moves from q′ to qnew (in the case we use
continuous scanning actions) or it computes the visibility of
qnew (in the case we use discrete scanning actions, for this
paper we used discrete scanning actions).
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Fig. 2. Each node to be expanded is chosen with
probability proportional to the inverse of the density
of the nodes within its neighborhood, here the first
3 nodes would be sampled with probability 2/8 and
the last 2 with probability 1/8

To speed up the search for the optimal trajectory, RITA
rejects nodes that could not be part of the optimal trajectory
(PossiblyOptimal function in line-4 of Algorithm 1). RITA
excludes controls that drive the search to areas in which
there is no probability that parts of the optimal trajectory will
be present. To do so, RITA defines the Minkowski sum of
the convex hull of the structure of interest and the obstacles
within the the workspace with a sphere radius (Rsensor +
Rturning), where Rsensor denotes the maximum range of the
sensor and Rturning is the minimum turning radius of the
agent (derived from dynamics). The optimal trajectory must
lie within the Minkowski sum defined above. Therefore, if
a control u drives the agent to node q, whose projection
in the workspace is located outside of the Minkowski sum
described above, then q is rejected.

V. ANALYSIS

In this section, we prove two fundamental properties of
RITA, probabilistic completeness and convergence to the
optimal inspection trajectory. To simplify the analysis, we
use a simplified version of RITA, called ideal-RITA. Ideal-
RITA is the same as RITA, but it replaces the sampling
strategy in Algorithm 2 with Ideal-Expand, as described in
Algorithm 3. The notation Rl(q) is the set of configurations
reachable in l units of time from q.

Algorithm 3 Ideal-Expand(T = (M,E))
1: Sample a milestone m′ uniformly at random from Rl(M).
2: Sample a milestone m that can reach m′.
3: Compute a control input: u to move from m to m′.
4: return m′, m, Trajectory(m, m′, u), u

A. Probabilistic Completeness

Probabilistic completeness in our case means that if an
admissible trajectory, i.e., one that covers all points in S,
exists, then given enough time, ideal-RITA will find it with
high probability. This notion of completeness is slightly dif-
ferent from that which is commonly used in motion planning,
i.e. covering the entire Cfree. To show the probabilistic
completeness of ideal-RITA, we first need to define the
following property of the inspection planning problem.

Definition 1: Let S be the set of all points on the boundary
of the structure to be inspected. We define a v-partitioning
of S as the set S = {S1, S2, . . . , Sn}, where n ∈ N+

and for each i ∈ [1, n], Si ⊆ S and there exists a non-
empty and connected set A(Si) ⊆ Cfree whose volume
is V ol(A(Si)) ≥ v · V ol(Cfree) and each configuration
in A(Si) can see all points in Si. An inspection planning
problem is (k, v)-inspectionProblem whenever the smallest
v-partitioning of S has k elements.
Figure (3) illustrates the above definition. Intuitively, the
problem is easy to solve when k is small and v is large.

To analyze the probabilistic completeness of RITA,
we need Cfree to be (α, β)-expansive [12]. The (α, β)-
expansive property for robots with differential constraints



Fig. 3. A cartoon illustration of v-partitioning.

have been defined in [12]; we rewrite this definition here
for completeness.

Definition 2: Let α, β ∈ (0, 1] be constants, q ∈ Cfree,
R(q) ⊆ Cfree be the set of configurations reachable from
q, and Rl(q) ⊆ R(q) be the set of configurations reachable
from q within l time-steps. Then, for any q ∈ Cfree, R(q) is
(α, β)-expansive if for every connected subset C ′ ⊂ R(q),
V ol(β-lookout(C ′)) ≥ α·V ol(C ′), where β-lookout(C ′) =
{q ∈ C ′ | V ol(Rl(q)\C ′) ≥ β · V ol(R(C ′)\C ′)}. The set
Cfree is (α, β)-expansive if for every q ∈ Cfree, R(q) is
(α, β)-expansive.

Using the above definitions and the results in [12], we
can compute a lower bound on the number of sampled
milestones, such that the structure S is covered with high
probability. More precisely, we show that:

Theorem 1: Given a (k, v)-inspectionProblem and an
(α, β)-expansive collision-free space as defined in [12], a
sequence M of n milestones generated by the ideal-RITA
completely covers the structure S (i.e., S ⊆ V (M)) with
probability at least 1 - 2kf(β, v)e−

rα
f(β,v) where f(β, v) =

ln(2/v)
β and r = bn/kc.

Proof: Let L be the event that S ⊆ V (M) and let L′

be the event that M contains at least one configuration that
lies in each A(Si) for i ∈ [1, k]. Based on the definition of
(k, v)-inspectionProblem, it is clear that L′ ⊆ L and hence
P (L) ≥ P (L′).

Suppose M is divided into k subsequences where each
subsequence contains r consecutive milestones, and L′i is
the event that the ith subsequence contains a configuration
in A(Si). Then,

P (L′) ≥ P (L′1 ∩ L′2 ∩ . . . ∩ L′k)
= 1− P (L′1 ∪ L′2 ∪ . . . ∪ L′k)

≥ 1−
i=k∑
i=1

P (L′i) (2)

Using the results in [12], P (L′i) ≤ 2f(β, v)e−
rα

f(β,v) and we
can rewrite Equation (2) as P (L′) ≥ 1− 2kf(β, v)e−

rα
f(β,v) .

Since P (L) ≥ P (L′), we get the results we want.
Notice from Theorem 1 that with the same number of
milestones, ideal-RITA can cover S with higher probability
when we have smaller k and larger v, which fits our intuition.

B. Asymptotic Convergence of RITA

Recall that the optimal trajectory γ∗ is an admissible
trajectory with the shortest workspace length. To show

convergence of ideal-RITA to γ∗, intuitively, we show that
the ideal-RITA is equivalent to Rapidly-exploring Random
Graphs (RRG) [14], in the sense that any set of trajectories
that has non-zero probability to be generated by RRG will
also have non-zero probability to be generated by the ideal-
RITA. Since RRG has been shown to converge to the optimal
trajectory almost surely, so is the ideal-RITA.

Algorithm 4 Inspection-RRG(N)
1: G.V = {q0}, G.E = ∅, i = 0.
2: while i < N do
3: qrand = SampleAConfiguration(G).
4: qnearest = FindNearest(G, qrand).
5: qnew = Steer(qnearest, qrand).

{Steer function finds a configuration within a pre-specified distance
d from qnearest.}

6: if CollisionFree(qnearest, qnew) then
7: G.V = G.V ∪ {qnew}, G.E = G.E ∪ {(qnearest, qnew)}.
8: end if
9: if Rl(qnew, qnearest)

V
CollisionFree(qnew, qnearest) then

10: G.E = G.E ∪ {(qnew, qnearest)}.
11: end if
12: Qnear = FindNearby(G, qnew, |V |).

{FindNearby finds the vertices of G that are within a certain
distance from qnew . The exact distance depends on |V |.}

13: for all qnear ∈ Qnear do
14: if Rl(qnew, qnear)

V
CollisionFree(qnew, qnear) then

15: G.E = G.E ∪ {(qnew, qnear)}.
16: end if
17: if Rl(qnear, qnew)

V
CollisionFree(qnear, qnew) then

18: G.E = G.E ∪ {(qnear, qnew)}
19: end if
20: end for
21: end while
22: Γ = All admissible trajectories in G.

Note however, that our problem is not the same as the
problem in [14], and hence RRG needs to be adapted to fit
our problem. We call this adapted RRG “inspection-RRG”
(Algorithm 4). Two main differences need to be handled.
The first is the definition of admissible trajectory. In our
case, an admissible trajectory is a collision free trajectory
that covers all points in S and starts from a given initial
configuration, while in [14], an admissible trajectory is
a collision-free trajectory between a given pair of initial
and goal configurations. To adapt RRG to our problem, we
add a post-processing step (line-22 of Algorithm 4) that
eliminates all trajectories that do not satisfy our admissible
definition. The second difference is that RRG does not handle
differential constraints, while our system has differential
constraints. We handle this difference by adapting RRG
similarly to the adaptation in [13]. Notice that none of our
modifications eliminates admissible trajectories, and there-
fore, the asymptotic optimality property of RRG as shown
in [14] remains valid in inspection-RRG.

Before we state the equivalent relation and the asymptotic
convergence results more formally, we first need to state
the required assumptions. The first two assumptions below
are similar to the assumptions required for the convergence
of RRT∗ [13], while the last assumption is related to the
visibility requirement. The assumptions are:

1) The robotic system is Weakened Local Controllable. A



system is Weakened Local Controllable1 if there exist
constants η, ε̄ ∈ R+, p ∈ N, such that for any ε ∈
(0, ε̄) and any configuration q the set Rε(q) contains a
ball of radius ηεp, where Rε(q) refers to the set of all
configurations reachable from q with a trajectory that
lies entirely inside the ball with center q and radius ε.

2) The optimal admissible trajectory γ∗ : [0, Tγ∗ ] →
Cfree has ε-clearance. This means that for any t ∈
[0, Tγ∗ ], there exist a closed ball Bε(γ∗(t)) ⊂ Cfree
with radius ε and centered at γ∗(t). And for any
t1, t2 ∈ [0, Tγ∗ ], t1 < t2, the ball of radius η‖γ(t1)−
γ(t2)‖p centered at γ(t2) is ε-reachable from γ(t1).

3) The optimal trajectory γ∗ : [0, Tγ∗ ] → Cfree
is δ-elastic, where δ = ηεp. Suppose Bδ(γ∗) =⋃
t∈[0,Tγ∗ ]Bδ(γ

∗(t)), where Bδ(γ∗(t)) is the ball with
radius δ and center at γ∗(t). γ∗ is δ-elastic when
any trajectory γ : [0, Tγ∗ ] → Cfree that lies entirely
in Bδ(γ∗) ∩ Cfree covers the entire S. This elastic
trajectory is an extension of the elastic solution in the
art gallery problem in [10].

The first assumption is exactly the same as the first assump-
tion in [13], which we restate here for completeness. The
second assumption is adapted from the second assumption
in [13]. This adaptation is needed because our admissible
trajectory starts from q0 and covers the entire structure
boundary S, while an admissible trajectory in [13] starts
from q0 and ends at a given goal configuration. The last
assumption is related to the visibility requirement. Again,
this assumption is required because, unlike the problem in
[13], in our case, an admissible trajectory must cover the
entire structure boundary S.

Now, we formally state the equivalent relation between the
ideal-RITA and inspection-RRG,

Lemma 1: Suppose G is the set of all admissible tra-
jectories defined from [0, T ] to Cfree that starts from a
given initial configuration q0, for any T ∈ R+. For any
subset g ⊆ G, if P (inspection-RRG samples g) > 0, then
P (ideal-RITA samples g) > 0.

Proof: Let γ be an admissible trajectory with ε-
clearance property and is formed by a sequence of k different
milestones, M = {m1,m2, . . . ,mk} where m1 = q0. Let
Bε(γ) ⊆ G be a set of admissible trajectories where each tra-
jectory is formed by k milestones M ′ = {m1,m

′
2, . . . ,m

′
k},

where m′i ∈ Bε(mi) for i ∈ [2, k], and Bε(mi) ⊂ Cfree
is a closed ball with radius ε and center mi. Notice that
if P (inspection-RRG samples a trajectory in Bε(γ)) > 0,
then V ol(Bε(m2) ∩ Rl(m1)) > 0 and inspection-RRG
samples Bε(m2) ∩Rl(m1) with non-zero probability. Since
the tree T built by the ideal-RITA contains q0 = m1, there is
a non-zero probability that the ideal-RITA samples a point in
Rl(m1). And since V ol(Bε(m2)∩Rl(m1)) > 0, ideal-RITA
will sample Bε(m2) ∩ Rl(m1) with non-zero probability
too. Let’s assume that both inspection-RRG and ideal-RITA
samples the same configuration in Bε(m2) ∩ Rl(m1). By

1not to be confused with the Weak Local Controllability, Dubins car
which is a non-holonomic system satisfies Weakened Local Controllability.

repeating the same argument until Bε(mk), ideal-RITA must
have non-zero probability of sampling Bε(γ) too.
When the trajectory generated by inspection-RRG contains
loops, ideal-RITA can approximate it arbitrarily close but
would require additional computation time.

Now, we can state the convergence theorem more formally.
Theorem 2: Suppose all the above assumptions hold. Sup-

pose further that γi is the best path in the tree built by ideal-
RITA after the ith iteration and γ∗ is the optimal trajectory.
The cost D(γi) satisfies Limiti→∞P (D(γi) = D(γ∗)) = 1.

Proof: This asymptotic convergence has been proven
to hold for RRG [14]. Since inspection-RRG only eliminates
non-admissible solutions from the set of all trajectories
generated by RRG, asymptotic convergence to the optimal
trajectory holds for inspection-RRG. Based on Lemma 1,
the ideal-RITA can generate all trajectories generated by
inspection-RRG. This means that as i goes to infinity, the
set of all trajectories generated by inspection-RRG and
ideal-RITA will be the same. Therefore, if the trajectories
generated by inspection-RRG contain the optimal trajectory
with probability one, then the same holds for ideal-RITA.

VI. SIMULATION RESULTS

We implemented RITA in C++ and run a set of simulations
(the code is not optimized, optimized code further reduces
the running time). We consider a 2-D workspace and the
following robot’s dynamics.

ẋ = us sin θ (3)
ẏ = us cos θ
θ̇ = Ω

The configuration space is 3D and the control space is 2D.
The sensor model is such that it observes everything within a
maximum radius Rrange that is not occluded by the structure.
The visibility for a given trajectory is computed by projecting
the footprint of the sensor on the workspace and using linear
algebra methods to identify parts that are occluded by the
structure and the obstacles in the workspace.

We consider 3 different case studies. In the first case, the
range of the sensor is 20 units, us is the speed of the agent
with values between 0.5 and 3 units per second, and Ω is the
angular velocity with values between -0.25 and 0.25 radians
per second. These parameters result in a minimum turning
radius of 2 units. The initial configuration for the first case
study is q0 = [0, 0, 0]T .

The second case is more challenging with a small visibility
range and several narrow passages. Because the maximum
range of the sensor is small compared to the environment, the
agent has to navigate inside several of the narrow passages.
The range of the sensor is 15 units, us is the speed of the
agent with values between 0.5 and 4 units per second, and Ω
is the angular velocity with values between -0.25 and 0.25
radians per second. These parameters result in a minimum
turning radius of 2 units. The initial configuration for the
second case study is q0 = [45, 0, π/2]T . For both case studies
we also consider additional obstacles that are located close
to the structure of interest.



For each of the first 2 test cases, we run the algorithm
20 times to get running time and performance statistics.
The computer used to generate the results runs on a 3GHz
processor and Ubuntu 10.04 as the Operating System. The
third case study shows an example where RITA computes
the optimal inspection trajectory and at the same time others
approaches fail.

1) First Case Study: On average, RITA finds the first ad-
missible solution within 0.24 seconds with standard deviation
0.34 seconds. It generates a solution close to the optimal
(below 67 units) after 11 minutes, with standard deviation
4.6 minutes. Figure (6, left) shows the average cost for the
20 runs as a function of the actual running time.

Figure (4) shows the generated admissible trajectory
across different time of one of the simulation runs. In
this particular run, the algorithm finds the first admissible
trajectory (cost 120.6 units) after running for 0.7 seconds.
It is important to note that the first admissible solution
found does not belong to the same homotopy class as the
optimal trajectory. We keep running the algorithm, and at
71.5 seconds it switches to a different homotopy class and
finds another admissible trajectory with cost 114.9 units.
The algorithm improves the current solution within the same
homotopy class (at time 117.3 seconds and cost 100.85
units). At time 171.4 seconds it finds another admissible
trajectory with cost 92.5 units. After 400.3 seconds, it finds
a better trajectory (this particular one of cost 68.7 units),
which belongs to the same homotopy class as the optimal
trajectory, and eventually this trajectory converges to a near-
optimal one (63.8 units after 951.1 seconds).

Figure (5, above left) shows a comparison between the
trajectory that the algorithm converges to ( here we show
another run; at this particular run RITA converges to a
trajectory with cost 64.82 units after 74.73 seconds ) and the
optimal holonomic trajectory (59 units). The results indicate
that the length of the trajectory RITA converges to, is close
to the lower bound (optimal holonomic trajectory).

The proposed algorithm can also handle additional obsta-
cles in the workspace. In Figure (5, upper right and below)
we show the results RITA gives if we include obstacles close
to the structure of interest. In this particular run, the cost
decreases from 124.4 to 73.3 units for 0.07 seconds to 1hour
running time.

2) Second Case Study: On average, RITA finds the first
admissible solution within 12.87 seconds (with standard
deviation 25.4 seconds) and gets a solution close to the
optimal (below 190 and 185 units) after 44 and 73 minutes
respectively (with standard deviation 53 and 85 minutes).
As Figure (6) shows, by running it longer, the length of the
generated admissible trajectory becomes shorter. Figure (6,
right) shows the average cost for the 20 runs as a function
of the actual running time.

Figure (7,a-d) shows the generated admissible trajectory
across different time of one of the simulation runs. In
this run, the algorithm finds the first admissible solution
after running for 43.5 seconds (cost 219 units). It improves
the current solution within the same homotopy class, as

Fig. 5. First case study: Above part) Comparison between the trajectory
that the algorithm converges to and the optimal holonomic trajectory. We
see that the optimal holonomic trajectory is close to the one the algorithm
generates. Upper right and below part) The effect of additional obstacles
(gray color) close to the structure of interest.

shown in Figure (7,b) (113.7 seconds for cost 200 units).
Then the algorithm explores few other homotopy classes
and finally it converges to a trajectory with cost close to
the optimal one (177.6 units in 51 minutes). For this case
study, due to symmetry, there are different homotopy classes
of trajectories with cost close to the optimal one (or the
same one). In Figure (7,e-f) we can see 2 different runs
that resulted in 2 different trajectories with cost close to the
optimal one (177.26 units in 67 seconds and 177.66 units in
100 minutes).2 These runs show that the algorithm indeed
explores all homotopy classes that need to be explored, until
reaching a trajectory sufficiently close to the optimal one.
Figure (7,g-h) shows some of the results RITA gives if we
include obstacles close to the structure of interest. In this
particular run, the cost decreases from 213.9 to 191.5 units
for 65 seconds to 2 hours running time.

3) Third case study: In the third case study we consider
the corridor example. We are interested in observing the
inside part of the corridor. The agent’s initial configuration
is q0 = [0, 20, 0]T and its visibility rage is 23 units. For
this particular example, it is easy to identify the optimal
inspection trajectory which is a straight line of length 68.64
units. Figure (8) shows the generated admissible trajectory
across different time. In this run, the algorithm finds the first
admissible solution after running for 0.2 seconds (cost 109
units). It improves the current solution until converging close
to the optimal inspection trajectory (cost 70 units). In Figure
(8), in the right, we can see the optimal inspection trajectory

2we stopped all runs within 2 hours, if we keep running the algorithm for
more time it switches back and forth between homotopy classes, continuing
to improve the cost.



t = 0.7 seconds t = 71.5 seconds t = 117.3 seconds

t = 171.4 seconds t = 400.3 seconds t = 951.1 seconds
Fig. 4. First case study, one of the 20 runs: The algorithm finds the first admissible trajectory (cost 120.6 units) after running for 0.7 seconds. It is important
to note that the first admissible solution found does not belong to the same homotopy class as the optimal trajectory. We keep running the algorithm, and
at 71.5 seconds it switches to a different homotopy class and finds another admissible trajectory with cost 114.9 units. The algorithm improves the current
solution within the same homotopy class (at time 117.3 seconds and cost 100.85 units). At time 171.4 seconds it finds another admissible trajectory with
cost 92.5 units. After 400.3 seconds, it finds a better trajectory (this particular one of cost 68.7 units), which belongs to the same homotopy class as the
optimal trajectory, and eventually this trajectory converges to a near-optimal one (63.8 units after 951.1 seconds).

(a) t = 43.5 seconds (b) t = 113.7 seconds (c) t = 376.8 seconds (d) t = 51 minutes

(e) t = 67.1 seconds (f) t = 100 minutes (g) t = 39 minutes (h) t = 2 hours
Fig. 7. Second case study, (a-d) the algorithm finds the first admissible solution after running for 43.5 seconds (cost 219 units). It improves the current
solution within the same homotopy class (113.7 seconds for cost 200 units). Then the algorithm explores few other homotopy classes and finally it converges
to a trajectory with cost close to the optimal one (177.6 units in 51 minutes). (e-f) Different homotopy classes of trajectories with cost close to the optimal
one. (i-j) Results with additional obstacles (obstacles in gray color).



Fig. 8. Third case study: the algorithm converges close to the optimal inspection trajectory, at the same time the TSP and art-gallery approaches fail to
give a trajectory close to the optimal one (cost 126.6 units, yellow dots show the optimal art-gallery observation points connected with straight lines, the
visiting order is given by solving the TSP).

Fig. 6. The average cost for all runs as a function of the actual running time.
Left (first scenario): The algorithm, in average, finds the first admissible
solution within 0.24 seconds (with standard deviation 0.34 seconds) and get
a solution close to the optimal (below 67 m) after 11 minutes (with standard
deviation 4.6 minutes). Right (second scenario): The algorithm, in average,
finds the first admissible solution within 12.87 seconds (with standard
deviation 25.4 seconds) and gets a solution close to the optimal (below 190
and185 units) after 44 and 73 minutes respectively (with standard deviation
53 and 85 minutes).

RITA gives and the trajectory we will get if we use TSP and
the art-gallery approaches. We can see that the TSP and the
art-gallery approach results cost of 126.6 units.

VII. CONCLUSIONS

In this paper, we are interested in deterministic inspec-
tion planning. We propose a new sample based inspection
planning algorithm, called RITA. Given a perfect model of
a structure, sensor specifications, robot’s dynamics, and an
initial configuration of a robot, RITA computes the optimal
inspection trajectory that observes all points on the structure.
Instead of separating the problem into the art-gallery problem
and the TSP as in most inspection planning algorithms, RITA
addresses the control and visibility aspects of the inspection
problem simultaneously. To easily account for differential
constraints, RITA performs its sampling in the control space.
It finds inspection trajectories with decreasing cost, and in
the limit, converges to the optimal inspection trajectory with
probability one. Furthermore, we present a formal analysis
on the probabilistic completeness and asymptotic optimality
of our algorithm.

Future work will include improving the implementation
to speed up current computation and implementing the
algorithm to inspect 3-D structures.
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