
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2015-027 July 13, 2015

Prophet: Automatic Patch Generation via
Learning from Successful Patches
Fan Long and Martin Rinard

Prophet: Automatic Patch Generation
via Learning from Successful Patches

Fan Long and Martin Rinard
MIT CSAIL

{fanl, rinard}@csail.mit.edu

Abstract
We present Prophet, a novel patch generation system that learns a
probabilistic model over candidate patches from a database of past
successful patches. Prophet defines the probabilistic model as the
combination of a distribution over program points based on defect
localization algorithms and a parameterized log-linear distribution
over modification operations. It then learns the model parameters
via maximum log-likelihood, which identifies important character-
istics of the previous successful patches in the database. For a new
defect, Prophet generates a search space that contains many can-
didate patches, applies the learned model to prioritize those poten-
tially correct patches that are consistent with the identified success-
ful patch characteristics, and then validates the candidate patches
with a user supplied test suite. The experimental results indicate
that these techniques enable Prophet to generate correct patches for
15 out of 69 real-world defects in eight open source projects. The
previous state of the art generate and validate system, which uses
a set of hand-code heuristics to prioritize the search, generates cor-
rect patches for 11 of these same 69 defects.

1. Introduction
We present Prophet, a new generate-and-validate patch generation
system that automatically learns features of patches that success-
fully correct defects in existing programs. Prophet leverages the
availability of large publicly available open-source software repos-
itories that contain many successful patches. Given a database of
such successful patches, Prophet learns a probabilistic model that
characterizes the features that these patches exhibit. It then applies
this model to recognize and prioritize correct patches within its
larger set of candidate patches.

Generate-and-validate systems start with a program and a test
suite of test cases, at least one of which exposes an defect in the pro-
gram. They then generate a space of candidate patches and search
this space to find plausible patches that produce correct outputs for
all test cases in the test suite. Unfortunately, the presence of plau-
sible but incorrect patches (which produce correct outputs for all
of the test cases in the test suite but incorrect outputs for other in-
puts) has complicated the ability of previous generate-and-validate
systems to find correct patches [8, 11–13, 18–20, 25].

Prophet uses its learned probabilistic patch correctness model
to rank the plausible patches in its search space. The hypothesis
is that successful patches share common characteristics which, if
appropriately extracted and integrated into the patch generation
system, will enable Prophet to automatically recognize and rank
correct patches above the other plausible patches that it generates.

1.1 Prophet
Probabilistic Model: Prophet operates with a parameterized prob-
abilistic model that, once the model parameters are determined,
assigns a probability to each candidate patch in the search space.
This probability indicates the likelihood that the patch is correct.
The model is the product of a geometric distribution determined
by the Prophet defect localization algorithm (which identifies tar-
get program statements for the generated patch to modify) and a
log-linear distribution determined by the model parameters and the
feature vector.
Maximum Likelihood Estimation: Given a training set of suc-
cessful patches, Prophet learns the model parameters via maximiz-
ing the likelihood of observing the training set. The intuition behind
this approach is that the learned model should assign a high proba-
bility to each of the successful patches in the training set.
Patch Generation: Given a program with an defect and a test suite
that exposes the defect, Prophet operates as follows:

• Defect Localization: The Prophet defect localization algorithm
analyzes execution traces of the program running on the test
cases in the test suite. The result is a sequence of target program
statements to patch (see Section 3.5).

• Search Space Generation: Prophet generates a space of can-
didate patches, each of which modifies one of the statements
identified by the defect localization algorithm.

• Feature Extraction: For each candidate patch, Prophet extracts
features that summarize relevant patch characteristics. These
features include program value features, which capture rela-
tionships between how variables and constants are used in the
original program and how they are used in the patch, and mod-
ification features, which capture relationships between the kind
of program modification that the patch applies and the kinds of
statements that appear near the patched statement in the original
program. Prophet converts the extracted features into a binary
feature vector.

• Patch Ranking and Validation: Prophet uses the learned
model and the extracted binary feature vectors to compute a
correctness probability score for each patch in the search space
of candidate patches. Prophet then sorts the candidates accord-
ing to their scores and validates the patches against the supplied
test suite in that order. It returns the first patch that validates
(i.e., produces correct outputs for all test cases in the test suite)
as the result of the patch generation process.

A key challenge for Prophet is to identify and learn application-
independent characteristics from successful patches. Many surface
syntactic elements of successful patches (such as specific variable

1 2015/7/13

names) may be application-specific and therefore may not general-
ize to other applications.

The Prophet program value features address this challenge as
follows. Prophet uses a static analysis to obtain a set of application-
independent atomic characteristics for each program value (i.e.,
variable or constant) that the patch manipulates. Each atomic char-
acteristic captures a role that the value plays in the original or
patched program (for example, a value may occur in the condi-
tion of an if statement or be returned as the value of an enclosing
function).

Prophet then defines program value features that capture rela-
tionships between different roles that the same value plays in the
original and patched programs. Because the program value fea-
tures are derived from application-independent roles, they gener-
alize across different applications.

To the best of our knowledge, Prophet is the first program
repair system to use an automatically learned probabilistic model to
identify and exploit important patch characteristics to automatically
generate correct patches.

1.2 Experimental Results
We evaluate Prophet on 69 real world defects drawn from eight
large open source applications. Our results show that, on the same
benchmark set, Prophet automatically generates correct patches
for significantly more defects than previous generate-and-validate
patch generation systems, specifically SPR [12, 13], GenProg [11],
and AE [25]. The Prophet search space contains correct patches
for 19 defects. Prophet generates correct patches for 15 of these
19 defects. SPR, which uses a set of hand-coded heuristics to
prioritize its search of the space of candidate patches, generates
correct patches for 11 defects while GenProg and AE generate
correct patches for 1 and 2 defects, respectively.

Our results also show that the learned model significantly im-
proves the capability of Prophet to identify correct patches among
the candidate patches in the search space. On average, Prophet pri-
oritizes the first correct patch as one of top 11.7% in the patch prior-
itization order. In comparison, SPR prioritizes the first correct patch
as one of the top 17.5% on average. A baseline algorithm without
learning generates correct patches for only 8 defects and prioritizes
the first correct patch as one of the top 20.8% on average.

Our results also highlight how program value features are crit-
ical for the success of Prophet. A variant of Prophet that disables
program value features generates correct patches for only 10 de-
fects. A common scenario is that the search space contains multi-
ple plausible patches that manipulate different program variables.
The extracted program value features often enable Prophet to iden-
tify the correct patch (which manipulates the right set of program
variables) among these multiple plausible patches.

1.3 Contributions
This paper makes the following contributions:

• Probabilistic Model: It presents a novel parameterized prob-
abilistic model for correct patches. This model assigns a prob-
ability to each candidate patch. This probability indicates the
likelihood that the patch is correct. It also presents an algorithm
that learns the model parameters via a training set of successful
patches collected from open-source project repositories.

• Feature Extraction: It presents a novel framework for encod-
ing program value features. Because these features successfully
abstract away application-specific surface syntactic elements
(such as variable names) while preserving important structural

patch characteristics, they significantly improve the ability of
Prophet to learn application-independent characteristics of suc-
cessful patches.

• Patch Generation with Learning: It presents the implemen-
tation of the above techniques in the Prophet automatic patch
generation system. Prophet is, to the best of our knowledge,
the first automatic patch generation system that uses a machine
learning algorithm to automatically learn and exploit character-
istics of successful patches.

• Experimental Results: It presents experimental results that
evaluate Prophet on 69 real world defects in eight large open
source applications. Prophet generates correct patches for 15
of the 69 defects. The previous state of the art system (SPR)
generates correct patches for 11 defects.
The results show that the learned model significantly improves
the ability of Prophet to identify correct patches among the
candidate plausible patches and highlight how the program
value features are critical for the success of Prophet — with
these features disabled, Prophet generates correct patches for
only 10 of the 69 defects.

The rest of this paper is organized as follows. Section 2 presents
an example that illustrates how Prophet generates a patch that
corrects an defect in the PHP interpreter. Section 3 presents the
technical design of Prophet. Section 4 presents the experimental
results. We discuss related work in Section 5 and conclude in
Section 6.

2. Example
We next present an example that illustrates how Prophet corrects

a defect in the PHP interpreter. The PHP interpreter (before version
5.3.5 or svn version 308315) contains a defect (PHP bug #53971) in
the Zend execution engine. If a PHP program accesses a string with
an out-of-bounds offset, the PHP interpreter may produce spurious
runtime errors even in situations where it should suppress such
errors.

Figure 1 presents (simplified) code (from the source code file
Zend/zend_execute.c) that contains the defect. The C function at
line 1 in Figure 1 implements the read operation that fetches values
from a container at a given offset. The function writes these values
into the data structure referenced by the first argument (result).

When a PHP program accesses a string with an offset, the
second argument (container_ptr) of this function references the
accessed string. The third argument (dim) identifies the specified
offset values. The code at lines 17-18 checks whether the specified
offset is within the length of the string. If not, the PHP interpreter
generates a runtime error indicating an offset into an uninitialized
part of a string (lines 27-29).

In some situations PHP should suppress these out-of-bounds
runtime errors. Consider, for example, a PHP program that calls is-
set(str[1000]). According to the PHP specification, this call should
not trigger an uninitialized data error even if the length of the PHP
string str is less than 1000. The purpose of isset() is to check if a
value is properly set or not. Generating an error message when is-
set() calls the procedure in Figure 1 is invalid because it interferes
with the proper operation of isset().

In such situations the last argument (type) at line 3 in Figure 1 is
set to 3. But the implementation in Figure 1 does not properly check
the value of this argument before generating an error. The result is
spurious runtime errors and, depending on the PHP configuration,
potential denial of service.

2 2015/7/13

1 static void zend_fetch_dimension_address_read(
2 temp_variable *result, zval **container_ptr,
3 zval *dim, int dim_type, int type)
4 {
5 zval *container = *container_ptr;
6 zval **retval;
7 switch (Z_TYPE_P(container)) {
8 ...
9 case IS_STRING: {

10 zval tmp;
11 zval *ptr;
12 ...
13 ALLOC_ZVAL(ptr);
14 INIT_PZVAL(ptr);
15 Z_TYPE_P(ptr) = IS_STRING;
16

17 if (Z_LVAL_P(dim) < 0 ||
18 Z_STRLEN_P(container) <= Z_LVAL_P(dim)) {
19 // A plausible but incorrect patch that validates
20 // if (!(type == 3)) return;
21

22 // The guard that the correct Prophet patch inserts
23 // before the following error generation statement.
24 // This Prophet patch is identical to the (correct)
25 // developer patch.
26 // if (!(type == 3))
27 zend_error(E_NOTICE,
28 "Uninitialized string offset: %ld",
29 (*dim).value.lval);
30 Z_STRVAL_P(ptr) = STR_EMPTY_ALLOC();
31 Z_STRLEN_P(ptr) = 0;
32 } else {
33 Z_STRVAL_P(ptr) = (char*)emalloc(2);
34 Z_STRVAL_P(ptr)[0] =
35 Z_STRVAL_P(container)[Z_LVAL_P(dim)];
36 Z_STRVAL_P(ptr)[1] = 0;
37 Z_STRLEN_P(ptr) = 1;
38 }
39 AI_SET_PTR(result, ptr);
40 return;
41 } break;
42 ...
43 }
44 }

Figure 1. Simplified Code for PHP bug #53971

Offline Learning: Prophet works with a database of previous suc-
cessful human patches to obtain a probabilistic model that captures
why these patches were successful. We obtain this database by col-
lecting revision changes from open source repositories. In our ex-
ample, we train Prophet with revision changes from seven open
source projects (apr, curl, Apache httpd, libtiff, python, subversion,
and wireshark). Although revision changes for PHP are available,
we exclude these revision changes from this training set. During
the offline learning phase, Prophet performs the following steps:

• Extract Features: For each patch in the database, Prophet an-
alyzes a structural diff on the abstract syntax trees of the origi-
nal and patched code to extract both 1) features which summa-
rize how the patch modifies the program given characteristics
of the surrounding code and 2) features which summarize rela-
tionships between roles that values accessed by the patch play
in the original unpatched program and in the patch.

• Learn Model Parameters: Prophet operates with a parameter-
ized log-linear probabilistic model in which the model param-
eters can be interpreted as the weights that capture the impor-
tance of different features. Prophet learns the model parameters
via maximum likelihood estimation, i.e., the Prophet learning
algorithm attempts to find parameter values that maximize the

probability of observing the collected training database in the
probabilistic model.

Apply Prophet: We then apply Prophet to automatically generate a
patch for this defect. Specifically, we provide Prophet with the PHP
source code that contains the defect and a test suite that contains
6957 test cases. One of the test cases exposes the defect (i.e., the
unpatched version of PHP produces incorrect output for this test
case). The remaining 6956 test cases are to prevent regression (the
unpatched version of PHP produces correct outputs for these test
cases). Prophet generates a patch with the following steps:

• Defect Localization: Prophet first performs a dynamic analy-
sis of the execution traces of the PHP interpreter on the supplied
test suite to identify a set of candidate program points for the
patch to modify. In our example, the Prophet defect localiza-
tion algorithm observes that the negative test case executes the
statement at lines 27-29 in Figure 1 while the positive test cases
rarely execute this statement. Prophet therefore generates can-
didate patches that modify this statement (as well as candidate
patches that modify other statements).

• Search Space Generation: Prophet works with the SPR search
space [12, 13], which uses transformation schemas and staged
condition synthesis to generate candidate patches. Some (but
by no means all) of these candidate patches add an if statement
to guard (conditionally execute) the statement at lines 27-29 in
Figure 1.

• Rank Candidate Patches: Prophet computes a feature vector
for each candidate patch in the search space. It then applies
the learned model to the computed feature vector to obtain a
probability that the corresponding patch is correct. It then ranks
the generated patches according to the computed correctness
probabilities.
In our example, the model assigns a relatively high correctness
probability to the candidate patch (line 26 in Figure 1) that adds
an if statement guard with condition (type != 3) (this con-
dition was synthesized by the Prophet condition synthesis al-
gorithm [12, 13]) before the statement that generates the error
message (lines 27-29 in Figure 1). This patch has several fea-
tures that correspond in the learned model to correct patches.
For example, 1) it adds an if condition to guard a call statement
and 2) the guard condition checks a supplied argument of the
function.

• Validate Candidate Patches: Prophet then uses the test suite
to attempt to validate the patches in order of highest patch
correctness probability. The patch shown at line 26 in Figure 1
is the first patch to validate (i.e., it is the first generated patch
that produces correct outputs for all of the test cases in the test
suite).

The generated Prophet patch is correct and identical to the
developer patch for this defect. Note that the Prophet search space
may contain incorrect patches that nevertheless validate (because
they produce correct outputs for all test cases in the test suite).
In our example, line 20 in Figure 1 presents one such patch. This
patch directly returns from the function if type != 3. This patch is
incorrect because it does not properly set the result data structure
(referenced by the result argument) before it returns from the
function. Because the negative test case does not check this result
data structure, this incorrect patch nevertheless validates. In our
example the Prophet learning algorithm successfully ranks such
plausible but incorrect patches lower than the correct patch.

3 2015/7/13

3. Design
Prophet first performs an offline training phase to learn a proba-
bilistic model which summarizes important features of successful
patches drawn from a large revision database. Given a new de-
fective program p, Prophet generates a search space of candidate
patches for p and uses the learned model to recognize and priori-
tize correct patches. In this way the learned knowledge guides the
exploration of the patch search space.

3.1 Probabilistic Model
Given a defective program p and a search space of candidate
patches, the Prophet probabilistic model is a parameterized like-
lihood function which assigns each candidate patch δ a probabil-
ity P (δ | p, θ), which indicates how likely δ is a correct patch
for p. θ is the model parameter vector which Prophet learns dur-
ing its offline training phase (see Section 3.2). Once θ is deter-
mined, the probability can be interpreted as a normalized score (i.e.,∑
δ P (δ | p) = 1) which prioritizes potentially correct patches

among all possible candidate patches.
The Prophet probabilistic model assumes that each candidate

patch δ in the search space can be derived from the given defec-
tive program p in two steps: 1) Prophet selects a program point
` ∈ L(p), where L(p) denotes the set of program points in p that
Prophet may attempt to modify; 2) Prophet selects an AST mod-
ification operation m ∈ M(p, `) and applies m at ` to obtain δ,
where M(p, `) denotes the set of all possible modification opera-
tions that Prophet may attempt to apply at `. Therefore the patch δ
is a pair 〈m, `〉.

Based on this assumption, Prophet factors the probability P (δ |
p, θ) as follows:

P (δ | p, θ) = P (m, ` | p, θ)
= P (m | p, `, θ) · P (` | p, θ) (chain rule)

P (m | p, `, θ) is a distribution that corresponds to the probabil-
ity of applying the modification operationm given p and `. Prophet
defines P (m | p, `, θ) as a parameterized log-linear distribution,

P (m | p, l, θ) =
exp (φ(p,m, `) · θ)∑

m′∈M(p,`) exp (φ(p,m′, `) · θ)
where φ(p, `,m) is the feature vector that Prophet extracts from
the triple of p, `, and m (see Section 3.3).
P (` | p, θ) is a distribution that corresponds to the probability

of modifying the program point ` given the defective program p.
Prophet defines P (` | p, θ) as follows (Z is the normalization
divisor):

P (` | p, θ) =
1

Z
·A ·B

A = (1− β)r(p,`)

B =

∑
m′∈M(p,`) exp (φ(p,m′, `) · θ)∑

`′∈L(p)

∑
m′∈M(p,`′) exp (φ(p,m′, `′) · θ)

The part A is a geometric distribution that encodes the informa-
tion Prophet obtains from its defect localization algorithm (which
identifies target program points to patch). The algorithm performs
a dynamic analysis on the execution traces of the program p on
the supplied test suite to obtain a ranked list of potential program
points to modify (see Section 3.5). r(p, `) denotes the rank of ` as-
signed by the defect localization algorithm. If ` is not in the Prophet
search space (i.e., ` /∈ L(p)), then r(p, `) =∞. β is the probability
of each coin flip trial of the geometric distribution (which Prophet
empirically sets to 0.02). The part B is a parameterized log-linear

distribution determined by the extracted feature vectors φ and the
learned parameter vector θ.
P (δ | p, θ) is the product of P (` | p, θ) and P (m | p, `, θ):

1

Z
· (1− β)r(p,`) · exp (φ(p,m, `) · θ)∑

`′∈L(p)

∑
m′∈M(p,`′) exp (φ(p,m′, `′) · θ)

Intuitively, this formula assigns the weight eφ(p,m,`)·θ to each
candidate patch 〈m, `〉 based on the extracted feature vector
φ(p,m, `) and the learned parameter vector θ. The formula then
computes the weight proportion of each patch over the total weight
of the entire search space derived from the functions L and M .
The formula obtains the final patch probability by multiplying the
weight proportion of each patch with a geometric distribution prob-
ability, which encodes the defect localization ranking of the patch.

Note that L(p), r(p, `), and M(p, `) are inputs to the proba-
bilistic model. M(p, `) defines the patch search space while L(p)
and r(p, `) define the defect localization algorithm. The model can
work with arbitrary L(p), r(p, `), and M(p, `), i.e., it is indepen-
dent of the underlying search space and the defect localization al-
gorithm. It is straightforward to extend the Prophet model to work
with patches that modify multiple program points.

3.2 Learning Algorithm
The input to the Prophet training phase is a large revision change
database D = {〈p1, δ1〉, . . . , 〈pn, δn〉}, where each element of D
is a pair of a defective program pi and the corresponding successful
human patch δi. Prophet learns a model parameter θ such that the
result probabilistic model assigns a high conditional probability
score to δi among all possible candidate patches in the search space.
Specifically, Prophet learns θ via maximizing the log likelihood of
observing the training database D:

θ = arg max
θ

(∑
i

logP (δi|pi, θ) + λ1

∑
i

|θi|+ λ2

∑
i

θ2i

)
where λ1 and λ2 are L1 and L2 regularization factors which
Prophet uses to avoid overfitting. Prophet empirically sets both
factors to 10−3.

Note that the training database may not contain test suites for
each defective program pi in D. Prophet therefore cannot use its
defect localization algorithm (which requires test cases to drive
the dynamic analysis) to compute L(pi) (i.e., the set of candidate
program points to modify) or r(p, `) (i.e., the rank of each program
point `).

The Prophet learning algorithm therefore uses an oracle-like
defect localization algorithm to drive the training. For each training
pair 〈pi, δi〉, the algorithm computes the structural AST difference
that the patch δi induces to 1) locate the modified program location
`i and 2) identify a set of program points Si near `i (i.e., in the
same basic block as `i and within three statements of `i in this
basic block). It then sets L(pi) = Si with r(pi, `

′
i) = 1 for

all `′i ∈ L(pi). We therefore simplify our objective formula by
removing the geometric distribution part, which is constant during
the training phase:

θ = arg max
θ

(∑
i

log g(p, `,m, θ) + λ1

∑
i

|θi|+ λ2

∑
i

θ2i

)

g(p, `,m, θ) =
exp (φ(p,m, `) · θ)∑

`′∈L(p)

∑
m′∈M(p,`′) exp (φ(p,m′, `′) · θ)

Figure 2 presents the Prophet learning algorithm. Combining
standard machine learning techniques, Prophet computes θ via
gradient descent as follows:

4 2015/7/13

Input : the training database D = {〈p1, δ1〉, . . . , 〈pn, δn〉}, where
pi is the original program and δi is the successful human
patch for pi.

Output: the feature weight parameter vector θ.
1 for i = 1 to n do
2 〈mi, `i〉 ←− δi
3 Li ←− NearLocations(pi, `i)

4 n0 ←− 0.85 · n
5 Initialize all elements in θ to 0

6 θ∗ ←− θ
7 α←− 1

8 γ∗ ←− 1

9 cnt ←− 0

10 while cnt < 200 do
11 Assume g(p, `,m,L, θ) =

eφ(p,m,`)·θ/(Σ`′∈LΣm′∈M(p,`′)e
φ(p,m′,`′)·θ)

12 Assume f(θ) =
1
n0
· Σn0

i=1 log g(pi, `i,mi, Li, θ) + λ1 · Σki=1|θi|+ λ2|θ|2
13 θ ←− θ + α · ∂f

∂θ

14 γ ←− 0

15 for i = n0 + 1 to n do
16 tot ←− |{m | m ∈M(pi, `), ` ∈ Li}|
17 rank ←− |{m | m ∈M(pi, `), ` ∈ Li,

g(pi, `,m,Li, θ) ≥ g(pi, `i,mi, Li, θ)}|
18 γ ←− γ + (rank/tot)/(n− n0)

19 if γ < γ∗ then
20 θ∗ ←− θ
21 γ∗ ←− γ
22 cnt ←− 0

23 else
24 cnt ←− cnt + 1

25 if α > 0.01 then
26 α←− 0.9 · α

27 return θ∗

Figure 2. Learning Algorithm

• AST Structural Difference: For each pair 〈pi, δi〉 in D,
Prophet computes the AST structural difference of δi to obtain
the corresponding modification operation mi and the modified
program point `i (lines 1-3). The function NearLocations(pi, `i)
at line 3 returns a set of program points that are close to the
known correct modification point `i. Prophet uses the returned
set as L(pi) to drive the learning.

• Initialization: Prophet initializes θ with all zeros. Prophet also
initializes the learning rate of the gradient descent (α at line 7)
to one. At line 4, Prophet splits the training set and reserves
15% of the training pairs as a validation set. Prophet uses this
validation set to measure the performance of the learning pro-
cess and avoid overfitting. Prophet uses the remaining 85% of
the training pairs to perform the gradient descent computation.

• Update Current θ: Prophet runs an iterative gradient descent
algorithm. Prophet updates θ at lines 11-13 at the start of each
iteration.

• Measure Performance: For each pair of 〈pi, δi〉 in the vali-
dation set, Prophet computes the percentage of candidate pro-
grams in the search space that have a higher probability score
than δi (lines 15-18). Prophet uses the average percentage (γ)
over all of the validation pairs to measure the performance of

c := c1 && c2 | c1 || c2 | v!=const | v==const
simps := v = v1 op v2 | v = const | print v

| skip | break
s := ` : simps | { s1 s2 . . . } | ` : if (c) s1 s2

| ` : while (c) s1
p := { s1 s2 . . . }
v, v1, v2 ∈ Var const ∈ Int ` ∈ Label
c, c1, c2 ∈ Cond s, s1, s2 ∈ Stmt
p ∈ Prog Atom = Var ∪ Int

Figure 3. The language statement syntax

Patch = Modification× Label Pos = {C,P,N}
MK = {InsertControl,InsertGuard,ReplaceCond,

ReplaceStmt,InsertStmt}
SK = {Assign,Print,While,Break,Skip,If}
ModFeature = MK ∪ (Pos× SK×MK)
ValueFeature = Pos×AC×AC
Stmt : Prog × Label→ Stmt
ApplyPatch : Prog ×Patch→ Prog × (Cond ∪ Stmt)
ModKind : Modification→MK
StmtKind : Stmt→ SK
ψ : Prog ×Atom× (Cond ∪ Stmt)→ AC
FIdx : (ModFeature ∪ValueFeature)→ Int

∀a, ∀b, (FIdx(a) = FIdx(b)) ⇐⇒ (a = b)

Figure 4. Definitions and notation. SK corresponds to the set
of statement kinds. MK corresponds to the set of modification
kinds. AC corresponds to the set of atomic characteristics that the
analysis function ψ extracts.

the current θ. Lower percentage is better because it indicates
that the learned model ranks correct patches higher among all
candidate patches.

• Update Best θ and Termination: θ∗ in Figure 2 corresponds
to the best observed θ. At each iteration, Prophet updates θ∗

at lines 19-22 if the performance (γ) of the current θ on the
validation set is better than the best previously observed perfor-
mance (γ∗). Prophet decreases the learning rate α at lines 25-26
if θ∗ is not updated. If it does not update θ∗ for 200 iterations,
the Prophet learning algorithm terminates and returns θ∗ as the
result.

3.3 Feature Selection
Figure 3 presents the syntax of a simple programming language

which we use to illustrate the Prophet feature extraction algorithm.
See Section 3.5 for the implementation details of extending this
algorithm to C programs. Each of the statements (except compound
statements) is associated with a unique label `. A program p in the
language corresponds to a compound statement. The semantics of
the language in Figure 3 is similar to C. We omit the operational
semantics details for brevity.

Figure 4 presents the notation we use to present our feature ex-
traction algorithm. Figure 5 presents our feature extraction algo-
rithm. Given a program p, a program point `, and a modification
operation m that is applied at `, Prophet extracts features by ana-
lyzing both m and the original code near `.

Prophet first partitions the statements near ` in the original pro-
gram p into three sets SC, SP, and SN based on the relative positions
of the statements (lines 1-3). SC contains only the statement associ-
ated with the modification point ` (returned by the utility function
Stmt). SP contains the statements that appear at most three state-

5 2015/7/13

Input : the input program p, the modified program point `, and the
modification operation m

Output: the extracted feature vector φ(p, `,m)
1 Initialize all elements in φ to 0
2 SC ←− {Stmt(p, `)}
3 SP ←− Prev3stmts(p, `))

4 SN ←− Next3stmts(p, `))

5 idx ←− FIdx(ModKind(m))

6 φidx ←− 1

7 for i in {C,P,N} do
8 for s in Si do
9 idx ←− Fid(〈i, StmtKind(s),ModKind(m)〉)

10 φidx ←− 1

11 〈p′,n〉 ←− ApplyPatch(p, 〈m, `〉)
12 for i in {C,P,N} do
13 for a in Atoms(n) do
14 for s in Si do
15 for ac′ in ψ(p′, a,n) do
16 for ac in ψ(p, a, s) do
17 idx ←− FIdx(〈i, ac, ac′〉)
18 φidx ←− 1

19 return φ

Figure 5. Feature Extraction Algorithm

ments before ` in the enclosing compound statement (returned by
the utility function Prev3stmts). SN contains the statements that
appear at most three statements after ` in the enclosing compound
statement (returned by the utility function Next3stmts).

Prophet then extracts two types of features, modification fea-
tures (lines 5-10) and program value features (lines 11-18). Modi-
fication features capture relationships between the modification m
and the surrounding statements, while program value features char-
acterize how the modification works with program values (i.e., vari-
ables and constants) in the original and patched code. For each ex-
tracted feature, Prophet sets the corresponding bit in θ whose index
is identified by the utility function FIdx (lines 5-6, lines 9-10, and
lines 17-18). FIdx maps each individual feature to a unique integer
value.
Modification Features: There are two possible forms of modifi-
cation features. The first is simply the kind of modification that m
applies. The second are designed to capture relationships between
the kinds of statements that appear near the patched statement in
the original program and the modification kind ofm. So, for exam-
ple, if successful patches often insert a guard condition before a call
statement, a modification feature will enable Prophet to recognize
and exploit this fact.

At lines 5-6 in Figure 5, Prophet extracts the modification kind
of m as the modification feature. At lines 7-10, Prophet also ex-
tracts the triple of the position of an original statement, the kind of
the original statement, and the modification kind of m as the modi-
fication feature. At line 9, the utility function StmtKind(s) returns
the statement kind of s and the utility function ModKind(m) re-
turns the modification kind of m.

Prophet currently classifies modification operations into five
kinds: InsertControl (inserting a potentially guarded control
statement before a program point), AddGuardCond (adding a
guard condition to an existing statement), ReplaceCond (replac-
ing a branch condition), InsertStmt (inserting a non-control
statement before a program point), and ReplaceStmt (replacing

an existing statement). See Figure 4 for the definition of modifica-
tion features, statement kinds, and modification kinds.
Program Value Features: Program value features are designed to
capture relationships between how variables and constants are used
in the original program and how they are used in the patch. For ex-
ample, if successful patches often insert a check involving a vari-
able that is subsequently passed as a parameter to a subsequent call
statement, a program value feature will enable Prophet to recognize
and exploit this fact. Program value features relate occurrences of
the same variable or constant in the original and patched programs.

To avoid polluting the feature space with surface-level application-
specific information, program value features abstract away the spe-
cific names of variables and values of constants involved in the
relationships that these features model. This abstraction enables
Prophet to learn program value features from one application and
then apply the learned knowledge to another application.

To extract the features, Prophet first applies the patch to the
original program at line 11 in Figure 5. ApplyPatch(p, 〈m, `〉)
denotes the results of the patch application, which produces a pair
〈p′,n , where p′ is the new patched program and n is the AST
node for the new statement or condition that the patch introduces.
Prophet then performs a static analysis on both the repaired pro-
gram and the original program to extract a set of atomic charac-
teristics for each program atom a (i.e., a variable or an integer). In
Figure 5, ψ(p, a,n) denotes the set of atomic characteristics ex-
tracted for a in n .

At lines 12-18, Prophet extracts each program value feature,
which is a triple 〈i, ac, ac′〉 of the position i of a statement in the
original program, an atomic characteristic ac of a program atom
in the original statement, and an atomic characteristic ac′ of the
same program atom in the AST node that the patch introduces.
Intuitively, the program value features track co-occurrences of each
pair of the atomic characteristic ac in the original code and the
atomic characteristic ac′ in the modificationm. The utility function
Atoms(n) at line 12 returns a set that contains all program atoms
(i.e., program variables and constants) in n .

Figure 6 presents the static analysis rules that Prophet uses to
extract atomic characteristics ψ(p, v,n). These rules track the roles
that v plays in the enclosing statements or conditions and record
the operations in which v participates. Note that Prophet can work
with any static analysis to extract arbitrary atomic characteristics.
It is therefore possible, for example, to combine Prophet with more
sophisticated analysis algorithms to obtain a richer set of atomic
characteristics.

3.4 Repair Algorithm
Given a program p that contains a defect, the goal of Prophet is
to find a correct patch δ that eliminates the defect and correctly
preserves the other functionality of p. We use an oracle function
Oracle to define patch correctness, specifically Oracle(p, δ) =
true if and only if δ correctly patches the defect in p.

Note that Oracle is hidden. Instead, Prophet assumes that the
user provides a test suite which exposes the defect in the original
program p. We use the test suite to obtain an approximate oracle
T such that Oracle(p, δ) implies T (p, δ). Specifically, T (p, δ) =
true if and only if the patched program passes the test suite, i.e.,
produces correct outputs for all test cases in the test suite.
Repair Algorithm: Figure 7 presents the Prophet repair algorithm.
Prophet generates a search space of candidate patches and uses the
learned probabilistic model to prioritize potentially correct patches.
Specifically, Prophet performs the following steps:

6 2015/7/13

ψ : Prog ×Atom× (Cond ∪ Stmt)→ AC ψ(p, a,node) = ψ0(a,node) ∪ ψ1(a,node)
AC = {var, const0, constn0, cond, if, prt, loop, ==, !=〈op, L〉, 〈op, R〉, 〈=, L〉, 〈=, R〉}

v ∈ Var

ψ0(v,node) = {var}
const = 0

ψ0(const,node) = {const0}
const ∈ Int const 6= 0

ψ0(const,node) = {constn0}
a /∈ Atoms(node)

ψ1(a,node) = ∅

c = “v==const”

ψ1(v, c) = {cond, ==} ψ1(const, c) = {cond, ==}
c = “v!=const”

ψ1(v, c) = {cond, !=} ψ1(const, c) = {cond, !=}

c = “c1 && c2” or c = “c1 || c2” a ∈ Atoms(c)

ψ1(a, c) = ψ1(a, c1) ∪ ψ1(a, c2)

s = “` : v = v1 op v2”

ψ1(v, s) = {〈=, L〉} ψ1(v1, s) = {〈op, L〉, 〈=, R〉} ψ1(v2, s) = {〈op, R〉, 〈=, R〉}

s = “` : v=const”

ψ1(v, s) = {〈=, L〉} ψ1(const, s) = {〈=, R〉}
s = “` : print v”

ψ1(v, s) = {prt}
s = “` : while (c) s1” a ∈ Atoms(s)

ψ1(a, s) = ψ1(a, c) ∪ ψ1(a, s1) ∪ {loop}

s = “{s1, s2, . . .}” a ∈ Atoms(s)
ψ1(a, s) = ψ1(a, s1) ∪ ψ1(a, s2) ∪ · · ·

s = “` : if (c) s1 s2” a ∈ Atoms(s)

ψ1(a, s) = ψ1(a, c) ∪ ψ1(a, s1) ∪ ψ1(v, s2) ∪ {if}

Figure 6. Atomic Characteristic Extraction Rules for ψ(p, a,n)

Input : the original program p, the test suite T and the learned
model parameter vector θ

Output: the generated patch δ or NULL is failed
1 L←− DefectLocalizer(p,T)

2 Candidates ←− ∅
3 for 〈`, rank〉 in L do
4 for m in M(p, `) do
5 prob_score ←− (1− β)rank−1 · β · eφ(p,`,m)·θ

6 Candidates ←− Candidates ∪ {〈prob_score,m, `〉}

7 SortedCands ←− SortWithFirstElement(Candidates)

8 for 〈_,m, `〉 in SortedCands do
9 δ ←− 〈m, `, 〉

10 if T (p, δ) = true then
11 return δ

12 return NULL

Figure 7. Prophet Repair Algorithm

• Generate Search Space: At line 1, Prophet runs the defect
localization algorithm (DefectLocalizer()) to return a ranked
list of candidate program points to modify. At lines 2-6, Prophet
then generates a search space that contains candidate patches
for all of the candidate program points.

• Rank Candidate Patch: At lines 5-6, Prophet uses the learned
θ to compute the probability score for each candidate patch. At
line 7, Prophet sorts all candidate patches in the search space
based on their probability score. Note that the score formula at
line 5 omits the constant divisor from the formula of P (δ|p),
because it does not affect the sort results.

• Validate Candidate Patch: At lines 8-11, Prophet finally tests
all of the candidate patches one by one in the sorted order
with the supplied test suite (i.e., T). Prophet outputs the first
candidate patch that passes the test suite.

3.5 Implementation
We implement Prophet on top of SPR [12, 13], a previous patch
generation system.
Defect Localization: The Prophet defect localizer recompiles the
given application with additional instrumentation. It inserts a call
back before each statement in the source code to record a positive

counter value as the timestamp of the statement execution. Prophet
then invokes the recompiled application on all test cases.

For a statement s and a test case i, t(s, i) is the recorded
execution timestamp that corresponds to the last timestamp from an
execution of the statement s when the application runs with the test
case i. If the statement s is not executed at all when the application
runs with the test case i, then t(s, i) = 0.

We use the notation NegT for the set of negative test cases
that expose the defect of the program and PosT for the set of
positive test cases that the original program already passes. Prophet
computes three scores a(s), b(s), c(s) for each statement s:

a(s) = | {i | t(s, i) 6= 0, i ∈ NegT} |
b(s) = | {i | t(s, i) = 0, i ∈ PosT} |
c(s) = Σi∈NegTt(s, i)

A statement s1 has higher priority than a statement s2 if
prior(s1, s2) = 1, where prior is defined as:

prior(s1, s2) =

1 a(s1) > a(s2)
1 a(s1) = a(s2), b(s1) > b(s2)

1 a(s1) = a(s2), b(s1) = b(s2),
c(s1) > c(s2)

0 otherwise

Intuitively, Prophet prioritizes statements that 1) are executed
with more negative test cases, 2) are executed with fewer positive
test cases, and 3) are executed later during executions with negative
test cases. Prophet considers the first 200 statements as potential
statements for modification.

Note that the probabilistic model and the repair algorithm are in-
dependent from the defect localization component. Prophet can in-
tegrate with any defect localization technique that returns a ranked
list of target program points to patch. It is therefore possible to
combine Prophet with other (potentially more accurate) defect lo-
calization techniques [2, 7, 27].
Search Space: The Prophet probabilistic model can work with
any search space of candidate patches. The current implementa-
tion of Prophet operates on the same search space as SPR. This
search space is derived from a set of parameterized transforma-
tion schemas that Prophet applies to target statements identified by
the defect localization algorithm [12, 13]. These schemas gener-
ate patches that either 1) (Tighten) tighten the condition of a target
if statement (by conjoining a condition C to the if condition), 2)
(Loosen) loosen the condition of a target if statement (by disjoin-

7 2015/7/13

Commutative Is an operand of
Operators +, *, ==, or !=
Binary Is a left/right operand of
Operators -, /, <, >, <=, >=, . (field access),

-> (member access), or [] (index)
Unary Is an operand of
Operators -, ++ (increment), -- (decrement),

* (dereference), or & (address-taken)
Enclosing Occurs in an assign/loop/return/if statement
Statements Occurs in a branch condition

Is a function call parameter
Is the callee of a call statement

Value Is a local variable, global variable, argument,
Traits struct field, constant, non-zero constant,

zero, or constant string literal
Has an integer, pointer, or struct pointer type
Is dereferenced

Patch Is inside an abstract expression
Related Is replaced by the modification operation

Figure 8. Atomic Characteristics of Program Values for C

ing a condition C to the if condition), 3) (Add Guard) add a guard
with a conditionC to a target statement, 4) (Insert Guarded Control
Flow) insert a new guarded control flow statement (if (C) return; if
(C) break; or if (C) goto l; where l is an existing label in the pro-
gram and C is the condition that the guard enforces) before the
target statement, 5) (Initialize) insert a memory initialization state-
ment before the target statement, 6) (Replace) replace one value in
the target statement with another value, or 7) (Copy and Replace)
copy an existing statement before the target statement and replace
a value in the copied statement with another value. Prophet uses
condition synthesis [12, 13] to synthesize an appropriate condition
C.

SPR uses a set of hand-coded heuristics to prioritize its search
of the generated patch space. These heuristics prioritize patches in
the following order: Tighten, Loosen, Insert Guarded Control Flow
before the first statement in a compound statement (i.e., a C code
block), Add Guard, Initialization, Insert Guarded Control Flow be-
fore a statement that is not the first statement in a compound state-
ment, Replace or Copy and Replace before the first statement in a
compound statement, and finally all other patches. For each kind
of patch, it prioritizes statements to patch in the defect localization
order. So SPR first tests all Tighten patches on all target statements
that the defect localizer identifies, then all Loosen patches on all
identified target statements, and so on. Instead of these heuristics,
Prophet uses its learned probabilistic patch correctness model to
prioritize its search of the generated patch space.
Feature Extraction for C: Prophet extends the feature extrac-
tion algorithm described in Section 3.3 to C programs as follows.
Prophet treats call expressions in C as a special statement kind for
feature extraction. Prophet extracts atomic characteristics for bi-
nary and unary operations in C. For each variable v, Prophet also
extracts atomic characteristics that capture the scope of the vari-
able (e.g., global or local) and the type of the variable (e.g., integer,
pointer, pointer to structure). The current Prophet implementation
tracks over 30 atomic characteristics (see Figure 8 for a list of these
atomic characteristics) and works with a total of 3515 features, in-
cluding 455 modification features and 3060 program value features.
Features for Abstract Expressions: For certain kinds of candi-
date patches, the SPR staged program repair algorithm generates

Project Revisions Used for Training
apr 12
curl 53
httpd 75
libtiff 11
php 187
python 114
subversion 240
wireshark 85
Total 777

Figure 9. Statistics of Collected Developer Patch Database

candidate patch templates with abstract expressions. SPR first val-
idates each patch template. It generates concrete patches from the
template only if the patch template validation determines that there
may be a concrete patch that passes the supplied test case. This op-
timization significantly reduces the number of concrete patches the
system attempts to validate.

To integrate with the staged program repair technique, Prophet
extends its probabilistic model and the learning algorithm to op-
erate on candidate patch templates which may contain an abstract
expression. The templates only specify the variables in these ab-
stract expressions but do not determine the concrete forms of these
expressions. Prophet treats abstract expressions as a special type
of AST node for feature extraction. Prophet also extracts atomic
characteristics to indicate whether program variables are inside an
abstract expression in a patch template (see Figure 8).

4. Experimental Results
We evaluate Prophet on 69 real world defects in eight large open
source applications: libtiff, lighttpd, the PHP interpreter, gmp, gzip,
python, wireshark, and fbc. These defects are from the same bench-
mark set used to evaluate GenProg, AE, and SPR [11–13, 25]. For
each defect, the benchmark set contains a test suite with positive
test cases (for which the unpatched program produces correct out-
puts) and at least one negative test case that exposes the defect (the
unpatched program produces incorrect outputs for the negative test
cases).

Note that this benchmark set is reported to contain 105 de-
fects [11]. An examination of the revision changes and correspond-
ing check in entries indicates that 36 of these reported defects
are not, in fact, defects. They are instead deliberate functionality
changes [12, 13]. Because there is no defect to correct, they are
therefore outside the scope of Prophet. We nevertheless also report
results for Prophet on these functionality changes.

4.1 Methodology
Collect Successful Human Patches: We first collect 777 success-
ful human patches from eight open source project repositories. Fig-
ure 9 presents statistics for the collected patch database. These 777
patches include all patches in these eight project repositories that
1) compile in our environment (this is a requirement for applying
the Prophet learning algorithm, which operates on abstract syntax
trees), 2) are within the Prophet search space, and 3) (as indicated
by an automated analysis of the check-in entries) repair defects (as
opposed, for example, to adding new functionality).
Train Prophet with Collected Database: We train Prophet with
the collected database of successful human patches. Note that our
collected code database and our benchmark set share four common
applications, specifically libtiff, php, python, and wireshark. For

8 2015/7/13

App LoC Tests Defects/
Changes

Plausible Correct
Prophet SPR GenProg AE Prophet SPR GenProg AE

libtiff 77k 78 8/16 5/0 5/0 3/0 5/0 2/0 1/0 0/0 0/0
lighttpd 62k 295 7/2 3/1 3/1 4/1 3/1 0/0 0/0 0/0 0/0
php 1046k 8471 31/13 16/2 15/2 5/0 7/0 10/0 9/0 1/0 2/0
gmp 145k 146 2/0 2/0 2/0 1/0 1/0 1/0 1/0 0/0 0/0
gzip 491k 12 4/1 2/0 2/0 1/0 2/0 1/0 0/0 0/0 0/0
python 407k 35 9/2 5/1 5/1 0/1 2/1 0/0 0/0 0/1 0/1
wireshark 2814k 63 6/1 4/0 4/0 1/0 4/0 0/0 0/0 0/0 0/0
fbc 97k 773 2/1 1/0 1/0 1/0 1/0 1/0 0/0 0/0 0/0
Total 69/36 38/4 37/4 16/2 25/2 15/0 11/0 1/1 2/1

Figure 10. Benchmark Applications and Patch Generation Results

each of these four applications, we train Prophet separately and
exclude the collected human patches of the same application from
the training data. The goal is to ensure that we measure the ability
of Prophet to apply the learned model trained with one set of
applications to successfully patch defects in other applications.
Reproduce Defects: We reproduce each defect in our experimen-
tal environment. We perform all of our experiments except those of
fbc on Amazon EC2 Intel Xeon 2.6GHz machines running Ubuntu-
64bit server 14.04. The benchmark application fbc runs only in
32-bit environments, so we use a virtual machine with Intel Core
2.7Ghz running Ubuntu-32bit 14.04 for the fbc experiments.
Apply Prophet to Defects: We use the trained Prophet to generate
patches for each defect. For comparison, we also run SPR on each
defect and obtain the results of GenProg [11] and AE [25] on this
benchmark set from previous work [20]. For each defect and each
patch generation system, we terminate execution after 12 hours.

To better understand how the probabilistic model, the learning
algorithm, and the features affect the result, we also run four vari-
ants of Prophet, specifically Random (a naive random search al-
gorithm that prioritizes the generated patches in a random order),
Baseline (a baseline algorithm that prioritizes patches in the error
localization order, with patches that modify the same statement pri-
oritized in an arbitrary order), MF (an variant of Prophet with only
modification features; program value features are disabled), and PF
(a variant of Prophet with only program value features; modifica-
tion features are disabled). All of these variants, Prophet, and SPR
differ only in the patch validation order, i.e., they operate with the
same patch search space and the same set of optimizations for val-
idating candidate patches.

Note that GenProg and AE require the user to specify the source
file name to modify when the user applies GenProg and AE to an
application that contains multiple source files (all applications in
our benchmark set contain multiple source files) [20]. Prophet and
SPR do not have this limitation.
Evaluate Generated Patches: We manually analyze each gener-
ated patch to determine whether the generated patch is a correct
patch or just a plausible but incorrect patch that produces correct
outputs for all of the inputs in the test suite.

We acknowledge that, in general, determining whether a spe-
cific patch corrects a specific defect can be difficult (or in some
cases not even well defined). We emphasize that this is not the case
for the patches and defects that we consider here. The correct be-
havior for all of the evaluated defects is clear, as is patch correctness
and incorrectness. Furthermore, subsequent developer patches are
available for all of the defects in our benchmark set. Our manual
code analysis indicates that each of the generated correct patches

in our experiments is semantically equivalent to the subsequent de-
veloper patch for that defect.

4.2 Patch Generation Result Summary
Figure 10 summarizes the patch generation results for Prophet,
SPR, GenProg, and AE. There is a row in the table for each bench-
mark application. The first column (App) presents the name of
the benchmark application, the second column (LoC) presents the
number of lines of code in each application, the third column
(Tests) presents the number of test cases in the test suite for that
application. The fourth column (Defects/Changes) contains entries
of the form X/Y, where X is the number of exposed defects in each
application and Y is number of exposed functionality changes. The
benchmark set contains a total of 69 exposed defects and 36 ex-
posed functionality changes.

The fifth through eighth columns (Plausible) summarize the
plausible patches that each system generates. Each entry is of the
form X/Y, where X is the number of the 69 defects for which
the corresponding system generates at least one plausible patch
(that passes the supplied test suite) and Y is the number of the 36
functionality changes for which each system generates at least one
plausible patch (that passes the supplied test suite).

The ninth through twelfth columns (Correct) summarize the cor-
rect patches that each system generates. Each entry is of the form
X/Y, where X is the number of the 69 defects for which the cor-
responding system generates a correct patch (as the first gener-
ated plausible patch) and Y is the number of the 36 functionality
changes for which each system generates a correct patch (as the
first generated plausible patch).

The results show that Prophet generates correct patches for
more defects than SPR, GenProg, and AE (four more defects than
SPR, 14 more than GenProg, and 13 more than AE). One potential
explanation for the underperformance of GenProg and AE is that
the correct Prophet and SPR patches are outside the search spaces
of these systems [12, 13, 20].

We attribute the overall success of Prophet to the ability of
its learned model to recognize and prioritize correct patches. Our
analysis indicates that the Prophet search space contains correct
patches for 19 defects in our benchmark applications. With its
learned model, Prophet automatically generates correct patches for
15 out of the 19 defects (79%), while SPR, with its hand-coded
heuristics, generates correct patches for 11 out of the 19 defects
(59%).

4.3 Comparison of Different Systems
Figure 11 presents results from different patch generation systems.
The first column (System) presents the name of each system (Ran-

9 2015/7/13

System Corrected Defects Mean Rank Timein Search Space
Prophet 15 Top 11.7% 138.5m
Random 7 Top 41.8% 318.1m
Baseline 8 Top 20.8% 206.6m
MF 10 Top 12.2% 144.9m
PF 13 Top 12.4% 125.3m
SPR 11 Top 17.5% 89.0m
GenProg 1 N/A N/A
AE 2 N/A N/A

Figure 11. Comparative Results for Different Systems. For the
results of “Mean Rank in Search Space”, the lower ones are better.

dom, Baseline, MF, and PF are variants of Prophet with different
capabilities disabled, see Section 4.1). The second column (Cor-
rected Defects) presents the number of the 69 defects for which the
system produces at least one correct patch. The underlying Prophet
search space contains correct patches for 19 of these 69 defects.
Prophet, MF, and PF generate plausible patches for all of these 19
defects; Baseline generates plausible patches for 18 of these 19 de-
fects (see Figure 12). Random generates plausible patches for 15 of
these 19 defects.

The third column (Mean Rank in Search Space) presents a per-
centage number, which corresponds to the mean rank, normalized
to the size of the search space per defect, of the first correct patch
in the patch prioritization order of each system. This number is an
average over the 19 defects for which the search space of these
systems contains at least one correct patch. “Top X%” in an entry
indicates that the corresponding system prioritizes the first correct
patch as one of top X% of the candidate patches in the search space
on average. Note that we run the random search algorithm with the
default random seed to obtain its results in the figure.

Our results show that Prophet delivers the highest average rank
(11.7%) for the first correct patch in the search space. The results
also highlight the importance of the probabilistic model in enabling
Prophet to generate correct patches — the Random and the Base-
line systems, which operate without a probabilistic model or heuris-
tics, generate only 7 and 8 correct patches, respectively.

Our results also indicate that the learned model is especially
important for Prophet to identify correct patches among the poten-
tially multiple plausible patches that pass a supplied test suite. The
Baseline system has a significantly better rank percentage than the
Random system, but generates a correct patch for only one more
defect than the Random system. Without the learned model, the
Baseline algorithm has difficulty recognizing and prioritizing cor-
rect patches over plausible but incorrect patches.

The results also highlight how program value features are more
important than modification features for distinguishing correct
from plausible but incorrect patches. We observed a common sce-
nario that the search space contains multiple plausible patches with
different program variables. In these scenarios, the learned model
with program value features enables PF (and Prophet) to identify
the correct patch among these multiple plausible patches.

The fourth column (Time) in Figure 11 presents the average
running time of each system over all defects for which the system
generates a correct patch. Our results show that Prophet requires,
on average, less than two and half hours to generate each correct
patch. Note that it is not possible to directly compare the running
times of different systems because each system generates correct
patches for a different set of defects.

During our experiments, we observed that for all of the tested
systems the patch validation (i.e., update the source code with each
candidate patch, recompile the updated application, and run all of
the supplied test cases) is by far the most time consuming step —
it takes more than 95% of the running time.

4.4 Per-Defect Results
Figure 12 presents detailed results for each of the 19 defects for
which the Prophet search space contains correct patches. The fig-
ure contains a row for each defect. Each entry in the first column
(Defect) is of the form X-Y-Z, where X is the name of the appli-
cation that contains the defect, Y is the defective revision in the
repository, and Z is the revision in which the developer repaired the
defect. Each entry of the second column (Search Space) is of the
form X(Y), where X is the total number of candidate patches and
candidate patch templates (see Section 3.5) that Prophet and SPR
consider in the patch search space and Y is the number of correct
patches in the search space.

The third through seventh columns (First Correct Patch Rank)
present the correct patch generation results for each system. The
number in each entry is the rank of the first correct patch in the
patch validation order for each system. “X” in an entry indicates
that the corresponding system successfully generates this correct
patch as its first plausible patch. “4” in an entry indicates that
the algorithm generates a plausible but incorrect patch before it
reaches its first correct patch. “X” indicates that the algorithm fails
to generate any plausible patch in 12 hours.

The eighth through twelfth columns (Correct/Plausible Patches
in Space) present the statistics of plausible patches in the search
space. Each entry is of the form X/Y. Y is the total number of
plausible patches the corresponding system generates if we run the
system on the corresponding defect exhaustively for 12 hours. X is
the rank of the first correct patch among these generated plausible
patches. “-” indicates that there is no correct patch among these
generated plausible patches.

Our results show that for 5 out of the 19 cases (php-307562-
307561, php-307846-307853, php-309516-309535, php-310991-
310999, and php-307914-307915), all generated plausible patches
are correct. The results indicate that for these five cases, the sup-
plied test suite is strong enough to identify correct patches. There-
fore any patch generation order is sufficient as long as it allows the
patch generation system to find a correct patch within 12 hours. In
fact, all five algorithms in Figure 12 generate correct patches for
these 5 cases.

Prophet generates correct patches for 10 out of the remaining
14 defects, while SPR only generates correct patches for 6 of these
14 defects. Note that SPR empirically prioritizes candidate patches
that change existing branch conditions above all other candidate
patches in the search space [12, 13]. This rule conveniently al-
lows SPR to generate correct patches for php-309579-309580, php-
309892-309910, and php-311346-311348.

Prophet outperforms SPR on four cases, php-308262-308315,
libtiff-d13be-ccadf, gzip-a1d3d4-f17cbd, and fbc-5458-5459. For
php-308262-308315, the correct patch inserts an if statement guard
for an existing statement. Prophet successfully prioritizes the cor-
rect patch as one of top 2% in the patch prioritization order, while
the SPR hand-coded heuristics prioritize patches that add a guard
statement below patches that change a branch condition. Because
of this lower priority, SPR is unable to find the correct patch within
12 hours.

For gzip-a1d3d4-f17cbd, an initialization statement can be in-
serted at multiple candidate locations to pass the supplied test case,

10 2015/7/13

Defect Search Space First Correct Patch Rank Correct/Plausible Patches in Space
Prophet SPR MF PF Baseline Prophet SPR MF PF Baseline

php-307562-307561 29530(1) 3109X 4925X 19X 4444X 4435X 1/1 1/1 1/1 1/1 1/1
php-307846-307853 22106(1) 10744X 3819X 11116X 10214X 5904X 1/1 1/1 1/1 1/1 1/1
php-308734-308761 14281(2) 5438X 5721X 7412X 46504 12662X 1/4 1/4 1/4 3/4 1/4
php-309516-309535 27098(1) 10864X 4000X 9303X 9682X 8042X 1/1 1/1 1/1 1/1 1/1
php-309579-309580 51260(1) 829X 46X 19774 499X 37754 1/2 1/2 2/2 1/2 2/2
php-309892-309910 36533(4) 496X 179X 2174 879X 1523X 1/21 1/17 4/21 1/21 1/21
php-310991-310999 87574(2) 888X 384X 351X 1342X 5061X 1/1 1/2 1/2 1/1 1/2
php-311346-311348 8730(2) 27X 312X 125X 38X 9774 1/49 1/50 1/49 1/49 12/50
php-308262-308315 81110(1) 1561X 7189X 3094X 2293X 6784X 1/2 -/0 1/2 1/2 -/0
php-309688-309716 60787(1) 36324 83384 22264 15474 63404 38/47 -/17 44/50 29/57 -/25
php-310011-310050 68534(1) 12974 306474 56294 31454 55814 6/48 -/22 -/76 8/41 -/33
php-309111-309159 51995(1) 77884 236664 70414 181064 43084 9/10 3/10 9/10 10/10 8/10
php-307914-307915 45362(1) 1X 5748X 2703X 1X 5110X 1/1 1/1 1/1 1/1 1/1
libtiff-ee2ce-b5691 171340(1) 280X 13296X 174X 44X 3354 1/328 1/328 1/328 1/328 2/328
libtiff-d13be-ccadf 296165(1) 1179X 3724 46714 1333X 7144 1/1423 3/1723 2/1723 1/1423 2/1723
libtiff-5b021-3dfb3 219464(1) 511864 565694 82354 609134 1330184 -/242 206/237 178/210 -/202 -/147
gmp-13420-13421 49929(2) 13834X 14526X 3214X 13329X 41319X 1/3 1/3 1/3 1/3 1/3
gzip-a1d3d4-f17cbd 47413(1) 1866X 218854 164494 7064 41234 1/14 4/14 5/14 2/14 3/14
fbc-5458-5459 9788(1) 33X 4544 7414 27X 6864 1/37 8/37 5/37 1/37 5/38

Figure 12. Per-Defect Results

but not all of the resulting patches are correct. Prophet successfully
identifies the correct patch among multiple plausible patches, while
the SPR heuristics prioritize an incorrect patch that inserts the ini-
tialization at the start of a basic block.

For libtiff-d13be-ccadf and fbc-5458-5459, there are multiple
candidate program variables that can be used to tighten a branch
condition to enable the resulting patched program to pass the sup-
plied test suite. The learned program value features enable Prophet
(and PF) to successfully identify and prioritize correct patches
that manipulate the right variables. The SPR heuristics (and MF,
which operates without program value features) incorrectly priori-
tize patches that manipulate the wrong variables.

5. Related Work
We next survey related work in automatic patch generation. In
general, one of the key features that distinguishes Prophet from
many of other systems is its ability to generate correct patches for
large software projects containing hundreds of thousands of lines
of code. Previous patch generation systems that are evaluated on
applications in similar scale include SPR [12, 13], CodePhage [24],
ClearView [18], GenProg [11], RSRepair [19], AE [25], Kali [20],
PAR [8], and NOPOL [3, 6].
SPR: SPR is the current state-of-the-art generate-and-validate
(search-based) patch generation system [12] for large applications.
SPR applies a set of transformation schemas to generate a search
space of candidate patches. It then uses its staged program repair
technique to validate the generated patches using a test suite of test
cases, at least one of which exposes a defect in the original pro-
gram. A patch validates if it produces correct outputs for all test
cases in the test suite. SPR uses a set of hand-coded heuristics to
guide the exploration of the search space.

Prophet works with the same patch search space as SPR but
differs in that it learns characteristics of successful patches devel-
oped by human developers, then uses these characteristics to guide
the exploration of the search space. Our experimental results show
that this learned information enables Prophet to more effectively
recognize and prioritize correct patches than the hand-coded SPR
heuristics.
CodePhage: CodePhage automatically locates correct code in one
application, then transfers that code to eliminate defects in another
application [24]. CodePhage has been applied to eliminate other-

wise fatal integer overflow, buffer overflow, and divide by zero
errors. CodePhage relies on the existence of donor applications
that already contain the exact program logic required to eliminate
the defect. Prophet, in contrast, learns characteristics of success-
ful patches to guide the exploration of an automatically generated
search space of newly synthesized candidate patches.
JSNICE: JSNICE [21] is a JavaScript beautification tool that au-
tomatically predicts variable names and generates comments to an-
notate variable types for JavaScript programs. JSNICE first learns,
from a “big code” database, a probabilistic model that captures
common relationships between the syntactic elements (e.g., the
variable names) and the semantic properties (e.g., variable types
and operations) of JavaScript programs. Then for a new JavaScript
program, it produces a prediction that maximizes the probability in
the learned model.

Unlike JSNICE, the goal of Prophet is to produce correct
patches for defective programs. Prophet therefore aspires to solve
deep semantic problems associated with automatically generating
correct program logic. To this end, Prophet works with a proba-
bilistic model that combines defect localization information with
learned characteristics of successful patches. Prophet extracts a
set of powerful features (especially program value features) that
abstract away application-specific syntactic elements of the pro-
gram to summarize useful application-independent characteristics
of successful patches.
GenProg, RSRepair, AE, and Kali: GenProg [11, 26] uses a
genetic programming algorithm to search a space of patches, with
the goal of enabling the application to pass all considered test cases.
RSRepair [19] replaces the GenProg genetic search algorithm to
instead use random search. AE [25] uses a deterministic patch
search algorithm and uses program equivalence relations to prune
equivalent patches during testing.

An analysis of the generated patches shows that the overwhelm-
ing majority of the patches that these three systems generate are
incorrect [20]. Because of errors in the patch validation infrastruc-
ture, the majority of the generated patches do not produce correct
results even for the test cases in the test suite used to validate the
patches [20]. Further analysis of the patches that do produce correct
outputs for the test suite reveals that despite the surface complexity
of these patches, an overwhelming majority of these patches sim-

11 2015/7/13

ply remove functionality [20]. The Kali patch generation system,
which only eliminates functionality, can do as well [20].

Prophet differs in that it works with a richer space of candidate
patches, uses learned features of successful patches to guide its
search, and generates substantially more correct patches.
Repair with Formal Specifications: Deductive Program Repair
formalizes the program repair problem as a program synthesis
problem, using the original defective program as a hint [10]. It
replaces the expression to repair with a synthesis hole and uses
a counterexample-driven synthesis algorithm to find a patch that
satisfies the specified pre- and post-conditions. AutoFixE [17] is
a program repair tool for Eiffel programming language. AutoFixE
leverages the developer-provided formal specifications (e.g., post-
condtions, pre-conditions, and invariants) to automatically find and
generate repairs for defects. Cost-aware Program Repair [23] ab-
stracts a C program as a boolean constraint, repairs the constraint
based on a cost model, and then concretizes the constraint back to
a repaired C program. The goal is to find a repaired program that
satisfies all assertions in the program with minimal modification
cost. The technique was evaluated on small C programs (less than
50 lines of code) and requires human intervention to define the cost
model and to help with the concretization.

Prophet differs from these techniques in that it works with large
real world applications where formal specifications are typically
not available. Note that the Prophet probabilistic model and the
Prophet learning algorithm can apply to these specification-based
techniques as well, i.e., if there are multiple patches that satisfy the
supplied specifications, the learned model can be used to determine
which patch is more likely to be correct.
PAR: PAR [8] is another automatic patch generation system. Un-
like Prophet, which uses a probabilistic model and machine learn-
ing techniques to automatically learn useful characteristics of past
successful patches, PAR is based on a set of predefined patch
templates that the authors manually summarize from past human
patches. We are unable to directly compare PAR with Prophet be-
cause, despite repeated requests to the authors of the PAR paper
over the course of 11 months, the authors never provided us with
the patches that PAR was reported to have generated [8]. A manual
analysis indicates that the PAR search space (with the eight hand-
coded templates in the PAR paper [8]) is in fact a subset of the
Prophet/SPR search space [12, 13].
Angelic Debugging: Angelic Debugging [2] relaxes the program
semantics to support angelic expressions that may take arbitrary
values and identifies, in a program, those expressions which, if
converted into angelic expressions, enable the program to pass the
supplied test cases. Prophet could use the methodology of Angelic
Debugging to improve its error localization component.
NOPOL and SemFix: NOPOL [3, 6] applies the angelic debug-
ging technique to locate conditions that, if changed, may enable
defective JAVA program to pass the supplied test suite. It then
uses an SMT solver to synthesize repairs for such conditions. Sem-
Fix [16] replaces a potentially faulty expression in a program with
a symbolic value, performs symbolic executions on the supplied
test cases to generate symbolic constraints, and uses SMT solvers
to find concrete expressions that enable the program to pass the test
cases.

Prophet differs from NOPOL and SemFix [16] in that these
techniques rely only on the information from the supplied test
cases with the goal of finding plausible (but not necessarily cor-
rect) patches. Prophet learns features of past successful patches to
recognize and prioritize correct patches among multiple plausible
patches.

ClearView: ClearView is a generate-and-validate system that ob-
serves normal executions to learn invariants that characterize safe
behavior [18]. It deploys monitors that detect crashes, illegal con-
trol transfers and out of bounds write defects. In response, it selects
a nearby invariant that the input that triggered the defect violates,
and generates patches that take a repair action to enforce the invari-
ant.
Repair Model: Martinez and Monperrus manually analyze previ-
ous human patches and suggest that if a patch generation system
works with a non-uniform probabilistic model, the system would
find plausible patches in its search space faster [15]. In contrast,
Prophet automatically learns a probabilistic model from past suc-
cessful patches. Prophet is the first patch generation system to oper-
ate with such a learned model. The goal is to automatically identify
correct patches among the plausible patches in the search space.
Data Structure Repair: Data structure repair enables applications
to recover from data structure corruption errors [5]. Data struc-
ture repair enforces a data structure consistency specification. This
specification can be provided by a human developer or automati-
cally inferred from correct program executions [4].
Targeted Recovery Techniques: Failure-oblivious computing [22]
checks for out of bounds reads and writes. It discards out of bounds
writes and manufactures values for out of bounds reads. This elimi-
nates data corruption from out of bounds writes, eliminates crashes
from out of bounds accesses, and enables the program to continue
execution along its normal execution path.

RCV [14] enables applications to survive null dereference and
divide by zero errors. It discards writes via null references, returns
zero for reads via null references, and returns zero as the result of
divides by zero. Execution continues along the normal execution
path.

Bolt [9] attaches to a running application, determines if the
application is in an infinite loop, and, if so, exits the loop. A user
can also use Bolt to exit a long-running loop. In both cases the goal
is to enable the application to continue useful execution.

DieHard [1] provides probabilistic memory safety in the pres-
ence of memory errors. In stand-alone mode, DieHard replaces the
default memory manager with a memory manager that places ob-
jects randomly across a heap to reduce the possibility of memory
overwrites due to buffer overflows. In replicated mode, DieHard
obtains the final output of the application based on the votes of
multiple replications.

6. Conclusion
Prophet automatically learns and exploits features of previous suc-
cessful patches to automatically generate correct patches for de-
fects in different applications. The experimental results show that,
in comparison with previous patch generation systems, the learned
information significantly improves the ability of Prophet to gen-
erate correct patches. Key contributions include a novel parame-
terized probabilistic model that enables Prophet to learn relevant
characteristics of successful patches, application-independent fea-
tures that generalize across multiple applications, and experimental
results that characterize the effectiveness of the different techniques
that Prophet implements.

12 2015/7/13

References
[1] E. D. Berger and B. G. Zorn. Diehard: Probabilistic memory safety

for unsafe languages. In Proceedings of the 2006 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’06’, pages 158–168. ACM, 2006.

[2] S. Chandra, E. Torlak, S. Barman, and R. Bodik. Angelic debugging.
In Proceedings of the 33rd International Conference on Software
Engineering, ICSE ’11’, pages 121–130, New York, NY, USA, 2011.
ACM.

[3] F. DeMarco, J. Xuan, D. Le Berre, and M. Monperrus. Automatic
repair of buggy if conditions and missing preconditions with smt.
In Proceedings of the 6th International Workshop on Constraints in
Software Testing, Verification, and Analysis, CSTVA 2014, pages 30–
39, New York, NY, USA, 2014. ACM.

[4] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H. Perkins, and
M. C. Rinard. Inference and enforcement of data structure consistency
specifications. In Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2006, Portland,
Maine, USA, July 17-20, 2006, pages 233–244, 2006.

[5] B. Demsky and M. C. Rinard. Goal-directed reasoning for
specification-based data structure repair. IEEE Trans. Software Eng.,
32(12):931–951, 2006.

[6] T. Durieux, M. Martinez, M. Monperrus, R. Sommerard, and J. Xuan.
Automatic repair of real bugs: An experience report on the defects4j
dataset. CoRR, abs/1505.07002, 2015.

[7] M. Jose and R. Majumdar. Cause clue clauses: Error localization using
maximum satisfiability. In Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’11’, pages 437–446, New York, NY, USA, 2011. ACM.

[8] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation
learned from human-written patches. In Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13’, pages
802–811. IEEE Press, 2013.

[9] M. Kling, S. Misailovic, M. Carbin, and M. Rinard. Bolt: on-demand
infinite loop escape in unmodified binaries. In Proceedings of the ACM
international conference on Object oriented programming systems
languages and applications, OOPSLA ’12’, pages 431–450. ACM,
2012.

[10] E. Kneuss, M. Koukoutos, and V. Kuncak. Deductive program repair.
In Computer-Aided Verification (CAV), 2015.

[11] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A system-
atic study of automated program repair: Fixing 55 out of 105 bugs
for $8 each. In Proceedings of the 2012 International Conference on
Software Engineering, ICSE 2012, pages 3–13. IEEE Press, 2012.

[12] F. Long and M. Rinard. Staged program repair in SPR. In Proceedings
of ESEC/FSE 2015 (to appear), 2015.

[13] F. Long and M. Rinard. Staged Program Repair in SPR. Technical
Report MIT-CSAIL-TR-2015-008, 2015.

[14] F. Long, S. Sidiroglou-Douskos, and M. Rinard. Automatic runtime
error repair and containment via recovery shepherding. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14’, pages 227–238, New York,
NY, USA, 2014. ACM.

[15] M. Martinez and M. Monperrus. Mining software repair models for
reasoning on the search space of automated program fixing. Empirical
Software Engineering, 20(1):176–205, 2015.

[16] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix:
Program repair via semantic analysis. In Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13’, pages
772–781, Piscataway, NJ, USA, 2013. IEEE Press.

[17] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller.
Automated fixing of programs with contracts. IEEE Trans. Softw.
Eng., 40(5):427–449, May 2014.

[18] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F.
Wong, Y. Zibin, M. D. Ernst, and M. Rinard. Automatically patch-
ing errors in deployed software. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, SOSP ’09, pages
87–102. ACM, 2009.

[19] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of random
search on automated program repair. In Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, pages
254–265, New York, NY, USA, 2014. ACM.

[20] Z. Qi, F. Long, S. Achour, and M. Rinard. An anlysis of patch plausi-
bility and correctness for generate-and-validate patch generation sys-
tems. In Proceedings of the ACM/SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2015, 2015.

[21] V. Raychev, M. Vechev, and A. Krause. Predicting program properties
from "big code". In Proceedings of the 42Nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’15’, pages 111–124, New York, NY, USA, 2015. ACM.

[22] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and W. S.
Beebee. Enhancing server availability and security through failure-
oblivious computing. In OSDI, pages 303–316, 2004.

[23] R. Samanta, O. Olivo, and E. A. Emerson. Cost-aware automatic
program repair. In Static Analysis - 21st International Symposium,
SAS 2014, Munich, Germany, September 11-13, 2014. Proceedings,
pages 268–284, 2014.

[24] S. Sidiroglou, E. Lahtinen, F. Long, and M. Rinard. Automatic error
elimination by multi-application code transfer. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM, 2015.

[25] W. Weimer, Z. P. Fry, and S. Forrest. Leveraging program equivalence
for adaptive program repair: Models and first results. In ASE’13, pages
356–366, 2013.

[26] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically
finding patches using genetic programming. In Proceedings of the 31st
International Conference on Software Engineering, ICSE ’09’, pages
364–374. IEEE Computer Society, 2009.

[27] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Trans. Softw. Eng., 28(2):183–200, Feb. 2002.

13 2015/7/13

