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Abstract

This thesis develops formal computational models of intuitive theories, in particular
intuitive physics and intuitive psychology, which form the basis of commonsense
reasoning. The overarching formal framework is that of hierarchical Bayesian models,
which see the mind as having domain-specific hypotheses about how the world works.
The work first extends models of intuitive psychology to include higher-level social
utilities, arguing against a pure ‘classifier’ view. Second, the work extends models
of intuitive physics by introducing a ontological hierarchy of physics concepts, and
examining how well people can reason about novel dynamic displays. I then examine
the question of learning intuitive theories in general, arguing that an algorithmic
approach based on stochastic search can address several puzzles of learning, including
the ‘chicken and egg’ problem of concept learning. Finally, I argue the need for a
joint theory-space for reasoning about intuitive physics and intuitive psychology, and
provide such a simplified space in the form of a generative model for a novel domain
called Lineland. Taken together, these results forge links between formal modeling,
intuitive theories, and cognitive development.
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chooses the appropriate next step (moving up the hill), assuming a
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Chapter 1

Introduction

“The only innocent feature in
babies is the weakness of their
frames; the minds of infants are far
from innocent.” — Augustine of

Hippo, Confessions

Even before we know the world, we know about the world. From birth, we have
expectations about objects, magnitude, space and action. This core knowledge forms
our basic intuitions. And yet, cognitive science does not have a formal theory of these
basic intuitions. These are not trivial statements, they are hard-won recognitions es-
tablished over the past decades through experimental work with infants, children and
adults. By looking at what infants find surprising and what they prefer, researchers
amassed a wealth of knowledge about what infants expect and know: objects fol-
low smooth paths and don’t wink in and out of existence; agents act efficiently to
achieve goals; numbers can be added and subtracted, and so on. Despite these gen-

eral principles, there is no explanatory computational theory to unite and explain
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“Ellipsin fieri

orbitam planete”
(Kepler, Epitomes
astronomiae

Copernicanae)

the separate strands of findings. The state of the field resembles pre-Newtonian
astronomy, a period when people rigorously collected a copious amount of data and
expressed general qualitative principles about heavenly motions, but lacked a formal

quantitative and principled account. The difference between data-based generaliza-

' tions and formal theory is the difference between saying “Planets follow elliptical

paths with the sun at a foci” and “F = m - a and gravitational works in an inverse
square way, therefore the planets will move thus”.!

At about the same time that the ‘core knowledge’ account of infant knowledge
was crystallizing, computational cognitive science was developing new ways to think
about thinking. Structured generative models emerged as influential tools for cap-
turing the computations of the human mind. Following the theory-based approach
in cognitive science [123], these new tools view the mind as reverse-engineering
the world, searching for theories and causes that explain perception. In the pre-
Newtonian era we find ourselves, this formalism is a bit like calculus: an important
computational advance in itself, but hard work is needed to link it up with the real
world.

In this dissertation, I present several such links between computational theories
and intuitive theories. The dissertation is concerned with the common questions
of researchers in both Al and development, namely representation and learning, or
“what we know” and “how we get more of it”. On the question of representation,
I focus on the core domains of intuitive physics and intuitive psychology, and the
connections between them. On the question of learning, I propose that many learning
challenges are best addressed at the algorithmic level of modeling, and suggest such

an algorithm, drawing parallels between the dynamics of the algorithm and the

IThis is not for lack for trying. There have been attempts to formalize cognitive development,
as the historical section shows, and these attempts are ongoing.
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way children learn. Throughout the dissertation I present empirical, theoretical and
philosophical support for the particular claims put forward. But I also allow myself
to speculate on what models should be like, with the hope that the reader will forgive
or even enjoy such speculations.

The rest of the introduction is meant to equip the reader with the background,
terms and details necessary for their journey through the thesis itself. My hope is
that by the end of the introduction, the reader will be able to answer for themselves
on a basic level: “What is the relationship between cognitive modeling, intuitive
theories and cognitive development? What do we know about child development
and intuitive theories today, and what is a good formal account of that? What’s the
alternative?”

I first review the historical exchange between computational models and cognitive
development (Section 1.1). Next, I describe current influential views in development
including “Core Knowledge” and the “Theory Theory” (Section 1.2), and broadly
what we think infants know about the core domains of agents and objects. Building
on this, I ask what are the criteria for a formal account of infant core knowledge in
principle. In Section 1.3 I give an overview of a formalism that matches these crite-
ria: hierarchical Bayesian models (HBMs), and explain their connection to intuitive
psychology and intuitive physics. Section 1.4 introduces the distinction between a
computational level and an algorithmic level analysis, and uses the distinction to
explore an oft-cited criticism of HBMs: Even assuming these models get the rep-
resentation right, how can they learn anything truly ‘new’? Finally, Section 1.5
presents an approach based on cues, features or rules, that will serve — in various
guises — as the main foil for the HBM account.

Also, here is a brief outline of the structure and contributions of the next chap-

ters: Chapters 2-3 focus on the core domains of agents and objects. Chapter 2,
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Roadmap of thesis

motivated by experiments with pre-verbal infants, extends a formalism that models
action understanding as ‘inverse planning’ to include social goals such as helping and
hindering, provides strong evidence against a cue-based account and argues for an
innate or early-developing mentalistic apparatus. Chapter 3 builds on the proposal
that intuitive physics is based on a mental ‘physics-engine’, asking: what parts of
this engine can be learned, and how? Chapter 4 tackles the question of learning, and
proposes that by focusing on the algorithmic level of structured generative models —
particularly on stochastic search algorithms — we can address several philosophical
and psychological puzzles about how children learn. Finally, Chapter 5 examines the
challenge of cross-core-domain connections, going back to agents and objects and
proposing a generative account of how people reason when common-sense explana-

tions require understanding something about both psychology and physics.

1.1 Formal Models and Child Development, a Brief
History

Formal modeling of what children know and how they develop is not a new suggestion.
The changes in the field of artificial intelligence have often paralleled, influenced, and
were influenced by changes in the field of child development. This is hardly surpris-
ing, as both fields are mainly concerned with the representation and acquisition of
knowledge: What it is, and how we get more of it.

Even before the proposed equivalence of the mind with computation — the ‘driving
metaphor’ of the field of cognitive science [134] — researchers in the nascent fields
of child development and computation were seeing parallels. Prior to the ‘cognitive

revolution’, Piaget was examining the child’s mind in terms of logical symbols, mental

24



models and mental operations [129]. Around the same time, Turing suggested that
rather than simulating the adult mind, we might be better off trying to recreate the
mind of the child and teaching it so as to produce the adult mind [182].

During the mid 20th century, researchers in proto-Al and psychology were strug-
gling with similar questions: How much knowledge is there at the beginning? How
is knowledge represented? How is new knowledge learned?

On the question of the initial state of knowledge, Turing considered the child’s
mind a notebook with ‘rather little mechanism, and lots of blank sheets’ 2. In this,
Turing’s outlook was in many ways similar to the dominant behaviorist view in the
United States at the time, positing little initial structure and thinking that some
rewarding or punishing signal would allow the child program to correctly learn new
knowledge [182]. Turing, Piaget and Skinner could all be seen as similar in their
relatively empiricist belief (or hope) that the initial state of the child is close to
a blank notebook / sensorimotor machine / unconditioned subject. Such a view
contrasted with fhe ideas researchers like Chomsky [30], who argued for the innate
existence of conceptual content (such as grammatical rules).

As for the question of how knowledge is represented, Turing (and constructivists
like Piaget) suggested the child program discovers some formal structure, a sub-
program or set of mental operations. Such mental, inner structures were denied by
the behaviorist tradition.

Finally, regarding the question of new knowledge, computational models were
called upon early on to address this challenge, be it models of operant conditioning,

assimilation or schema transformation [162, 129]. It is interesting — though not

20r rather, Turing ‘hoped’ this was the case, as it would be much easier to program such a
machine, and perhaps anticipating the difficult task of uncovering innate structures should those
exist.
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We cannot expect
to find a good child
machine at the first
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— Alan Turing

Give me a child,
and I’ll shape him
into anything

— B.F. Skinner



Perhaps we would
settle for a theory
of something less
than the whole
child

— Herbert Simon

%l
Output O

surprising — that a “short blanket” problem occurred when trying to solve both the
issues of representation and learning. A short blanket covers either the head or the
feet, but not both. Simple learning rules, such as the Rescorla-Wagner learning
rule, were easy to implement and study, but could not account for rich knowledge
[136, 120]. Rich knowledge, captured by representations such as grammar, was either
assumed as given, or was not provided with an implementable formal treatment (e.g.
Piaget’s theories [129]).

During the rise of the cognitive sciences, the information processing approach to
modeling was highly influential on cognitive development [98, 161]. When the field
of cognitive science was focusing on symbolic logic [126], learning was seen as the
acquisition of new ‘rules’ for reasoning about domains. Much as an intelligent pro-
gram could acquire new ‘rules’ for achieving a goal-state in a toy-world, children and
adults were modeled as learning new logical-rules, and experiments on explicit rule
learning became popular [161]. Both children and adults were modeled as acquiring
new rules within a production system, but development was seen as a program-
transformation going from one production system to the next [161].  This view
suggested two types of programs necessary to describe development: many ‘stage-
programs’ that captured the mental state of a child at each developmental stage,
and one ‘transformation program’ that takes as input a stage-program and outputs
a different stage-program. This distinction, made by Simon, was influenced both by
Turing (the mind as a program) and by Piaget (separate stages of development).

With the advent and popularization of connectionist architectures in the 1980’s,
it was proposed that development was the simple ongoing process of adaptive weight
change in a neural network. What was previously seen as the discrete acquisition
of a new basic understanding of some concept or the relationship between concepts

[114, 139, 117, 138]. (e.g. “If there is more weight on one side, an apparatus will
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tilt towards that side”), was now seen as coming about through quick and drastic
weight shifting when enough data was supplied. Nowhere in the network was there
an explicit concept, or rule, or transformation. Development and learning were now,
to some degree, equivalent. Much as the network can adjust weights to learn a new
word in French, it can adjust weights to recognize new objects, or to ‘realize’ that
both weight and distance are important in predicting the movements of a balance
scale.

Around the same time that parallel distributed processing was coming into fash-
ion, both developmental researchers and Al researchers became concerned with ques-
tions of causal reasoning and uncovering the ‘true’ structure of the world. In AI, .
Judea Pearl was developing Causal Bayes Nets [127], which aim at modeling the
underlying structure that led to an observation, rather than just finding correlations
between observations. Causal Bayes Nets do this by combining explicit predicates
(such as ‘symptom’ or ‘disease’) with probabilistic Bayesian inference, and with a no-
tion of ‘intervention’ that isolates causal influences. Independently of this research,
researchers in development were proposing that children concern themselves with
finding the ‘true’ underlying structure of events, building theories and revising them
like scientists [69]. This ‘theory theory’ view is discussed in the next section, and
the historical review is far too brief to do justice to the Causal Bayes Net approach
(much as it is short on justice towards connectionism). For my purpose, the takeaway
is that Pearl’s research on causality had an important influence on developmental
research beginnihg in the late 90’s [65, 68], when some researchers in computation
and development began seeing Causal Bayes Nets as the formal nuts and bolts of
the theory-theory. Rather than learning a “rule” relating predicates, or adjusting
weights in a connectionist network, children were seen as distinguishing, comparing

and choosing among different causal networks for explaining a situation (such as the
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workings of a ‘blicket-detector’).

All of these views (logical rule learning and information processing, developmental
stages and cognitive architectures, connectionist networks and dynamical systems,
Bayes nets and structure learning, and others) continue to be influential and active
avenues of research. By reviewing them as history I do not mean they are historical,
but at this point I want to turn to recent advances in both computational and
developmental cognitive science. Just like previous parallel advances, these too have

something to say to one another.

1.2 Theories of Theories - Current Developmental
Views

What does current experimental research tell us about Turing’s vision of the child
as an empty notebook? What is the amount of content, what is the language, and
how do children go about filling it with new ideas?

Regarding the questions of knowledge representation and acquisition, a powerful
set of ideas mentioned in the previous section was that of ‘theory theory’ and ‘the
child as scientist’ [24, 22, 123, 66, 69, 67, 152, 154, 193, 73]. On this view, children
can evaluate and adopt rich structures of knowledge that go far beyond the sparse
data they’re given, similar to the way a scientist can propose general principles
from limited observations and evaluate them. The ‘theory theory’ posits that the
knowledge itself is represented as something like a scientific theory. The ‘child as
scientist’ view adds that the process of acquiring new knowledge is itself science-like,
in that children conduct experiments and design interventions [165], search for new

data when needed, isolate variables [32], understand when evidence is confounded
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[153], are sensitive to how the data was generated [73], and so on.

Regarding the question of ‘amount of initial knowledge’, the empirical answer
uncovered by researchers in child development over the past decades is “Turing’s
notebook is not empty, but it is not overly cluttered”. Researchers in cognitive
development have discovered infants and young children understand several abstract
principles which are present early on, across cultures, and shared with non-human
animals [168, 169, 5, 194, 34, 128, 155, 4, 24, 27]. These principles are organized into
systems of core knowledge for specific domains, with infants maintaining qualitatively
different expectations for entities classified under different ‘core’ domains, such as
geometry, number, physics, sociology and psychology.

Thus Turing’s notebook might actually be several notebooks, filled with chapter
headings, outlines and cross-references, even if they do not contain much specific
propositional knowledge. The specific focus of this dissertation will be on intuitive
physics and intuiﬁve psychology, the ability to reason productively about mechanical
objects and goal-directed agents, and so I provide a bit more detail on those below:

Intuitive Physics As early as 2 months and possibly before, infants already
posses some notion of object persistence, continuity and cohesion. They expect
objects to follow relatively smooth paths, not wink out of existence, and not act at
a distance [168]. Infants also do not expect drastic changes to physical properties
(although what determines a physical property and whether size, color or shape
matter is subject to some debate). Infants have a notion of object solidity [169],
expecting objects not to pass through one another. Many of these expectations are
limited to ‘cohesive’ objects, not applying to things such as sand piles. Over the
months following birth, infants develop more adult-like intuitions regarding physical
objects. They have a notion of gravity, expecting released objects to fall down [110,

124], and slowly develop ideas regarding inertia (e.g. objects should not simply stop
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for reason) and support [81] (e.g. the know what configuration prevents objects from
falling down). Infants can also predictively look and reach towards moving objects,
although they have a more difficult time reaching when these objects go behind
occluders [80]. By 5 months, they have already developed different expectations
about solid and non-solid objects [80].

Intuitive Psychology There is a wealth of experiments showing that pre-verbal
infants attribute agents with goals, morals and efficient planning. Young infants
can encode goals, and expect agents to act efficiently to achieve goals, subject to
environmental constraints [168, 34, 33]. They distinguish first anti-social agents from
neutral agents, and then pro-social agents from both, preferring pro-social agents that
help others over neutrals, and neutrals over anti-social agents that hurt or hinder
others [94, 75, 76, 74]. There is some debate about how infants categorize agent and
non-agents. While perceptual features such as faces or eyes are useful, they are not
necessary [85]. Infants are also sensitive to self-propelled motion [146, 132], efficient
movement towards goals given possible actions, and social responsiveness [33, 52].

The ideas of core-knowledge and the ‘child as scientist’ impose several constraints
on what a formal account of human development should look like. Both ideas are
concerned with theories of how the world works, the hidden underlying causes that
produce observations. How well do the computational accounts in the historical
review capture these ideas? Connectionist networks, for the most part, are not
concerned with building in core knowledge, nor with anything like a theory. Systems
of rules have more the structure of a theory, but are perhaps too brittle, and fail to
account for learning and changing entire systems of concepts a-la Kuhn [101]. Of
the frameworks reviewed, Pearl’s Causal Nets come closest to the notion of finding

structured hypotheses to explain the data, but they too are constrained and cannot
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account for higher-level aspects of a child-like theory3. It is equally unclear how a
Bayes Net could account for core knowledge principles like ‘objects follow smooth
paths’ and ‘agents have goals’.

In the next section, I turn to a computational framework based on recent advances
in computational modeling [50, 142]. This framework combines the strengths of
the symbolic and statistical traditions into structured probabilistic models that use
Bayesian statistical inference. In cognitive science in particular it has led to a better
understanding of high-level human cognition [178], and is currently best-suited to

rise to the challenges presented by advances in developmental research.

1.3 Hierarchical Bayesian Models over Rich Struc-
tures

The following fre}mework is based on the idea that people reason about by the world
by considering how hypotheses can account for data. On this proposal, a reasoning
system evaluates a hypothesis h about how the world works, by taking into account
the observed data d, and some prior assumptions, background knowledge, beliefs and
constraints given the domain theory T. A hypothesis about the world can be about
the goal of an agent, the existence or shape of an unseen obstacle, the underlying
force law of some dynamics, the causal mechanism responsible for a toy working in
some way, and so on.

The degree of belief that a rational learner should assign to some hypothesis is

3Consider for example a theory of illness that posits diseases as the cause of symptoms. A Causal
Nets story might imagine children hypothesizing various different causal nets until they hit upon
the right one for particular diseases and symptoms and understanding the specific causal direction,
but nowhere in this learning process or final outcome is there the basic theoretical statement “there
are two types of things in the world, diseases and symptoms, and diseases cause symptoms” [178].
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equivalent to the posterior probability of that hypothesis, calculated using Bayes’

rule:

P(h|d,T)  P(d|h) - P(R|T). (1.1)

This equation captures the way beliefs are updated as the result of an interplay
between the prior knowledge of an intelligent system (adult, child, machine), and the
need to account for the data. The likelihood term P(d|h) assesses how likely the data
is given the hypothesis, while the prior probability P(h|T") indicates how ‘reasonable’
the hypothesis is, independent of the data. Children’s mental development can then
be seen as a process of theory revision - strong assumptions about how the data was
generated can be changed given conflicting data.

This formal generative approach is expanded by specifying multiple levels of a
‘theory hierarchy’ (and giving us Hierarchical Bayesian Models). Domain theories
then constraint models of particular scenarios, and domain theories are in turn con-
strained by higher and more abstract principles [92].

It is a pretty picture, but it is only a sketch of a general framework, and the
rational belief updating mechanism (Eq. 1.1) is only the basic skeleton of inference.

The real challenges — the flesh and nerves — are these:

Explain how the world works by specifying the actual theory structure of the

hypothesis spaces

Explain how learning works by giving rational, realistic learning algorithms for

exploring these spaces

To better understand the first challenge, consider how the HBM formalism might

capture the intuitive theory of psychology. The observed data d we want to explain
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are series of Actions (“Why did John open the box?”), while the unobserved things
we use as explanations are mental constructs such as Beliefs and Goals. How
do we compute P(Goals, Beliefs|actions)? Simple, says the Bayesian updating

mechanism:
P(Goals, Beliefs|Actions) o P(Actions|Godls, Beliefs)- P(Goals, Beliefs) (1.2)

But how do we get the likelihood of actions given goals and beliefs, or the prior on
goals and beliefs? That is the hard part. The ‘theory’ of agents is that they act
efficiently in order to achieve goals. This can be formalized as a rational planning
model, the sort of thing developed for economics, robotics and artificial intelligence
[133, 9]. Imagine for example a robot with a planning procedure. If the robot is told
its goal is to get an apple (high utility for states where it has the apple), and the
robot believes the apple is in a box (high probability on states where the apple is
in the box), then the robot can use a planning procedure to produce a sequence of
actions that will get it to its goal (open the box and get the apple). So, the planning
procedure gives us the probability of taking certain actions given goals and beliefs,
which is the likelihood we were after.

By assuming that this is how people work, we can explain their actions. If we see
someone reaching for a box and grabbing an apple, we can say that they probably
like eating apples, and that they believed the apple is in the box. We can incorporate
different knowledge into this story, too: if we think John hates apples, we might think
John believed there was something else in the box.

Chapter 2 expands on ‘intuitive psychology as inverse planning’. The main take-
away of the previous paragraphs is that while HBMs (Eq. 1.1) can formalize the idea
of children rationally updating theories, they are not the end of the story. One still
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has to work hard to specify the right theories, their structure, and their basic units.
This is a challenge, but it is a challenge that HBMs and cognitive development can
work to solve jointly.

What about the second challenge mentioned earlier, that of learning? This de-

serves its own section.

1.4 Learning and the Algorithmic Level

Even if we built the right formal theories for each core domain using findings from
core knowledge, we still would not be happy . We would still have to explain how
learning new theories happens. In this section I lay out common learning-based
objections to the HBM formalism, and point in the direction of a solution that will
be developed in Chapter 4.

On some level, Eq. 1.1 explains how learning happens: A rational agent should
shift probability mass on theories as new data comes in, taking into account both
the fit to data and theory simplicity. But on a different level, this is not a satisfying
statement. The objections to this ‘explanation’ usually fall into one of the following

inter-related groups:

The Objection of Limited Thought “HBMs are quite successful in capturing
some of the reasoning of children and adults, but they only succeed because
the hypothesis spaces you pre-defined is small. You can capture children mov-
ing from theory A to theory B, by assuming the hypothesis space is limited to
A and B and that as data comes in more probability is placed on theory B,

but children can also potentially think of C, and D, and an infinite number of

4 Actually we would be extremely happy. But we wouldn’t be satisfied.
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things that don’t go into your hypothesis space at all.”

The Objection of Infinite Incredulity “So you can define very large or infinite
hypothesis spaces. But your view of learning is then a shifting of probability on
a very large or infinite space. How can you honestly suggest children and adults
have parallel access to each hypothesis in such spaces? Children probably

consider at most only 2 or 3 options at a time.”

The Objection of Mad Nativism “If you define the entire space of hypotheses,
you're not actually learning anything new, you're just testing and confirming
things you already new. This is Mad Dog Nativism. Are you honestly sug-
gesting that the move from Newtonian Physics to General Relativity should
be captured by considering all the possible theories of physics, and saying that
Einstein shifted probability mass to General Relativity? If General Relativ-
ity was already a possible thought to consider, in what meaningful sense did

Albert come up with anything new?”

These are reésonable objections and concerns that need to be addressed. The
first objection is addressed by allowing for larger hypothesis spaces, but then one
runs into the second objection. I said that Eq. 1.1 is the Bayesian learning story ‘on
some level’. Usually the term ‘on some level’ is a figure of speech, but in this case it
can be made more precise. According to the Marr-Poggio proposal, we need to think
about cognitive systems using three different levels of analysis: The computational,
the algorithmic, and the implementation [112]. The computational level defines
what the task of the system is, the algorithmic level specifies how representations
are manipulated to achieve the task, and the implementation level gives the physical
realization of the algorithm. There are usually many algorithms that can solve a

given task, and many implementations for a given algorithm.
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The previous section described HBMs at the computational level: The task of the
mind is to reverse-engineer the structure of the world, aided by Bayesian inference.
This is the ‘level’ of Eq. 1.1, and this is the level that the objections are aimed
at. But the objections can be (mostly) answered by referring to the algorithmic
level. The Objection of Infinite Incredulity scoffs at parallel access to large spaces,
but an intelligent machine has no more parallel access to these spaces than children
or adults do, and yet computational researchers are able to do inference over such
spaces. They do it by using algorithms to implement the inference, algorithms that
usually consider only a few hypotheses at a time and are prone to backtracking.
Such algorithms only approximate the ideal level, and their dynainics are not that
of an ideal rational process. They are rational approximations, motivated by the
underlying theory expressed at the computational level.

Therefore, it might be better to equate the learning process of a child or adult
with the process of a rational algorithm searching through a space of theories. This
suggestion also addresses to some degree the Objection of Mad Nativism. By ne-
glecting the algorithmic level the Objection of Mad Nativism is true, but it is true in
an uninteresting way. It is similar to stating that a person that commands the gram-
mar of the English language can never actually say or think anything new, because
the grammar defines an infinite space of utterances and sentences that are (in some
mathematical sense) ‘there’. On some level this is true, but it is an uninteresting
level. People can generate sentences by sampling from their grammar (their ‘space’
of sentences), and they can generate ideas and theories by sampling from their space
of thought.

Chapter 4 considers the algorithmic level of learning in more depth. In particular
it examines the similarities between a class of algorithms (known as Markov Chain

Monte Carlo) and the learning dynamics of children, and relates the algorithmic
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process to theories of conceptual change.

At this pointrl’ve presented current views coming out of development, and a gen-
eral outline of how a computational framework can make contact with them. At this
point a reader might raise a more general objection: Suppose these models provide
both a conceptual and behavioral fit to the current views of cognitive development
— which remains to be shown — what is the alternative? Can a formalism that as-
sumes much less mental machinery account just as well for the data? This challenge

appears in all the following chapters, and I address it in general in the next section.

1.5 Cues, Classifiers, Trees and Rules, and Other
Things that Probably Won’t Work

Can we do without all the mental modeling baggage? There’s certainly a long-
standing tradition that tries, which I'll refer to as the Classifier-Based approach®.
Here is a compressed one-sentence summary of the Classifier-Based approach, lump-
ing together several strands of different research:

“Given that children and adults receive input X and produce output Y, find
something that can take in the properties of X to produce Y. ”

The Classifier-Based approach is different from Good Old Fashioned Behaviorism
in that the ‘output’ can be a mental state or percept. Think of a person seeing two
googly-eyed shaf)es colliding. Such a scene can produce in the person the following
mental sensations: That the two shapes are ‘agents’, that the first agent had the

‘goal’ of crashing into the other one, that this crash ‘caused’ the other one to move,

5This term is somewhat misleading, in that the tradition is broader than just classification.
But it’s useful to have a label, and Classifier-Cue-Rule-And-Similar-Things-Based approach is a
mouthful.
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that the first agent is is ‘heavier’, and so on.

Agency, goal, causality, mass. Behaviorism is loath to consider these mental
percepts as targets of research. But the Classifier-Based approach is quite willing
to consider them, going back at least to Michotte’s studies of the mental percept of
causality [119].

The Classifier-Based approach is different from a theory-based approach in that
its primary concern is with finding properties of the input to use for an input-output
mapping between the perceptual input and the mental output. For example, some
of the percepts of the previous example might be captured by the rule “If something
started from rest, then it is an agent” [145]. Or we might say that faces are a good
cue for agency. Similarly, we might say that people have a heuristic such that if an
object’s post-collision velocity is greater than its pre-collision velocity, people perceive
that object to be lighter [179]. We might posit innate perceptual analyzers that
trigger the sensation of causality when the motion of one shape is followed by the
motion of a second shape without a spatio-temporal gap [119]. We could also build
decision trees that chain together a bunch of yes-no questions abbut the properties
of the scene to produce the mental output [3].

These proposals ignore (or deny) any underlying theory connecting the input and
output. We don’t need an understanding of how causality works to classify a scene
as belonging to an instance of ‘A caused B to move’. We don’t need a theory of
agency — with its goals, beliefs, plans, intentions — to classify A as ‘a bad guy’. Once
this is accepted, the task of research is then to uncover the relevant features and cues
for any given situation (e.g. do velocity and angle play a role in mass judgment, or
just velocity?), and to mark the borders of the perceptual analyzers and rules (e.g.
at what point do spatio-temporal gaps nullify the feeling of causality in collision

events?).
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What then of development? The Classifier-Based approach is concerned with
finding the long list of various innate cues, classifiers, heuristics and analyzers present
from birth. Some avenues of research then suggest how new rules and decision-nodes
can be acquired, -accounting for shifts in infant judgments as they grow older [159, 3].

The approach is supported by experimental evidence and methodological sim-
plicity. Many mental percepts appear fast, automatic, immune to experience and
present from birth (Chapters 2, 3 and 5 discuss this in more detail). Also, if the
Classifier-Based approach can explain a mental judgment just as well as a theory-
based one, it should be preferred because it posits fewer entities.®. And yet this
approach is incomplete.

I don’t mean to deny the reality of cues, classifiers, heuristics and so on. People
from infancy onwards do seem to have special fast detectors on the lookout for aspects
of physics and psychology (or “mechanical and social causality” [143, 146]). But they
cannot be the whole story. This statement is explored in the rest of the thesis, and

the arguments are broadly these:

1. Our intuitive knowledge can reckon with an infinite number of questions, con-
tingencies and scenarios, but any new question might require a new feature or
cue or rule. The ‘simplicity’ of the Classifier-Based approach collapses under
the sheer number of features to consider. For example, we need separate cues

to answer how a tower will fall, in what direction it will fall, and how it will

6For example, suppose the two approaches try to explain how young children know an agent
moving towards a location has that location as its goal. The theory-based approach might posit
that young children have a mental model of what agents are like: Agents can plan to achieve goals,
they have some belief about where the goal is, and they take efficient series of actions to get to
their goals. The Classifier-Based approach might counter with ‘IF a shape started from rest and
is moving towards an object, THEN that object is its goal’, or ‘the shrinking distance between
an agent and an object is a cue that the object is the agent’s goal’, or simpler still ‘the shrinking
distance is a cue that can predict in the future the shape will move towards that object’.
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scatter , while a single theory-based model can answer all of these and a large

number of other questions as well [12].

2. The same cue or feature or rule can lead to different mental states, and different
cues could lead to the same state, depending on the situation. For example,
moving someone in the direction of their previous motion seems a useful cue
for ‘helpfulness’, but that action could result in a person being pushed off a
cliff. Similarly, being ‘helpful’ might sometimes require us to move towards

someone, and sometimes further away.

3. We don’t yet have a formalization of core knowledge, but its principles are
not stated in anything like a cue-based form [168]. The idea that ‘agents act
efficiently to achieve goals’ is a proto-theory of how agents work, and a rule
such as “IF something acts efficiently to achieve goals THEN it is an agent”
is simply begging the question. Similarly, the idea that ‘ob jécts should follow
smooth paths and maintain cohesion’ is a proto-theory of how physical objects

work, not a statement about the right cues for detecting physical causality.

Classifiers are real, and important. They might be fast ways of focusing on a
small part of a hypothesis space. But they don’t replace hypotheses of how the

world works.
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Chapter 2

Help or Hinder*

What is hateful to you, do not do to
your fellow. This is the whole
Torah, and the rest is commentary,
go and learn. — Rabbi Hillel the
Elder, Talmud Bavli

2.1 Introduction

Suppose a person suddenly finds herself on board the ship of Odysseus, just as it
draws near the island of the Sirens. Unaware of the Greek classics, she watches in
horror as Odysseus is bound hand and foot to the ship’s mast with tight ropes, hears
him yelling and begging to be set free.  Rather than listening to their king, the

men add more cords and draw the ropes tighter. This person would probably think

* Joint work with Owen Macindoe, Chris Baker, Owain Evans, Noah Goodman, and Josh Tenen-
baum
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Odysseus’ sailors are sadistic brutes. But how quickly she would change her mind if
she knew the disastrous fate of those lured by the Sirens’ call [103].

While this example is fanciful, people constantly encounter similar situations -
situations requiring them to think about the social intentions driving the actions of
their peers, their friends and enemies. As a more prosaic example, consider a child
whose mother just slapped her wrist after she reached for a hot stove. What should
the child make of the situation? Is the mother intending to hurt, or warn? The child
might reasonably expect the mother is trying to help her, much like in the past, and
so reaching for a hot stove is dangerous. Compare this to a case where an older
sibling just hit the child, and instead of a hot stove the child reached for a shiny new
toy. In this case the child would probably realize something about the preferences of
her brother, rather than conclude that the new toy is dangerous.

Social inferences are fast, intuitive and robust. They happen automatically, with
people reading social meaning into even extremely impoverished visual displays: A
short video of bland geometric shapes moving in a 2D world causes adults to spon-
taneously attribute to these shapes a host of aims and intentions [79]. Some of
the attributed goals are simple, like reaching an object or a location. But people
also attribute complex social goals, such as helping, hindering or protecting another
agent. Recent studies suggest that not only adults, but also pre-verbal infants make
complex social goal attributions when looking at simple displays of moving shapes
[143, 100, 75], or watching puppets interact {76, 74]. Reasoning about social behavior
thus seems early-emerging and universal, and was even suggested as a candidate core
knowledge system [168].

How do people make these inferences? What is the structure of knowledge that
accounts for this kind of understanding? Is this knowledge even structured in any

high-level sense? One approach sees this knowledge as emerging from the physical
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and perceptual cues of the observed stimuli. On this view, the visual system auto-
matically uses perceptual cues to reconstruct the social nature of objects and scenes,
just as it reconstructs their three-dimensional nature [147]. Advocates of this ap-
proach point out the rapidity and robustness of goal attribution, arguing that these
require an ‘automatic’ inference built on visual perception, without the need for me-
diation from higher cognition. This “Cue Based” approach is present in computer
science and machine learning, as well as psychology and neuroscience. In computer
science, some researchers have focused on identifying useful features in the visual

scene that will allow them to automatically categorize different motions into con-

ceptual categories. In psychology, this approach goes back at least to the work of |

Michotte [119], who extensively varied many perceptual cues to examine their effect
on ‘higher-level percepts’ such as causality and animacy. More recently in cognitive
science, this viewpoint has been developed by researchers such as [148] and by [16].

It is easy to see how low-level perceptual cues might explain some simple object
or location-directed goals. For example, the shrinking distance between an agent
and an object is a good cue for inferring which object is the agent’s goal. Beyond
location-based goals, this approach was also used to explain simple agent-directed
behavior such as chasing and fleeing [48]. Building on these successes, adherents
of the Cue-based viewpoint could argue that any goal inference can in principle be
captured using perceptual cues, if only the right perceptual cues could be identified
[11]. However, further consideration shows that in the case of social goals — and
abstract goals in general — such a “Cue Based” account becomes problematic. So-
cial goal inference is challenging because actions in and of themselves do not appear
to to hold intrinsic moral and social content (as pointed out by philosophers such

as Hume! [82]). A particular action can not be morally or socially evaluated based

14Take any action allow’d to be vicious: Wilful murder, for instance. Examine it in all lights,
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Helping?

purely on its observable physical description. Rather, the social evaluation of actions
stems from the mental motivations assigned to the acting agents, mental motivations
which are unobservable and need to be inferred. More explicitly, the perceptual cue
approach does not easily account for the fact that the same actions could be inter-
preted completely differently - moving towards someone could be seen as helpful or
harmful, depending on the unobserved goal of the agent. Even hitting someone, as in
the case of the child reaching for a hot stove or a shiny toy, can be seen as helping or
harming that person depending on the situation and the intentions of those involved.

To examine the possible difficulties with the ‘Cue-based’ approach more con-
cretely, consider the study described in [75], in which infants see a two-dimensional
agent (say, a yellow triangle with eyes) placed at the bottom of the hill. The agent
then moves up the hill, but fails to reach the top. During one of the attempts, an-
other agent (e.g. a blue square) enters the scene and either moves the triangle up the
hill, or moves it down the hill. Based on these scenes, infants make predictions and
show preferences which suggest they understood the square was ‘helping’ or ‘hinder-
ing’ the triangle. The “Cue-based” account might argue that making this inference
is merely a case of using the right motion features. For example, infants may judge
the motion of the square as helping simply because the square is moving the triangle
in the direction the triangle was last observed moving on its own. However, consider

that pushing the triangle down could be helpful if there had been previous evidence

and see if you can find that matter of fact...which you call vice. In which-ever way you take it, you
find only certain passions, motives, volitions and thoughts. There is no other matter of fact in the
case. The vice entirely escapes you, as long as you consider the object. You never can find it, till
you turn your reflexion into your own breast, and find a sentiment of disapprobation, which arises
in you, towards this action...It lies in yourself, not in the object. So that when you pronounce any
action or character to be vicious, you mean nothing, but that from the constitution of your nature
you have a feeling or sentiment of blame from the contemplation of it. Vice and virtue, therefore,
may be compar’d to sounds, colours, heat and cold, which, according to modern philosophy, are
not qualities in objects, but perceptions in the mind” (Hume, A Treatise on Human Nature)
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that there is something dangerous at the top of the hill, or that the triangle’s goal
is at the bottom of the hill.

In fig. 2-1, I show several examples of actions involving two agents in pursuit of
goals, using a maze-like version of the Hamlin et al. task. The larger agent in this
case is able to push a boulder around, and cannot be moved by the small agent.
This similar to how the second agent in the Hamlin task has more affordances than
the first agent, that cannot climb the hill on its own. The larger agent pushing a
boulder out of the smaller agent’s path could be seen as a helpful action, allowing
the small agent to reach its goal on the other side of the boulder. However, this same
action could also be seen as selfish, if the large agent merely pushed the boulder out
of the way in order to get some reward on the other side for itself. A particular
action - such as moving towards or away from the other agent, pushing it or moving
objects - could be interpreted as helping, hindering or selfish actions depending on
the context. The ‘Cue-based’ approach does not easily account for this, nor for the
fact that completely opposite actions could be interpreted as belonging to the same
higher-level goal. For example, if the goal of the large agent is to help the small agent,
in one situation it might require getting closer in order to push it along, in other
situations it might require moving further away to not block the passage. Even in
such elementary cases the apparent simplicity of the Cue-based account fades away,
requiring more and more cues as the number of possible scenarios grows larger.

In contrast to such a perceptual-cue based account, I propose that the complexity
and robustness of social goal inference require structured models which can incorpo-
rate rich abstract knowledge. More specifically, I suggest social goal inferences can
be captured by a generative Bayesian formalism that explicitly uses the notions of
state, agent, and utility. This view is part of a general formalism in cognitive science

and Al which involves specifying the underlying processes that generate potentially
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Figure 2-1: 6 Examples of social interactions between agents, and the model infer-
ences made on their basis. (a) The examples show 2 snippets each of “helpful”,
“hindering” and “selfish” behavior on the large agent’s part. The left panel shows
the starting positions of the agents, the right panel shows the end position. Colored
arrows indicate the sequence of movement. (b) The posterior probability of the large
agent’s goals as the scenario unfolds, according to the Inverse Planning model.
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observable data, and then reasoning back from the actually observed data to the hid-
den underlying causes. The formalism has proven useful in understanding cognitive
domains such as perception [197] and motor control [99], and recently gained pop-
ularity in areas of higher-level cognition such as causal reasoning, object properties
and relations, category and classification, intuitive physics and general knowledge
acquisition [178,‘ 12, 61, 195]. I will briefly review how this formalism was applied
in the domain of goal inference, then argue that an extension of this framework to
social goals can succeed where Cue-based methods cannot.

In the domain of action understanding and goal inference, the key underlying
process generating the data is planning. Planning takes an agent from goal repre-
sentations and beliefs to observable actions. As the inference of goals and beliefs
requires inverting this process — using Bayes’ rule to reason back from actions to hid-
den states — it is referred to as ‘Inverse Planning’. Baker et al. [8] showed how one
can use Inverse Planning to infer simple goals such as being in a particular location,
demonstrating strong correlations between this model and human responses on tasks
similar to those used by [79] and[75].

Baker et al. relied on the The Principle of Rational Action to describe how
a rational agent should act in a given environment. In psychological terms, this
principle determines that “An agent will take means to achieve its goals, given its
beliefs and the environment it is in”. Models of rational action assume agents use
rational planning to guide their actions given certain goals and constraints. Such
planning models have been developed by economists to explain group and individual
behavior, by psychologists and cognitive neuroscientists to explain mental and phys-
ical processes in the brain, and by computer scientists in order to build intelligent
systems capable of achieving certain aims and goals [133, 150, 189]. The under-

lying psychological principles can be captured computationally, by considering the
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“Do unto others
twenty-five percent
better than you
expect them to do
unto you, to correct
for subjective
error”

— Linus Pauling

decision-making processes of agents trying to maximize their utility given a possible
state of affairs. In this chapter we consider an extension of utility-based planning
known as Markov Decision Processes (MDPs). We will describe MDPs and their
relevance to psychology and action understanding in the next section.

While the principle of rational action (phrased in terms of ufility theory) tells
an agent how to act, and while it is possible that social goals can be represented in
utility-theoretic terms, the principle of rational action alone does not specify how so-
cial goals are represented, what they mean, or how an agent should pursue them. To
see informally why such a representation is necessary and useful, consider a Martian
that has no idea how to act in human society. The Martian is a rational planning
agent, acting by the principle of rationality and capable of planning actions given
certain goals. One can imagine giving this Martian an infinite list of simple goals
prescribing exaptly how to behave in any given situation (“If a friend is thirsty and
wants to drink water, give them water, if they want soda, give them soda”, etc.).

Such an exhaustive list might be technically possible, but would be impractical,
unwieldy, and brittle. Instead, we might offer the Martian a general ‘Golden Rule’:
You should act towards others as you wish them to act towards you. This standard
of behavior and morality, one form of which is the epigram of this chapter, comes
up in many religious and philosophical texts throughout history, from ancient Egypt
through the verses of the Mahabharata, from the sermons of Jesus and up to modern
times. The idea is simple, yet abstract, and it has wide-ranging implications when
combined with rational inference.

We therefore propose in this chapter an additional principle, which like the prin-
ciple of rational action is simple, abstract, and can potentially reduce a great amount
of complexity when combined with rational inference - the Principle of Sympa-

thy/Antipathy. This principle specifies the representation of social goals, which
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can then be combined with the principle of rational action to reason about agents
that use rational social planning. Put formally, the positive part of this principle
is “In order to help someone, adopt their goal state as your own goal”’. In more
utility-based terms, we define agent A as trying to help agent B if agent A explicitly

defines its utility function to depend in a positive way on agent B’s utility function:

Helps(A, B) = Ua(S) = f(Us(S)) (2.1)

Where U; is the utility of agent i, S is a state of the world, and f(z) is an
increasing function of z. So, whatever is good for agent B will be good for agent A,
and whatever is bad for B will be bad for A.

Equally important, the negative part of this rule shows us how to go about hurting
and hindering our fellows, those that we have antipathy towards. We define agent A
as trying to hinder agent B if agent A explicitly defines its utility function to depend

in a negative way on agent B’s utility function:

Hinders(A,B) — U(A) = g(U(B)) (2.2)

Where g(z) is a decreasing function of z. Now, whatever is bad for B will be
good for A, and whatever is good for B will be bad for A. We will later refer to this
formalization of the terms ‘helping’ and ‘hindering’ as the Principle of Sympathy.

In previous studies in the Inverse Planning tradition [10, 9, 8] the utility of agents
was a function of the state of the world. Here we extend utilities to include functions
that take in other utilities. This makes helping and hindering into a more abstract
relationship. Fig. 2-2 shows schematically the move from solitary rational agents
to social rational agents. For both agent types, the environment produces certain

beliefs, which combined with the desires of the agent dictate its actions through
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the Principle of Rational Action. Beyond this, social agents now take into account
the planning models of other agents they are interacting with, and their desires are
defined on the desires of other agents, according to the Principle of Sympathy: the
utility function of a social agent depends to some degree on the utility function of
other agents. This relation between utilities is an abstract relationship, which is
world independent and extends across a multitude of different scenarios. Given a
new world with new sets of actions, a helpful agent could take new actions while
maintaining the same relationship with the target agent.

Our challenge in this work is to show that the computational model provides a
qualitative and quantitative fit to rapid human social goal inferences, and can cap-
ture fast human judgments from impoverished and unfamiliar stimuli. To do this
we use stimuli in the form of dynamic visual displays, showing agents moving about
in simple 2D maze-worlds. This paradigm was chosen to resemble previous stimuli
used in many studies with children and adults. These stimuli allow us to compare
quantitative and qualitative performance between human performance and compu-
tational models. We also compare our results to those of an alternative cue-based
model which makes inferences directly from visual cues such as distances between
agents or distances between goals. With this comparison we show our approach can
capture social goal inference across different scenarios in a way that resembles human

inference, and which the cue-based alternative in its current form cannot account for.

2.2 Computational Framework

Our framework assumes that people represent the causal role of an agent’s goals in
terms of an intuitive principle of rationality[35]: the assumption that agents will tend

to take efficient actions to achieve their goals, given their beliefs about the world.
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Figure 2-2: Theory of Mind and the Principle of Rationality, with extension to
multiple agents and social goals. (a) A model of a simple agent with beliefs about
the environment formed from experience with the world, and certain desires (such
as getting to the top of the hill). The agent chooses the appropriate next step
(moving up the hill), assuming a principle of rationality dictates its planning. (b)
The extension to multiple agents with social goals. The social agent constructs a
model of the other agent, from observing its actions in the world. The desires of the
social agent are dependent on the other agent through the principle of sympathy,
so that if the large agent wants to help the small agent, and believes that the small
agent wants to move uphill, then the large agent will push the small agent uphill.
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The principle of rationality can be formalized using different planning procedures.

One such successful planning procedure which explicitly uses the notions of agent,
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state and goal is probabilistic planning in Markov decision problems (MDPs). Pre-
vious work has successfully applied Inverse Planning in MDPs to explain human
inferences about the object-directed goals of maze-world agents(8].

Multiagent extensions of MDP-based Inverse Planning were cbnsidered by [10],
capturing simple relational goals between agents such as chasing and fleeing. In this
work, we use similar multiagent MDPs to formally present a framework for modeling
inferences of more complex social goals, such as helping and hindering, where an
agent’s goals depend on the goals of other agents.

The structure of this section is as follows: We begin by describing the ‘gener-
ative/forward’ direction of planning in a multiagent MDP, giving a mathematical
formulation. We then describe the structure of the reward functions the agents have,
distinguishing between object-directed reward and social rewards. We distinguish
between simple, non-social agents and complex, social agents, based on their reward
function and their own planning model of other agents. Finally, we describe the
Bayesian inversion of the multiagent planning process which leads us from observed
actions to the joint inference of object-directed and social goals. We will use stimuli
similar to that used in the experiments to give concrete examples of the notions

detailed here.

2.2.1 Planning in multiagent MDPs

An MDP M = (S, A, T, R,7) is a tuple that defines a model of an agent’s planning
process. S is an encoding of the world into a finite set of mutually exclusive states,
which specifies the set of possible configurations of all agents andvobjects. A is the
set of actions, and 7T is the transition function, which encodes the physical laws of

the world, i.e. T(S;11,S;, Ar) = P(Si4+1|S:, A;) is the marginal distribution over the
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next state, given'the current state and the agent’s action (marginalizing over all other
agents’ actions). R : § x A — R is the reward function, which provides the agent
with real-valued rewards for each state-action pair. <y is the discount factor, which
dictates how much future rewards diminish in their value compared to the immediate
reward. To make this more concrete, consider the simple maze-world presented in
Fig. 2-1.

The set of possible actions A for each agent is (move up, move down, move left,
move right). The states S would be a set of 2-dimensional grid-coordinates of the
agents - ((Tiarge, Yiarge), (Tsmall; Ysmanr)). Assuming we use an 8-by-5 grid to specify
the location of the agents, the initial state of the agents in a.l is ((3,4), (4,1)).
Consider that tﬁe large agent now attempts to take the action move left, and the
small agent takes the action move up . If the actions aren’t noisy, the transition
function would place a probability of 1.0 on the next state being ((2,4), (4, 2)).

The following subsections will describe how R depends on the agent’s goal G
(object-directed or social), and how 7 depends on the agent’s type (simple or com-

plex). We will then describe how agents plan over multiagent MDPs.

Reward functions

Object-directed rewards The reward function induced by an object-directed
goal G is straightforward. An agent planning under this reward function will take
actions to minimize the distance between it and the goal object or goal location,
contingent on action costs and environmental constraints. We assume that the reward
R is an additive function ‘of state rewards and action costs, such that R(S,A) =
7(S) — ¢(A), where r(s) is the reward for being in state s, and c(a) is the cost of

taking action a. Basic intuition dictates that an agent with a certain object as its
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Figure 2-3: (a) Illustration of the state reward functions from the family defined
by the parameters p, and d,. The agent’s goal is at (6,6), where the state reward is
equal to p,. The state reward functions range from a unit reward in the goal location
(row 1) to a field of reward that extends to every location in the grid (row 3). (b)
Bayes net generated by multiagent planning. In this figure, we assume that there are
two agents, i and j, with i simple and j complex. The parameters {p}, oy, o, p}, 07}
and 3 are omitted from the graphical model for readability.

goal should receive some reward for being in the object-possessing state. However,
it is possible to imagine that different objects can induce different rewards in space.
Some objects might be rewarding only if one posses them directly - For instance,
on a hot summer day in the park, a drinking fountain is only rewarding when one
is standing directly next to it. Other objects or locations might be more rewarding
the closer one is to them, but still rewarding even if one does not inhabit the goal
location itself - One might covet some preferred movie seat, but nearby movie-seats
would do fine too. To capture this range, we consider a two-parameter family of
reward functions, parameterized by p, and 6,. These parameters determine the scale
and shape of the reward r(S) that one receives for being in a certain state in the
following way: 7¢(S) = max(p,(1 — distance(S, 4, G)/dy),0), where distance(S, 4, G) is
the geodesic distance between agent i and the goal. By adjusting these parameters,

we can go from a ‘point-reward’ (receiving reward only for being in a certain state) to
g P g ¥
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a ‘diffuse reward field’ (receiving more and more reward as one approaches a certain
state, up to some maximum value at that state), and from a strong reward signal to a
weak reward signal. To see this, consider that with §; < 1, the reward function has a
unit value of 'r(S) = py when the agent and object goal are in the same location, i.e.
when distance(S,4,G) = 0, and for all others the locations the reward is r(S) = 0
otherwise (see Fig. 2-3(a), row 1). When d§, > 1, there is a “field” of positive reward
around the goal, with a slope of —p,/6, (see Fig. 2-3(a), rows 2 and 3). The state
reward has a maximal value of 7(S) = p, when distance(S,¢,G) = 0 (i.e. when the
agent and the goal object are in the same location). This reward then decreases

linearly with the agent’s geodesic distance from the goal, reaching a minimum of

r(S) = 0 when distance(S, 1, G) > dq.

Social rewards for helping and hindering Our formal characterization of
helping and hindering goals captures a simple intuition. Suppose a parent moves a
child in reach of her favorite toy. Typically, the parent acts not on a selfish desire
to move the child out of the way, but on a general desire that the child be in states
that are good or desirable (in this case, able to reach her favorite toy). The parent
can thus be modeled as having a general goal of doing whatever is best for the child.
In a narrow setting in which the child has a single goal (e.g. to reach a particular
location) the parent is modeled as sharing the child’s goal. Within our utility-based
framework, we formalize this idea by supposing that the reward function for an agent
with a social goal depends on the reward function of a simple agent. More precisely,
if A has the goal of helping B, then A’s reward is a strictly increasing function of
B’s reward. If A hinders B, then A’s reward is a decreasing function of B’s reward.
In both cases, A’s reward will also depend on the actions A takes. So A still has a

purely selfish concern with avoiding costly actions independently (e.g. moving large
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distances). One can imagine cases in which A has self-directed goals on top of the
socially defined goals and has to balance between the two (e.g. to get some coffee,
but also to move the child towards its favorite toy). In order to keép the distinction
between social and non-social clear, we do not consider such examples here, but the
extension is quite simple, and was considered in [84].

We now define these social goals in formal notation. For complex agent 7, the state
reward function induced by a social goal G’ depends on the cost of j’s action A7, as
well as the reward function R? of the agent that j wants to help or hinder. Specifically,
J's reward function is the difference of the expectation of ’s reward function and j’s
action cost function, such that R7(S, A7) = p,E[RY (S, AY)] — c(S, A7). p, is the
social agent’s scaling of the expected reward of state S for agent 7, which determines
how much j “cares” about 7 relative to its own costs. For helping agents, p, > 0,
and for hindering agents, p, < 0.

This formal definition captures the intuitive sense of “helping” or “hindering”,
which does not depend directly on action. For example, in some cases helping requires
moving away from an agent, and in other cases moving towards it. The specific
action will depend on the specific situation, but they stem from the same abstract
relationship between goals. Recall that in Fig. 2-1 we showed some simple examples of
possible interactions between social and non-social agents, and how different actions
could give rise to the same social goal inference.

Notice that in order for the an agent j to compute E4:[R*(S, AY)] it must itself
represent agent ¢ as having a planning model by which it chooses its actions. This
is a formal requirement of the model, but it also makes intuitive sense - you cannot
adjust yourself to the future actions of some agent without any sense of what these
actions will be. Even modeling another agent as taking actions randomly is still

modeling it as having some kind of planning process (albeit a poor one). we describe
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the different agents’ planning process below.

State-transition functions

In our interactive setting, 7* depends not just on 4’s action, but on all other agents’

actions as well. Agent 7 is assumed to compute 7*(S;;1, St, A%) by marginalizing over

Al for all j # i: .

7-i(St+l) St7 Az) = P(SH—IISta A;) = Z P(St-f-list) Atl:n) H P(AJIStv Gj)a
Ai#i i
where n is the number of agents. This computation requires that an agent have a

model of all other agents, whether simple or complex.

Simple agents We assume that the simple agents model other agents as randomly

selecting actions in proportion to the softmax of their expected cost, i.e. for agent

3, P(A7|S) o< exp(8 - ¢(S, A%)).

Complex agents We assume that the social agent j uses its model of other agents’
planning process to compute P(A!|S,G?), for i # 7, allowing for accurate prediction
of other agents’ actions. That is, the complex agents model other agents as choosing
their actions in rational pursuit of their goals. The next subsection describes the
mechanism for multiagent planning.

We assume all agents have access to the correct transition function, which de-
scribes the physical dynamics of the world. This is a simplification of a more realistic
framework in which agents have only partial or false knowledge about the environ-
ment. We also assume that complex agents have access to the correct goals of the

agents they are modeling. This too is a simplification which cannot capture, for ex-
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ample, an observer modeling another agent as having a false belief over goals (leading
to scenarios such as “The triangle thinks it is helping, but actually the circle does
not want to go up the hill at all”). For the questions we examine in this chapter,
however, such a simpler framework is entirely adequate and allows us to focus on the
question of social relations and goals. We return to this assumption in the discussion

section.

Multiagent planning

Given the variables of MDP M, we can compute the optimal state-action value
function @* : § x A — R, which determines the expected infinite-horizon reward
of taking an action in each state. We assume that agents have softmax-optimal
policies, such that P(A|S, G) x exp(8Q*(S, A)), allowing occasional deviations from
the optimal action depending on the parameter 3, which determines agents’ level of
determinism (higher 8 implies higher determinism, or less randomness).

In a multiagent setting, joint value functions can be optimized recursively, with
one agent representing the value function of the other, and the other representing
the representation of the first, and so on to an arbitrarily high order [196]. Here, we
restrict ourselves to the first level of this reasoning hierarchy. That is, an agent A
can at most represent an agent B’s reasoning about A’s goals and actions, but not a

deeper recursion in which B reasons about A reasoning about B.

2.2.2 Inverse Planning in multiagent MDPs

Once we have computed the ‘forward process’ for each agent - that is, the probability
distribution over the actions each agent should take in its environment using mut-

liagent planning - we use Bayes’ rule to infer the driving goals of the agents’ plans
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from their f actions. Put most generally:

P(G|A, E) « P(A|G, E)P(G|E) (2.3)

Meaning tha@ after we observe some set of actions A by the agents in environment
E, the posterior level of belief that we assign to an agent having a certain goal G,
is proportional to the likelihood of the agents taking actions A (given by the MDP
forward planning algorithm) and the prior probability of that goal. We can later
compare this posterior distribution over goals to participants’ goal judgment.

In order to complete this computation, however, we need to consider the param-
eters of the agents’ reward function. As described in the Reward Functions sub-
section, the rewards of the agents are parametrized by the ‘type’ of reward (point,
field, etc) as well as by how much a social agent values the reward given to its target
agent. Since we do not have a strong sense of what prior knowledge people have
regarding these parameters, we assume a uniform prior distribution over a plausi-
ble range and integrate them out per scenario. This allows us to capture the best
possible combinations of reward functions and goals for different scenarios without
committing explicitly to the prior knowledge people might have.

Fig. 2-3(b) shows the structure of the Bayes net generated by multiagent planning,
and over which goal inferences are performed.

Put formally, we begin by computing P(A*|S, G") for agents 1 through n using
multiagent planning. We let 6 = {0}, 5}, o,}"" be a vector of the parameters of the
agents’ reward functions. We then compute the joint posterior marginal of agent

i’s goal G* and 0, given the observed state-sequence Si.r and the action-sequences
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Aln | of agents 1:n using Bayes’ rule:

P(G',0]Sur, AY1, B) o< Y P(A[7 1|81, G'™,6, ))P(G"™)P(6).  (2.4)

Gi#i
Ultimately, we need to obtain a posterior distribution over goals, not a joint
distribution over goals and reward parameters. To generate goal inferences for our
experimental stimuli to compare with people’s judgments, we integrate Eq. 2.4 over

a range of 6 values for each stimulus trial:

P(GiISI:TaA%E%—l’ ): ZP(GiaelSLT,A%E%—l’ ) (25)
[

This integration step allows our models to infer the combination of goals and reward
functions that best explains the agents’ behavior for each stimulus. It also means we
do not use unnecessary extra parameters to fit participant behavior.

Before moving to the experiment, consider this model’s behavior on the simple
scenarios shown in Fig. 2-1. For example, in (b), the first case of ‘hindering’, the
large agent begins by moving down. This behavior is mainly consistent with the
large agent having the goal of getting to the flower or tree, and so the model places
more probability on these goals. As the agent moves right, the model reasons that
such behavior is inconsistent with having the flower as a goal, for if this was the case
a rational planner should probably move left. Appropriately, the model places most
of its certainty on the large agent having the tree as a goal. However, on the next
steps the large agent stays put, blocking the small agent on its way to the flower.
The model rapidly infers that this is actually hindering behavior, and maintains

that inference until the end of the scenario. The other example of hindering is more
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clear-cut than this, and the model correctly and quickly matches this intuition.

2.3 Experiment

We designed an experiment to test the Inverse Planning model of social goal attri-
butions in a simple 2D maze-world domain, inspired by the stimuli of many previous
studies involving children and adults[79, 51, 180, 48, 100, 75, 149]. We created a
set of videos which depicted agents interacting in a maze. Each video contained one

”

“simple agent” and one “complex agent”, as described in the Computational Frame-
work section. Participants were asked to attribute goals to the agents after viewing
brief snippets of these videos. Many of the snippets showed agent behavior consistent
with more than one hypothesis about the agents’ goals. Data from participants was
compared to the predictions of the Inverse Planning model and a model based on

simple visual cues that we describe in the Modeling subsection below.

2.3.1 Participants

Participants were 20 adults from the MIT subject pool, 8 female and 12 male. Mean

age was 31 years.

2.3.2 Stimuli

We constructed 24 short animation sequences (“scenarios”) in which two agents
moved around a 2D maze, shown in Fig. 2-4. The maze always had the same layout
and always contained two potential object goals (a flower and a tree). In 12 of the
24 scenarios the maze also contained a movable obstacle, a boulder, to increase the

number of possible ways in which the large agent could interact with a small agent.
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The scenarios were designed to satisfy two criteria. First, scenarios were to have
agents acting in ways that were consistent with more than one hypothesis concerning
their goals, with these ambiguities between goals sometimes being resolved as the
scenario developed (see Fig. 2-4(a)). This criterion was included to test our model’s
predictions based on ambiguous action sequences. Second, scenarios were to involve
a variety of perceptually distinct plans of action that might be interpreted as issuing
from helping or hindering goals. For example, one agent pushing another toward
an object goal, removing an obstacle from the other agent’s path, and moving aside
for the other agent (all of which featured in our scenarios) could all be interpreted
as helping. This criterion was included to test our formalization of social goals as
based on an abstract relation between reward functions. On our formalization, social
agents act to maximize or minimize the reward of the other agent, and the precise
manner in which they do so will vary depending on the structure of the environment
and their initial positions.

The agents in the stimuli were represented as colorful circles with large eyes,
similar to those depicted in [75]. Each scenario featured two different agents, which
we call “Small” and “Large”. Large agents were visually bigger and are able to
shift both movable obstacles and Small agents by moving directly.into them. Large
agents never fail in their actions, e.g. when they try to move left, they indeed move
left. Small agents were visually smaller, and could not shift agents or boulders. In
our scenarios, the actions of Small agents failed with a probability of about 0.4.
Large agents correspond to the “complex agents” introduced in Section 2, in that
they could have either object-directed goals or social goals (helping or hindering the
Small agent). Small agents correspond to “simple agents” and could have only object
goalé. The “action” of an agent was depicted by it squeezing in the direction in which

it was attempting to move, and if the action was successful the agent moved into
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Figure 2-4: Example interactions between Small and Large agents. Agents start as
in Frame 1 and ‘progress along the corresponding colored paths. Each frame after
Frame 1 corresponds to a probe point at which the video was cut off and participants
were asked to judge the agents’ goals. (a) The Large agent moves over each of the
goal objects (Frames 1-7) and so the video is initially ambiguous between his having
an object goal and a social goal. Disambiguation occurs from Frame 8, when the
Large agent moves down and blocks the Small agent from continuing his path up
to the object goal. (b) The Large agent moves the boulder, unblocking the Small
agent’s shortest path to the flower (Frames 1-6). Once the Small agent moves into

the same room (6), the Large agent pushes him up to flower and allows him to rest
there (8-16).

the appropriate space. If the action failed, the agent remained where it was. This
allowed participants to perceive the failed actions of the “Small” agent, providing

them with information of its possible goal even if it did not succeed in moving. This
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corresponds to the experiment described in [75], in which infants could see an agent
attempting to move uphill and failing.

We produced videos of 16 frames in length, displaying each scenario. We showed
three snippets from each video, which stopped some number of frames before the
end. For example, the three snippets of scenario 6 were cut off at frames 4, 7, and 8
respectively (see Fig. 2-4(a)). Participants were asked to make goal attributions at
the end of both the snippets and the full 16-frame videos. Asking participants for
goal attributions at multiple points in a sequence allowed us to track the change in
their judgments as evidence for particular goals accumulated. These cut-off or probe
points were selected to try to capture key events in the scenarios and so occurred
before and after crucial actions that disambiguated between different goals. Since
each scenario was used to create 4 stimuli of varying length, we had a total of 96

stimuli.

2.3.3 Procedure

Participants were initially shown a set of familiarization videos of agents interacting
in the maze, illustrating the structural properties of the maze-world (e.g. the ac-
tions available to agents and the possibility of moving obstacles) and the differences
between Small and Large agents. The experimental stimuli were then presented in
four blocks, each containing 24 videos. Scenarios were randomized within blocks
across participants. The left-right orientation of agents and goals was counterbal-
anced across participants. Participants were told that each snippet would contain
two new agents (one Small and one Large) and this was highlighted in the stimuli
by randomly varying the color of the agents for each snippet. Participants were told

that agents had complete knowledge of the physical structure of the maze, including
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the position of all goals, agents and obstacles. After each snippet, participants made
a forced-choice for the goal of each agent. For the Large agent, they could select
either of the two social goals and either of the two object goals. For the Small agent,
they could choose only from the object goals. Participants also rated their confidence

on a 3-point scale.

2.3.4 Modeling
Inverse Planning Model

Inverse Planning model predictions were generated using Eq. 2.5, assuming uniform
priors on goals, and were compared directly to participants’ judgments. In our
experiments, the world is given by a 2D maze-world, and the state space includes
the set of positions that agents and objects can jointly occupy without overlapping.
The set of actions includes Up, Down, Left, Right and Stay and we assume that
¢(A € {Up, Down, Left, Right}) = 1, and ¢(Stay) = 0.1 to reflect the greater cost
of moving than staying put. We set 4 to 2 and +y to 0.99, following[8].

For the other parameters (namely p,, 6, and p,) we integrated over a range of
values that provided a good statistical fit to our stimuli. For instance, some stimuli
were suggestive of “field” goals rather than point goals, and marginalizing over 4,
allowed our modéls to capture this. Values for p, ranged from 0.5 to 2.5, going from a
weak to a strong reward. For d, we integrated over three possible values: 0.5, 2.5 and
10.5. These corresponded to “point” object goals (agent receives reward for being
on the goal only), “room” object goals (agent receives the most reward for being on
the goal and some reward for being in the same room as the goal) and “full space”
object goals (agent receives reward at any point in proportion to distance from goal).

Values for p, ranged from 1 to 9, ranging from caring weakly about the other agent

65



to caring about it to a high degree.

Visual Cue Model

We compared the Inverse Planning model to a model that made inferences about
goals based on simple visual cues, inspired by previous heuristic- or perceptually-
based accounts of human action understanding of similar 2D animated displays [16,
198]. Our aim was to test whether accurate goal inferences could be made simply
by recognizing perceptual cues that correlate with goals, rather than by inverting
a rational model. We constructed our “Cue-based” model by selecting ten visual
cues (listed below), including nearly all the applicable cues from the existing cue-
based model described in [16], leaving out those that do not apply to our stimuli,
such as heading, angle and acceleration. We then formulated an inference model
based on these cues by using multinomial logistic regression to participants’ average
judgments. The set of cues was as following: (1) the distance moved on the last
timestep, (2) the change in movement distance between successive timesteps, (3+4)
the geodesic distance to goals 1 and 2, (54+6) the change in distance to goals 1 and
2 (7) the distance to Small, (8) the change in distance to Small, (9+10) the distance
of Small to goals 1 and 2.

2.3.5 Results

Our main question is in the psychology of high-level social goals,‘ therefore we an-
alyzed only participants’ judgments about the Large agents, which are the ones
capable of social goals and complex representations of other agents. Each partici-
pant judged a total of 96 stimuli, corresponding to 4 time points along each of 24

scenarios. For each of these 96 stimuli, we computed an empirical probability distri-
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bution representing how likely a participant was to believe that the Large agent had
each of the four goals ‘flower’, ‘tree’, ‘help’, or ‘hinder’, by averaging judgments for
that stimulus across participants, weighted by participants’ confidence ratings. All
analyses then compared these average human judgments to the predictions of the
Inverse Planning and Cue-based models.

Our main finding is that people’s judgments for social and non-social goals
matched the Inverse Planning model to a high degree, whereas the Cue-based model
was generally unable to distinguish between social goals. The Cue-based model is
able to match non-social goal inferences to a high-degree, but at the end of social-
goal scenarios it is essentially at chance guessing whether the goal was helping or
hindering. This suggests that simple cues such as minimizing distance might be able
to guide people’s goal inferences when dealing with simple goals, but more abstract
reasoning is required for high-level social goals.

Another key finding is that the Inverse-Planning model does equally well on sce-
narios involving ‘boulder’ obstacles and scenarios not involving obstacles, whereas
the performance of the Cue-based model drops drastically if trained on one set of
scenarios and used on another. This shows that cues that were useful in some scenar-
ios for diagnosing ‘helping’ might become useless in qualitatively scenarios, whereas
the basic abstract principle driving the Inverse Planning inference remains equally
useful across many different scenarios. This finding echoes the philosophers’ point
about there being no ‘intrinsically moral action’ in and of itself. There is no one
cue or action feéture which can diagnose it as ‘helping’ for every given scenario -
sometimes pushing a boulder towards another agent is helpful, sometimes it is not,
depending on the goals of the other agent and the overall environment.

In terms of the linear correlation between human judgment and predictions of the

models, the results are as follows: Overall, considering all goal types and training

67



the Cue-based model on both obstacles and non-obstacles , the two models appear
to perform similarly (r = 0.83, for the Inverse Planning model, and » = 0.7 for
the Cue-based model). However, by breaking these correlations down by goal type
we find significant differences between the models on social versus object goals (see
Fig. 2-5).

The Inverse Planning model correlates well with judgments for all goal types:
r = 0.79,0.77,0.86,0.81 for flower, tree, helping, and hindering respectively. The
Cue-based model correlates well with judgments for object goals (r = 0.85,0.90 for
flower, tree) — indeed slightly better the Inverse Planning model — but much less well
for social goals (r = 0.67,0.66 for helping, hindering) . The most notable differences
come on the left-hand sides of the bottom panels in Fig. 2-5. There are many
stimuli for which people are very confident that the Large agent is either helping or
hindering, and the Inverse Planning model is similarly confident (bgr heights near 1).
The Cue-based model, in contrast, is unsure: it assigns roughly equal probabilities of
helping or hindering to these cases (bar heights near 0.5). In other words, the Cue-
based model is effective at inferring simple object goals of maze-world agents, but
is generally unable to distinguish between the more complex goals of helping and
hindering. When constrained to simply differentiating between social and object
goals both models succeed equally (r = 0.84), where in the Cue-based model this
is probably because moving away from the object goals serves as a good cue to
separate these categories. However, the inverse planning model is more successful in
differentiating the right goal within social goals (r = 0.73 for the inverse planning
model vs. 7 = 0.44 for the Cue-based model). Even the slight superiority of the Cue-
based model at judging object goals is probably driven by the single cue of getting
closer to the target goal, which was particularly useful when the Large agent had an

object goal. In these cases the agent always moved directly to it along the shortest
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path. It made no errors and never had to take an indirect route. The homogeneity of
these cases is favorable to a model based on visual cues. More varied stimuli would
make even object-goal judgments more taxing for a visual percept based model (see
for example [10]).

Several other general trends in the results are worth noting. The Inverse Planning
model fits very qlosely with the judgments participants make after the full 16-frame
videos. On 23 of the 24 scenarios, humans and the inverse planning model have
the highest posterior / rating in the same goal (r = 0.97, contrasted with r = 0.77
for the Cue-based model). It should be noted that in the one scenario for which
humans and the inverse planning model disagreed after observing the full sequence,
both humans and the model were close to being ambivalent whether the Large agent
was hindering or interested in the flower. There is also evidence that the reasonably
good overall correlation for the Cue-based model is partially due to overfitting; this
should not be surprising given how many free parameters the model has. We divided
scenarios into two groups depending on whether a boulder was moved around in
the scenario, since movable boulders increase the range of variability in helping and
hindering action sequences. When trained on the ‘no boulder’ cases, the Cue-based
model correlates poorly with participants average judgments on the ‘boulder’ cases:
r = 0.42. The same failure of transfer occurs when the Cue-based model is trained on
the ‘boulder’ cases and testing on the ‘no boulder’ cases: r = 0.36 on the test stimuli.
As discussed above, this is consistent with our general concern that a Cue-based
model incorporating many free parameters may do well when tailored to a particular
environment, but is not likely to generalize well to new environments. In contrast,
the Inverse Planning model captures abstract relations between the agents and their
possible goal and so lends itself to a variety of environments without requiring a

growing number of parameters.
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Figure 2-5: Correlations between human goal judgments and predictions of the In-
verse Planning model (a) and the Cue-based model (b), broken down by goal type.
Bars correspond to bins of stimuli (out of 96 total) on which the average human
judgment for the probability of that goal was within a particular range; the mid-
point of each bin’s range is shown on the x-axis labels. The height of each bar shows
the model’s average probability judgment for all stimuli in that bin. Linear corre-
lations between the model’s goal probabilities and average human judgments for all
96 stimuli are given in the y-axis labels.

The inability of the heuristic model to distinguish between helping and hindering
is illustrated by the plots in Fig. 2-6. In contrast, both the Inverse Planning model
and the human participants are often very confident that an agent is helping and not
hindering (or vice versa).

Fig. 2-6 also illustrates a more general finding, that the Inverse Planning model
captures most of the major qualitative shifts (e.g. shifts resulting from disambiguat-
ing sequences) in participants’ goal attribution. Figure 2-6 displays mean human
judgments on four scenarios. Probe points (i.e. points within the sequences at which
participants made judgments) are indicated on the plots and human data is compared
with predictions from the Inverse Planning model and the Cue-based model.

On scenario 6 (depicted in Fig. 2-4(a) but with goals switched), both the Inverse

Planning model and humans participants recognize the movement of the Large agent
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Figure 2-6: Example data and model predictions. Probe points are marked as black
circles. (a) Average participant ratings with standard error bars. (b) Predictions
of Inverse Planning model interpolated from cut points. (c¢) Predictions of Inverse
Planning model for all points in the sequence. (d) Predictions of Cue-based model.

one step off the flower (or the tree in Fig. 2-4(b)) as strong evidence that Large has
a hindering goal. The Cue-based model responds in the same way but with much
less confidence in hindering. Even after 8 subsequent frames of action it is unable to
decide in favor of hindering over helping.

While the Inverse Planning model and participants almost always agree by the
end of a sequence, they sometimes disagree at early probe points. In scenario 5,
both agents start off in the bottom-left room, but with the Small agent right at the
entrance to the top-left room. As the Small agent tries to move towards the flower
(the top-left goal), the Large agent moves up from below and pushes Small one step

towards the flower before moving off to the right to the tree. People interpret the
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Large agent’s action as strong evidence for helping, in contrast with the Inverse
Planning model. For the model, because Small is so close to his goal, Large could
just as well stay put and save his own action costs. Therefore his movement upwards

is not evidence of helping.

2.4 General Discussion

There is nothing either good or bad, but thinking makes it so

— Hamlet, Act II, Scene II

Our goal in this chapter was to address two challenges. The first challenge was
to formalize social goal attribution within a general theory-based model of intuitive
psychology. This model had to account for the general range of behaviors that hu-
mans judge as evidence of helping or hindering. The second, more specific challenge
was for the model to perform well on a demanding inference task in which social goals
must be inferred from very few observations without direct evidence of the agents’
goals.

The experimental results go some way toward meeting these challenges. The
Inverse Planning model classified a diverse range of agent interactions as helping or
hindering in line with human judgments. This model also distinguished itself against
a model based solely on simple perceptual cues. It produced a closer fit to humans
for both social and nonsocial goal attributions, and was far superior to the visual
cue model in discriminating between helping and hindering.

The essential extension to previous work on action understanding as inverse-
planning is the addition of a Principle of Sympathy. Much like the Principle of

Rational Action, this notion can abstract away many details about any specific sce-
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nario and provide general guidelines for goal achievement. By assuming other agents
behave according to this principle, a rational observer can understand a myriad of
potentially novel situations. The principle is captured in computational terms by re-
cursive utility functions in multi-agents MDPs. A “helpful” agent adopts the utility
of others as its own, and a “hindering” agent adopts the negative of this utility. This
echoes the etymology of the word ‘sympathy’ itself, made up of the words ‘feeling’
and ‘together’.

While our experiments were conducted with adults, our model is well-suited to
capture the findings come infant literature, such as [75, 76]. In almost all of these
infant experiments the actions of the helpers and hinderers were perceptually dis-
tinct: for example, hindering agents pushed downhill and closed boxes, helpful agents
pushed uphill and opened boxes. This leaves open the possibility that infants are us-
ing cue-based perceptual models to classify social agents. New joint work [93] shows
that infants distinguish perceptually identical actions depending on the social goals,
preferences, and perceptual access of other agents, as predicted by an extension of
the model presented here.

This new work required the model to go beyond a simplifying assumption made
here - that the knowledge of the observer is shared by the social agents. But once
false belief or different states of knowledge are possible, social and moral evaluations
become more markedly more complex. Suddenly one can have scenarios like “Alice
thought Bob was bad and tried to hinder him, however Bob was good, but Alice did
not know this aﬁd so does not deserve punishment for hindering”, or “Alex is Beth’s
friend and wants the best for her. He knows Beth wants The Thing, but thinks that
this is foolish and that if only Beth really knew what was good for her, she would not
want The Thing. Alex did not help Beth get The Thing”. More complex, certainly,

but also more realistic.
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Uncertainties over the true nature of things apply to goals and intentions, but also
to the physical world itself. Having such uncertainties at all levels of the model means
that inferences can be made at different levels too. For example, if you are unsure
about an agent’s intention and observe a highly diagnostic action (like smacking),
you may draw strong conclusions about the agent’s intentions (to harm). But a
high degree of certainty about the intention could instead drive conclusions about
elements of the world. Think back to the case of the child reaching for a hot stove
and receiving a smack on the hand from her mother. If the child has a high certainty
that the mother is trying to help her, she would infer new knowledge about the
world that caused her mother’s actions: the stove is dangerous. Much of pedagogy
is supported by the assumption that the teacher is not only knowledgeable, but also
trying to be helpful in explaining the world [46].

These complexities are a challenge for people, not just models. In general, the
‘inverse’ direction of Bayesian inference is hard. In vision, for example, there is a
large space of possible ‘scenes’ that can produce the same visual percept. In social
contexts, there is a large space of social and moral properties that can explain a
sequence of events. In visual perception there is generally an agreed upon ‘solution’
in the form of a high-probability visual scene all people converge on 2. But in moral
and social inferences — and perhaps in all high-level cognition — there is no agreed
upon ‘single solution’. There may be several competing and incompatible ‘high
~ probability solutions’, some appealing to intentions, others to beliefs, others to the
world.

The cue-based approach often cites the automatic nature of certain moral and
social evaluations as evidence that the inference process is similar to a bottom-up

perceptual problem. We agree that visual perception and inference of intentions and

2Barring certain illusions, and even then there are only a few common percepts
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goals share certain basic mechanisms, however the results presented here suggest
that what they might share is the underlying mechanism of Bayesian inference. -
Vision has been highly optimized over evolutionary time, but social perception was
not, perhaps cannot be. We do not doubt the reality of some cues for animacy and
simple social evaluation, but these might serve only to bias people as part of their
otherwise more mentalistic evaluation.

The moral and social explanations people use can be contested and are subject
to revision and change upon reflection, a hallmark of high-level processes. The naive
person suddenly. appearing on Odysseus’ ship may have thought the sailors were
treating Odysseus cruelly based on what she saw with her own eyes. But having

read through the Odyssey, she might change her mind.
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Whoever draws too
close, and catches
the Sirens’ voice in
the air: no sailing
home for him, no
wife rising to meet
him, no happy
children beaming up
at their father’s
face (The Odyssey)
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Chaptér 3
Learning Physics™

There are children playing in the
street who could solve some of my
top problems in physics, because
they have modes of sensory
perception that I lost long ago. —
J. Robert Oppenheimer, as quoted
by Marshall Mcluhan

3.1 Introduction

Reasoning about the physical properties of the world around us is a ubiquitous
feature of human mental life. Not a moment passes when we are not, at least at
some implicit level, making physical inferences and predictions. Glancing at a book

on a table, we can rapidly tell if it is about to fall, or how it will slide if pushed, tumble

*Joint work with Andreas Stuhlmller, Noah Goodman and Josh Tenenbaum
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if it falls on a hard floor, sag if pressured, bend if bent. The capacity for physical
scene understanding begins to develop early in infancy, and has been suggested as a
core component of human cognitive architecture [168]. |

While some parts of this capacity are likely innate [7], learning also occurs at
multiple levels from infancy into adulthood. Infants develop notions of containment,
support, stability, and gravitational force over the first few months of life [124, 3],
as well as differentiating between liquid substances and solid objects [80]. Young
children build an intuitive understanding of remote controls, touch screens, magnets
and other physical devices that did not exist over most of our evolutionary history.
Astronauts and undersea divers learn to adapt to weightless or partially weightless
environments [118], and videogame players can adjust to a wide range of game worlds
with physical laws differing in some way from our everyday natural experience.

Not only can we learn or adapt our intuitive physics, but we can often do so
from remarkably limited and impoverished data. While extensive experience may be
necessary to achieve expertise and fluency, only a few exposures are sufficient to grasp
the basics of how a touch screen device works, or to recognize the main ways in which
a zero-gravity environment differs from a terrestrial one. While active intervention
and experimentation can be valuable in discovering hidden causal structure, they
are often not necessary; observation alone is sufficient to infer how these and many
aspects of physics operate. People can also can gain an intuitive appreciation of
physical phenomena which they can only observe or interact with indirectly, such as
the dynamics of weather fronts, ocean waves, volcanoes or geysers:.

Several questions naturally follow. How, in principle, can people learn aspects
of intuitive physics from experience? What is the form of the knowledge that they
learn? How can they grasp structure at multiple levels, ranging from deep enduring

laws acquired early in infancy to the wide spectrum of novel and unfamiliar dynamics
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that adults encdunter and can adapt to? How much and what kind of data are re-
quired for learning different aspects of physics, and how are the data brought to bear
on candidate hypotheses? In this chapter we present a theoretical framework that
aims to answer these questions in computational terms, and a large-scale behavioral
experiment that tests the framework as an account of how people learn basic aspects
of physical dynaﬁics from brief moving scenes.

Our modeling framework takes as a starting point the computational-level view
of theory learning as rational statistical inference over hierarchies of structured rep-
resentations [178, 68]. Previous work in this tradition focused on relatively spare
and static logical descriptions of theories and data; for example, a law of magnetism
might be represented as ‘if magnet(x) and magnet(y) then attract(x,y)’, and the
learner’s data might consist of propositions such as ‘attracts(object,, objecty)’ [92].
Here we adopt a more expressive representational framework suitable for learning the
force laws and latent properties governing how objects move and interact with each
other, given observations of scenes unfolding dynamically over time. Our represen-
tation includes both logical machinery to express abstract properties and laws, but
also numerical and vector resources needed to express the observable trajectories of
objects in motion, and the underlying force dynamics causally responsible for those
motions. We can express all of this knowledge in terms of a probabilistic program in
a language such as Church [58, 59].

An example of the kind of dynamic scenes we study is shown in Fig. 3-1. Imagine
this as something like an air hockey table viewed from above. There are four disk-
shaped “pucks” moving in a two-dimensional rectangular environment under the
influence of various causal laws and causally relevant properties. In a physical domain
the causal laws are force laws, and these forces may be either local and pairwise

(analogous to the way two magnetic objects typically interact) or global (analogous
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to the way gravity operates in our typical environment). The properties are physical
properties that determine how forces act on objects, and may include both object-
based and surface-based features, analogous to inertial mass and friction respectively.
A child or adult looking at such a display might come to a conclusion such as ‘red
pucks attract one another’ or ‘green patches slow down objects’. With the right
configuration different physical properties begin to interact, such that an object
might be seen as heavy, but in the presence of a patch that slowed it down its
‘heaviness’ might be explained away as friction.

Such dynamical displays are still far simpler than the natural scenes people see
early in development, but they are much richer than the stimuli that has been studied
in previous experiments on learning intuitive physics and learning in intuitive causal
theories more generally. Previous research on learning physics from dynamical scenes
has tended to focus on the inference of object properties under known force laws,
and typically on only the simplest case: inferring a single property from a single
dynamical interaction, as in inferring the relative mass of two objects from observing
a single collision between them with one object starting at rest (see for example
[140, 55, 179, 2]).

Some research on causal learning more generally has looked at the joint inference
of causal laws and object attributes, but only in the presence of simple discrete events
rather than a rich dynamical scene [65, 67, 71]. For example, from observing that a
“blicket-detector” lights up when objects A or B are placed on it alone or together,
but does not light up when objects C or D are placed on it alone or in combination
with A or B, people may infer that only objects A and B are blickets, and that the
blicket detector only lights up when all the objects on it are blickets [109]. It is not
clear that studying how people learn from a small number of isolated discrete events

presented deliberately and pedagogically generalizes to how they learn physics in the
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real world, where configurations of objects move continuously in space and time and
interact in complex ways that are hard to demarcate or discretize.

In this sense our experiments are intended to capture much more of how we
learn physics in the real world. Participants observe multiple objects in motion over
a period of five seconds, during which the objects typically collide multiple times
with each other as well as with stationary obstacles, pass over surfaces with different
frictional properties, and move with widely varying velocities and accelerations. We
compare the performance of human learners in these scenarios with the performance
of an ideal Bayesian learner who can represent precisely the dynamical laws and
properties at work in these stimuli. While people are generally able to perform this
challenging task in ways broadly consistent with an ideal observer model, they also
make systematié errors which are suggestive of how they might use feature-based
inference schemes to approximate ideal Bayesian inference. Hence we also compare
people’s performance to a hybrid model that combines the two kinds of inference
(ideal and feature-based), suggesting how to build a unified account which is based

both on heuristics and an implicit understanding of Newtonian-like mechanics.

3.2 Formalizing Physics Learning

The core of our formal treatment is a hierarchical probabilistic generative model for
theories [92, 187, 62], specialized to the domain of intuitive physical theories (Fig. 3-
2). The hierarchy consists of several levels, with more concrete (lower-level) concepts
being generated from more abstract versions in the level above, and ultimately bot-
toming out in data that take the form of dynamic motion stimuli.

Generative knowledge at each level is represented formally using (define ...)

statements in Church, a stochastic programming language [58]. The (define x v)
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Figure 3-1: Illustration of the domain explored in this chapter, showing the motion
and interaction of different pucks moving on a two-dimensional plane governed by
latent physical properties and dynamical laws, such as mass, friction, global forces
and pairwise forces.

statement binds the value v to the variable z, much as the statement a = 3 binds
the value 3 to the variable a in many programming languages. In probabilistic pro-
gramming, however, we often bind variables with values that come from probability
distributions, and thus on each run of the program the variable might have a different
value. For example, (define dice (uniform-draw 1 6)) stochastically assigns a
value between 1 and 6 to the variable dice. Whenever the program is run, a different
value is sampled and assigned to dice, drawing from the uniform distribution.

Probabilistic programs are useful for representing knowledge with uncertainty

82



(see for example [58, 172, 60]). Fig. 3-2(iii) shows examples of probabilistic definition
statements within our domain of intuitive physics, using Church. Fig. 3-2(i) shows
the levels associated with these statements, and the arrows from one level to the
next show that each level is sampled from the definitions and associated probability
distributions of the level above it. The definition statements provide a formalization
of the main parts of the model. The full forward generative model is available at
http://forestdb.org/models/learning-physics.html

In the text below we will explain these ideas further, using informal English
descriptions whenever possible, but see [58] for a more formal treatment of the pro-
gramming language Church, and probabilistic programming in general.

Framework level. The top-most level N represents general framework knowl-
edge [191] and expectations about physical domains. The concepts in this level
include entities, which are a collection of properties, and forces, which are func-
tions of properties and govern how these properties change over time. Forces can be
fields that apply uniformly in space and time, such as gravity, or can be event-based,
such as the force impulses exerted between two objects during a collision or the forces
of kinetic friction between two objects moving over each other.

Properties are named values or distributions over values. While different entities
can have any number of properties, a small set of properties are ‘privileged’: it is
assumed all entities have them. In our setup, the properties location and shape are
privileged in this sense.

Entities are further divided into ‘static’ and ‘dynamic’. Dynamic entities are
those that can potentially move, and all dynamic entities have the privileged property
mass. Dynamic entities correspond then to the common sense definition of matter

as ‘a thing with mass that occupies space’ !.

1The static/dynamic distinction is motivated by similar atomic choices in most computer physics
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0} (ii) (iii)

Level N
] Innate Entity (define (make-entity propertyl property? .. )
I Concepts (list propertyl property2 .. ))
I Newtonjan (define (run-dynamics entities forces
namit init-cond steps dt)
I Dya o (Lf (= steps 0) ‘()
{let* ((m (get-mass entities))
I (F (apply-forces forces entities))
v (a (/ Fm)
{new-cond (integrate init-cond
a dt noise)))
Level 2 (pair new-cond (run-dynamics entities
forces new-cond (- 1 step) dt)))})
Entity types Puck: O (define puck (make-dynamic-entity
pos shape mass vel .. ))
Surface: D (define surface (make-static-entity
pos shape friction .. ))
Properties Mass (define (mass) _
(pair “mass” (uniform '(1 3 9))))
Friction (define (friction)
(pair “friction” '(uniform '(0 5 20))))
Force classes | Pairwise: @ (define (pairwise-force cl c2)
(let* ((a (uniform-draw (-1 0 1)}))
@ (lambda (ol 02)
(let ((r (euc-dist ol 02)))
(/ (* a (del ol (col ol)) (del o2 (col o2)))
(power r 2))))))
Global: Q= (define (global-force)
(let* ((d (uniform-draw compass-dir)))
v (lambda (o) (* k d))))
Level 1
Prope : large mass (define world-entities
g
values s : medium mass {map sample-values entity-list))
@ : small mass
: high friction
: no friction
Force Force b/w reds: attract |define world-forces
<+ parameters (map sample-parameters force-list})
Level 0 (data) Initial conditions (define scenaric
(let* | .
. (init-cond (sample-init world-entities)})
(5) (run-dynamics world-entities
. world-forces init-cond steps dt)))
o

Figure 3-2: Formal framework for learning intuitive physics in different domains: (i)
The general hierarchy going from abstract principles and assumptions to observable
data. The top-most level of the hierarchy assumes a general noisy-Newtonian dy-
namics. (ii) Applying the principles in the left-most column to the particular domain
illustrated by Fig. 3-1 (iii) Definition statements in Church, capturing the notions
shown in the middle column with a probabilistic programming language.

engines used for approximate dynamic simulations, engines that were suggested as models of human
intuitive physics (e.g. [12]). In these physics engines the static/dynamic divide allows computational
speed-up and memory conservation, since many E)ches and properties don’t have to be calculated or
updated for static entities. It is an interesting possibility that the same kind of short-cuts developed
by engineers trying to quickly simulate physical models might also represent a cognitive distinction.
Similar notions have been proposed in cognitive development in the separation of ‘objects’ from
more stable ‘landscapes’ [106]



The framework level defines a ‘Newtonian-like’ dynamics, where acceleration is
proportional to the sum of the forces acting on an object’s position relative to the
object’s mass. This is consistent with suggestions from several recent studies of
intuitive physical reasoning in adults [12, 164, 54, 144] and infants [174]. As [144]
show, such a ‘noisy-Newtonian’ representation of intuitive physics can account for
previous findings in dynamical perception that have supported a heuristic account
of physical reasoning [55, 56, 179], or direct perception models [140, 2].

Descending the hierarchy. Descending from Level N to Level 0, concepts
are increasingly grounded by sampling from the concepts and associated probability
distributions of the level above (Fig. 3-2(i)). Each level in the hierarchy can spawn
a large number of instantiations in the level below it. Each lower level of the hi-
erarchy contains more specific entities, properties and forces than the level above
it. An example of moving from Level N to Level N-1 would be grounding the gen-
eral concepts of entities and forces as more specifically 2-dimensional masses acting
under collisions. An alternative would ground the same general entities and forces
as 3-dimensional masses acting under conservation forces. This grounding can pro-
ceed through an indeterminate number of levels, until it ultimately grounds out in
observable data (Level 0).

Space of learnable theories. Levels 0-2 in Fig. 3-2 capture the specific sub-
domain of intuitive physics we study in this chapter’s experiments: two-dimensional
discs moving over various surfaces, generating and being affected by various forces,
colliding elastically with each other and with barriers bounding the environment (cf
Fig. 3-1).

Levels 0-2 represent the minimal framework needed to explain behavior in our task
and we remain agnostic about more abstract background knowledge that might also

be brought to bear. We give participants explicit instructions that help determine
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a single Level 2 schema for the task, which generates a large hypothesis space of
candidate Level 1 theories, which they are asked to infer by using observed data at
Level 0.

Level 2: The “hockey-puck” domain. This level specifies the entity types
puck and surface. All entities within the type puck have the properties mass, elas-
ticity, color, shape, position, and wvelocity. Level 2 also specifies two types of force:
Pairwise forces cause pucks to attract or repel, following the ‘inverse square distance’
form of Newton’s gravitation law and Coulomb’s Law. Global forces push all pucks
in a single compass direction. We assume forces of collision and friction that follow
their standard forms, but they are not the subject of inference here.

Level 1: Specific theories. The hockey-puck domain can be instantiated as
many different specific theories, each describing the dynamics of a different possible
world in this domain. A Level 1 theory is determined by sampling particular values
for all free parameters in the force types, and for all entity subtypes and their sub-
type properties (e.g., masses of pucks, friction coefficients of surfaces). Each of the
sampled values is drawn from a probability distribution that the Level 2 theory spec-
ifies. So, Level 2 generates a prior distribution over candidate theories for possible
worlds in its domain.

The domain we study here allows three types of pucks, indexed by the colors
red, blue and yellow. It allows three types of surfaces (other than the default blank
surface), indexed by the colors brown, green and purple. Puck mass values are 1,
3, or 9, drawn with equal probability. Surface friction coefficients values are 0, 5
or 20, drawn with equal probability. Different pairwise forces (attraction, repulsion,
or no interaction) can act between each of the different pairs of pﬁck types, drawn
with equal prior probability. Finally, a global force may push all pucks in a given

direction, either 1, ], <+, — or 0, drawn with equal probability. We further restrict
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this space by considering only Level 1 theories in which all subclasses differ in their
latent properties (e.g. blue, red and yellow pucks must all have different masses).
While this restriction (together with the discretization) limits the otherwise-infinite
space of theories, it is still a very large space, containing 131,220 distinct theories 2.

Level 0: Observed data. The bottom level of our hierarchical model (Fig. 3-2)
is a concrete scenario, specified by the precise individual entities under observation
and the initial conditions of their dynamically updated properties. Each Level 1
theory can be instantiated in many different scenarios. The pucks’ initial conditions
were drawn from a zero-mean Gaussian distribution for positions and a Gamma
distribution for velocities, and filtered for cases in which the pucks began in overlap.
Once the entities and initial conditions are set, the positions and velocities of all
entities are updated according to the Level 1 theory’s specific force dynamics for T’
time-steps, generating a path of multi-valued data points, dy, ..., dr. The probability
of a path is simply the product of the probabilities of all the choices used to generate
the scenario. Finally, the actual observed positions and velocities of all entities are

assumed to be displaced from their true values by Gaussian noise.

3.2.1 Learning Physics as Bayesian inference

Having specified our overall generative model, and the particular version of it un-
derlying our “hockey puck” domain, we now turn to the question of learning. The
model described so far allows us to formalize different kinds of learning as infer-
ence over different levels of the hierarchy. This approach can in principle be used

for reasoning about all levels of the hierarchy, including the general shape of forces

2More precisely, the cross product N(mass)! x N(frictioncoef ficients)! x N(direction) x
N(pairwisecombz’nation)NU"””""”“"” = 131, 220. Selecting the right theory in this space is equiv-
alent to correctly choosing 17 independent binary choices
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and types of entities, the unobserved physical properties of entities, as well as the
existence, shape and parameters of unseen dynamical rules. Given observations, an
ideal learner can invert the generative framework to obtain the posterior over all
possible theories that could have produced the observed data. We then marginalize
out nuisance parameters (other irrelevant aspects of the theory) to obtain posterior
probabilities over the dynamic quantity of of interest.

Inference at multiple levels includes both continuous parameter estimation (e.g.
the strength of an inverse-square attractive force or the exact mass value of an object)
and more discrete notions of structure and form (e.g. the very existence and shape
of an attractive force, the fact that an object has a certain property). This parallels
a distinction between two modes of learning that appears in Al research as well as
cognitive development (where it is referred to as “parameter setting” and conceptual
change [25]). In general, inferring structure and form (or conceptual change) is seen
as harder than parameter estimation.

Learning at different levels could unfold over different spans of time depending
on the size and shape of the learning space, as well as on background knowledge and
the available evidence. Estimating the mass of an object from a well-known class in
a familiar setting could take adults under a second, while understanding that there is
a general gravitational force pulling things downwards given little initial data might
take infants several months to grasp [95].

In this chapter we consider learning at a mid-point between thése two extremes,
between inferring basic physical knowledge and estimating parameters in a familiar
environment. Our experiments involve joint estimation of multiple parameters and
basic structure learning in the form of discrete structural relations (pairwise and
global forces), but not the more abstract conceptual change that could take longer

and require more evidence. The basic structure of noisy Newtonian mechanics is
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assumed present, and we examine learning at Level 1 - the sort of learning that

could happen over several seconds in a novel setting.

3.2.2 Simulation based approximations and summary statis-
tics

The Bayesian inversion of the generative model is in principle sufficient for inference
over any unknown quantity of interest in it. However, it can be computationally
demanding. In this section we consider a psychologically plausible approximation
to the generative model, one which combines summary statistics and the ability to
imagine new dynamic scenes.

In our experiments, each scenario contained exactly 4 pucks and 2 surfaces. This
restricts the number of hypotheses we need to consider to a maximum of 14,580 for
any one scenario; out of the larger in-principle space of 131,220. We can sum over all
the hypotheses in this domain, but such an approach is not practical for scaling to
larger domains and considering their the full hypothesis space, where integration is
generally intractable. Even for our restricted domain it is not psychologically plau-
sible a-priori that for any given dynamic stimuli people carry out massive inference
over all possible models that could have generated it, given the short time-frame
in which they can make judgments. Further, people can use more than local-path
information to assess different physical parameters. For example, if people think
two objects attract they might reasonably expect that over time the mean distance
between the objects should shrink.

This psychological intuition suggests a principled way of approximating the full
inference, following a statistical method known as Approximate Bayesian Compu-

tation (see [15] for a review). This approach is similar to ‘indirect inference’ [70],
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which assumes a model that can generate simulated data d’ given some parameters
¢, but does not try to estimate 6 directly from observed data d. Rather, we first
construct an auxiliary model with parameters 8 and an estimator 3 that can be
evaluated on both d and d’. The indirect estimate of the parameter of interest, 6, is
then the parameter that generated the simulated data whose estimator value B(d’ )
is as close as possible to the estimator value of observed data, 5(d) (for additional
technical details see for example] [70]).

Here we will use the following approximation: Our framework can generate sim-
ulated object paths given physical parameters #, which we then wish to estimate.
We begin by drawing simulated data for all the models within the domain over all
scenarios, giving us several hundred thousand paths. For every physical parameter
6 we construct a set of summary statistics that can be evaluated on any given path,
and act as estimators. For example, the summary statistic avgPositionX (d) calcu-
lates the mean x-axis position of all objects over a given path, and can be used as
an estimator for the existence of a global force along the x-axis. We evaluate these
summary statistics for each of the parameter values over all the paths, obtaining an
empirical likelihood distribution which is smoothed with Gaussian kernels. The esti-
mated likelihood of a given parameter is then the likelihood of the summary statistic
for the observed data (see Fig. 3-3(a) and (b) for an illustration of this process).

Psychologically, this approximation corresponds to the following: people can
imagine dynamical scenes unfolding over time, but when reasoning about a spe-
cific scene they do not imagine how the same scene could have unfolded under all
the different unknown variables they are reasoning about. Instead, they compute
some simple summary statistics of the specific scene, e.g. how close are some pucks

on average. People then compare the value of these summary statistics to a repos-

itory which was calculated over many possible scenes. These repositories are built
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Figure 3-3: Approximations and the ideal observer for pairwise forces. For a given
scenario (a), many alternate paths are generated and compared to the observed path,
giving us a log likelihood for all theories. Posterior estimates are obtained by either
marginalizing over all theories (b), or by comparing the summary statistics of the
scenario to its empirical distribution over many simulations (¢). We also consider a

simple combination of the methods (d).

up by using the same imagery capacities which allow people to imagine individual
scenes evolving over time, possibly in an off-line manner (as was the case in our mod-
els). This approximation relies on imagery, imagination and simulation, rather than
obtaining direct experience of tens of thousands of different scenarios and building
different features to use as classifiers of theories.

Our set of summary statistics included average position and total change along

the x-axis, average position and total change along the y-axis, mean pairwise distance
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between particles, total change in mean pairwise distance, average velocity, velocity
loss while on surfaces, amount of time spent at rest while on surfaces and the ratio of
pre- and post-collision velocities 3. These summary statistics are meant to capture
a large amount of possible perceptual data in the stimuli, but they are not meant to
be exhaustive. We take up the question of possible summary statistics again in the
general discussion.

While indirect inference and approximation techniques are useful, they have cer-
tain limitations, such as being insensitive to the particular conditions in outlying
scenarios. That is, for any given summary statistic it is easy to construct a sim-
ple scenario which is unlikely under the statistic’s likelihood, and yet people will
be able to reason about without difficulty. An interesting possibility is to combine
the strengths of the ideal observer model described in the previous section together
with summary statistics. Below we will consider for simplicity combinations of the
likelihoods derived from each approach.

Finally, we stress that this approximation technique is not an alternative to the
idea of inference through simulation, but rather a potentially necessary supplement
to it. The simulation-based approach and related approximation is in contrast to a
different possible way of approximately scoring theories, which is to learn through
experience associations between theories and many features. This would require
a great deal of experience indeed, which people are unlikely to come by for the
synthetic scenarios considered here for example. This contrast is similar to the
debates about top-down vs. bottom-up techniques in object perception, between

those who stress a more top-down approach that relies an on actual 3D object model,

3The velocity statistic was chosen based on heuristic models suggesting people are sensitive to
this data [56, 55]. The change in angle following a collision was also considered based on this work,
but it was found to actually be negatively correlated with mass judgments, which is in line with
the findings of [140].
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and those who stress bottom-up perceptual cues calculated from still images and used
for classification.
We now examine these various ways of physical reasoning, by considering people’s

performance on a novel dynamical task.

3.3 Experiment

3.3.1 Participants

Three hundred participants from the US were recruited via the Amazon Mechanical
Turk service, and were paid for their participation. Ten participants were excluded

from analysis for failing comprehension questions.

3.3.2 Stimuli

60 videos were used as stimuli, each lasting 5 seconds and depicting the dynamics of
several pucks moving and colliding.

We constructed the stimuli in the following manner: First, we defined a set of
10 worlds that differ in the physical rules underlying their dynamics, as well as in
the properties of the objects that appear in them. For example: in world; blue
pucks have a large mass and there are no global or coupling forces, whereas in
worlds blue pucks are light and red pucks repel one another. A full description of
the underlying physical rules of each world is available at http://www.mit.edu/
~tomeru/physics2014/underlyingRules. pdf

Next, for each world we created 6 different scenarios that differ in their initial
conditions (i.e. the starting location and velocity of the pucks and surfaces), as

well as the particular objects used and the size of the surfaces. For example: the
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first scenario of world; has red, yellow and blue pucks, whereas the third scenario
uses only red and yellow pucks. The initial conditions were drawn from random
distributions, and in practice most of the movies started with the pucks already
moving.

Using the dynamical rules of the world and starting from the initial conditions, we
unfolded the scenarios over 400 steps and created a video detailing the motion of the
objects over time *. All stimuli used are available at http://www.mit.edu/~tomeru/

physics2014/stimuli/, and a static visual representation is shown in Fig. 3-4 and

3-5.

3.3.3 Procedure

Each participant saw 5 videos drawn from the set of 60 possible stimuli. The video-
participant pairing was done according to a Latin-square design, such that approxi-
mately thirty participants saw each video. The order of the 5 videos was randomized
for each participant.

Participants were informed what objects, forces and physical properties were
potentially present across all the stimuli, and also that objects of the same color
have the same properties. It was explained that objects can be heavy, medium or
light, and that each object type can potentially exert forces on other types: object
types either attract, repel or don’t interact with one another. Participants were
instructed to think of the videos as similar to ’hockey pucks moving over a smooth
white table-top’, and informed that patches on the plane can have different roughness.
Finally, they were told there may or may not be a global force in the world, pulling all

objects in a particular direction (north, south, east or west). An example experiment

4We used the classical Runge-Kutta method (RK4) for numerical integration to move the entities
forward in time.
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with the complete instructions and layout used is available at http://www.mit.edu/
~tomeru/physics-experiment-turk/physics-experiment.html.

After the presentation of each video participants rated the entire set of possible
physical properties. For each puck color, participants were asked ‘How massive are
[color] objects?’, with possible answers being ‘Light’, ‘Medium’, ‘Heavy’ or ‘Can’t
tell from movie’. For each surface color, participants were asked ‘How rough are
[color] patches?’, with possible answers being ‘As smooth as the table-top’, ‘A little
rough’, 'Very rough’ or ‘Can’t tell from movie’. For each puck color-pair combina-
tion, participants were asked ‘How do [color 1] and [color 2] objects interact?’, with
possible answers being ‘Attract’, ‘Repel’, ‘None’, or ‘Can’t tell from movie’. Finally,
participants were asked ‘Is a global force pulling the objects, and if so in what di-
rection is it pulling?’, with possible answers being ‘Yes, it pulls North’,*Yes, it pulls
South’, ‘Yes, it bulls East’, ‘Yes, it pulls West’ or ‘No global force’. This gave us a
total of 13 questions per video, and 5 videos gave us a total of 65 data points per
participant. The ‘Can’t tell from video’ answer was supplied for cases where the
question is not relevant, for example a question regarding the mass of blue pucks

when no blue pucks are shown in the video.

3.3.4 Results
Overview

Participants correctly answered 54% of the questions on average, with a standard
error of 13%°. There was no statistically significant effect of learning over time

(52% correct on first 2 videos vs. 55% answers on last 2 videos). This is far from

5The exact number of potentially correct questions varied by scenario, as some questions were
not relevant for some stimuli, e.g. a question about the mass of blue pucks when no blue pucks
were shown.
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perfect, but we should not expect people to perform perfectly on a novel physical
task. Rather, it is an accomplishment on the participants’ part that they can adapt
to a novel dynamical task at all. The participants’ quantitative performance differed

depending on the particular physical property being considered.

Analysis

We analyzed the results in two ways:

Aggregating over the different scenarios: We obtained the empirical dis-
tribution of responses over the possible answers across all scenarios. We collapsed
across the property of color to consider four physical properties: mass, friction, pair-
wise forces and global forces. For mass and friction properties the responses were
clearly ordinal (light, medium, and heavy for mass; smooth, a little rough, and very
rough for friction) and the ground truth was a continuous ratio scale, thus we can
fit an ordinal logistic regression to the participant data, shown in Fig. 3-6a. The
figure displays the cumulative probability on the y-axis, and the relevant response is
color-coded according to the label. For example, on this regression the probability
people will answer ‘light’ when the true mass is in fact light (equal to 1) is 52%. The
probability they will answer ‘medium’ is 33% (85%-52%), and the probability that
they will answer ‘heavy’ is the remaining 15%. This is close to thé empirical values
of 47%/37%/16%.

An ordinal regression cannot be used for the global and coupling forces, and so
Fig. 3-6¢ shows empirical confusion matrices, detailing the percentage of people that
chose each option given the ground truth.

Transforming responses per scenario For mass and friction we can assess

participant performance in a more refined way, by considering the distribution of re-
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sponses for each puck (and surface) in each one of the 60 scenarios, and transforming
this distribution into a quantitative prediction for that puck (or surface). We do this
by taking the expectation of the physical property relative to the empirical distribu-
tion (e.g., if 60% of participants rated a yellow puck in scenario 7 as ‘heavy’ and 40%
rated it as ’mediﬁm’, the converted participant rating is 0.6 * 9 + 0.4 x 3 = 6.6), and
comparing the results with the ground truth, shown in Fig. 3-6b. These sub-figures
plot the average rating of participants for mass/friction in a given scenario, compared
to the ‘ground truth’. Each black dot thus represents the average rating of 25-30
participants for mass /friction. The black solid line shows the average response for all
masses across all scenarios. Dotted colored lines connect masses/friction in the same
scenario, thus a rising line means a correct ranking. We next consider each property

separately.

Results by physical property

Mass: The upward trend of the lines in the logistic regression, shown in Fig. 3-6a,
shows that participants correctly shift in the probability of answering that a
mass is heavier when that is in fact the case. The linear correlation depicted
in Fig. 3-6b shows that although there is a large degree of variance for any
given mass, participants were able to overall correctly scale the masses. The
apparent ability to correctly rank and quantitatively scale multiple masses is
of particular interest, as experiments on inferring mass from collisions have
usually focused on judgments of mass ratios for two masses, often requiring

binary responses of ‘more/less massive’ (e.g. [55]).

Friction: Again we see a upward trend in the logistic regression, shown in Fig. 3-6a.

Compared with the regression for the masses, participants lean more heavily
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Figure 3-6: Analysis of participant performance using: (a) Ordinal logistic regres-
sion for mass (left) and friction (right). Shaded black areas represent uncertainty on
parameter estimates, colored patches show the ordinal responses. The upward trend
indicates a greater proportion of participants selecting the qualitatively correct re-
sponse as the quantitative value goes up, (b) Per scenario analysis with transformed
ratings for mass (left) and friction (right). Each black dot represents the average
rating of 25-30 participants. The solid line shows the average response across all
scenarios. Dotted lines connect mass/friction ratings in the same scenario, and so a
rising line means a correct ranking. (c¢) Confusion matrices for pairwise forces (top)
and global forces (bottom).

towards the lower end of the responses, perhaps because a ‘null’ response (no
friction) is easier to make than a graded response along a continuum. The lin-
ear correlation depicted in Fig. 3-6b shows that participants were also able to
correctly rank the roughness of the surfaces, though they could better distin-
guish between high- and low-friction surfaces than they were able to distinguish
low- and zero-friction surfaces. To our knowledge this is the first systematic

study of people’s ranking of the friction properties of surfaces in the intuitive
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physics literature.

Pairwise forces: As shown in Fig. 3-6¢ participants performed well on attraction
forces, correctly detecting them on average in 82% of the cases in which they
existed, while not reporting them on average in 88% of the cases in which
they did not exist. As for repulsion and non-forces, their performance was
above chaﬂce, although it was significantly worse than attraction. Note in
particular that there is an asymmetry in the column for non-forces, indicating
participants are confusing repulsion and non-existent forces, much more than
they are confusing attraction and non-forces (32% vs. 15%). We will return to
this point in the next section.

Global forces: As shown in Fig. 3-6¢ participants performed relatively well on
detecting global forces, identifying the correct global force 70% of the time on
average. Note that generally any force is more likely to be confused with a
null-force than it is with any other force. Also, note that if participants did
not correctly interpret the display as shown from a ‘bird’s eye view’, then the
‘South’ direction could be interpreted as 'Down’ and so activate certain prior
expecfations about a gravity force pulling in that direction. While this was
indeed the most correctly perceived force, it is not a large effect, and such an
explanation does not account for why a force pushing West, for example, is

better detected than one pushing East.
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—~ A participant
explaining how they
arrived ot their

answers

3.4 Comparison to Ideal-Observer and Summary-
Statistic Approximations

For the Ideal Observer model (10), we get predictions in the following way: For each
scenario, we fix the observed initial conditions and simulate the resulting paths for all
the relevant models. We then give each model a log-likelihood score by assessing the
deviation of its simulated path from the observed path. Finally, for each parameter
of interest we marginalize over the other parameters by summing them out, to obtain
a log-likelihood score for the relevant parameter (see Fig. 3-3a and b).

For the Simulation and Summary Statistics model (SSS), we get predictions by
following the procedure detailed at the end of Section 2. We also consider a simple
combination of these two approaches, by summing weighted log-likelihoods from both
approaches for any given physical parameter (I0&SSS) and renormalizing. These
various approaches are illustrated for a particular example in Fig. 3-3.

These parameter estimates give us predicted distributions over the responses for
each physical property for each scenario. We begin by collapsing across scenarios so
that we can compare the results to the logistic regressions and confusion matrices
of the participant data shown in Fig. 3-6a and c. Note that for .each model there
is a free ‘noise’ parameter applying to the distributions across all scenarios, which
allows us to try and bring each model as close as possible to the participant data.
We consider ‘close’ as minimizing the RMSE between the different distributions of
the empirical confusion matrices (for pairwise and global forces) or the confusion
matrices predicted by the logistic regression (for mass and friction)®.

We begin by considering the ordinal logistic regression as applied to the different

6We also considered using KL-divergence as the distance metric, but that does not alter the
results.
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models, compared with mass and friction, shown in Fig. 3-6. For mass inference,
the SSS model outperforms the IO model and is quite close to people’s performance.
The combined I0&SSS model places its entire weight on the SSS model, gaining
no advantage from the IO model. For friction inference, we see that again the SSS
model outperforms the IO model in terms of how close it is to people’s judgments,
although here the combined I0&SSS outperforms both.

We next consider the confusion matrices. Of particular interest is the confusion
matrix for pairwise forces, where people showed an asymmetry in their confusion of
the absence of force. That is, when there actually is an absence of a pairwise force,
people incorrecﬂy rate this as a repulsive force much more than they incorrectly
rate this as an attractive force (32% repulsive compared with 15% for attractive,
see Fig. 3-6¢). We can understand this difference intuitively — an attractive force is
more likely to pull bodies closer together, which makes the attraction stronger and
so gives further evidence for the attractive force. A repulsive force pushes bodies
further apart, growing weaker and providing less evidence for its existence over time.
But such an asymmetry plays out over the entire dynamic scene. This asymmetry
does not come naturally out of the IO model, which sums up the error along local
deviations between a simulated trajectory given by a particular theory, and the
observed trajectory. In such a model the local error produced by a theory that
posits an attractive pairwise force is the same as that produced by a theory that
posits a repulsive force.

By contrast, a summary statistic looking at the average pairwise distance does
replicate this asymmetry. As illustrated in Fig. 3-3c, when we condition on the
absence of force (in gray) and on a repulsive force (red), we generally find an overlap
in the distribution of the summary statistic that is greater than that between the

absence of force and an attractive force (green). Again it is important to note that
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the estimates from this summary statistic are informed by running many simulations
using the formal model. When we combine the IO model with the SSS we can
reproduce a confusion matrix that is similar to people’s performance, shown in Fig. 3-
6c. In particular, we reproduce the asymmetry between repulsion and the absence
of a pairwise force (27% repulsive compared with 15% for attractive). While this
asymmetry also exists for the SSS confusion matrix, the I0&SSS confusion matrix
is closer to that of people.

The second confusion matrix to consider is that of global forces. As mentioned,

for people one of the main points of interest was the confusion between any given

force and the absence of force, relative to any other force. Both the IO and SSS

models replicate this finding, although the 10 model is in general closer to people.
Also, we interestingly find that the SSS model is quite bad at detecting the absence
of global forces, perhaps because none of the simple features we used account for a
null-force. Again, a combination of the two into an I0&SSS produces a confusion
matrix which is closest to that of people. We take up the question of other possible
features, including more force-based ones, in the discussion.

Having examined the aggregate results, we can refine our comparison by looking
at the response distributions the models give in each scenario and for each object
and property, correlated with those of people. For mass and friction coefficient
judgments, we can compare between people and the different approaches by again
converting posteriors into predicted mass and friction values. For global and pairwise
forces we can compare performance by correlating the predicted model posteriors for
each scenario and property with the posterior as calculated from normalized people
judgments.

The comparison of these various approaches with people is summarized in the

table below, showing correlations between people and different approaches. Note that
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we could theoretically have chosen the ‘noise’ parameter mentioned earlier to optimize
this linear correlation, however we decided to reduce the number of free parameters
and re-used the noise obtained from the previous comparison. We used a standard

bootstrap method to obtain estimated confidence intervals on these correlations [36].

Models ,

10 SSS I0&SSS
mass 0.50+0.10 0.55+£0.08 0.55+0.07
friction 0.54+0.12 0.64+0.11 0.65+0.10
pairwise 0.56 +£0.04 0.75+0.03 0.81+0.02
global  0.89 +0.02 0.85+0.03 0.91+£0.02

Figure 3-8: Table showing the correlation between people’s judgments of different
physical properties and the different computational approaches: Ideal Observer (10),
Summary Statistics Approximation (SSS), and a combination of the two (I0&SSS).
Correlations include 95% estimated confidence intervals, calculated using bootstrap
methods.

As can be seen from the table, while not improving the results in all cases, the
consistently best fit to people’s judgments is obtained by using a combination of the
ideal observer with simulation-based summary statistics methods. We show these
correlations in more detail in Fig. 3-9. This suggests that a combination of the
ideal observer with summary statistics discovered by generative simulations may be

a future fruitful approach, an idea we take up in the general discussion.

3.5 General Discussion

Humans acquire their most basic physical concepts early in development, but con-

tinue to enrich and expand their intuitive physics throughout life as they are ex-
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Figure 3-9: Correlations between people’s answers and those given by the different
models, for the four physical categories.

posed to more and varied dynamical environments. We have presented a hierarchical
Bayesian framework to explain how physical theories can be learned across multiple
timescales and levels of abstraction. Expressing theories using probabilistic programs
lets our approach effectively learn the forces and properties that govern how objects
interact in dynamic scenes unfolding over time. Given a challenging task of jointly
inferring several novel physical laws from short movies through observation alone,
people performed relatively well. Their performance was broadly in line with model

predictions, but they also made systematic errors suggestive of how a bottom-up
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summary-statistics-based approximate inference scheme might complement a more
top-down ideal Bayesian approach to learning.

We found that on a number of measures, a hybrid between top-down Bayesian
learning and bottom-up approximate inference emerged as the best empirical fit to
participants’ behavior in learning physical laws from dynamic scenes. This general
approach also makes good engineering sense: It can transcend inherent limitations of
each component method and serve as the basis for more robust real-world learning.
The ideal Bayesian observer uses evidence in an optimal way, but it is computa-
tionally intractable. The feature-based statistics are useful heuristics in many cases,

but are unable to handle situations that deviate from the norm 7

. Also, summary
statistics in our setup do not replace the knowledge of a generative model, since
they themselves require the simulations of a generative model to be computed. The
computational intensity of the full ideal model is not as much of a problem in the com-
bined model, as it is meant to capture either training the approximate, bottom-up
inference in an off-line manner, or being used to score hypotheses once the bottom-up
inference has narrowed the possible space down.

We considered a simple way of linearly combining the top-down and bottom-up
models. While this approach performed reasonably, it does not get around the need
to search a large space of theories for the ideal observer. A more psychologically
plausible mechanism might include using the summary statistics of a given scenario

to pick out a small space of ‘reasonable’ theories and then use Bayesian inference

on this smaller space. For example, suppose the summary statistics of a scenario

7 For example, consider a scenario involving two attracting pucks that begin in full contact,
rotating around one another and moving together when one is struck. A normally useful statistic
for detecting attraction - the difference between the initial and final distance of the pucks - would be
useless here. The ideal observer and presumably people would have no problem detecting attraction
in such a case

108



heavily bias in favor of an attractive force, less for the absence of force, and hardly
at all for a repulsive force. A Bayesian inference mechanism with finite resources
might then sample a handful of trajectories, most of them from theories that assume
attractive forces, few from theories assuming no forces, and hardly any trajectories
from theories assuming repulsive forces.

While we used of set of plausible summary statistics, it is not meant to be exhaus-
tive. The fact that the Ideal Observer model performed better than the Summary
Statistics Simulation model on some properties might be due to other unaccounted
for features that, when used correctly, would bring the SSS model closer to people’s
performance for those properties as well. In particular, given the relation between
forces and acceleration, it might be that more acceleration-based features would
improve performance on force-related inference 2.

There are many questions that are still open when considering the challenge of
inferring physical dynamics from perceptual scenes. In the rest of the discussion we
consider several of these questions, and how our framework might shed light on them.

First, to what extent are the computational processes underlying intuitive physics
shared between adults and children? While it is clear that some physical knowledge
develops [124, 3], it is possible that the highest level of the framework, such as an
understanding of entities, forces and dynamics, is innate or early developing. Our
own experiments focused on adults, but one advantage of our novel stimuli is that
they can be easily adapted to experiments with young children or infants, using

simple responses or violation of expectation to indicate what they learn from brief

exposures.

8In order to facilitate the exploration of other features, the full participant responses as well as
the trajectory data for all stimuli will be available at http://www.mit.edu/~tomeru/physics2014/
data/
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Second, how does the language people use to talk about physical properties relate
to quantitative descriptions of those properties? In our task and in day-to-day phys-
ical descriptions we use words like “heavy” or “rough”, which describe continuous
qualities. These words are also graded adjectives with context-sensitive boundaries.
An addition to our model could include drawing such properties from continuous
distributions, such as different power-law distribution for the meaning of the words
“light” and “heavy”. We did not originally use such distributions because then even
the ideal optimal inference model must be approximated, as the space of continuous
concepts cannot be searched and scored exhaustively. Such an approximation raises
questions about the exact technique to use, without allowing us to compare between
ideal and approximate techniques, but it is possible and worth exploring®.

Third, what kind of physical forces, properties and dynamics do people find nat-
ural? What is intuitive in intuitive physics? In our framework we used pairwise
and global forces, friction, collisions and stable conserved properties shared across
objects, and people seemed able to reason about these relatively well. We believe
people are able to reason about spring- and string-like forces, as well as attachments
that maintain certain constraints on object relations. But it is entirely possible for
our framework to generate and explore what we think will be non-intuitive dynam-
ical scenes that people will find difficult to reason about, such as time-dependent,
velocity-dependent forces that act according to non-conserved properties of objects.
However, these forces would be more difficult to express in tra.ditidnal physics simu-
lations, suggesting a possible link to explore between simplicity in description length
and human reasoning in intuitive physics.

Finally, what are the perceptual inputs that go into physical reasoning? Are they

simply pixels that get grouped into ‘motion features’ used for bottom-up classifica-

9See for example [187] on approximate search in large theory spaces.
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tion, or are the inputs properties of objects? This debate parallels the top-down vs.
bottom-up questions of object recognition in visual perception, and like that debate
it might turn out to not be an either-or distinction [184, 102]. Useful motion features
might be real, but learned. Our framework suggests at least tentatively that new
features for rapid classification might be partially discovered by using synthetic data
which was generated by running forward many simulations from an intuitive physics

model of the world, rather than relying on experience in the absence of such a model.

3.6 Conclusion

The most exciting phrase to hear in science, the one that heralds new discoveries, is
not ’Eureka!’ but 'That’s funny...’

— Isaac Asimov

We have proposed that the combination of hierarchical Bayesian learning, an ex-
pressive representation for dynamical theories in terms of probabilistic programs, and
psychologically plausible feature-based approximate inference schemes, offers a pow-
erful framework for explaining how people can learn aspects of intuitive physics from
observations - even such sparsely observed data as a few seconds of several objects
in motion. Although participants were far from ideal observers in our experiments,
they were nonetheless able to make inferences about all aspects of a given scenario’s
physics at levels. well above chance, and these inferences could serve as important
first steps guiding subsequent causal learning.

Much recent work on the development of intuitive theories has emphasized the
crucial role that active interventions - and not only observational data - play in

making causal learning possible. Likewise in science, experimental interventions -
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and not simply correlational studies - have long been the gold standard for testing
causal hypotheses. Yet controlled experiments and other interventions are not the
only mode by which scientists and children learn about the world. They may not
even be the most important. As Asimov suggests, every truly novel discovery in

science begins with a moment of observation, a ‘Thats funny...’

moment, when a
keen observer notices that something isn’t quite as she expected, and differs from
the usual course of events in a way that is not simply random but has some novel
structure that calls for out exploration, experimentation and ultimately explanation.

We believe that this is just as true in the development of intuitive theories as
in the development of formal scientific theories, and our studies here have aimed
to capture this first step of learning in the domain of intuitive dynamics. In our
experiments, the ‘Thats funny...” moment might occur when two objects veer slightly
off their straight-line course towards one another, or when an object slows down more
than expected while moving over a colored surface. In our modeling, probabilistic
programs express the knowledge by which people imagine how a scene might play out
under different candidate physical laws or parameters, and how, if the scene departs
from the imagined path, parts of the original program might be adjusted to account
for the surprising data. These hypothetical adjustments become the hypotheses to

be tested in subsequent experiments, and with luck, the seeds of “Eurekal!”.

3.7 Afterthought - Physics Engine Hacks for Psy-
chology

Physics engines do not fully simulate physics. Engineers, designers, physicists and

computer scientists working on physics engines aren’t concerned with getting a simu-
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lation to perfectly account for the movement of each atom!®. The modelers often use
dynamics that are similar to Newtonian mechanics because that is the way the world
works, but they’re willing to also use shortcuts and hacks to get around problems of
memory and computation.

If we take seriously the idea that people have something like a game-engine or
physics-engine in their heads, then we should consider the concepts and workarounds
that people working on physics engines have developed independently of psychology.
Below I review a list of concepts that appear in many physics engines, and posit
possible connections between them and concepts in cognitive science.

This is not to suggest that all the inner workings of physics engines will have
counter-parts in the mind. But if engineers had to explicitly come up with clever
ways to simulate the world around them, perhaps the mind uses similar ways. At

the least, I hope this provides a fruitful avenue for future research.

Bodies and Shapes Many physics engines have a distinction between bodies and
shapes. The ‘body’ holds the physical properties (mass, position, velocity,
rotation, etc.), a bit like point-particles in physics, except that they can rotate.
A body has one or more ‘shapes’ attached to it. These are the visible graphical
bits. In 3D engines one can also find a distinction between 2 “meshes”. Again, jissanany )
one is the actual ‘physical’ mesh, while the other is the the visible graphical one. : |
Think of a bee-hive. As a graphical representation one can use some drawing N
or complicated mesh, but as a physical representation the engine will use some Simplifying a shape
convex hull that envelops the graphical shape and allows for fast calculations, using a conves hull
or eylindrical body
or possibly even a cylinder or pyramid. The simplified convex hull mesh, or

the approximating cylinder is what is used for collision detection and physical

10Unless the physicists are trying to simulate atoms.
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“Walls are special”
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communication)

dynamics. It may be that when people simulate some object moving forward
in time (say, throwing a bee-hive) they only roughly approximate that object

using simpler meshes or bodies.

Dynamics and Collision Detection Most game and physics engines are split into

dynamics (for moving things along) and collisions (for when things move into
each other). Collisions seem fundamentally important, although they are de-
tected and solved differently in different engines. There are many different
hacks for noticing collisions (e.g. ‘casting’ trajectories geometrically into the
future and seeing what they run into) and solving them (e.g. placing springs
in between the colliding objects), but if physics engines exist in the mind, they

will also have to work out the problem of collisions.

Static and Dynamic A common way to save on computation time and memory

is to have a notion of “this body is not going to move”, whether it is the
background, the ground, a wall, etc. A static object is not just a very heavy
object that you have to keep solving the forces and mass-reaction for, it is
unmoving and does not participate in updating its own position properties.
Such static entities might not count as ‘Spelke-objects’, and therefore violations
of expectation tasks commonly associated with Spelke—objecté would not apply

to them.

Sleeping and Awake While static bodies are those that are unlikely to move,

physics engines also don’t want to bother with dynamic bodies if possible.
For example, if a dynamic body hasn’t moved or contacted-a body since the
last frame, there is no point in graphically re-rendering it. A body “wakes up”

when it collides with an awake body or has a joint destroyed. Psychologically,
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this notion might explain certain attention effects.

Constraints and Joints These are things that restrict system of bodies without
the need for explicit force simulation. Consider a two-bodied pulley system:
The physiqs engine does not work through the exact tension on the rope in or-
der to simulate a force that pulls one mass while the other goes down. Rather,
there is a general constraint that “when one object moves up, the other moves
down”. Common constraints include distance joints, prismatic joints and revo-
lution joints, but there are others. Again, such constraints seem psychologically

useful, and they are in line with suggestions from ‘qualitative physics’ [45].

Fluids and Hard Things Fluids are a category onto themselves in most engines,
and are trickier to simulate than single objects. There are many ways to
approximate fluids, and there is probably an entire research program of trying
to capture human reasoning about fluids by using different game engines. My
main poinf in mentioning this category is that engines find this hard, and
humans seem to find it hard as well. Stuff (fluids, sand piles, etc.) doesn’t
seem to obey ‘Spelke object’ principles [26, 83], but it might still be part of
the physical reasoning system, and hard to reason about for the same reason

engines have a hard time.
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Chapter 4

Theory Learning as Stochastic

Search™

If a person should say to you “I
have toiled and not found”, don’t
believe. If they say “I have not
toiled but found”, don’t believe. If
they say “I have toiled and found”,
believe. — Rabbi Itz hak, Talmud

4.1 Introduction

For the Rabbis of old, learning was toil, exhausting work — a lesson which many
scientists also appreciate. Over recent decades, scientists have toiled hard trying to

understand learning itself: what children know when, and how they come to know

*Joint work with Noah Goodman and Josh Tenenbaum
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it. How do children go from sparse fragments of observed data to rich knowledge of
the world? From one instance of a rabbit to all rabbits, from occasional stories and
explanations about a few animals to an understanding of basic biology, from shiny
objects that stick together to a grasp of magnetism — children seem to go far beyond
the specific facts of experience to structured interpretations of the world.

What some scientists found in their toil is themselves. It has been argued that
children’s learning is much like a kind of science, both in terms of the knowl-
edge children create, its form, content, and function, and the means by which
they create it. Children organize their knowledge into intuitive theories, abstract
coherent frameworks that guide inference and learning within particular domains
[23, 26, 191, 64, 123]. Such theories allow children to generalize from given evidence
to new examples, make predictions and plan effective interventions on the world.
Children even construct and revise these intuitive theories using many of the same
practices that scientists do [152]: searching for theories that best explain the data ob-
served, trying to make sense of anomalies, exploring further and even designing new
experiments that could produce informative data to resolve theoretical uncertainty,
and then revising their hypotheses in light of the new data.

Consider the following concrete example of theory acquisition which we will return
to frequently below. A child is given a bag of shiny, elongated, hard objects to
play with, and finds that some pairs seem to exert mysterious forces on each other,
pulling or pushing apart when they are brought near enough. These are magnets,
but she doesn’t know what that would mean. This is her first encounter with the
domain. To make matters more interesting, and more like the situation of early
scientists exploring the phenomena of magnetism in nature, suppose that all of the
objects have an identical metallic appearance, but only some of them are magnetic,

and only a subset of those are actually magnets (permanently magnetized). She may
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initially be confused trying to figure out what interacts with what, but like a scientist
developing a first theory, after enough exploration and experimentation, she might
start to sort the objects into groups based on similar behaviors or similar functional
properties. She might initially distinguish two groups, the magnetic objects (which
can interact with each other) and the nonmagnetic ones (which do not interact).
Perhaps then she will move on to subtler distinctions, noticing that this very simple
theory doesn’t predict everything she observes. She could distinguish three groups,
separating the permanent magnets from the rest of the magnetic objects as well as
from the nonmagnetic objects, and recognizing that there will only be an interaction
if at least one of the two magnetic objects brought together is a permanent magnet.
With more time to think and more careful observation, she might even come to
discover the existence of magnetic poles and the laws by which they attract or repel
when two magnets are brought into contact. These are but three of a large number
of potential theories, varying in complexity and power, that a child could entertain
to explain her observations and make predictions about unseen interactions in this
domain.

Our goal here is to explore computational models for how children might acquire
and revise an intuitive theory such as this, on the basis of domain experience. Any
model of learning must address two kinds of questions: what, and how? Which
representations can capture the form and content of what the learner comes to know,
and which principles or mechanisms can explain how the learner comes to know
it, moving from one state of knowledge to another in response to observed data?
The main new contribution of this chapter addresses the ‘how’ question. We build
on much recent work addressing the ‘what’ question, which proposes to represent
the content of children’s intuitive theories as probabilistic generative models defined

over hierarchies of structured symbolic representations [177, 178, 90]. Previously the
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“I wonder why we
think faster than
we speak. Probably
so we can think
twice.”

— Calvin and

Hobbes

‘how’ question has been addressed only at a very high level of abstraction, if at all:
the principles of Bayesian inference explain how an ideal learner can successfully
identify an appropriate theory, based on maximizing the posterior probability of a
theory given data (as given by Bayes’ rule). But Bayes’ rule says nothing about the
processes by which a learner could construct such a theory, or revise it in light of
evidence. Here our goal is to address the ‘how’ of theory construction and revision at
a more mechanistic, process level, exploring cognitively realistic learning algorithms.
Put in terms of Marr’s three levels of analysis [111], previous Bayesian accounts of
theory acquisition have concentrated on the level of computational theory, while here
we move to the algorithmic level of analysis, with the aim of giving a more plausible,
practical and experimentally fertile view of children’s developmental processes within
the Bayesian paradigm.

Our work here aims to explain two challenges of theory acquisition in algorithmic
terms. First is the problem of making learning work: getting the world right, as
reliably as children do. As any scientist can tell you, reflecting on their own ex-
periences of toil, the ‘how’ of theory construction and revision is nontrivial. The
process is often slow, painful, a matter of starts and stops, random fits and bursts,
missteps and retreats, punctuated by occasional moments of great insight, progress
and satisfaction — the flashes of ’Aha!” and ’Eureka!’”. And as any parent will tell
you, children’s cognitive development often seems to have much thé same character.
Different children make their way to adult-like intuitive theories at very different
paces. Transitions between candidate theories often appear somewhat random and
unpredictable at a local level, prone to backtracking or “two steps forward, one
step back” behavior [158]. Yet in core domains of knowledge, and over long time
scales, theory acquisition is remarkably successful and consistent: different children

(at least within a common cultural context of shared experience) tend to converge
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on the same knowledge structures, knowledge that is much closer to a veridical ac-
count of the world’s causal structure than the infant’s starting point, and they follow
predictable trajectories along the way [26, 64, 190].

Our first contribution is an existence proof to show how this kind of learning
could work — a model of how a search process with slow, fitful and often frustrating
stochastic dynamics can still reliably get the world right, in part because of these
dynamics, not simply in spite of them. The process may not look very algorithmic,
in the sense of familiar deterministic algorithms such as those for long division,
finding square roots, or sorting a list, or what cognitive scientists typically think of
as a “learning algorithm”, such as the backpropagation algorithm for training neural
networks. Our model is based on a Monte Carlo algorithm, which makes a series
of randomized (but not entirely random) choices as part of its execution. These
choices guide how the learner explores the space of theories to find those that best
explain the observed data — influenced by, but not determined by, the data and the
learner’s current knowledge state. We show that such a Monte Carlo exploratory
search yields learning results and dynamics qualitatively similar to what we see in
children’s theory construction, for several illustrative cases.

Our second challenge is to address what could be called the “hard problem” of
theory learning: - learning a system of concepts that cannot be simply expressed as
functions of observable sense data or previously available concepts — knowledge that
is not simply an extension or addition to what was known before, but that represents
a fundamentally new way to think. Developmental psychologists, most notably Susan
Carey [26], have long viewed this problem of conceptual change or theory change as
one of the central explanatory challenges in cognitive development. To illustrate,
consider the concepts of “magnet” or “magnetic object” or “magnetic pole” in our

scenario above, for a child first learning about them. There is no way to observe an
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object on its own and decide if it falls under any of these concepts, There is no way
to define or describe either “magnet” or “magnetic object” in purely sensory terms
(terms that do not themselves refer to the laws and concepts of magnetism), nor to
tell the difference between a “north” and a “south” magnetic pole from perception
alone. How then could these notions arise? They could be introduced in the context
of explanatory laws in a theory of magnetism, such as “Two objects will interact
if both are magnetic and at least one is a magnet”, or “Magnets have two poles,
one of each type, and opposite types attract while like types repel.” If we could
independently identify the magnets and the magnetic objects, or the two poles of
each magnetic object and their types, then these laws would generate predictions that
could be tested on observable data. But only by virtue of these laws’ predictions can
magnets, magnetic objects, or magnetic poles even be identified or made meaningful.
And how could one even formulate or understand one of these laws without already
having the relevant concepts?

Theory learning thus presents children with a difficult joint inference task — a
“chicken-and-egg” problem — of discovering two kinds of new knowledge, new con-
cepts and new laws, which can only be made sense of in terms of each other: the
laws are defined over the concepts, but the concepts only get their meaning from
the roles they play in the laws. If learners do not begin with either the appropriate
concepts or the appropriate laws, how can they end up acquiring both successfully?
This is also essentially the challenge that philosophers have long stﬁdied of grounding
meaning in conceptual role or inferential role semantics [14, 77, 78, 39, 41]. Tradi-
tional approaches to concept learning in psychology do not address this problem,
nor do they even attempt to [20, 163, 137]. The elusiveness of a satisfying solution
has led some scholars, most famously Jerry Fodor, to a radical skepticism on the

prospects for learning genuinely new concepts, and a view that most concepts must
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be innate in some nontrivial way [42, 43]. Carey [26] has proposed a set of informal
“bootstrapping” . mechanisms for how human learners could solve this problem, but
no formal model of bootstrapping exists for theory learning, or concept learning in
the context of acquiring