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Abstract

Reservoir management and decision-making is often cast as an optimization problem
where we seek to maximize the field's potential recovery while minimizing associated
operational costs. Two reservoir management aspects are considered here, new well
placement and production controls. Reservoir simulators are at the heart of this
process as they aid in identifying best field development plans. The computational
cost associated with managing realistic reservoirs is however substantial due to the
significant number of unknowns evaluated by the simulator as well as the number of
simulations required to achieve an optimal plan-it involves hundreds to thousands
of reservoir simulation runs. Reduced-order models (ROM) are considered powerful
techniques to address computational challenges associated with reservoir manage-
ment decision-making. In this sense, they represent perfect alternatives that trade
off accuracy for speed in a controllable manner. In this work, we focus on developing
model-order reduction techniques that entail the use of proper orthogonal decom-
position (POD), truncated balanced realization (TBR) and discrete empirical inter-
polation (DEIM) to accurately reproduce the full-order model (FOM) input/output
behavior. POD allows for a concise representation of the FOM in terms of rela-
tively few variables while TBR improves the overall stability and accuracy. DEIM
improves the shortcomings of POD and TBR in the case of nonlinear PDEs, i.e.,
saturation equation, by retaining nonlinearities in lower dimensional space. Example
cases demonstrate ROMs ability to reduce the computational costs by 0(100) while
providing close overall agreement to FOM for instances with significant difference in
boundary conditions (well placements and controls).
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ROMs are potentially perfect alternatives to FOMs in reservoir management intensive
studies such as field development and optimization. However, ROMs presented in this
thesis and the overall physics-based ROMs have the tendency to perform well within
a restricted zone. This zone is generally dictated by the training simulations (with a
specific set of boundary conditions) used to build the ROM. Therefore, special care is
considered when implementing these training runs. To mitigate the heuristic process
of implementing training runs (multiple boundary conditions training runs), we apply
a trust-region approach that provides an adaptive framework to systemically retrain
and update ROMs utilizing new solutions (flow) characteristics revealed during the
course of the optimization run. The adaptive framework for determining the optimal
well placements entails the development of a hybrid optimization algorithm, MCS-
MADS, that combines positive features of both local and global optimization methods.
Typical FOM is used in conjunction with MCS to globally search the optimization
surface while ROMs are used in conjunction with MADS to further improve the
solution quality with minimum increase in computational costs. Well production
controls are optimized sequentially via gradient-based trust-region approach. ROMs
in this approach replace the FOM to find optimal solutions within a trust-region

(subset of the optimization space). At the end of each trust-region optimization,
the accuracy of the obtained solution is assessed and the ROM is updated. Both
approaches are capable of handling nonlinear constraints. They are treated using a
filter-based technique.

The developed framework for adaptive ROMs is applied to two realistic field examples.
The first example considers maximizing net present value (NPV) through sequentially
optimizing well placements and controls while the second example considers maximiz-
ing recovery through minimizing Lorenz coefficient. Nonlinear constraints including
well-to-well distance and field production limits are imposed in both examples. For
all cases considered, the hybrid approach for well placement based on MCS-MADS
was able to constantly provide better solution quality (up to 22% increase in NPV)
when compared to standalone MCS with only 3% increase in computational costs.
The incorporation of ROMs for well controls was shown to reduce computational cost
by 96% with only 1% difference in solution quality when compared to FOM.

Thesis Supervisor: John R. Williams
Title: Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Background and Motivation

Global demand for energy has long been increasing. Energy consumption is expected

to grow by approximately 56% in 2040, higher than it was in 2010, despite gains

in energy efficiency [2]. According to the U.S. Energy Information Administration

(EIA), fossil fuels including oil, natural gas, and coal remain the predominant source

of energy, providing about 83% of global energy demand in 2011 (63% of global

energy comes from oil and natural gas), and forecasts indicate they will continue to be

significant contributors for decades to come [42]. In order to meet the rising demand,

the oil and gas industry is simultaneously directing its efforts toward discovering new

fields as well as increasing recovery from existing fields through best practices of

reservoir management.

The oil and gas industry is mainly divided into two major sectors: upstream and

downstream. The upstream sector, depicted in Figure 1.1, is commonly known as
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exploration and production (E&P). It includes searching for potential subsurface oil

and natural gas fields, drilling of exploratory wells, and subsequently managing new

field discoveries through operating wells that recover and bring crude oil and/or nat-

ural gas to the surface. The downstream sector, on the other hand, involves refining

crude oil and natural gas in addition to marketing and distribution of refined prod-

ucts. The downstream sector provides the closest connection to everyday energy

consumers through means of transportation, electricity, and other useful petroleum

products.

Seismic
Seismic Acquisition Interpretation
& Processing Geologic

Modeling

Reservoir
Facilities & Simulation

Operation

DrillingReservoir
Management

Figure 1.1: The upstream sector of the oil and gas industry. It primarily consists of
eight areas covering both subsurface aspects such as drilling and reservoir manage-
ment and surface aspects such as production plants and flow networks.

The main focus in this thesis is directed toward the upstream sector and specifically

enhancing reservoir management and decision-making process. One of the primary

goals of petroleum reservoir modeling and management processes is to enable decisions

that determine the direction and course of billions of dollars every year. Such decisions

are made on a long-term horizon and may include valuing acquisition of information,

assigning well drilling locations, and determining development strategy for a given
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field. Minor improvements such as increasing recovery by 1% may result in billions

of dollars-given the size of the prospective field.

A decision-making framework requires identifying a methodology to propose possi-

ble scenarios (e.g., well locations and production strategy) and developing modeling

techniques to evaluate them. This can be mathematically translated into an opti-

mization problem where optimization methods are used to propose possible scenarios

whilst reservoir simulation models are used to evaluate them-simple tank models in

this case are insufficient due to complex three-dimensional geometry and boundary

conditions of real reservoirs. Typically, each scenario evaluation, "sample design", re-

quires performing a simulation run, and for large or complicated reservoir models, the

runtime of a single evaluation can be quite substantial. In addition, the number of

evaluations (hence, simulation runs) required to optimize a decision depends on the

number of optimization variables-the size of the search space-and the type of opti-

mization algorithm employed. Gradient-based optimization algorithms, for instance,

might require several hundreds of simulation runs whereas the number of simulation

runs for metaheuristic algorithms might be in the order of thousands. The incorpo-

ration of geological uncertainty, introduced as multiple realizations of the reservoir,

further increases the computational demands and as a result hinders the popularity

of optimization methods for reservoir management.

The methods presented in this thesis all aim to reduce computational complexity

while preserving solution quality. There are two methods considered to increase the

efficiency of the decision-making process. The first method reduces the number of

scenario evaluations needed to obtain an optimal reservoir strategy; this is the aim of

the field of optimization. The second method reduces the time required to obtain an

evaluation for a given scenario, which is the role of reduced-order modeling (ROM).
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1.2 Literature Review

The objective of this work is to develop an efficient framework to enable decision-

making in reservoir management. The Oxford English Dictionary defines the word

"efficient" as "achieving maximum productivity with minimum wasted effort or ex-

pense" and hence, an efficient decision-making framework should combine optimal

results and computational speed. In order to achieve computational speed, we rely

on both optimization techniques to reduce the number of simulation runs required

to reach an optimal scenario and reduced-order modeling techniques to speedup the

simulation run itself. In this section, we set up the intellectual foundation for this

thesis, drawing from both academic literature and industrial practices from the field

of petroleum engineering, specifically in the areas of well placement and control op-

timization and reduced-order modeling.

1.2.1 Well Placement Optimization

The well placement optimization problem involves varying well configurations (verti-

cal, horizontal, or multi-lateral), well types (injector or producer) and well locations to

maximize a specific objective function. The well placement problem is multi-modal-

contains local optima-due to the effect of reservoir heterogeneity, and normally dis-

plays a non-smooth optimization surface. Metaheuristic methods, which avoid being

trapped in local optima, are therefore mostly suitable and commonly used to solve

the well placement problem, though gradient-based methods have been developed as

well.
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Gradient-Based Algorithms

Since analytical gradients for analytical (closed form) solutions are rarely available in

reservoir simulation, numerical gradients are used to seek optimal solutions. Gradient-

based algorithms used to compute gradients for the well placement problem include

Simultaneous Perturbation Stochastic Approximation (SPSA) [19], Simplex Linear

Interpolation (SLI) [104], and adjoint methods [89]. SPSA gradients differ from those

computed using typical finite difference (FD) in the sense that all decision variables

are randomly perturbed at the same time to obtain both a forward and a backward

objective function evaluation and hence compute the gradient. This is superior be-

cause regardless of the number of decision variables, SPSA requires two function

evaluations per iteration as opposed to FD which requires O(n) function evaluations,

where n is the number of decision variables [92]. At any given iteration in SPSA, a

random search direction is chosen. Then, using only two objective function evalua-

tions, forward (in the same direction) and backward, an estimate of the derivative of

the objective function is obtained and hence the direction of descent is determined.

A step is taken in that descent direction which is the product of the derivative and a

factor that decreases with successive iterations. Bangerth et al. [19] found the SPSA

method to be superior when compared to other gradient-based algorithms such as FD

or gradient-free algorithms including genetic algorithms, Nelder-Mead simplex algo-

rithm and fast simulated annealing. The SPSA algorithm, however, includes some

challenges such as the choice of step size calculations to determine the next iteration.

Wang et al. [104] used a simplex linear interpolation approach to compute the ob-

jective function gradients. SLI starts by defining n + 1 integer vertices of a simplex

that encloses the solution domain. The objective function J is computed for all ver-

tices. SLI then generates a piecewise-linear function J from an integer-valued J and

computes the gradient of J at any interior continuous point. The steepest ascent
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method was then used to search for optimal well placements. SLI was used within a

retrospective optimization framework where a sequence of optimization subproblems

that contain multiple geologic realizations were solved.

Several authors have implemented adjoint-based gradient methods for the well place-

ment problem [112, 43, 89]. The primary advantage of using an adjoint-based method

is its ability to accurately and efficiently compute gradients using only two simula-

tion runs-a forward reservoir simulation run and a backward adjoint simulation run.

Sarma and Chen [89] proposed a technique where the original discrete well location

parameters (i, j) were replaced with their continuous UTMN coordinates (x, y) to

obtain a continuous functional relationship between the objective function and these

continuous parameters. This was achieved by replacing the point source well locations

in the underlying governing PDE with a continuous representation using a bivariate

Gaussian function. As a result of this transformation, the authors were able to use

adjoint-based gradients to obtain optimal well locations. The efficiency and practical

applicability of the approach was then demonstrated on a few synthetic waterflood

optimization problems.

Zandvliet et al. [112] presented an approach where the well location to be optimized

is surrounded by the so-called 'pseudowells'. These pseudowells are located in the

surrounding eight grid blocks and are set to produce/inject at a very low rate and

thus have a negligible influence on the overall flow. The gradients of the objective

function, e.g., NPV, with respect to the pseudowell flow rates were computed using the

adjoint method. These gradients were subsequently used to determine the direction of

NPV improvement. The downside of this approach was the limited search direction,

which was dictated by the location of the pseudowells.

Although adjoint-based gradient approaches and most gradient-based methods in gen-

eral are associated with high computational efficiency, they are susceptible to getting
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trapped in local optima and therefore require previous knowledge of the problem

domain (reservoir) to provide a good starting point.

Gradient-Free Algorithms

As stated previously, the well placement optimization problem is a high-dimensional

and multi-modal with a non-smooth objective function surface. Therefore, gradient-

free metaheuristic search methods such as genetic algorithms (GA), simulated an-

nealing (SA) and particle swarm optimization (PSO) are among the most suited and

commonly used methods to find optimal well placements. Once adequate number

of search agents (chromosomes or swarms) is assigned, these metaheuristic methods

are capable of finding global optimal solutions even if local optimal solutions exist.

Although metaheuristic search methods can easily be parallelized, large problems

require large search agents and therefore can be computationally prohibitive. There-

fore, metaheuristic methods are usually coupled with local search methods, which

have been shown to accelerate convergence toward the optimal solution with a lower

number of search agents.

Bittencourt and Horne [21] optimized the placement of multiple vertical and horizon-

tal wells using a hybrid optimization algorithm that consisted of GA, polytope and

Tabu search in conjunction with a numerical reservoir simulator. Their approach was

used to estimate the optimal locations of 33 wells in a reservoir with non-connected

feasible regions. They indexed active cells only using a vector of active reservoir re-

gions, arguing that (i, j) indexing is not suitable because the optimization algorithm

could place wells in inactive regions. Another study investigated several types of

well- block indexing for a synthetic case and discovered that (i, j) indexing of wells is

more suitable for optimization algorithms since other kinds of indexing may introduce
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artificial noise due to discontinuities in the indexed search space [50].

Pan and Horne [81] investigated least squares and krigging interpolation algorithms to

use as proxies to approximate reservoir simulation outputs for several cases, including

field development optimization. They collected data for the interpolation algorithms

by performing simulations on different levels of the unknowns. These levels of the

unknowns were chosen by a uniform design technique. They stated that their algo-

rithm substantially reduced the number of simulations that was required to find the

global optimal solutions for the problems considered. They also found krigging to be

superior to least squares for the proxy generation.

Guyaguler and Horne [50] applied a hybrid optimization algorithm that utilized GA,

polytope method, krigging and artificial neural networks (used as a proxy to approx-

imate function evaluations), along with a reservoir simulator. They optimized the

locations of four vertical injection wells in a waterflood project to maximize NPV.

They found krigging to be a better proxy than neural networks during the optimiza-

tion.

Ozdogan and Horne [80] continued the work in [50] with the addition of time-dependent

and sequential well placement process. Addressing the value of time-dependent infor-

mation contributed to better decisions in term of reduced uncertainty and increased

probable NPV.

A binary form of GA to optimize well type, location, and trajectory for horizontal

and multi-lateral wells has been applied by Guyaguler [49] . Several helper functions

were also implemented including artificial neural networks and a local hill Climber

algorithm. In addition, near wellbore upscaling was applied, which approximately

accounted for the effect of fine scale heterogeneity on the flow that occurred in the

near-wellbore region by calculating a skin factor for each well segment. The results of
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this study were presented on fluvial and layered synthetic models, as well as a section

model of a Saudi Arabian field.

Yeten [107] improved the preceding work and applied GA to optimize the location

and type of nonconventional smart wells. He showed that using a hybridized approach

including GA and a local hill climber algorithm improved the results over using GA

solely. Farshi [39] converted the well placement and design optimization framework

that was developed originally in [107] from a binary GA to a real-valued continuous

GA. Several improvements to the optimization process were implemented such as

imposing minimum distance between wells and modeling curved wellbores.

Onwunalu [79] used PSO as the underlying optimization algorithm for the well place-

ment optimization problem. It was concluded that PSO on average provide results

that are superior to those obtained using GA [51, 79]. In order to treat large-scale

optimization problems involving significant number of wells, a new approach called

well pattern optimization (WPO) was developed. WPO simplified the standard ap-

proach by considering repeated well patterns and then optimizing the parameters

associated with the well pattern type and geometry. Finally, a metaoptimization pro-

cedure which optimized the parameters of the PSO algorithm during the optimization

run was implemented. Metaoptimization involved the use of two optimization algo-

rithms, the first algorithm optimized the PSO parameters while the second algorithm

optimized the well drilling locations.

Isebor [59] devised a hybrid approach where PSO was incorporated with Mesh Adap-

tive Direct Search (MADS) and Branch and Bound method (B&B) to jointly deter-

mine the optimal number of wells together with their locations and controls. The

results attained by the hybrid approach were shown to outperform those obtained

using PSO or MADS alone in terms of the number of iterations required to achieve

the optimal solution as well as the magnitude of the objective function.
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1.2.2 Well Control Optimization

The well control optimization problem involves determining the optimal set of well

controls, i.e., production rates and bottom hole pressure (BHP), to maximize an

objective function such as NPV or recovery factor. Often, well control parameters

are treated as continuous variables with the exception of smart well controls, which

include discrete valve settings. A wide range of optimization techniques have been

implemented for the well control optimization problem. These techniques fall into

two families: gradient-based and gradient-free algorithms. Well control optimiza-

tion problems are usually associated with surface and subsurface constraints. These

constraints may include maximum total liquid production that can be handled by sur-

face facilities, BHP operating range in order to not produce below the bubble point

or above the fracturing pressure, and maximum gas-oil ratio. The following sections

will discuss and analyze literature on gradient-based and gradient-free approaches

and also the necessary techniques devised to handle constraints in details.

Gradient-Based Algorithms

The gradient-based algorithms presented in the literature to solve the well control

optimization problem include steepest descent, conjugate gradient, and sequential

quadratic programming (SQP) [77]. These algorithms exhibit fast convergence when

compared to the gradient-free family of algorithms, especially when gradients are

computed using an adjoint technique. Methods for computing gradients include FD

technique which is based on the classical definition of derivates and adjoint technique

which originates from optimal control theory. The advantage of using FD-based

techniques is the ability to treat simulators as 'black box' since gradients are computed

from function evaluations [5, 108, 10, 11]. The time required to compute the gradients
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in this approach is a function of the number of well controls. So, the number of

simulation runs required to compute the gradients in a problem with large set of

well controls might be substantial and hence computationally expensive. A partial

workaround is to parallelize gradient computation as each simulation run in this

case is independent. The adjoint technique on the contrary is far more efficient as

it requires only two simulation runs to compute the gradient [58, 24, 88, 68, 66]. It

requires one forward reservoir simulation run and one backward adjoint run regardless

of the number of well controls. However, extraction of information from the reservoir

simulator during the course of the computation is required, and therefore is only

feasible when full access to and detailed knowledge of the simulator source code is

available. As stated above, well control problems are usually associated with surface

and/or subsurface constraints. These constraints may be linear, as in the case of

incompressible flow where the injected water has to equal the produced fluids (oil

and water); nonlinear, as in the case of maximum total liquid production; or bound

constraints such as operating BHP. Techniques to handle these constraints include

penalty functions, barrier methods, Lagrangian Multipliers, and filter methods [58,

59, 93].

In the context of reservoir management and well control optimization, Aitokhuehi [5]

used conjugate gradient and Levenberg-Marquardt algorithm with numerical gradi-

ents to determine the control valve settings of smart wells and maximize cumulative

oil recovery. The downhole sensors in this study allowed the coupling of the optimiza-

tion algorithm with history matching for model update. Yeten et al. [108] described

a conjugate gradient technique to maximize cumulative oil recovery from smart wells.

Their optimization technique was performed over discretized time steps to ensure

that earlier control settings determined for earlier time steps would not have negative

effects on the objective function at later times. Alhuthali et al. [10] and Alhuthali
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et al. [11] applied SQP with numerical gradients to determine the optimal injec-

tion/production flow rates for each well in a water flood strategy. Their approach

relied on equalizing streamline time of flight at the producing wells to maximize sweep

efficiency and delay water breakthrough. A commercial simulator that has capability

to internally handle constraints was used in their study.

The adjoint technique is very superior in terms of computational efficiency as it re-

quires only two simulation runs regardless of the number of controls. Isebor [58]

presented a comparative study of several optimization methods applied to solve the

well control problem. The methods considered included SQP with gradients calcu-

lated using both FD and adjoint techniques, GA, and general pattern search (GPS).

In the application of these methods, it was shown that derivative-free methods tend to

be about an order of magnitude slower than SQP with gradients computed using an

adjoint procedure. Multiple constraint handling techniques have also been presented

in his study. These techniques included penalty functions, parameterless penalties,

and filter approach. It was shown that the filter approach is very effective in terms

of constraint handling and generality of use.

Kraaijevanger et al. [66] devised an optimal water flood design using adjoint proce-

dures while Brouwer and Jansen [24] and Sarma [88] have demonstrated the superior

capability of adjoint procedures for production optimization and closed-loop reservoir

management. Li et al. [68] applied adjoint procedures for history matching.

Gradient-Free Algorithms

Gradient-free algorithms are very popular within the engineering community due to

ease of implementation as they do not require access to the objective function (simula-

tor). There are two broad categories of gradient-free algorithms: deterministic (e.g.;
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polytype, simplex, and MADS [3]), and metaheuristic such as genetic algorithms,

particle swarm optimization, and simulated annealing. Deterministic gradient-free

methods are local optimizers, i.e., they may get trapped in local optima, and as the

name implies, they don't involve randomness (they always converge to the same solu-

tion if started from the same initial guess). Metaheuristic methods, on the contrary,

are global optimizers that make use of randomness to drive the optimization.

Isebor [58] implemented a comparative study to determine the ability of both deter-

ministic and metaheuristic methods to find optimal well controls in the presence of

nonlinear constraints. Deterministic methods included general pattern search (GPS)

and Hooke-Jeeves direct search while metaheuristic methods included GA. The study

concluded that a hybrid implementation combining GA with an efficient local search

performs better than any of the individual methods. While stochastic methods in

general tend to be computationally expensive, the efficiency of derivative-free meth-

ods is significantly improved through the use of surrogate-based optimization and

distributed computing (parallel computing).

Alghareeb [7] focused on the reservoir engineering aspects of finding the optimal Inflow

Control Valve (ICV) configurations that optimized reservoir performance parameters

such as recovery factor and NPV. GA was used as the main optimization engine to

find the optimal ICV configuration. GA was accompanied by a data library (proxy) to

reduce the number of required simulation runs. A commercial reservoir simulator was

used as the objective function evaluator that assessed how good an ICV configuration

is. Several examples were presented to show the improvement in reservoir parameters

made using the optimization process including real onshore and offshore field models.

Almeida et al. [12] used GA to maximize production from smart wells under opera-

tional uncertainties such as downhole valve failure.
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1.2.3 Cuckoo Search (CS)

The CS algorithm is one of the recently developed algorithms in the metaheuristic

family [106]. It is inspired by the breeding of cuckoo birds and combined with an

efficient flight strategy exhibited by many organisms. The main characteristic of CS is

its simplicity. While similar algorithms such as GA and PSO require many parameters

to be adjusted which eventually dictate the performance of these algorithms, CS is

controlled by only two parameters, i.e., the fraction of eggs to be abandoned at each

generation and the flight step size.

To benchmark the performance of CS algorithm, Yang and Deb [106] compared CS

to GA and PSO through applying all three algorithms to ten standard optimization

benchmark functions. Each algorithm was repeated 100 times to minimize statistical

randomness. The rate of success at finding the global minimum, and the number

of function evaluations needed before the stopping criteria was met, were recorded

for each function and each algorithm. For all functions considered, CS was found to

outperform PSO and GA in terms of success rate and number of required objective

function evaluations. They stated that the reason for this success was a good balance

of local and global search.

Walton et al. [103] implemented a Modified Cuckoo Search algorithm (MCS) that

provided tremendous improvements to the convergence rate. Two modifications has

been made in MCS including a flight search strategy that declines as a function

of generations encouraging more localized search as eggs get closer to the optimal

solution, and an interaction mechanism between elite eggs to produce even better

eggs carrying better solutions. A total of seven nonlinear test functions were used to

benchmark the performance of MCS. The results were compared to those obtained

using other metaheuristic algorithms including PSO, CS, and Differential Evolution
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(DE). Each algorithm was repeated 30 times, to minimize statistical randomness,

with an initial population of 20 agents. MCS was shown to perform as well as, or

better than PSO, with MCS performing significantly better for some test functions.

The margin by which MCS outperformed PSO was seen to increase as the number of

dimensions was increased, which highlights the robustness of this method.

Yildiz [109] used CS to optimize cutting parameters in milling operations. In this

operation, the goal was to maximize the total profit by adjusting the cutting speed

and the feed rate of the milling process. It was found that, not only did CS find

the maximum profit but also required the smallest number of functions evaluations

compared to six other competing algorithms. Gandomi et al. [45] successfully used CS

to optimize the structural design of 13 problems ranging from optimizing the structure

of a simple beam to a full car. The performance of CS in this study outperformed

GA and PSO. It was also shown that the sensitivity of the solution to CS parameters

was very small. CS was also used for other applications such as breaking encrypted

messages [90], training of neural networks, and developing bloom filters for database

application [98].

In the field of aeronautical engineering, Walton [102] demonstrated the use of MCS

to optimize the shape and design of an aerofoil. The goal was to design an aerofoil

with minimum resistance (drag force) to the surrounding fluids out of a sample of

25 existing aerofoil shapes. In addition, MCS was used to optimize meshing scheme

of multiple shape objects. Proper orthogonal decomposition (POD) was used along

with MCS to speed up the computational time and allow to treat the optimization

problem globally rather than locally.

To the best of our knowledge, both CS and MCS have never been adopted in the well

placement and control optimization problems and in the field of petroleum engineering

in general. Our aim here is to introduce MCS for petroleum engineering applications.
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In addition, CS and MCS were used as the sole optimization methods with only

unconstrained optimization problems. Thus, we will establish a hybrid approach

where we combine MCS with an efficient local optimizer, namely, Mesh Adaptive

Direct Search (MADS) that can handle constraints through a filter method.

1.2.4 Reduced-Order Modeling Techniques

The aim of reduced-order modeling (ROM) is to reduce the number of degrees of

freedom representing a model, while retaining a sufficient level of accuracy. This is

achieved by transforming high-dimensional models into lower-dimensional represen-

tations that contain dominant characteristics of the corresponding solution space to

replicate the high-dimensional model's input/output behavior. The primary moti-

vation for using ROM comes from the observation that the solution space of many

numerical models is often embedded in a manifold that has much lower dimensions

than the dimensions of the original, spatially descritized, models.

Reduced-order modeling has been applied to a variety of applications such as dynamic

simulation, data classification, visualization, and data compression. Descriptions of

the major classes of reduced-order modeling methods are presented by Antoulas and

Sorensen [13], Rewieriski [84], and Cardoso [28]. Our review here follows these reviews.

Most reduced-order modeling techniques project high-dimensional, referred to as 'full-

order', states into a lower representations through the use of basis functions. There

are primarily two contrasting families of techniques to construct these basis functions:

equation driven techniques such as Krylov subspace and truncated-balance reduction

(TBR) and empirical data driven techniques such as proper orthogonal decomposition

(POD). The former techniques have been primarily used with linear time invariant

models (LTI), while the latter technique has been used with nonlinear models. We
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briefly discuss these three techniques first within the context of linear models and

then for nonlinear models.

Krylov-based methods generate reduced basis by approximating eigenvectors corre-

sponding to the largest eigenvalues. Considering the following system of linear equa-

tions x = Ax + Bu, the reduced basis are constructed by forming n-order Krylov

subspace that is given as Kn {A, b} = span(b, Ab, A 2 b, ... , A n-1b). Krylov-based

algorithms are very efficient since the subspace is computed via matrix-vector mul-

tiplication rather than matrix-matrix multiplication. The columns of the Krylov

subspace tend to become linearly dependent, so orthogonalization methods such as

Arnoldi and Lanczos iterations are used to constitute the reduced-order basis.

Krylov projection algorithms are among the most widely used techniques for con-

structing reduced-order basis for LTI dynamical systems. The main reasons for their

popularity is the low computational cost for large systems, which is O(q 2N), and the

ease of generating the projection basis. However, Krylov-based algorithms lack any

provable error bounds in addition to the reduced-order basis inability to preserve the

full-order system stability and passivity.

Truncated Balanced Realization (TBR) constructs the basis matrix by exploiting the

structure of the system of equations [74, 48, 38, 96]. The basic idea behind TBR is

to perform a change of coordinates i, = Tx to a coordinate system where the states

: are ordered from most important to least important and then truncate the least

important states. The "important" states are defined as those that are either very

controllable or very observable. Conversely, the least important states are those that

are neither controllable nor observable. The controllability and observability of states

can be quantified via the controllability and observability Grammians, respectively

[26]. A system with state vector x1 is called controllable if and only if the system

states can be changed by changing the control inputs. On the other hand, a particular
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state x1 is called observable if there exists a control input that transfers the state of

the system from the initial state x0 to x1 in some finite time interval.

TBR is one of the few projection techniques that poses global error bounds on the

accuracy of the resulting reduced model. However, it is limited to models with few

hundred unknowns as the computational complexity is O(N3 ). TBR has been mainly

applied in control system theory where systems are mostly static[48, 38, 96]. In the

context of fluid flow, TBR has been applied to single-phase flow reservoir models by

Zandvliet [111] and proposed by Heijn et al. [55] for two-phase flow reservoir models.

Bui-Thanh and Willcox [26] and Rowley [85] applied TBR to fluid dynamics problems.

Proper orthogonal decomposition (POD) was first developed in 1901 as a tool to ana-

lyze coherent structures in dynamical systems [57]. POD is described as an orthogonal

linear transformation that identifies an optimal coordinate system to represent an en-

semble of data such that the greatest variance lies within the first coordinate, the

second greatest variance lies within the second coordinates, and so on. POD yields

an optimal set of coordinates such that most of the ensemble data variances are

captured with only few coordinates.

POD efficiently constructs basis functions, known as spatial modes, from singular

value decomposition (SVD) of snapshots. Snapshots are discrete samples of trajecto-

ries associated with a particular set of forcing control inputs. The constructed basis

functions form a basis matrix and the size of the basis matrix is determined based on

a 'relative omitted energy' criterion where bases yielding low energy are discarded.

The reduced-order model is obtained by projecting the original full-order model onto

the reduced basis, enabling a significant reduction in the number of unknowns that

must be solved. The number of bases extracted using POD is optimal in the sense

that, for the same number of basis functions, no other bases can represent the given
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snapshot set with lower least-squares error.

POD is considered one of the most popular reduced-order modeling techniques. It is

easy to use and relatively requires low computational cost to generate the reduced

basis from the snapshots. However, the accuracy of the generated reduced basis is

dictated by how well snapshots cover the solution space. Snapshots are generated us-

ing experimental data or by running the full-order model several times using different

boundary conditions. The boundary conditions that generate representative solution

space may not be known a priori.

The range of applications where POD has been implemented is substantial. Bui-

Thanh et al. [27] applied POD to reconstruct flow fields from incomplete aerodynamic

data sets. Chaturantabut and Sorensen [33 combined POD with discrete empirical

interpolation to efficiently simulate nonlinear miscible viscous fingering in porous

media, and Walton [102] applied POD to a steady turbulent compressible flow passing

through aerofoils. Several researchers have used POD in fluid flow through porous

media problems [95, 54, 30, 93, 29, 53, 86] which will be discussed in details in

Section 1.2.4.

Reduced-Order Modeling for Nonlinear Systems

There are multiple factors that can affect the efficiency of reduced-order models.

Among these factors is the presence of nonlinearity. Since full-order models of inter-

est (petroleum reservoir simulation models) are inherently nonlinear, reduced-order

modeling techniques, although reduce dimensions in the sense that far fewer variables

are computed, still depend on the dimension of the original full-order model through

nonlinear terms [33]. This is mainly because in order to compute reduced nonlin-

ear terms, one must first reconstruct the full-order state solution from the reduced
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basis, evaluate the full-order nonlinear terms, then project them onto the reduced

subspace again. A similar procedure occurs when solving the reduced-order model

using Newton iteration. At each iteration, beside the expense of computing the non-

linear terms, the Jacobian must also be computed at the full-order dimension before

projecting onto the reduced subspace and hence the overall computation cost still

depends on the full-order dimension. In fact, Chaturantabut and Sorensen [33] have

shown that reduced-order modeling techniques such as POD can be slower than full-

order models due to such computational complexity at each iteration and each time

step. To lower the computational complexity to that of the reduced subspace, sev-

eral methods have been developed to recover the efficiency of reduced-order models

[33, 28, 84, 44, 15]. In this section, we namely discuss three approaches, Missing

Point Estimation (MPE), Trajectory Piecewise Linearization (TPWL), and Discrete

Empirical Interpolation Method (DEIM).

Missing point estimation (MPE) was first introduced by Astrid et al. [15] to improve

the computational efficiency of POD. The basic idea of MPE is to construct POD

basis from a subset of the spatial domain rather than the entire spatial domain.

In particular, a restricted POD basis is formed by extracting rows of the standard

POD basis vectors corresponding to selected grid blocks. Subsequently, the subset of

governing equations are projected onto the subspace spanned by these restricted POD

basis. Two algorithms have been presented by Astrid et al. [15] to select the subset

of grid points. Both algorithms aim to limit the growth of the condition number of

the matrix formed by the selected rows of the POD basis vectors. MPE has been

applied with POD to construct a reduced-order model that simulated temperature

distribution in a glass melt feeder. An additional speedup factor of 5.3 has been

achieved over the basic POD reduced-order model. MPE has also been applied to

multiphase flow [28] and steady aerodynamics problems [99].
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Trajectory piecewise linearization (TPWL) aims to reduce computational complex-

ity of reduced-order models by approximating nonlinear terms. TPWL, developed by

Rewieniski [84], represents the nonlinear model as a weighted combination of piecewise

linear models generated at selected points along its trajectory. It has been applied

in conjunction with various reduced-order modeling techniques such as Krylov sub-

space [84, 46], TBR [96], and POD [28, 53]. TPWL performs very well for problems

with weak nonlinearity. For highly nonlinear problems, it is difficult to accurately

approximate nonlinear terms using piecewise linear representations while maintain-

ing a relatively small number of linearized models along the trajectory. Furthermore,

the selection of the training trajectories and linearization points remains an ad-hoc

process [46].

Another way to address computational inefficiency associated with nonlinear models

is to approximate nonlinear terms via a linear combination of their basis vectors using

expansion coefficients determined using a small set of interpolation points. This is

the aim of methodologies such as Empirical Interpolation Method (EIM) [20] and

Best Point Interpolation Method (BPIM) [76]. In these two methods, new sets of

basis vectors, different from state basis vectors, are constructed using snapshots of

nonlinear terms generated during simulation of full-order models. The use of small

set of interpolation points allows nonlinear terms to be evaluated only over a subset

of spatial grid points rather than the whole spatial domain and hence recover the

reduced-order model efficiency.

Nevertheless both EIM and BPIM accomplish a similar objective which is approx-

imating nonlinear terms through using a linear combination of the nonlinear term

basis vectors at a set of interpolation points, they both pursue different strategies for

selecting the interpolation points. EIM deploys 'greedy' selection algorithm to itera-

tively construct a set of interpolation points in such a way that the n-th interpolation
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point is placed at the spatial location where the difference between the n-th basis vec-

tor and its approximation using a linear combination of the first n - 1 basis vectors

at the n - 1 interpolation points is greatest. On the other hand, BPIM constructs

the set of interpolation points by solving an n-dimensional optimization problem to

minimize the least-square error between each snapshot and its approximation using

n interpolation points. As a result, the obtained n points are the optimum interpo-

lation points in the sense that they minimize the approximation error over the entire

snapshot matrix. It should be noted though that the cost associated with solving the

constrained optimization problem in BPIM to construct an 'optimal' set of interpo-

lation points is significant in comparison with the sub-optimal interpolation points

constructed using EIM. Researchers reported marginal improvement in accuracy of

the approximation using interpolation points generated via BPIM over EIM [20, 44].

Both EIM and BPIM have been used in several applications concerning reduction

of nonlinear PDEs such as simulation of wave propagation [94], inverse parameter

estimation [44], and modeling of convection-diffusion reaction [64], in addition to

nonaffine and parametrized PDEs [47, 75].

Chaturantabut and Sorensen [32] recently introduced Discrete Empirical Interpolation

Method (DEIM), a discrete variant of EIM, that can be easily implemented on semi-

discrete systems. DEIM is intended for use with discrete systems rather than its

counterpart EIM which is aimed to be used with continuous systems. We thus choose

to use DEIM in this work for its adaptability with discrete spatial models. DEIM

has been successfully applied in various applications including neuron modeling [65],

reactive flow [25], MEMS switch modeling [56], and recently in multiphase flow in

porous media [93].
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Reduced-Order Modeling in Reservoir Simulation

Although the development of reduced-order modeling procedures has received sig-

nificant attention in recent years, relatively few studies have been conducted to in-

vestigate the application of these approaches for reservoir management and decision-

making. Our intent here is to highlight and discuss in details the recent applications

of ROM methods in reservoir management.

van Doren et al. [95] developed reduced-order models for nonlinear oil-water flow

equations to find optimal control strategy for water flooding using adjoints. POD

was used to construct the reduce-order model for the forward state equations as well

as the adjoint equations. They successfully applied the ROM procedure to maximize

net present value (NPV) of a heterogenous two-dimensional model containing 2, 025

grid blocks with two horizontal wells-one producer and one injector, both divided

into 45 independently controlled segments. POD was used to reduce the number

of unknowns from 4,050 in the FOM to 20 - 100 in the ROM. The speedup factor

achieved for the overall optimization process was less than a factor of 1.5. The main

reason for this modest runtime reduction is due to the necessity to make a full-order

run at the end of the optimization to check the solution accuracy. If there is a

mismatch between the optimum NPV obtained form the ROM and its counterpart

obtained using the FOM, the whole optimization is repeated until convergence is

achieved.

Markovinovi6 and Jansen [72] proposed the use of reduced-order models to accelerate

the Newton iterative solver for fluid flow in porous media. The governing equations

were projected onto low-order space constructed from previous time step solutions

using POD. Then, the governing equations were solved in the reduced space before

projecting back onto the full space. The algorithm was tested on a three-dimensional
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model with 93, 500 grid blocks and achieved a speedup factor of about 3. It should

be noted that the use of highly optimized linear solvers would lower the speedup

factor as the methodology required updating the reduced-order model which required

expensive SVD operation at every time step to ensure convergence.

The preceding authors achieved modest computational reduction due to presence of

nonlinearities discussed in Chapter 2. To mitigate the effect of nonlinearity, Car-

doso [28] implemented TPWL to approximate nonlinear terms. Nonlinear terms were

linearly approximated around collection of linearization points using Taylor series.

TPWL was applied to a two-phase flow model containing 24, 000 grid blocks. Rea-

sonable accuracy and substantial runtime speedup factor of 200 - 1000 was reported.

However, highly nonlinear terms pose potential problems to TPWL since nonlinear

terms are approximated within first-order accuracy. In addition, TPWL approach

requires storing Jacobian matrices for both states and controls (for linearization) as

well as solution states, which occupy substantial disk space as these matrices can

be quite large and difficult to manipulate. Furthermore, TPWL requires output of

partial Jacobian terms such as flux Jacobian and accumulation Jacobian which may

not be readily available.

Suwartadi [93] used DEIM to retain nonlinearities at lower dimensional space. DEIM

was combined with POD to construct ROM for two-dimensional heterogeneous two

phase flow model. The ROM was used to optimize injection and production flow

rates from a five-spot well pattern. Optimization runs were carried out using both

ROM and FOM. Results obtained using both models in terms of NPV were in close

agreement with very small relative error. The achieved runtime speedup factor was

5 - 20.
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Reduced-Order Models in Optimization

One vital aspect of reservoir management is to enable decisions that maximize petroleum

recovery through optimizing well placements and controls. The well placement prob-

lem is of global nature where different locations yield different productivities. The

difference in productivity and hence production rates might be of multiple orders of

magnitude in the case of channelized reservoirs. The well placement problem is also

of static nature where drilling locations are not updated in time. The well control

problem on the other hand is a dynamic problem where surface controls or downhole

controls in the case of smart wells are updated in time. The change in controls is

dictated by the dynamics and behavior of fluid flowing in the porous medium, i.e.,

controls are manipulated to delay water breakthrough.

The use of full-order three-dimensional reservoir simulation models for such a prob-

lems is presently infeasible for large models due to high computational cost. The

high computational cost hinders the popularity of optimization methods for manag-

ing petroleum reservoirs. ROMs are numerical solutions that reduce computational

cost by several orders of magnitude while maintaining reasonable solution accuracy

allowing optimization methods to be practically incorporated in reservoir manage-

ment.

ROMs are reliable in a restricted zone around state snapshots used to construct them.

This zone is commonly referred to as "root-point" and generally solution quality de-

creases as states deviate away from the root-point. Therefore, special care is required

while selecting state snapshots generated from training runs as this will impact the

performance of the ROM and accordingly the results of the optimization.

In the context of reservoir management, Cardoso and Durlofsky [30] applied a heuris-

tic procedure to construct ROMs. Multiple training runs where simulated using the
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full-order simulation model. For each training run, input well controls such as BHPs

of production wells were randomly and independently varied to cover the optimization

study range and ensure that deviation from the root-point during the optimization

process is minimal. The constructed ROM was used as a function evaluator in two

optimization algorithms, a finite-different gradient method and gradient-free mesh

adaptive search method, to maximize NPV [29]. Results for optimized NPV using

ROM were shown to be very close to those achieved using the FOM, but with runtime

speedup factor of 450. In addition, the constructed ROM was used for multi-objective

optimization to maximize cumulative oil production while minimizing cumulative wa-

ter injection [30]. Since it was not feasible to perform full-order optimization run for

this multi-objective problem, only few points were simulated and the agreement be-

tween the FOM and the ROM was quite close.

The above cited researchers applied a heuristic procedure to ensure minimum devia-

tion from the ROM root-point occurs. However, the deviation is not quite quantifiable

and therefore He et al. [54] devised a more robust procedure. They applied a retrain-

ing strategy where initial ROM was used for optimization until a certain number of

function evaluations was reached. The optimization run was then stopped and the

ROM was retrained using the current best control variables. If a high level of discrep-

ancy occurred between the FOM and the ROM upon retraining, the optimization run

was restarted from previous control settings. The ROM update approach was incor-

porated in a derivative-free generalized pattern search algorithm (GPS) to optimize

36 well control settings and maximize NPV. The difference in the optimized NPV

between the FOM and the ROM was shown to be 0.6% while the runtime speedups

was 100.

van Doren et al. [95] applied a ROM construction and retraining strategy where initial

control settings were used to construct ROM for both forward and adjoint equations.
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The constructed ROM, POD-based, was then used to optimize 90 injection and pro-

duction well control settings and maximize NPV. At the end of the optimization run,

a full-order simulation run was performed using the optimal control settings to ver-

ify the solution accuracy. Then, if required, a new ROM was constructed, and the

process was repeated until convergence of NPV obtained from ROM and FOM was

achieved. The runtime speedup factor achieved using ROM was less than 1.5 due to

the frequent repetition of ROM construction and optimization run when convergence

was not achieved.

All of the above mentioned approaches are suboptimal in the sense that there is

no indication of how many training runs are required initially to cover the control

variable space nor error quantification is available to determine suitably when to

retrain the ROM during the optimization run. Trust-region methods offer an effective

way to manage ROM retraining over the course of the optimization run without the

overburden of continuing the whole optimization run prior to error assessment, [37,

35]. The basic idea of trust-region approach for constructing ROM is to perform the

optimization run over a restricted control variable space in which ROM is supposedly

accurate with minimum deviation from root-point. Thus, the trust-region method

ensures that the optimization algorithm always stays close to the root-point. The

ROM is updated at the end of each trust-region optimization step [14, 6, 4, 93].

Agarwal and Biegler [4] implemented trust-region strategy for ROM construction and

retraining. ROM was constructed using POD to optimize a two-bed isothermal pres-

sure swing adsorption system for CO 2 capture. They implemented penalty-based

trust-region and filter-based trust-region algorithms for constraint handling. Accu-

rate results were achieved using the trust-region algorithm for ROM retraining with

different computational time associated with each constraint handling method. Un-

fortunately, comparison of computational time between FOM and ROM was not
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reported.

Suwartadi [93] used a trust-region approach for ROM retraining. ROM was con-

structed using POD and DEIM for forward equations and vanilla POD for adjoint

equations to optimize injection and production flow rates from a five-spot well pat-

tern. The trust-region algorithm was used with Lagrangian barrier method to handle

constraints. Accurate results were achieved using ROM while abiding by the con-

straints.

1.3 Scope of Work

The development of reduced-order modeling procedures in the field of reservoir engi-

neering has recently received significant attention as a viable alternative to full-order

simulation models. However, relatively few studies have focused on the coupling of

ROM construction techniques and optimization algorithms for the well placement

and control problems. The coupling entails the incorporation of ROM construction

and updating techniques into the optimization algorithms. Most studies have focused

on developing techniques to construct ROMs. However, training was achieved via an

ad-hoc procedure where ROM training was accomplished separately from optimiza-

tion. This kind of approach lacks the ability to utilize new information gained during

optimization iterations to improve the accuracy of the ROM and hence the resulting

optimal solutions may significantly differ from those obtained using the FOM.

This thesis is devoted to developing and applying new procedures for incorporating

ROM in the optimization process for generalized field development problems. Though

this work is primarily directed toward reservoir modeling and simulation, the tech-

niques devised are general and can easily be used for other engineering applications.
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To accomplish the general aim of this study, we first develop techniques to construct

ROMs for fluid flow in porous media. The techniques entail the use of proper or-

thogonal decomposition (POD), truncated balanced realization (TBR), and discrete

empirical interpolation (DEIM) to accurately reproduce the input/output behavior

of the FOM. We then devise a hybrid optimization algorithm that is capable of both

local and global search. A local optimization technique- namely Mesh Adaptive

Direct Search (MADS), is coupled with Modified Cuckoo Search (MCS)-a global

metaheuristic technique. This hybrid optimization scheme is capable of handling non-

linear constraints using a filter approach, as described in [40]. The filter approach, to

the best of our knowledge, has not been previously incorporated into MCS. Finally,

we introduce techniques that enable ROM construction, with updates guided by in-

formation obtained during the course of the optimization. ROM updates are based

on a trust-region strategy for the well control problem and a MADS polling strategy

for the well placement problem.

The key research objectives of this dissertation are:

" To further the development of reduced-order modeling techniques for multiphase

flow in porous media. Specifically, we introduce a two-step reduction procedure

that entails the use of POD and TBR to construct a more stable orthogonal

basis matrix.

" To develop and apply DEIM procedures for multiphase flow in porous media.

Specifically, we expand the capability of DEIM method in [31] to handle three-

dimensional reservoir simulation models with gravitational effects.

" To introduce and enhance MCS for petroleum engineering applications. MCS

is used to solve the well placement problem. A filter-based MCS is developed

in this work to solve the well placement problem in the presence of nonlinear
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constraints.

" To efficiently apply the developed ROM techniques to the sequentially coupled

well placement and control optimization problem. We devise a ROM construc-

tion and update framework based on information obtained during the course of

the optimization. ROM training and update is based on a trust-region strategy

for the well control problem and a MADS polling strategy for the well placement

problem.

" To accentuate the benefit of using the novel ROM-based optimization framework

for well placement and control optimization on two realistic reservoir simulation

models. The first model represents a cross-section from a giant field in the

Middle East, while the second model represents the top five layers of SPE 1 0 th

comparative study, [34].

1.4 Dissertation Outline

This dissertation focuses on enabling the use of ROM for generalized petroleum field

optimization. Figure 1.2 depicts a graphical thesis road map. In Chapter 2, we de-

scribe the underlying reduced-order modeling approach. The approach entails the

use of POD, TBR, and DEIM to construct a more concise reservoir simulation model

that is far less computationally demanding and still able to represent the general fluid

flow behavior. The reduced-order model is capable of handling three-dimensional flow

under gravitational effects. The approach is implemented in the MATLAB Reservoir

Simulation Toolbox (MRST) [69]. The developed ROM procedure is applied to a het-

erogeneous model containing 13,200 grid blocks and five wells (one injector and four

producers). The accuracy of the ROM is demonstrated for several testing simulations
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in which the injection and production rates for each well differ from those used to

build the ROM.

The aim of Chapter 3 is to build a framework that enables the use of ROMs for well

placement and controls. We begin by reviewing the main optimization algorithms

for both the well placements and control problems. The optimization algorithms

considered for the well placement problem include Modified Cuckoo Search (MCS),

which is an improvement over the original Cuckoo Search, Mesh Adaptive Direct

Search (MADS), and the MCS-MADS hybrid method, which is a variant of the PSO-

MADS algorithm introduced by Isebor et al. [61]. The well control problem is solved

using a simple gradient approach, with gradients computed using adjoint procedures.

We then describe a filter approach to handle nonlinear constraints. The filter approach

is implemented for each of these different methods. Finally, we present a framework

that enables a systematic use of ROM for the well placement and control problems.

The framework consists of an optimization module to find optimal solutions and

a ROM construction and assessments module that builds ROMs and ensure their

solution quality.

The purpose of Chapter 4 is to demonstrate the application of the developed frame-

work on two realistic field models. The models contain 25,194 and 66,000 grid blocks,

respectively, and constitute two-phase flow in a heterogeneous medium.

In Chapter 5, we conclude with a discussion on future research directions for the

reduced-order modeling technique developed in this work, in addition to possible

extension of the application of reduced-order modeling for general field development.
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Chapter 2

Reduced-Order Modeling of

Multiphase Flow in Porous Media

This chapter discusses the development of reduced-order models for multiphase flow in

porous media, i.e., reservoir simulation. It begins by describing the constitutive mass

balance equations for two-phase incompressible flow, then outlines the discretization

procedure and solution strategy. Section 2.2 discusses the development of reduced-

order modeling techniques that include POD, TBR, and DEIM in reservoir simulation

for three-dimensional models with gravitational forces. The approach combines lower

computational cost with enhanced numerical stability while maintaining nonlinear-

ities at a reduced dimension. The developed reduced-order modeling technique is

applied to a heterogeneous 13,600 grid block model in Section 2.3. Results demon-

strate the robustness and computational speedup of ROM techniques for realistic

cases. Detailed error analysis and techniques to improve the accuracy of DEIM is

presented in Section B.5 of Appendix B.
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2.1 Reservoir Modeling Procedure

In this section, we describe the governing equations-including the formulation of

the problem, the discretization procedure, the solution strategy, and the reduced-

order modeling techniques for three-dimensional two-phase flow reservoir model with

gravitational forces.

2.1.1 Governing Equations for Two-phase Flow

Reservoir simulation models are derived by combining the constitutive mass balance

equation with multiphase Darcy's law. We consider incompressible oil-water flow

system and neglect capillary pressure effects (production always remains above bubble

point). Also, there is no mass transfer between phases, i.e., the oil component resides

only in the oil phase while the water component resides only in the water phase.

Then, the continuity equation for each phase, designated j (where j = o for oil and

w for water), is given by

a (Op S ) + V - (p v ) = qj, (2.1)

where # is porosity, p3 and Sj are the density and saturation of phase j respectively,

vj is the phase Darcy velocity, and qj is the source term. Assuming incompressible

flow, i.e., # and pj are constants, The continuity equation (2.1) is simplified into:

# / + V. (v,) = q. (2.2)
at pi

A more tractable system of equations consisting of a pressure equation and a satu-

ration (fluid-transport) equation can be written for easier dimensionality reduction.
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The pressure equation (assuming no capillary effects) is given by

V -vt = qt, Vt = -K [AtVp +(Awpw +Aopo)gvz 1 (2.3)

where vt is the total Darcy velocity, K is the absolute permeability (assumed to be

a diagonal tensor), At = Aw + A0 is the total mobility, Aj = krj /pj is the mobility of

phase j, pu is the respective phase viscosity, krj is the relative permeability of phase

j, p is pressure, qt = q, + q0 is the total flow rate, g is the gravitational constant,

and Vz is the negative upward vertical direction. The derived saturation equation is

given by

Sas +V - (fW(S) [vt - A 0 (p - po)gKVz]) qW, (2.4)
at

where fw(Sm ) = Aw/(Aw+Ao) denotes the fractional flow of water. The term fw(Sw)vt

represents viscous forces while the term fw(Sw)Ao(pw - po)gKVz represents gravita-

tional forces.

2.1.2 Discretization and Solution Strategy

The two-phase flow description for incompressible flow and no capillary effects entails

three equations and three unknowns (p, So, Sw). We select p and Sw as the primary

unknowns. Once these primary unknowns are computed, So can be readily determined

from the saturation constraint equation, i.e., Sw + So = 1. For the sake of brevity, we

let Sw = S as the water saturation.

The pressure equation (2.3) and saturation equation (2.4) are nonlinearly coupled

through the saturation-dependent mobilities in the pressure equation and through
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the pressure-dependent total velocity in the saturation equation, in addition to other

terms that depend on pressure, e.g, viscosities. Following procedures developed by Lie

et al. [69], a sequential method is applied to obtain solution states where saturation

from previous step (or initial condition) is used to compute the saturation-dependent

coefficients, e.g., At in (2.3), before it is solved for pressure and subsequently total

velocity. Then, total velocity is kept constant while saturation from (2.4) is solved and

advanced in time. Next, the new saturation states are used to update the saturation-

dependent terms in (2.3) and pressure states are solved again, and so on. The pressure

equation in (2.3) is discretized explicitly while the saturation equation in (2.4) is

discretized implicitly in time as follows:

Tnpn+l - G = Bun+l. (2.5)

Here T" n T(Sn) is a diagonal transmissibility matrix that relates flow in phase j to

difference in pressure. It is calculated using a two-point flux approximation scheme

(see [18] for details). The superscript n represents time step, G" n G(Sn) is a vector

containing the gravitational effects, u is the input controls (boundary conditions),

i.e., well flow rates or bottom hole pressure (BHP), B is the arrangement matrix for

the controls and p is the unknown pressure vector we seek to solve. The discretized

pressure equation (2.5) is a linear equation as the transmissibility matrix Tn does

not depend on pressure (since viscosity is constant for incompressible flow). The

saturation equation is discretized using finite volume method:

sn+1 - sn + At Fn+1 + Qw. (2.6)

Here Qw denotes the source/sink vector and Fn+1 = F(Sn+l) is the numerical approx-

imation of the total flux from viscous and gravitational forces across all grid block
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interfaces, e.g., for a grid block Qj and associated interfaces 'yij (where ij represents

the shared interface between the grid block Qj and the neighboring grid blocks Qj):

i j J f,(Sn 1 ); [vis - gij(Sn+1 )] dV. (2.7)

f"(Sn+1)jj designates the fractional flow function associated with 7ij, vij is the Darcy

flux, and gij(Sn+l) is the gravitational flux across the interface. The total flux term

(referred to as flux in this work) can be seen to introduce nonlinearity in (2.6) as it is

a function of the saturation state we seek to solve. It is also clear from (2.7) that the

flux term introduces a direction dependency into the system. It is therefore treated

using "upstream weighting". Specifically, the evaluation of the flux term depends on

the direction of flow, as follows:

=~ { fw(Sn+1 ) if v > 0, (2.8)
fw(Sj +1) if vij < 0.

Therefore, the nonlinear flux vector in (2.6) represents a non-componentwise function

as the computation of each element depends on other spatially neighboring elements

due to upstream weighting. If the flux term is evaluated without being upstream

weighted, the numerical solution may display oscillations, overshoots, or undershoots

(e.g., saturation less than zero or greater than one), or converge to an incorrect

solution.

The source/sink term, right hand side in (2.4), represents wells which are the typical

boundary condition in reservoir simulation. Wells are modeled using the following

well equation:

- (qt)+ 1 = (At)nWI(pn+1 - p),
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where (qt)"+ is the total volumetric flow rate from block i into the well (or vise versa)

at time n + 1, pn+ 1 is the grid block pressure and pw" is the wellbore pressure for well

w in grid block i, and WI is the well index. For a vertical well that fully penetrates

block i, WI is computed using Peaceman well model [82]:

WI = 27r z (2.10)
In (ro /rw)_

where rw is the wellbore radius and ro ~ 0.2Ax. Note that if BHP is specified as a

well control, it is represented in the simulator by specifying pw" in the well equation

(2.9).

The discretized pressure equation in (2.5) represents a linear system as all parameters

are independent of pressure-transmissibility is a function of saturation in the case

of incompressible flow. This system can be solved using any efficient linear routine,

i.e., MATLAB's built-in solver [73] for small models or AGMG [78] for large models.

In contrast, the discretized saturation equation (2.6) represents a nonlinear set of

algebraic equations as the flux term is a function of saturation. Thus, it is solved

using Newton Raphson's method. The residual form of (2.6) is expressed as:

g = sn+1 - n _At Fn+1 + Qw = 0, (2.11)

and the Jacobian matrix is represented as:

J = I - At  F+ (2.12)
# ( Sn+1
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2.2 Reduced-Order Modeling Representation

This section describes how to reduce the pressure equation (2.5) using an approach

that merges POD and TBR to formulate stable reduced pressure basis. DEIM is then

applied to the nonlinear saturation equation (2.6) providing cost-efficient representa-

tion of nonlinearities. Explanation of the shortcomings when applying POD solely to

nonlinear equations and how this is mitigated using DEIM is also discussed.

2.2.1 Reduced-Order Pressure Equation

Projection-based techniques are commonly used for constructing reduced-order sys-

tem of equations. They construct reduced-order systems of order f < n that approx-

imates the original systems from a subspace spanned by a reduced basis of dimension

f in R'. Galerkin projection is used here as the means for dimension reduction. It en-

ables the representation of the pressure state vector P in terms of a reduced pressure

coefficient vector P using a right basis matrix 4 R; i.e.,

P = RP. (2.13)

The basis matrix 4 )R is the key to the accuracy and stability of the ROM and can

be constructed either using POD or TBR with different computational complexity

associated with each approach. POD constructs the basis matrix from singular value

decomposition (SVD) of snapshots, which are defined as discrete samples of trajecto-

ries associated with a particular set of inputs. Each snapshot corresponds to a vector

of pressure values for each grid block at a given time step generated using a certain

flow rate or BHP control. We denote P E R'Xn, as the pressure snapshot matrix

where n is the number of grid blocks and n, is the number of snapshots such that:
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P = [p1, p 2  ... Pns] . (2.14)

The implemented POD procedure is very well established and discussed in a variety

of applications (e.g., [33, 28]). The development here follows the work of Suwartadi

[93]. The snapshot matrix, obtained from the FOM, is standardized by subtracting

the mean from each snapshot:

P = n Pi, (2.15)

f= [pl - P, p2 _ P1 . .. P n. _ P]. (2.16)

POD formulates the generation of basis vectors as a minimization problem. Let

4R = 4 for the sake of brevity, the basis matrix D = {#} 1 is derived such that

the sum of the least-square approximation errors of the n, snapshots is minimized:

ns q

= arg min 1 N - (PT2i)piI|, (2.17)

subject to Vi gp = 6ij for 1 < i, j < q,

where 6 i3 is the Kronecker delta and we assume that n > ns, i.e., the state dimension

is always larger than the number of snapshots. The solution to (2.17) is given by the

left singular vector of the snapshot matrix P. Performing SVD to P, the left singular

vectors provide the columns of the basis matrix U such that:

p = UEVT, (2.18)
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where U = Lui, ... , Un and E = diag(o-1, - - - , o-n,, where -1 > o 2 > ... - Oq >

... o-,S > 0. The POD basis are the first q dominant left singular vectors, i.e.,

<) = {# }i_1 = {ui} _1 . The sum of the least-square errors when approximating the

ns snapshots using the q POD basis is given by

ns q n,

CPOD = E P3  (]Ploi)Wi 2  = E o. (2.19)
j=1 i=1 i=q+1

This error represents the 'omitted energy' of the snapshots due to truncation. The to-

tal energy of the snapshots is '. This energy criterion can be used to selectively

retain left singular vectors, meaning that those left singular vector corresponding to

small amounts of energy can be safely discarded. In particular, the number of re-

tained basis, q, is chosen such that the 'relative omitted energy' is less than a certain

threshold:

E = 1 - - < e. (2.20)
n, ori

Although POD has gained prominence over other methods such as TBR due to its

lower computational complexity, it does not provide a guaranteed stability bounds. In

this context, stability means that an error in approximating pressure states at time n,

Pn, does not get amplified at subsequent time steps, i.e., pn+1. Several investigators

have studied stability of POD based models (see e.g., [22, 52]).

TBR constructs the basis matrix by exploiting the structure of the system of equa-

tions. It analyzes the response of the states of a system for a given control input

and measures its behavior through the so-called controllability and observability con-

cepts. To illustrate further, let's consider the following linear state-space system of

equations:
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x(t) = Ax(t) + Bu(t), (2.21)

y(t) Cx(t),

where u(t) E R' is a vector containing m external forcing inputs, y(t) E RP is the

vector of outputs, and x(t) E Rn is the state vector. The matrices A E Rfl"fl, B C

R", " and C E RPXn have constant coefficients evaluated at steady-state conditions.

The second equation in (2.21) is referred to as the output equation (assuming no

feedthrough terms). In the context of reservoir engineering, it is only possible to

measure pressure states and flow rates at well locations and hence the matrix C

contains coefficients at the locations where wells intersect grid blocks. Applying an

input control u = 6 to (2.21), the output response is denoted by h(t) = CeAtB, t > 0.

This response can be decomposed into an input-to-state map x(t) = eAtB, and a state-

to-ouptut map q(t) = CeAt. Thus, the input J causes the state x(t), while the initial

condition x(0) causes the output y(t) = r(t)x(0). The Grammians corresponding to

x and q are:

Gc = x(t)x(t)T = e AtBBTeAT dt, (2.22)
t 0

Go = Z (t)T(t) = j eATtCCeAt dt, (2.23)
t

where G, and Go are called the controllability and observability Grammians respec-

tively. A system with state vector x1 is called controllable if and only if the system

states can be changed by changing the control inputs. On the other hand, a particular

state x, is called observable if there exists a control input that transfers the state of

the system from the initial state x0 to x, in some finite time interval. The largest

singular values of the product of the controllability and observability Grammians, also
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known as Hankel singular values, describe the most controllable and observable states

in the system. To compute Hankel singular values, we first determine the Grammians

through solving the following Lyapunov equations:

AG, + GCAT + BBT = 0, (2.24)

ATGO + GA + CTC =0. (2.25)

Then, the Hankel singular values of the system are the square root of the eigenvalues

of the product GG,, i.e.,

a = V A(GoGc). (2.26)

The linear system in the state-space form is called 'balanced' if the solutions of the

two Grammians are both equal to the diagonal matrix of the Hankel singular values:

GC = Go = E = diag(O-, 0', * * * , U), (2.27)

where o-1 > ; o- > 0. Typically, the Hankel singular values of the system contain

useful information about the input-output behavior of the system. In particular,

small Hankel values correspond to internal sub-systems that have weak effect on the

input-output behavior and are almost non-observable or non-controllable or both.

Every controllable and observable system can be transformed into a balanced sys-

tem by applying a basis change i = Mx. The two Grammians are transformed by

congruence transformations:

GC = MGcMT,
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G_ = M-TGOM-1 (2.29)

G"CG MG'CGM-1. (2.30)

The key here is to find the transformation matrix M such that the transformed

Grammians are balanced, i.e., a transformation that makes G, and G, both equal to

the Hankel singular values. To obtain M, we first perform Cholesky factorization on

the Grammians as follows:

Go = LoLo , (2.31)

GC = LcLT, (2.32)

where Lo and Lc are lower triangular matrices. Then, perfuming singular value de-

composition such that LTLc = UEV, the balancing transformation matrix can be

obtained as:

M = LcVE-1/2 (2.33)

M-1 = E-1/ 2UT T, (2.34)

Finally, under similarity transformation of the state-space model, the reduced matri-

ces are:

A = M-1 AM, (2.35)
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B = M-1B, (2.36)

C = CM, (2.37)

where A, B, C are truncated according to the least Hankel singular values.

To reduce the linear pressure equation using TBR, we apply Algorithm 1 which

summarizes the TBR approach explained previously to obtain a left transformation

matrix WL and a right transformation matrix WR . T and B are the transmissibility

and input control arrangement matrices in (2.4) respectively. The matrix C is the

observation matrix with ones at the well locations and zero elsewhere.

Algorithm 1: TBR algorithm

Input : System matrices T, B, C
Output: Projection bases WL and WR

1 Find controllability Grammian G,:
TGC + GCTT = -BBT;

2 Find observability Grammian G,:
TTGO + GT = -CTC;

3 Compute Cholesky factors of G, and G,:
GC = LL T, G, = LLT;

4 Compute SVD of Cholesky product:
UZV = LoLT

5 Compute transformation matrices WL and WR:

WL = L /, W = E-1/ 2UT L;

TBR is applicable to linear systems and hence suitable for the pressure equation

(2.5). It provides guaranteed stability and improved accuracy over POD with a-priori

error bound. However, it is limited to models with few hundred unknowns as the

computational complexity is 0(n3 ). In order to allow effective and efficient reduction

for large models, we employ a two-stage reduction strategy where we perform an
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intermediate reduction using POD method to reduce the model from n to q, and then

apply a TBR-based projection around initial stable point (po, so) to further reduce

the model from q to f. The two-stage reduction is summarized in Algorithm 2. The

dimensions of (DL and (b are f x n and n x f respectively. The projection matrices

therefore reduce the number of unknowns from n to f, with f << n. The final reduced

pressure equation becomes:

T (S")fn+1 = Bun+1 + n+l (2.38)

where T 4 T~b E R'X is the reduced transmissibility matrix, P E Rex is the

reduced pressure vector we seek to solve, B = LB E Rfxm is the reduced control

arrangement matrix, Un+1 E Rn'" is the input controls, and G E Rnx l is the reduced

gravitational force vector. Finally, the pressure state vector P is reconstructed using

(2.13).

Algorithm 2: Two-stage reduction algorithm

input : Pressure snapshot matrix lIP
output: Projection bases (DL and 4 R

1 Compute first-stage reduction basis U us
UEV = P; where U=nx q;

2 Compute second-stage basis WL, WR us

[WL, WRI = TBR(T, $, C)
where i = UTTU, $B= UTB, C

3 Construct final bases:
= WTUT #R=UWR;

ing POD:

ing TBR:

= 1;
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2.2.2 Reduced-Order Saturation Equation

Nevertheless, linear reduction techniques reduce the dimensions of spatial models in

the sense that far fewer variables are present, they still depend on the dimension of

the original full-order model-through nonlinear terms-and thus marginal computa-

tional gain is achieved. To see this, lets consider reducing the residual and Jacobian of

(2.5) by representing the saturation state vector S in terms of a reduced state vector

S, using a basis matrix T obtained from a saturation snapshot matrix S, as follows:

S = TSr, (2.39)

where T E R"' is the saturation basis matrix, and S, E Rex is the reduced satu-

ration vector. Substituting (2.39) into (2.11) and (2.12) and premultiplying by TT,

the reduced forms of the residual and Jacobian become:

g = YTg = sn+1 _ 5n -At Y Fn+1 + Q , (2.40)

Jr = T TJy = 1r _ tTTaF 7 (2.41)
# BSn+l

where Fn+1 = F(TSn+1 ) is the reduced flux vector and Ir is the identity matrix at

the reduced dimension. It is clear that the evaluation of the flux vector still requires

0(n) nonlinear evaluations for the n entries of F(TSn+1 ) and F'(TSn+1 ) which is

proportional to the dimension of the FOM. Specifically, the flux term is evaluated at

the full dimension first before projection onto the reduced dimension.

To avoid full evaluation of the flux term, DEIM is proposed to approximate the

nonlinear flux term via interpolation over a subset of points that are independent
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of the FOM dimension n. In this context, DEIM partially evaluates the flux term

at "interpolation indices" which represent in this problem the grid blocks that are

essential in reconstructing the flux term while preserving the overall properties and

continuity of the saturation equation (e.g., Figure 2.1).

Figure 2.1: Representation of a spatially discretized nonlinear function f using three
interpolation points. The top plane represents the actual function evaluation at three
grid blocks while the bottom plane represents the reconstructed function using DEIM.

The first step of the DEIM procedure is to approximate the flux term Fn+ 1 using a

separate set of basis vectors %F that are different from those used for the states:

F (2.42)

where %F = [01, 02, ... ,Ok] E Rnxk (k < n) are the basis vectors for the flux term and

Fn+1 E Rkxk is the vector containing expansion coefficients. The basis vectors I =

{ i}$are derived from the snapshots of the flux term F = {Fj},'_, using the same

POD procedure described earlier. The collection of these nonlinear snapshots does

not incur additional computational cost because the nonlinear flux term is already

evaluated during the sampling of the state snapshots P and S. Note that (2.42)
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represents an overdetermined system, so to compute F'+1 at a computational cost

independent of n, we select k interpolation points of Fn+I and enforce equality for

the corresponding system of equations in (2.42). This results in a k x k system from

which the coefficient vector Fn+1 can be uniquely determined:

F + = 'Fn+ 1, (2.43)

where z = [zi,- , zkjT E Rkx1 is a vector containing k interpolation indices that

are determined inductively via Algorithm 3, F +E Rkx1 is the nonlinear flux term

evaluated at these k interpolation points, and i' E kxk is the corresponding k rows

of 'I.

For problems where nonlinear terms have componentwise dependence on the state

(e.g., two-phase flow with no gravitational effects), each grid block evaluation of

the nonlinear term is independent of the neighboring grid blocks and therefore can be

efficiently reconstructed using only k interpolation points. However, the problem con-

sidered in this work includes gravitational effects, which transform the system from

a componentwise to a non-componentwise dependence of the nonlinear flux term on

the solution states. That is, each grid block evaluation of the flux term requires eval-

uating the neighboring grid blocks due to transmissibility upstream weighting and

therefore the flux vector is reconstructed using grid blocks selected via interpolation

indices in addition to those neighboring grids selected according to upstream weight-

ing (2.8) . This is illustrated in Figure 2.2 for a two-dimensional model. A total of

25 grid blocks are used to reconstruct the nonlinear function f-five of which are

interpolation points selected using Algorithm 3. We denote !' as the set of k' > k

indices which include the grid blocks selected by the DEIM algorithm in addition to

the neighboring grid blocks, i.e., Z E i'. Even though, an increase in computational
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demands is anticipated in this case, the support of states on the flux term remains

local, i.e., k < k' < n.

Figure 2.2: Illustration of a spatially discretized nonlinear function f with non-
componentwise dependance. The blue circles indicate the grid blocks selected by
Algorithm 3 whereas the red circles are the neighboring grid blocks required due to
upstream weighting to reconstruct the function.

Solving for F,+ 1 from (2.43) and substituting into (2.42), we obtain the final DEIM

approximation:

(2.44)

Applying the DEIM approximation in (2.44) to the reduced residual (2.40):

g s.n+1 _ n -r- AtT [ , -1F!+1 + Qw]. (2.45)

Here F +' = Fj(TjS,+1) for non-componentwise evaluation. Similarly for the Jaco-

bian matrix in (2.12):

A -t (F+'
J = Ir -- T i Xp T -, I l

#~- j, Sn+1 ' (2.46)

where Tp E R"' contains the corresponding k' rows of T and ( E OFk OT1 1,Sn +1 Rxk

* 0

S00 S @00

* 000 0

0

* 000

000 0

0

Fn+1 = @1F +1.
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The computation of the reduced residual and Jacobian in (2.45) and (2.46) is now

efficient because firstly, the term rT4p E Rix' can be precomputed "offline"

meaning that it is computed only during training procedure and thus does not need

to be computed within Newton-Raphson iterations or any multi-query context. Sec-

ondly, the flux term F2+1 does not entail the full-order dimension n anymore as it

can be obtained by extracting rows of Fn+1 corresponding to Z' and it is therefore

0(k').

Algorithm 3: DEIM Point Selection
Input : 4' = {jj}

Output: Z= [zI, z2 , -... , Zk] E Rkxl

1 [1pl, zi] = max{101}

2 I = [1],1 K = [ez], i= [z]

3 for i <- 2 to M do
Solve (KT'I)c = KT'/i for c
r = 0i - x'c
[1pl, zi] = max{r|}
e +- [nd, 7] , K - [K ez,] I

end
[Z", zi]

2.3 Simulation Using Reduced-Order Modeling

We now illustrate the application of the ROM-based procedure on a synthetic model

containing 13,200 grid blocks. The performance of ROM is tested and verified for a

variety of test controls that differ from initial controls used during the initial training

simulation to demonstrate the ability of the ROM in prediction mode. Simulation

runtimes and speedup factors are quantified at the end of the section.

The reservoir model represents the first layer of the SPE 1 0 th comparative study [34].
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The grid is 60 x 220 x l (N x N x N, where Nk is the number of grid blocks in

direction k). The physical dimensions of each grid block is 20 ft x 10 ft x 2 ft. There

are four production wells located at the corners of the model and one injection well

located at the center. All of the wells are under flow rate control.

120

4,

0 10 20 30 40 s0 s0

0.01 0.1 1 10 100 1000

Figure 2.3: Permeability in the x-direction (in mD) of the first layer of the SPE 1 0 th

comparative model with four production wells placed at the corners and an injection
well placed in the middle.

Permeability in the x-direction is depicted in Figure 2.3. Permeability is taken to

be a diagonal tensor, with kx = k.. The mean kx and k, are 74.3 mD and 17.1 mD

respectively. The porosity is constant in this model and set equal to 0.25. The initial

water and residual oil saturations are zero. For oil, we set po = 45 lb/ft3 , p, = 5

cp; for water, we set p, = 65 lb/ft 3, P", = 1 cp. The system is incompressible and

capillary pressure and gravity effects are neglected. The relative permeabilities for

78



2.3. SIMULATION USING REDUCED-ORDER MODELING

the oil and water phases are specified as:

kro(Sw) =k -Sor a (2.47)

ro -S r - S o

krw(Sw) = ko( - Ior b (2.48)rw rw I - Swr - Sor)

where k and ko are the endpoint relative permeabilities. Here we set k =k = 1

and a = b = 2.

We perform a training simulation run using the FOM to collect state and nonlinear

term snapshots in order to construct the orthogonal bases. The flow rate control

schedule is shown in Figure 2.4. We specify the injection well to inject water at a

constant rate of 211 STB/day, equivalent to 0.6 of the reservoir pore volume (0.6 PVI),

while the production wells produce also constantly at 53 STB/day. The training case

was simulated for 1000 days using MRST, and a total of 200 snapshots are collected

and used to build the orthogonal bases.

Applying the proper orthogonal decomposition approach provides the amount of omit-

ted energy for each state as a function of the number of retained POD bases shown

in Figure 2.5. We show here the first 40 orthogonal bases out of the 200 available. It

is clear that retaining only the first pressure basis results in omitting 1 x 10-4 of the

energy of the pressure system. However, as indicated earlier and for this exercise, we

find that more pressure bases are required to achieve accurate results. This is due to

the fact that slight perturbation in pressure, which is represented by orthogonal basis

with low energy, is critical to the pressure-dependent terms supplied to the satura-

tion equation. A slight change in these pressure-dependent terms may result in the

saturation equation converging to entirely wrong solutions during Newton iterations.
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Figure 2.4: Training flow rate schedule for the first layer of the SPE 10 th comparative
model. The training schedule consists of all production wells production at a constant
flow rate of 55 STB/day.
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Figure 2.5: Omitted Energy as a function of the number of
energy is used in this example to determine the number of

0.2

0.15

0.1

0.05

0 10 20 30 40
Number of Modes

(c) Water fractional flow

POD bases. The omitted
retained basis.

Therefore, a total of 70 basis vectors are retained comprising less than 1 x 10-10 of

the omitted energy. Then TBR is used to reduced the number of basis vectors further

to 25 basis vectors. Applying TBR does not only result in more stable basis matrix,

but also helps in retaining the accuracy of the ROM while keeping the ROM at lower

dimension. The saturation and fractional flow basis matrices are reduced using POD

and contain 16 and 15 basis vectors respectively with approximately 1 x 10-6 of the

-P1 -- P2.---P3 --- P4

80 CHAPTER 2.
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energy omitted . We thus reduce the dimension of the problem from 26,400 variables

to only 41 variables. The nonlinear term, water fractional flow, orthogonal basis

matrix is used to determine the interpolation indices for DEIM. The spatial location

of each DEIM point is depicted in Figure 2.6. The DEIM points are concentrated

in locations where the rate of change in flux are high, i.e., the path toward well P2.

Although DEIM points corresponding to all snapshots are shown in Figure 2.6, only

the red DEIM points (15 points) are used to recover the water fractional flow term.

Thus, the whole saturation field, evaluated using the saturation equation, can be

recovered accurately by evaluating the fractional term at only those locations.

0.2 0.4 0.6 0.8 1

Figure 2.6: Oil saturation at the final time step with DEIM points for the flux term
of the first layer of the SPE 1 0 th comparative model. The DEIM points are used
to reconstruct the nonlinear fractional flow term and are located relatively close to
production wells.
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Prior to using the ROM for optimization and decision-making, it is important to assess

the accuracy of the constructed ROM. We follow He et al. [54] testing methodology

where we define a 'target' flow rate schedule for each well. The flow rate control for

each well in the target flow rate schedule, depicted in Figure 2.7, is randomly set

within an interval between 43 STB/day and 74 STB/day under the constraint that

the injected fluid (water) has to be equal to the produced fluid (oil and water) for

incompressible flow model. The target flow rate schedule for each well is perturbed

every 100 days. Therefore, the total number of control variables is 10 x 5 = 50. It is

clear that the training flow rate schedule, taken to be constant for all wells, is vastly

different from the target flow rate schedule. We then interpolate between the training

and target flow rates to enable a systematic perturbation away from the training run.

Specifically, we specify the test case flow rates as follows:

Utest = (1 - a)utraining + Olutarget, (2.49)

where a is taken to be between 0 and 1. The error between the FOM and ROM

is expected to increase with increasing a as the test case is entirely made from the

target flow rate schedule when a is 1.

The ROM performance is scrutinized using three test cases. Figure 2.8 shows the

the oil and water production rates for the four production wells for Test 1. In this

and subsequent figures, the dashed lines show the training simulation results which

controls were used to build the ROM, the solid lines display the reference test case

results simulated using the FOM, and the circles depict the test case results simulated

using the ROM. Test 1 is simulated while setting a equal to zero indicating that testing

rate schedule is similar to that used for training. The results show full agreement

between the FOM and the ROM when similar controls are used. For Test 2, we set

a equal to 0.5. The oil and water production comparisons are shown in Figure 2.9.
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Figure 2.7: Testing flow rate schedule for the first layer of the SPE 10th comparative
model. Production flow rates are perturbed every 100 days and randomly set within
an interval between 43 STB/day and 74 STB/day. The testing schedule is used to
test the ROM's performance and solution accuracy.

ROM results are in close agreement with the FOM for all quantities. We see that the

test simulation results are slightly different from the training results, though there are

conspicuous differences between the two cases particularly for the oil production in

wells P3 and P4. In Test 3, we specify ce to be equal to one, which means we apply the

flow rate schedule shown in Figure 2.7. Results for this case are shown in Figure 2.10.

The ROM results are slightly less accurate than Test 2 which is expected as we

deviate away from the ROM training root-point. Both trajectories are however still

in close overall agreement with the FOM. We notice less agreement for wells P1 and

P2 toward the end of the simulation run as water production increases. This might

be due to inadequate DEIM points and so the error can be rectified by increasing

the DEIM points. Overall, the results for all test cases demonstrate that the ROM

is able to provide simulation results that are in close agreement to those from the

FOM. For this reservoir model, the full-order simulation runtime is about 280 seconds,

while the runtime for the ROM is about 3 seconds. We thus achieve a reduction
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of computational time by a factor of 93. Although this reduction in computation is

considered modest as compared to computation time reduction of 0(1000) attained by

[33] when using DEIM for nonlinear miscible viscous fingering problem, we anticipate

larger speedup factors when larger models are used (O(10') grid blocks). This is

firstly because TBR reduction will be more significant (current reduction factor for

this model is 528 for pressure equation). Secondly, DEIM eliminates full evaluation

of nonlinear terms and therefore less time will be spent during the Newton-Raphson

iterations which will be very advantageous for large models with large number of

variables.
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Figure 2.8: Production rates for Test 1 (a = 0). The dashed lines show the training
simulation results which controls were used to build the ROM, the solid lines display
the reference test case results simulated using the FOM, and the circles depict the
test case results simulated using the ROM.
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Figure 2.9: Production rates for Test 2 (a = 0.5). The dashed lines show the training
simulation results which controls were used to build the ROM, the solid lines display
the reference test case results simulated using the FOM, and the circles depict the
test case results simulated using the ROM.
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Figure 2.10: Production rates for Test 3 (a = 1.0). The dashed lines show the training
simulation results which controls were used to build the ROM, the solid lines display
the reference test case results simulated using the FOM, and the circles depict the
test case results simulated using the ROM.
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2.4 Summary

In this chapter, we developed a reduced-order modeling technique for reservoir man-

agement decision-making and optimization. The technique entails combining proper

orthogonal decomposition (POD) and truncated balanced realization (TBR) for model-

order reduction and using discrete empirical interpolation (DEIM) for nonlinear term

approximation. A high degree of efficiency is achieved as far fewer variables are

required to reproduced the FOM input/output behavior. DEIM improves on the

shortcomings of the original projection-based model-order reduction techniques by

intelligently approximating nonlinear parameters depicted in the saturation equation.

The ROM technique was applied to a heterogenous two-dimensional model containing

13,200 grid blocks and five wells. The accuracy of the ROM was demonstrated for a

sequence of testing runs. Production trajectories were shown to be in close agreement

to those computed using FOM. A computational speedup factor of about 93 was

achieved and we expect higher factors for larger models as we will see in subsequent

chapters.

One primary application of ROM is decision-making and optimization. In the follow-

ing chapter, we will develop an optimization framework that utilizes the developed

ROMs to solve the well placement and control problems. The framework provides

the ability to retrain and update the ROM during the optimization to ensure highest

solution accuracy.
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Chapter 3

Optimization of Well Placements

and Controls Using Reduced-Order

Models

Our goal in this chapter is to develop an efficient well placement and control optimiza-

tion techniques that take advantage of the developed reduced-order model approach.

Section 3.1 presents the well placement and control problems in their mathemati-

cal forms and highlights the nomenclature used throughout the chapter. As stated

previously, the well placement problem is multi-modal with multiple local optima.

Therefore in Section 3.2, we present a new global optimization method known as Mod-

ified Cuckoo Search (MCS). MCS which was originally developed for unconstrained

problems is enhanced in this work to handle nonlinear constraints via filtering. Sec-

tion 3.3 describes a local optimization method known as Mesh Adaptive Direct Search

(MADS) that is coupled with MCS to formulate a new hybrid approach. This hybrid

approach, known as MCS-MADS, combines the positive aspects of the two preceding
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methods and is shown to provide better solution quality. The hybrid approach consti-

tutes an adaptive framework that allows for the use of ROM as a search accelerator to

reduce computational demands. The framework also includes error assessment proce-

dure to ensure minimum deviation from the reference FOM. Section 3.5 addresses the

well control problem. Controls are optimized using a gradient optimization method

where gradients are obtained through adjoint procedures. ROMs are used in this

problem as the main engine driving the optimizer toward the optimal solution. To

keep the ROM close to its root-point, optimization is performed within a trust-region.

The quality of the optimal solution obtained using the ROM is compared to that of

the reference FOM and adjustment to the next trust-region is performed accordingly.

3.1 Problem Statement

minimize J(p, u)
u-U

subject to c(p, u) 0 (3.1)

g(p, u) = 0

where J is the objective function to be optimized (e.g., net present value, recovery

factor), c E Rk is the set of k nonlinear constraint functions (e.g., water cut, maximum

liquid field production). The equality constraint g defines both the bound constraints

(i.e., LB < u < UB) and the dynamic system constraint, which is the reservoir

simulator in this case. This constraint ensures that the governing equations for flow

converge toward the correct solution for each proposed control u (essential condition

for adjoint-based optimization techniques). For all examples in this work, we use

MATLAB Reservoir Simulation Toolbox (MRST). Readers should refer to [69] for

details about MRST. The vector p represents the pair of the simulation model solution
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states (i.e., pressure p and saturation S for the case of two-phase flow) and u represents

the set of input controls we wish to find in order to optimize the objective function,

(e.g., well drilling locations or well control settings).

In this work, we consider a sequential approach where we optimize the well placements

first before finding the optimal set of well controls. Since the problem cannot be

entirely decoupled-optimal well locations still require well control settings during

the optimization-we apply a reactive approach where wells are shut-in if the water

production exceeds a specified limit. This approach is shown to provide the best

results for such problems [112].

The control vector u is defined differently for each problem. For the well placement

problem, the input control vector u is defined as the set of discrete integer values

representing the potential well locations indexed using (i, j). Its bounds include the

entire connected set of the model's grid blocks as in the case of new field development

or the non-connected feasible regions in the case of infill drilling where a minimum

drainage area is usually imposed. For the well control problem, the input control u

represents the continuous well flow rate or BHP. It is bounded by operational limits

(e.g., for BHP control, BHP should be higher than the bubble point pressure at

producers and less than fracture pressure at injectors).

The well placement problem is multi-modal (contains local optima) due to the ef-

fect of reservoir heterogeneity-normally displays non-smooth optimization surface.

Therefore, a global optimization method with local search capability, MCS-MADS,

is devised to avoid getting trapped in any local optimum. On the other hand, the

well control problem displays smoother optimization surface and therefore gradient-

based algorithms are most suitable. In this work, we apply an adaptive trust-region

framework that incorporates the use of ROMs to optimize the well controls.
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3.2 Global Derivative-Free Approach for Well Place-

ments

3.2.1 Cuckoo Search

Cuckoo Search algorithm (CS), introduced by Yang and Deb [106], is one of the

newly developed global metaheuristic search procedures. It is inspired by breeding

behavior such as brood parasitism that is displayed by certain species of cuckoos.

Brood parasites (such as cuckoo birds) manipulate and use other individuals, either

of the same or different species, to raise their own young while the parasitic parent

pursues other activities like foraging or producing offspring. This interesting behavior

is combined with a Levy flight approach-exhibited by some birds and fruit flies-to

efficiently search the solution space. Levy flight allows exploring the search space

using a series of straight flight paths punctuated by sudden sharp turns (close to 900)

to perform intermittent free search pattern.

CS entails the use of eggs to represent search agents and nests to hold these agents

during the optimization. Adopting a similar analogy to that presented in [102], the

host bird egg originally placed in a nest represents a solution and the cuckoo egg

represents a new potential solution. Each egg carries two pieces of information, that

is, the solution which is represented as coordinates in the solution space and its fitness

value. The nests act as place holders for the eggs, and can be thought of as locations

in an array where eggs information is stored during the optimization run. Each nest

hosts one egg at a time and the number of nests is fixed throughout the optimization

(similar to population size in genetic algorithms).

The CS algorithm starts by generating an initial population of eggs, this is equivalent
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to the host birds building nests and laying one egg in each nest. The initial population

should have an adequate number of eggs to provide efficient sampling of the solution

space. Latin hyper-cube sampling technique (LHS) is used here for this purpose.

During subsequent generations, cuckoo eggs are generated by taking a Levy flight

from a random host egg (or previous cuckoo egg). The fitness of each cuckoo egg is

evaluated, and compared to a random previous egg (either host or cuckoo). If the

fitness of the new cuckoo egg is better than the previous egg, the cuckoo egg replaces

that egg in the nest.

Although cuckoo birds cleverly disguise their eggs ( they choose nests that contain

eggs of similar appearance to theirs), there is always a probability pa E [0, 1] that the

host bird discovers the cuckoo's eggs inside its nest. Depending on the type of the

host bird, it may discard those cuckoo eggs, or abandon the nest altogether and build

a new one. The CS algorithm emulates this behavior by discovering the worst eggs

with a probability pa and replacing them with new eggs using a biased random walk

approach. This rule ensures that best eggs survive from generation to generation with

the best eggs always carried over (elitism).

One of the most distinctive features of CS when compared to other metaheuristic

techniques is the use of Levy flight to generate new eggs. It is a random walk,

characterized by a series of instantaneous jumps generated by a probability density

function as illustrated in Figure 3.1. Levy flight approach constitutes a scale-free

search strategy meaning that the search pattern is the same regardless of the scale of

the problem. This provides an automatic balance between exploration (global search)

and exploitation (local search) with only one parameter to tune.

Another major strength of CS algorithm is its simplicity. While other metaheuristic

algorithms such as GA or PSO require a handful of problem-dependent parameters

to be adjusted, the CS algorithm requires only two, i.e., the fraction of eggs to be
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Figure 3.1: An example of a 1000 step Levy flight showing small localized searches
connected by large jumps. The large jumps are resulted from using a probability
distribution that is heavy-tailed.

abandoned (or discovered) during each generation and the Levy flight step size. In this

work, we use discovery probability recommended by Yang and Deb [106] (pa = 0.25),

which was shown to perform well for a suite of test problems.

3.2.2 Modified Cuckoo Search

The CS algorithm has shown to outperform a number of other metaheuristic al-

gorithms [106, 109, 103]. Given adequate number of search agents (eggs), the CS

algorithm will always find the global optimal solution. As the search, however, relies

entirely on Levy flights (random walks), fast convergence cannot be guaranteed. For

problems with expensive objective function evaluations, such as fluid flow problems,

slow convergence may incur prohibitive computational costs. To address this problem,

Modified Cuckoo Search (MCS) is introduced.
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MCS is implemented with the primary emphasis on speeding up the convergence

toward the optimal solution rather than modeling the breeding behavior of cuckoo

birds. Hence, two modifications are made to lessen the dependence on random walks

without losing the main attractive features of the original CS. The first modification

is made to replace the constant Levy flight step size a for a varying step size that

gradually decreases as the algorithm approaches the optimal solution. The second

modification introduces higher level of information exchange among cuckoos through

crossover processes.

The first modification is to alter the constant Levy flight step size a. In CS, a constant

Levy flight step size is used and is typically set to a = 1. This constant Levy flight

step size promotes the same level of search aggressiveness regardless of how close the

eggs are to the optimal solution. Instead of a constant a, MCS deploys a variable

step size that decreases as the number of generation increases, and hence lessen the

search aggressiveness as the algorithm converges toward the optimal solution. Similar

behavior is demonstrated in PSO, where the inertial constant is reduced to encourage

more localized search as the solution gets closer to the optimal one [23].

In MCS, the initial Levy flight step size is set to a = 1. For subsequent generations,

a new Levy flight step size is calculated using a = A/v4G, where G is the generation

number and A = 1. This varying step size is only performed on those cuckoos that

are to be discovered by the host bird.

The second modification, depicted in Figure 3.2, introduces higher level of information

exchange between cuckoos through crossover processes. This causes Levy flights to

depend on previous information from previous generations, rather than performing

independent flights. The process can be summarized into the following steps:

1. Eggs are ordered based on their fitness. A fraction of the best eggs is considered
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elite (this fraction is determined by the discovery probability pa ), as depicted

in Figure 3.2(a).

2. Levy flight approach is used to generate new eggs out of non-elite eggs. The

non-elite eggs are replaced with the new eggs regardless of whether they incur

better fitness as shown in Figure 3.2(b).

3. Each elite egg randomly picks another elite egg. A new egg is generated along

the path connecting these two eggs. The new egg is placed closer to the egg with

the better fitness according to the inverse of the golden ratio W-- = (vf5 - 1)/2.

In the case that both eggs have the same fitness, the new egg is placed in the

middle. Also, there is a possibility that an elite egg gets picked twice, in such a

case, a local Levy flight search is performed from the elite nest (which is picked

twice) with a Levy flight coefficient a = A/G 2 .

4. After a new egg is generated using the previous step, it is compared to another

egg that is picked randomly (either elite or non-elite). If the newly generated

egg has a better fitness than that already in the nest, then it replaces it inside

the nest, otherwise it is discarded. This is illustrated in Figure 3.2(c), where

egg H is found to have better fitness than egg D, so it replaces it inside the nest

(eggs D is left without a nest). On the other hand, egg J is found to have a

worst fitness than eggs B so no replacement occurs.

5. All eggs that do not reside inside nests are discarded, and the set of elite eggs

is updated as shown in Figure 3.2(d).
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Figure 3.2: Illustration of the MCS information exchange among elite eggs with global
optimum toward top right (from Walton [102] with modifications).

3.2.3 Constraint Treatment in MCS

Bound constraints in (3.1) are enforced by projecting solutions that fall outside the

search domain Q back onto the boundaries using:

projn(ui) =

U{

Ui

Xi

if U; < Uti,

if u, > us,

otherwise.

(3.2)

0l

0
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To treat nonlinear constraints, metaheuristic search algorithms commonly apply penalty

function approaches which augment the objective function with a penalty term that

provides a measurement of constraint violation. This augmented function is referred

to as merit function and is expressed as:

X(p, u; p) = J(p, u) + ph(p, u), (3.3)

where the positive scaler p is the penalty parameter, and h(p, u) is an aggregate

constraint violation function expressed as:

-m - 1/2

h(p, u) = [(ax(esi(p, U), 0))2 ,(3.4)
i=1

ei (p, u) represents the normalized constraints. Specifically, constraints of the form

ci(p, u) < cmax are formulated as:

ei(p, U) = C 'U) - 1< 0 (3.5)
Cmax

and those of the form ci(p, u) > cmin become:

ii(p, U) = (p, u) < 0, (3.6)
Cmin

where cmax and cmin are the constraint limits.

As can be readily seen, the optimal solution of X(p, u; p) depends on the choice

of the penalty parameter p. Thus ,the penalty parameter should be specified such

that the constraint violation term has similar order of magnitude as the objective

function. Poor choice of p (either too large or too small) may lead to inaccurate

results as the merit function in this case may not provide a good approximation of
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the objective function. In order to avoid poor choice of p, an iterative scheme is

usually devised where p is updated at every iteration until the solution of the merit

function converges to that of the objective function. This iterative scheme might work

well for certain cases where the cost of computing the objective function, and hence

the merit function, is very low. However, it has limitations in realistic problems as it

may incur prohibitive computational costs. Due to this limitation, we adopt a filter

method as a way to handle nonlinear constraint, which we describe next.

Filter techniques are step acceptance techniques that provide the ability to overcome

the pitfalls of penalty function methods. Such techniques treat the objective function

and the constraint violation (infeasibility term) separately rather than combining

them into a single function. Thus, the problem in (3.1) can be viewed as a bi-

objective optimization where we seek to maximize/minimize the objective function

J(p, u) and minimize the aggregated constraint violation h(p, u). Clearly, the second

objective has a higher priority because every solution has to be feasible before being

considered as optimal. Borrowing terminology from multi-objective optimization, a

pair (Ja, ha) is said to dominate another pair (J, hb) -mathematically written as

(Ja, ha) -< (Jb, hb)-if and only if J(p, Ua) J(p, Ub) and h(p, Ua) < h(p, Ub). The

filter is defined as the list of pairs such that no pair dominates another pair. That is,

an iterate Uk is acceptable to the filter if the pair (Jk, hk) is not dominated by any

other pair in the filter up to the kth iteration. Detailed discussion and brief history of

the filter method can be found in [41] and its application to constrained production

optimization using MADS and PSO can be read in [58, 60, 62].

Before discussing the employment of filter methods in MCS, the definition of the word

'better', which has been mentioned extensively in previous section, should be revisited.

For cases without nonlinear constraints, an egg is said to be better than another egg

if it yields a higher objective function value. That is, an egg carrying the solution
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um is better that an egg carrying the solution u, if and only if J(urn) > J(un) for

maximization problems. This definition is somewhat nested for cases with nonlinear

constraints. That is, a better egg is an egg that carries a solution with a higher

objective function value, in the case when both compared solutions are feasible, or

an egg that carries a solution with a lower infeasibility term, in the case when both

compared solutions are infeasible. If a feasible solution is compared to an infeasible

solution, then the egg carrying the feasible solution is always better (a feasible solution

is a solution that has a zero infeasibility term). It is clear here that the infeasibility

term is always prioritized over the objective function value.

For the successful implementation of filter methods, a filter at iteration k constitutes

the list of all non-dominated infeasible solutions in addition to the list of all feasible

solutions up to the kth iteration. At iteration k, two types of solutions are recorded

in the filter: the best feasible solution (0, Jr) and the least non-dominated infeasible

solution (h', J4). The filter is updated and the iteration is considered successful

when new feasible solutions or when solutions that dominate some of the current

filter solutions are found, as depicted in the sequence of illustrations in Figure 3.3.

J J J
0

0

(0 Jf)l

0 0

(a) Filter at the start of (b) eggs evaluated during (c) Updated filter at iteration
iteration k iteration k k + 1

Figure 3.3: Progress of filter form iteration k to k + 1. The filter envelope moves
toward the feasibility axis. (from Isebor [59] with modifications).

The modifications to the original MCS algorithm is mainly applied to how eggs are
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compared and categorized. In this work which considers nonlinear constraints, eggs

are compared in terms of their feasibility first and then in terms of their closeness-

to-feasibility (lower infeasibility). This condition favors the infeasibility term over

the objective function value when two solutions are compared. Also, elite eggs are

considered as eggs that are in the filter, i.e., feasible and non-dominated eggs, while

non-elite eggs are those outside the filter. Algorithm 4 details these modifications.

The filter-based MCS provides a bias toward exploring the solution space at the

beginning of the optimization run and gradually shifts that bias toward exploitation.

During the first few generations, the number of elite eggs (feasible and non-dominated

infeasible solutions inside the filter) is usually lower than the number of non-elite

eggs, Figure 3.4(a). This translates into employing a higher volume of Levy flights to

non-elite eggs which aids in exploring more promising areas of the solution space as

opposed to employing crossover to elite eggs which provide local search. Toward the

end of the optimization run, more eggs become elite, as shown in Figure 3.4(b), and

accordingly a higher volume of crossover between elite eggs occurs. This provides

a higher search resolution inside feasible regions and as a result improves solution

quality.
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Figure 3.4: Illustration of the determination of elite and non-elite eggs as the opti-
mization run progresses. Toward the end of the optimization run, the number of elite
eggs inside the filter envelope increases promoting local search within the feasible
search region (elite eggs are red, non-elite eggs are yellow).
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Algorithm 4: Filter-based MCS
A <- Maximum Levy step size
p +- Golden ratio
Pa +- fraction of eggs to be abandoned

Initialize a population of n eggs x; (i = 1, 2, - . , n)

for all xi do
calculate fitness Fj = f(xi)

end

Generation number G +- 1
while NumberofObjectiveEvaluations < MaxNurnberofEvaluations do

G +- G + 1
Sort eggs by order of fitness
Select the eggs to be discovered

for all eggs outside filter do
Current position xi

Calculate Levy flight step size o +- A/y/G
Perform Levy flight from x; to generate new egg xk
xi +- xk
F; <- calculate fitness f(xi)
H; +- calculate infeasibility h(x;)

end

end
for all eggs inside filter do

Current position xi
Pick another egg from the top eggs at random x3
if (xi = x3 ) then

Calculate Levy flight step size a <- A/G2
Perform Levy flight from xi to generate new egg xk
Calculate fitness Fk = f(xk)
Calculate infeasibility Hk = h(xk)
Choose a random nest I from all nests
if (Hk < 0) and (HI < 0) then

if (Fk < F) then

F1 <- Fk
He +- Hk

end
else

if (Hk < H1 ) then
X1 4- Xk

F, +- Fk
He +- H1

end
end

se
dx = lxi - xj |W

Move distance dx from the worst egg to the best egg to find xk
Calculate fitness Fk = f(xk)
Choose a random nest 1 from all nests
if (Hk < 0) and (HI < 0) then

if (Fk < FI) then
xj +- xk
F1 +- Fk
He <- Hk

end
else

if (Hk < HI) then
x 1 +- xk
F1 +- Fk
H1 +- Hk

end
end

end
end
Abandon a fraction Pa of tbe worst eggs and build new nests

// both solutions feasible

// at least one solution infeasible

// both solutions feasible

// at least one solution infeasible
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3.3 Local Derivative-Free Approach for Well Place-

ments

3.3.1 Mesh Adaptive Direct Search

Pattern search algorithms constitute a family of optimization algorithms that are

derivative-free and can be used with black-box objective functions. They are generally

based on the concept of polling, as depicted in Figure 3.5, which provides the ability

to perform local exploratory moves on the objective function surface around current

iterate. At any given iteration k, a poll stencil consists of the current best iterate Xk

located at the center of the stencil and a set of trial points that are located at the

stencil's extreme ends. The trial points form a pattern that is defined as:

Mk {Xk + A'Dz : z E NnD} (3.7)

where Xk is the poll center, Am is the underlying mesh size, and D is a matrix

representing the set of positive spanning nD directions D C R'.

The objective function is evaluated on all of the stencil end points-in addition to

the already computed poll center. If any of the end points result in an improvement

in terms of the objective function value over the poll center, then the center of the

poll is shifted to the trial point that provides the highest improvement for the next

iteration k + 1 and accordingly the stencil size is increased. If no trial point attains

any improvement, the stencil size is reduced and polling continues with a smaller

stencil size until an improvement is realized.

At each iteration, some positive spanning matrix Dk c D dictates the orientation of

the poll stencil. If this matrix is constant, i.e., Dk = D, the stencil orientation is
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fixed and the pattern search algorithm is called Generalized Pattern Search Method

(GPS). If the stencil orientation varies from one iteration to the next, the algorithm

is called Mesh Adaptive Search (MADS) [17]. A primary difference between MADS

and GPS is the presence of an adaptive mesh underlying the polling stencil in MADS.

The mesh is defined by its size A' where Am < AP and accordingly all stencil points

must lie on the mesh (In GPS, there is a single stencil orientation with Am = AP).

The mesh size typically decreases faster than the stencil size which allows the stencil

to effectively access more possible directions.

(a) Initial polling stencil (b) successive polling stencils (c) Final polling stencil
showing contraction

Figure 3.5: Progress of polling in MADS algorithm in R2 . The green diamond depicts
the global optimum. The red circle is the poll center and the blue circles are the trial
points. The orange staircase shows the history of the progress of the poll, (from Isebor
[59] with modifications).

The advancement of the polling stencil for the MADS algorithm is depicted in Fig-

ure 3.6 for an optimization problem with two variables. Figure 3.6(a) shows the

stencil's orientation at iteration k with different stencil and mesh sizes. If the polling

process does not yield a successful iteration, i.e., none of the trial points lead to

improvement over the poll center, then both the stencil size and the mesh size are

reduced for the subsequent iteration k + 1 with a possible change of the stencil's

orientation. The fact that AP decreases faster than A' provides the possibility for



106 CHAPTER 3. RESERVOIR OPTIMIZATION USING ROM

the stencil to reach out to more locations and thus search for more promising areas

in the solution space.

A -F - --- H

(a) k (b) k (c) k +1

Figure 3.6: MADS stencil changing with iterations. Red circle represents the poll
center while blue circles are the trial points. The polling stencil has the size Ap, and
the mesh size is Ak , (from Isebor [59] with modifications).

Pattern search algorithms including MADS are local optimization algorithms which

solution quality depends heavily on the initial solution guess. Therefore, MADS is

often accompanied by an optional search step, in addition to the polling step, to

provide glob'al exploration of the solution space and lessen the localized behavior.

The search step attempts to find a good starting point (poll center) for the MADS

algorithm. Figure 3.7 illustrates the use of the search step Sk = {S1 , S2 , S3 , S4} to

provide a good starting point for the polling step Pk = {P1, P2, P3, P4}. Algorithm 5

summarizes the basic MADS procedure.

In this work, we use contraction parameters q = 0.75 and b = 0.5 (determined via

experimentation). This means the poll size is increased by a factor of 1.33 after

successful iterations and decreased by a factor of 0.75 after unsuccessful iterations.

The mesh size is doubled, up to the initial mesh size A 0 after successful iterations,

and halved after unsuccessful iterations.
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Figure 3.7: An example of polling step performed after a search step. The orange
circles represent the iterates from the search step. The best search iterate is chosen
as the poll center for MADS algorithm.

Two stopping criteria for the MADS algorithm are considered here. The MADS

algorithm is terminated if AP or A' decrease beyond a specific threshold or if the

maximum number of iterations is reached. In all of the examples presented in this

work, the mesh size criteria terminates the MADS algorithm.

3.3.2 Constraint Treatment in MADS

To satisfy bound constraints, a projection operator, as in (3.2), is used to project solu-

tions that fall outside the bounds of the problem. For General nonlinear constraints,

we apply the filter method similar to that applied for the MCS algorithm. Filter

methods have been studied in the context of MADS for solving nonlinear problems

(NLPs) [16, 671. This work is patterned after [16, 59] , with the addition of using

ROM as a mean to evaluate trial points.

The filter technique is coupled with MADS algorithm through the determination of

the poll center during the polling process. The poll center is considered as the highest

feasible point in the filter, or the least infeasible point in the case that no feasible
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Algorithm 5: MADS algorithm

Initializate :
Let x0 be the initial guess such that f(xo) is finite and let Mo be the mesh defined
over the solution space with initial mesh size AP = A' = Ao > 0 and let the
contraction parameters 0 < b < < 1.
while StoppingCriteriaNotMet do

1. Search
Use a global search method, e.g., MCS, to find an improved solution such that
Xk+1 E Mk defined by A' and f(xk+1) < f(xk)

2. Poll
If the search step was not successful, construct a poll set with a stencil size AP
centered at Xk, at random poll directions. Evaluate the objective function f at
the stencil's end points in order to find an improved solution Xk+1

3. Update
If either the search or poll step finds an improved solution, then let Xk = Xk+1
and set A+ AP/7 and A+ = A' if AP > Ao else A+ =A/N

Otherwise, set xk+1 = xk, A -k+1 = if A > A else A+1 k

end

point is available. A MADS iteration is considered successful if it yields an unfiltered

point (a feasible or infeasible non-dominated point). In such a case, the stencil is

extended and the filter is updated as new points are found that dominate some of

the current points in the filter. Note that attaining a new unfiltered point does not

necessarily indicate a change in the poll center as the new unfiltered point might

not be the highest feasible or the least infeasible point. If the MADS iteration is

unsuccessful, the mesh and poll size parameters are decreased and the filter remains

the same.

As illustrated in [59, 9], the final filter can provide measurement of the sensitivity of

the objective function to the constraint considered at no extra cost (similar analogy

to the pareto frontier in multi-objective optimization). The sensitivity analysis can
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reveal information on how much a certain constraint has to be relaxed in order to

achieve more gain in the objective function.

3.4 Hybrid MCS-MADS Approach Using ROM

Pattern search methods such as MADS are local methods in the sense that they

achieve convergence (from arbitrary starting points) to points that fulfill necessary

conditions for local optimality. It is therefore expected that MADS does not provide

similar level of ability for global exploration that metaheuristic methods such as

MCS usually provide-given a reasonable number of nests. In this work, we aim to

capitalize on the global search nature of MCS and utilize MADS ability to rigorously

converge to stationary points to create a hybrid search scheme that utilizes the positive

aspects of both MCS and MADS to create a robust search approach. This approach

is referred to as MCS-MADS hybrid approach.

The hybrid procedure presented in the work is an extension of the PSwarm algorithm

[97], and the PSO-MADS hybrid algorithm [59]. The essential difference in the algo-

rithm presented here is that we implement MCS instead of PSO due to the attractive

features discussed in previous sections, and we use ROM instead of FOM during

the polling step to lower the computational demands which is achieved by devising

an efficient systematic approach for ROM construction and verification. Figure 3.8

illustrates the general workflow of the MCS-MADS hybrid procedure.

The hybrid procedure specifies the number of nests, including any user-defined initial

guess, and then applies one iteration of MCS. The role of MCS is to provide a robust

search strategy that outperforms the one originally depicted during the MADS search

step. Consecutive iterations where the search step is deemed successful are equiva-
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lent to consecutive iterations of the standalone MCS. A MCS search step is deemed

successful if a new best egg is found. That is, a new best solution that dominates the

previous best solution inside the filter in terms of objective function J and constraint

violation h. This definition of success is different from that used in MADS, where any

iterate that leads to an unfiltered point (update in the filter) is considered successful.

This stringent criterion is mainly applied to avoid performing many expensive MCS

iterations- note that iterates in the search step are evaluated using FOM. One main

filter is used in this approach-accessible to both MCS and MADS-as opposed to

PSO-MADS algorithm where multiple subfilters are used. The filter in MCS serves

as a mean to classify the type of eggs (elite or non-elite)-in addition to nonlinear

constraint treatment.

When the search step is designated unsuccessful, MADS poll step is performed. The

poll is centered around the best egg achieved by MCS in the search step. Projection

bases are then constructed using the poll center iterate as a root-point to build the

ROM. Each subsequent poll trial iterate is accordingly evaluated using the ROM

instead of FOM. ROM is chosen as the evaluation mean in the poll step as the distance

between the training root-point (poll center) and the poll trial iterates is controlled

by the poll size and therefore we can ensure controlled deviations from the root-

point-hence more accurate ROM results. Polling continues as long as consecutive

poll steps are successful. Success criteria here is dictated by the possibility of finding

an unfiltered solution (better feasible or non-dominated points) and the ability of

ROM to accurately predicts the descent direction of the algorithm (theoretically, both

FOM and ROM should predict descent direction). The best poll iterate-the iterate

that yields a better solution than the poll center-is then evaluated using FOM.

This additional run is made to evaluate the ROM's ability to predict the algorithm's

attempt to find a descent direction using ROM, and to prepare for the next stencil
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as this best iterate will be the poll center for the next poll step. ROM performance

is evaluated using:
Jk(Xk + A'7Dz) - JA (Xk)

K = (3.8)
J'(xk + Am Dz) - Jfj(x) (

where JA(xk+ ADz) is the new best iterate evaluated using FOM, JA(xk) is poll

center iterate evaluated using FOM, J77xk+AmDz) is the new best iterate evaluated

using ROM, and Jk(xk) is the poll center evaluated using ROM. The ROM perfor-

mance parameter K determines how well the ROM follows the descent direction. In a

sense, if the performance parameter is larger than a certain threshold E, it indicates

that the ROM approximates the FOM very well and thus the poll step is deemed

successful (note the presence of a nested success criteria; first succeeding in finding

a new unfiltered iterate, then determining if the direction given by ROM using this

iterate coincides with the direction given by the FOM). If the performance parameter

is less than E, it indicates that the ROM either fails in providing good approximation

to the FOM (0 < K < E) or fails to predict the descent objective function direction

(K < 0). Hence, the new unfiltered iterate is not actually an unfiltered iterate as the

current ROM is not obviously a competent evaluation model. In this case, the poll

step is considered unsuccessful and the poll and mesh sizes are reduced and the hybrid

algorithm returns to MCS with the current poll center iterate replacing the best egg

in the previous generation. It is important to note here that the updated MCS best

egg is already evaluated using FOM (consistent with all other eggs in the current

generation) to avoid any discrepancy-ROM after all provides approximate results

that are slightly higher or lower than the actual FOM results. MCS search step is

terminated when the number of MCS generations is reached and the overall hybrid

algorithm is terminated when the mesh size decreases below a prescribed tolerance

At., or when the maximum number of hybrid evaluations kmax is reached.
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User input Number of nest, Lev
Initial poll and mesh

Initialization Generate initial nest

Search (MCS) C
global exploration usinj

New best filter iterate? No

Yes

Update filter, elite and
non-elite eggs

No
Stop?

Yes

No

y coefficient, stopping cril
sizes and initial guess x0

s using latin hyper-cube

onstruct ROM

teria (number of iterations and tolerances)

best filter iterate

New ND iterates?

x8 Yes

New best filter iterate?

Yes

Run FOM
using best filter iterate

No
P > 1E ?

Yes
No

Sop? Update filter

Yes

Yes

esn? -

Figure 3.8: Flowchart of MCS-MADS hybrid implementation using ROM for local
search (blue arrows depict optimization within MCS, red arrows indicate optimization
within MADS, green arrows represent the use of ROM as the search engine, and orange
arrows indicate termination of the run).
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3.5 Derivative Approach for the Well Controls

A target application of reduced-order modeling is to be able to make a rational in-

formed decision in a reasonable time. Within the context of reservoir management,

this includes the ability to apply changes in production strategy to maximize recovery

factor or NPV for instance. ROMs are suitable replacement to FOMs and are suffi-

ciently accurate only in a restricted zone around the point in decision variable space,

e.g., BHP well controls employed to construct the ROM, where they are constructed.

Consequently, the ROM needs to be updated in a systematic manner over the course

of the optimization and decision making process. In this section, we describe an

adaptive framework using ROM based on trust-region methodology that allows for

an automatic update and validation of the ROM during the optimization process.

3.5.1 ROM-based Trust-region Framework

Trust-region algorithm is a class of relatively new algorithms that depends on gradient

information (objective function gradients with respect to the controls) to determine

optimal solutions. The objective function gradients used in this work are computed

using an adjoint procedure. Refer to [88] for detailed description of adjoint procedures

in reservoir simulation. Unlike line search methods where a step direction is first

chosen then a step size is determined, the trust-region method first choses a step size,

referred to as the size of the trust-region, then determines a step direction to achieve

optimal solutions.

The trust-region approach is strongly associated with approximate models. These

approximate models are 'trusted' only within the vicinity of a region surrounding an

iterate Uk. This is reasonable since approximate models for nonlinear functions, e.g.,
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quadratic models or reduced-order models, can accurately approximate the original

models locally. It is for this reason that trust-region approach provides the natural

choice for ROM-based optimization.

The Trust-region method is considered an excellent adaptive framework for ROM-

based optimization. It does not only provide the mean to restrict the optimization

step within the ROM's validity, but also synchronizes ROM updates with information

obtained during the course of the optimization, thus providing a robust and globally

convergent framework. To see this, let's start at the kth iteration of an optimization

cycle. ROM is constructed at a particular training point, Xk {Pk, Sk}, obtained

using the control Uk which is used to build the model function for the trust-region

subproblem. We define the ROM-based trust-region subproblem at iteration k as:

max Jk(uk - ),
bER"

s.t. F(k, uk+) = 0

gf(uk+6)= 0 (3.9)
h'-(u- +) 0

LB < Uk +5 < Un

|16 | 1 Ak

where J'(uk +6) is the reduced objective function we wish to maximize computed

using ROM, F7(x, Uk +6) is the set of adjoint constraints, g7Z(u +) and hp(uk -6)

are the equality and inequality constraints respectively computed from the reduced set

of state variables of the ROM. LB and UB are upper and lower control boundaries and

Ak is the control trust-region at iteration k. Finally, 6 is the trial step representing

the increment in controls variable we want to optimize.

ROM-based trust-region algorithm starts by constructing a ROM employing proce-

114



3.5. DERIVATIVE APPROACH FOR THE WELL CONTROLS

dures described in Chapter 2 while using an initial control uo. The basis functions are

computed using snapshots obtained from the FOM. Then (3.9) is used to compute the

optimal J that maximizes a quadratic reduced objective function where J is bounded

by a trust region Ak that is initially defined by the user. The trust-region is centered

at the current iterate, i.e., uo, and initialized in such a way that the ROM's results

are very close to that obtained using the FOM for any iterate inside the trust-region.

The key content of a trust-region algorithm is how to deem a new iterate successful.

For an unconstrained problem, two conditions must hold to declare a new iterate

successful. The first condition dictates that a new iterate, Uk+1 = Uk+J, is considered

successful if it provides sufficient improvement in the objective function value, i.e.,

Jk+1 < Jk for minimization case. The second condition relates to the accuracy of

the ROM used to find the trial step. Since the new iterate Uk+1 is different from

the ROM root-point-iterate Uk used to construct the ROM, it is important that the

ROM yields similar magnitude of reduction in the objective function as that realized

using the FOM. This is examined via a calibration parameter:

aredk Jk(uk + ) -- J((U)
Pk =1Z /1(.0predk Jk(uk + 6) - JRuk) - (3

where aredk is the actual reduction using FOM and predk is the predicted reduction

using ROM. In addition to determining the success of a new iterate (represented by

improvement in objective function), the calibration parameter dictates how well the

ROM approximates the FOM and whether any retraining is necessary for subsequent

trust-region steps. That is, a large Pk indicates that the ROM approximates the

FOM very well and thus the trust-region should be enlarged for subsequent steps.

Otherwise when Pk is small, the new iterate may get rejected and the trust-region

should be reduced as it is an indication that the ROM poorly approximates the
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FOM. This process is depicted by the sequence of illustrations in Figure 3.9 for an

optimization problem with two variables. The size of the trust-region adaptively

changes as a function of the calibration parameter (according to how well the ROM

can approximate the FOM). Each trust-region is centered around the initial iterate

for the subproblem.
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poor ROM approximation.
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Figure 3.9: Progress of trust-region algorithm for an optimization problem in R2. The
contours inside the box trust-region are the contours of the objective function approx-
imated using ROM while the contours outside the trust-region are those computed
using FOM (from Willcox [105] with modifications).
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3.5.2 Constraint Treatment in Trust-region Algorithm

To satisfy bound constraints, a projection operator, as in (3.2), is used to project solu-

tions that fall outside the bounds of the problem. For general nonlinear constraints,

gradient-based optimization algorithms typically apply approaches that transform

the problem into an unconstrained optimization problem with a penalty function

formulation that penalizes infeasible solutions. These approaches include penalty

functions, barrier functions, augmented Lagrangian functions, and quadratic pro-

gramming methods [36]. In our work, we use a different approach, namely the filter

technique, to treat nonlinear constraints during the trust-region optimization sub-

problem.

Filter methods have been studied in the context of line-search methods for solving

nonlinear problems (NLPs) [87, 41, 100, 40, 101] and are incorporated into the NLP

solver IPOPT [1]. This work is patterned after Agarwal and Biegler [4] trust region

filter method using ROM, with additional modifications for DEIM-based reduced-

order modeling.

For problems without nonlinear constraints, a successful iterate is determined first

based on the improvement in the objective function value, and then based on the true

improvement dictated by comparing the objective function value of the ROM used in

the trust-region subproblem to that of the FOM. For problems with nonlinear con-

straints; however, we only accept a new iterate which corresponding pair (Jk+l, hk+1)

is sufficiently outside the current filter, and hence sets an envelope around the filter

(shown by the dashed line in Figure 3.10). As in [101, If the new iterate is accepted,

then we set Uk+1 - Uk + J, and possibly increase the size of the trust-region and
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update the filter, i.e., the following condition holds:

h(uk +5) (1 -- Yh)hl or J(uk + 8) < J, - -yjhl V(hi, Ji) E Fk, (3.11)

where 'Yh, 'YJ e (0, 1) are chosen to be small, and Fk is the filter up to the kth iteration.

In contrast, if the new iterate is dominated by the current filter, then we reject it, set

Uk+1 - uk, and resolve the trust-region subproblem with a reduced trust-region this

time.

J

h

Figure 3.10: Filter for trust-region algorithm. All iterates that are below and to the
left of the envelop (dashed line) are acceptable to the filter.

By reducing the trust-region, Problem (3.9) may become inconsistent (objective func-

tion and constraint violation act in opposite directions) as illustrated by halving the

trust-region in Figure 3.11. This inconsistency is regarded as an indication that the

current iterate is too far from the feasible region to make meaningful progress toward

an optimal solution. Hence, we concentrate in this subproblem on minimizing the

constraint violation h(uk) in an attempt to reach feasibility. This step is referred to

feasibility restoration step [41].
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CConstraint

Trust r ion

Constraint
Trust r4n
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(a) Trust-region subproblem minimizing both (b) Trust-region subproblem
objective function and constraint violation. minimizing constraint violation

only.

Figure 3.11: Illustration of trust-region algorithm switch to feasibility restoration
step.

As observed in [4], the constraint violation h(uk) in condition (3.11) dominates to

a certain point especially when infeasibility is large. However, this condition alone

does not necessarily ensure convergence to a stationary point, i.e., an iterate might

converge to an arbitrary feasible solution. Therefore, upon entering the feasible region

(h(uk) = 0), we focus on descent of J(uk), i.e., switch to the following condition:

J(uk + 6) - JA(Uk) < 0, (3.12)

and the algorithm reduces to a classical unconstrained trust-region approach. For

this case, no filter point is added. Details of the procedure is outlined in Algorithm 6.
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Algorithm 6: ROM-Based Trust-region Algorithm

(a) Initialization:
Chooese 0 < 1 < 772 < 1 773, 0 < Y1 -2 < 1 < -Y3,0 < Yh,-YJ 1
Specify initial trust-region radius A 0 , minimum radius Amin, and maximum radius Amax.
Compute state snapshot matrix X0 , based on initial control uo and compute Jo(uo)
Set k = 0

(b) Construct ROM:
Compute basis based on snapshot Xk and construct ROM

(c) Step Calculation:
Compute step 6 k by solving trust-region subploblem (3.9):

" If the new iterate is unfiltered, i.e., (3.11) is satisfied:
proceed to (d).

" Else:
set uk+1 = Uk,
update trust-region radius Ak1 ,
set k= k + 1 and go to (c).

(d) Compute Calibration ratio:
Compute new snapshot X+ based on uk + 6 k, and evaluate full objective function Jk(uk + 6

k)
Define calibration ratio as:

aredk Jk (uk+ -k) - JA(uk)
Pk - predk - Jk(uk + 

6
k) - J (uk)

(e) Trust-region Evaluation and Update:

* If pk 773:
set Uk+1 = uk + 6k,
Jk (uk+1) = Jk (uk + k),
Xk+1 = X+7
update trust-region radius Ak+1 = min(Amax,Y2Ak),
set k= k + 1 and go to (b).

* If q2 < P < 773:
set uk+1 = Uk + 6k,
Jk (uk+1) = Jk (uk + 6k),
Xk+1 = X+,
update trust-region radius Ak+1 = Ak,
set k= k + 1 and go to (b).

* If 71 pk < 772:
set uk+1 = uk + 6k,
Jk (uk+1) = k (uk + (k),

Xk+1 = X+,
update trust-region radius Ak+1 = 72 Ak,
set k = k + 1 and go to (b).

* If pk < 771:
set uk+1 = Uk,
update trust-region radius Ak+1 = 71Ak,
set k = k + 1 and go to (b).
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Chapter 4

Management and Optimization of

Realistic Fields Using

Reduced-Order Models

This chapter extends the application of reduced-order models to two realistic and

complex three-dimensional reservoir models. The models contain O(10) grid blocks

and represent sections from different parts of a giant carbonate field located in the

Middle East.

Field development optimization studies are carried out using both models. For each

study, the optimization is performed sequentially. That is, optimal well locations

are first determined with a specific set of production controls. Then, the optimal

well locations are used to determine the optimal set of well controls. Reduced-order

modeling techniques are used to construct reduced versions of the full models and

accelerate/drive the optimization process. The approach still requires running the

FOM during the optimization study in order to update the ROM and ensure accurate
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results.

This chapter demonstrates the applicability of ROMs for reservoir management decision-

making on complex reservoirs. Specifically, as shown later in this chapter, ROMs can

provide vast reductions in computational costs while achieving closely comparable

results to those obtained using FOMs. As a result, computational savings can be of

multiple order of magnitudes allowing for opportunities to examine extensive range

of field development strategies.

Also, we compare the performance of the MCS, and MCS-MADS approaches coupled

with ROM and highlight the effectiveness of the filter method for nonlinear constraint

handling. We show that using the hybrid MCS-MADS accelerated by ROMs can

improve the optimization outcome with only a minor increase in computational cost.

4.1 Pierce Model: Heterogeneous Carbonate Reser-

voir

4.1.1 Description of the Simulation Model

The simulation model, referred to as Pierce model, comprises a sector model of an

onshore field located in the Middle East. The field is a giant anticline trap that

produces from two main reservoirs. These reservoirs are upper and lower carbonate

reservoirs separated by a thick non-reservoir formation (shale). The upper reservoir,

considered in this example, is prolific throughout the entire field. The model contains

a total of 25, 194 grid blocks (N, = 51, Nv = 19, Nz = 26). The physical dimension

of each grid block is 250 m x 250 m x 250 m. Figure 4.1 and 4.2 depicts the

grid structure, initial pressure and saturation. The model has aquifer support along
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the east and west flanks while other boundaries are modeled as no flow. There are

nine production wells (designated P 1-P9 ) located at the crest of the model and four

injection well (designated I1-14) drilled in the flanks. Production wells are completed

in the top two layers while injection wells are completed at the most bottom three

layers. All of the wells are under bottom hole pressure control.

1 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4.1: Three dimensional grid structure of Pierce model with four injectors
placed initially at the flanks and nine producers placed at the crest of the field.
Initial oil saturation is shown in the background. Significant amount of oil still exists
in the top layers.

Figure 4.3 shows the permeability in the x-direction for selected layers (layer number

is indicated above each figure). The permeability is taken to be a diagonal tensor,

with kx = ky. The mean k and k, are 546 mD and 11.6 mD respectively while the

mean porosity is 0.16. For oil, we set po = 45 lb/ft3 , , = 3 cp; for water, we set

p, = 65 lb/ft3 , p,, = 1 cp. The system is incompressible and capillary pressure is

neglected in this example. The relative permeabilities for the oil and water phases

are specified using (2.47) and (2.48) with k'0 = k' = 1 and a = b = 2.
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2800 3000 3200 3400 3600 3800 4000

Figure 4.2: Three
placed initially at

dimensional grid structure of Pierce model with four injectors
the flanks and nine producers placed at the crest of the field.

Initial pressure (in psi) is shown in the background at datum depth of 6500 ft.

9 15 26

-4 -3 -2 -1 0 1 2

Figure 4.3: Permeability in the x-direction (log 0 k with k expressed in mD) for
selected layers in Pierce model.

3 4
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4.1.2 Training and Testing Results Using ROM

The FOM is used to perform a training simulation run in order to collect state so-

lutions (pressure and saturation) and nonlinear term (flux) snapshots necessary to

construct the ROM. During the training simulation, all injection and production

wells operate at a constant bottom hole pressure of 8,000 and 1,000 psi respectively.

The training case is simulated for 5000 days using MRST, and a total of 600 snapshots

are collected and used to build the orthogonal bases.

The basis matrices are constructed following the POD approach described in (2.2)

for pressure, saturation, and flux. The reduced pressure, saturation, and flux bases

contain 55, 130, and 110 columns respectively. Thus, we reduce the dimension of

the problem from 50, 388 unknowns (considering pressure and water saturation as

solution states for each grid block) to only 185 unknowns. Note that determining the

number of basis remains to be a heuristic procedure as the omitted energy criteria,

described in (2.2), still does not guarantee accuracy nor stability. In order to retain

nonlinearity at a reduced dimension, the flux basis matrix is used to determine the

location of interpolation points necessary to reconstruct the flux field. A total of 660

interpolation points are selected using Algorithm 3 in addition to the corresponding

neighboring grid block (relational links) necessary for upstream weighting. The spatial

distribution of interpolation points is illustrated in Figure 4.4. Mostly, interpolation

points are situated in areas of high permeability (area bounded by P5 , P6 , P8, and

P9 ). This is where the highest change in flux occurs which is clearly supported by the

high production rate of wells located within the vicinity of that area (see Figure 4.6).

Figure 4.5 indicates the bottom hole pressure test schedule used to assess the accuracy

of the ROM. The bottom hole pressure control for injection wells varies between 4,000

psi and 10,000 psi while it varies between 500 psi and 2,500 psi for production wells.
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The bottom hole pressure control is perturbed every 625 days comprising a total of

eight perturbations.

11,3

-2 -1 0 1 2 3 4

Figure 4.4: Spatial distribution of interpolation points selected to reconstruct flux
field for Pierce model (background displays log 0 k, for grid blocks determined by
DEIM Algorithm). Most DEIM points are situated in areas of high permeability

(area bounded by P5 , P6 , P8 , and P9 )

The ROM performance is now examined using the testing production and injection

schedules. The ROM is constructed using the three basis matrices generated pre-

viously in addition to the interpolation points which are used to keep nonlinearity

computation cost at minimum. Figure 4.6 shows oil and water production rates from

the nine production wells while Figure 4.7 displays water injection from the four in-

jection wells. In this and subsequent examples, the dashed lines show the training

simulation solution, which controls were used to build the ROM, the solid lines dis-

play the reference test case solution simulated using the FOM, and the circles depicts
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the test case solution simulated using the ROM. Clearly, the nine production wells

contribute to a wide range of production trajectories ranging from excessive water

production, e.g., P 1, to minimal water production, e.g., P5 , in addition to high and

low overall fluid rate, e.g., 0(100) - 0(1000). The ROM generally demonstrates close

agreement with the reference full-order simulation although the computational costs

are substantially different. The simulation runtime for the full-order model is about

1550 seconds while the ROM, in contrast, takes about 13 seconds. This results in a

speed up factor of about 119.

10,000

8,000

6,000

4,000

2,500

2,000

1,500

1,000

500

0 1,000 2,000 3,000 4,000 5,000 0 1,000 2,000 3,000 4,000 5,000

Time [d] Time [d]

(a) Injection BHP schedule (b) Production BHP schedule

Figure 4.5: Injection and production schedules for training and testing cases for the

Pierce model. Dashed lines represent training BHP controls while solid lines depict

testing BHP controls. The training schedule is chosen to be constant while the train-

ing schedule is perturbed every 625 days comprising a total of eight perturbations.
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Figure 4.6: Production rates for each well in Pierce model. Dashed line represents
training run trajectory, circles indicate ROM results using testing schedule, and solid
line represents the reference testing run using FOM. Red designates oil while blue
designates water.
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Figure 4.7: Injection flow rates from Pierce model. Dashed line represents training
run trajectories, circles indicate ROM results using testing schedule, and solid line
represents the reference testing run using FOM.

4,000 5,000

)

131

I

.......... ........ .............. ....

...... ......... .......... ....

oU

W



CHAPTER 4. OPTIMIZATION OF REALISTIC FIELDS

4.1.3 Well Placements Optimization

In Chapter 3, we introduced the MCS method, and its hybrid counterpart MCS-

MADS to solve the well placement problem. The well placement problem usually

imposes a vast change in boundary conditions that necessitates the use of FOMs.

However, instead of solely relying on FOMs to achieve optimal well placements, which

incurs a relatively high computational cost, our approach utilizes ROMs to locally

scrutinize the search space and improve the optimization outcome, while introducing

a minor increase in computational cost. In this framework, the FOM is used as the

primary engine to globally search the solution space using MCS while the ROM is

incorporated in MADS algorithm to locally improve the optimization results. This

multi-scale approach entails the use of ROM in areas of solution space where changes

in well locations do not constitute a significant change in production response (e.g.,

areas with low to moderate water production). Our approach continuously assesses

the accuracy of ROM using (3.8) to ensure accurate results are always attained. In

case of discrepancy between ROM and the reference FOM (due to significant change in

fluid dynamics), a new set of orthogonal bases are generated using a new training set

(root-point) and hence a new ROM is reconstructed to incorporate the new changes.

We aim in this example to determine the optimal well placements that maximize

undiscounted NPV. The optimization problem presented in (3.1) is expressed as:

min J(p, u) = -NPV(p, u) = -rQ,(p, u) + cpQ,,(pu) + ciQwi(p, u),
uEU

subject to g(p, u) = 0, c(p, u) < 0.
(4.1)

Here r, is the price of oil ($/STB), cp and cui are the cost of handling produced

water and the cost of injected water ($/STB) respectively. All prices/costs are held

constant in this study. Q0, Qp and Qmi are the cumulative oil production, water
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production and water injection (all in STB) respectively.

Two cases are presented. In the first case, MCS and MCS-MADS methods are applied

to determine the optimal well placements in the presence of only bound constraints.

The second case additionally incorporates nonlinear constraints. These constraints

include the minimum well-to-well distance, minimum oil flow rate, and maximum

liquid flow rate. Table 4.1 summarizes key optimization parameters and also the

nonlinear constraints. In all cases, the production time-frame is 5,000 days and

the production rate controls are kept constant throughout as we apply a sequential

optimization strategy. The total number of optimization variables for both cases is

18 (nine areal location variables).

Table 4.1: Simulation and optimization parameters for Pierce model run

Injection BHP 8000 psi
Production BHP 1500 psi
ro $100/STB
cW, $10/STB
C.i $5/STB
Minimum oil production rate 2000 STB/day
Maximum liquid production rate 6000 STB/day
Minimum well-to-well distance 1000 m
Maximum water cut 0.66

In the standalone MCS, a population size of 70 nests is used, implying a maximum of

70 function evaluations per MCS iteration. A 2n-polling stencil is used for the MADS

algorithm. This constitutes a maximum of 2n function evaluations per MADS iterate

(2n = 36 in this case). The MADS algorithm stops if the poll size is below 0.1 and

the MCS method stops after ten generations. We note here that all iterates and their

corresponding function evaluations are saved in cache memory, and hence simulation

runs to evaluate some iterates are avoided if these iterates have been visited previously.

This is in general a good practice as metaheuristic algorithms such as MCS tend to
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revisit solutions as the solution converges.

Case 1: Bound Constraints Only

For this case, the nonlinear field rates and well-to-well minimum distance constraints

are neglected. The well locations are bounded within the field boundaries. Consider-

ing the stochastic nature of the applied algorithms, and the fact that the optimiza-

tion solution surface may contain multiple optima, each of these methods is repeated

five times starting from five different initial guesses. The NPVs for the five initial

guesses, together with their mean E(NPV) and standard deviation (-), are shown in

Table 4.2. The first guess contains well locations depicted in Figure 4.1. The remain-

ing guesses are randomly generated from a uniform distribution within the bounds of

the problem.

Table 4.2: NPVs corresponding to five initial guesses used in Pierce model optimiza-
tion runs (best is bold)

Run Initial guess
NPV [$ MM]

1 418
2 176
3 352
4 236
5 297

E(NPV) 296
- 85

The optimization results for both MCS and the hybrid MCS-MADS are displayed

in Figure 4.8 and summarized in Table 4.3. Figure 4.8 shows the evolution of NPV

versus the number of simulations (averaged over five runs) for each method. Both

methods achieve significant improvement over the mean initial guess NPV. We clearly

see that the hybrid MCS-MADS outperforms the standalone MCS in terms of both
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higher E(NPV) and lower a. Table 4.3 presents the final optimal NPVs for the five

runs and the best NPV for each method is in bold.

Figure 4.8 accentuates the superiority of the hybrid MCS-MADS over the standalone

MCS. Both methods are designed to be able to avoid poor local optima-through

Levy flights. However, MCS-MADS also includes local search ability that improves

the optimization results, evident by the higher mean objective function in Figure 4.8

and the relatively smaller a in Table 4.3.

800

400 I

z

200 1

0'-
0

- MCS
- MCS-MADS

100 200 300 400 500 600
Number of Simulations

Figure 4.8: Evolution of mean NPV for bound constraints in Pierce model (Case 1).
The MCS-MADS algorithms improves the average NPV by 8% (from $685 MM to
$738 MM).
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Table 4.3: Final NPVs corresponding to five guesses used in Pierce model optimization
runs for Case 1 (best is bold)

Run MCS MCS-MADS
# NPV [$ MM] NPV [$ MM]
1 718 745
2 654 726
3 694 745
4 673 742
5 687 734

E(NPV) 685 738
a 21 7

Figure 4.9 depicts the evolution of NPV using ROM at the end of each MADS iter-

ation (within the MCS-MADS algorithm) against that of FOM. Initially, we see less

agreement between NPV obtained using ROM (blue curve) and FOM (red curve) as

the used initial poll size A' is relatively large. Poll size is accordingly adjusted for

subsequent iterations to achieve a better overall agreement and hence remain close to

the ROM's root-point. Figure 4.10 displays the progress of the calibration parameter

K during MCS-MADS optimization. Here (0) indicates accepted MADS iterations

where 6 < i, while (x) represents rejected iterations. MADS iterations are mainly

rejected when the suggested optimization solution is far from the ROM's root-point.

We observe that most of the rejected iterations have negative calibration parameter

(, < 0). This occurs when the ROM achieves an opposite progress to that of the

FOM (i.e., the objective function value obtained using ROM decreases from iteration

k to k + 1 while the objective function value obtained using FOM increases from

iteration k to k + 1). The main advantage of using ROM in this work is to be able

to efficiently guide the optimization algorithm toward an optimal solution. There-

fore, we can tolerate low ROM accuracy as long as we follow the FOM (true) ascent

direction. This is illustrated by the low E cut-off (dashed line) in Figure 4.10.
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The MCS-MADS algorithm in this case requires an additional computational cost that

is equivalent to 40 FOM simulation runs over the standalone MCS, which requires

a total of 700 FOM runs. This added cost is associated with approximately 650

ROM runs during polling (equivalent to 5 FOM runs) and 35 FOM runs required for

accuracy assessment. Thus, the MCS-MADS algorithm adds only 6% computational

cost while increasing the average NPV by 8% (from $685 MM to $738 MM). It is

evident that the incorporation of ROM in the MCS-MADS algorithm for local search

is capable of finding better solutions at a very low additional computational cost.

Case 2: Nonlinear Constraints

We now present a case that incorporates the nonlinear constraints listed in Table 4.1.

These constraints include the minimum well-to-well distance, minimum field oil pro-

duction rate, and maximum field liquid production rate. The total number of non-

linear constraints is thus 38 constraints (36 of which are well-to-well distance con-

straints). While the distance constraints may be computed prior to the simulation

run, the rate constraints may not because the relationship between well locations and

production rates are nonlinear (requires nonlinear evaluations using the simulator).

We implement the filter approach described in Chapter 3 in conjunction with both

MCS and MCS-MADS to handle these constraints. We again run each algorithm five

times using the same initial guesses specified in Case 1.

Table 4.4 summarizes the optimization results for each method and Figure 4.11 de-

picts the progress of mean NPV for the feasible solutions. The curves for the two

methods appear after approximately 130 function evaluations (simulation runs) as all

initial guesses we start with lead to infeasible solutions-solutions that violates the

aggregated nonlinear constraint. MCS-MADS approach is observed to provide supe-
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rior results relative to its standalone counterpart method. Note here that the best

achieved optimal NPV in this case is lower than that in Case 1. This is reasonable as

constraints may prohibit solutions that lead to higher overall NPV but with excessive

liquid production.
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4.11: Evolution of mean NPV for nonlinear constraints (Case 2). The MCS-
algorithms improves the average NPV by 21%.

Table 4.4: Final NPVs corresponding to five
optimization runs for Case 2 (best is bold)

initial guesses used in Pierce model

Run MCS MCS-MADS
# NPV [$ MM] NPV [$ MM]
1 564 715
2 548 675
3 560 732
4 672 695
5 564 711

E(NPV) 582 706
a 46 22

Figure
MADS
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0 0.1 0.2 0.3 0.4 0.5 0.6

(a) Optimal well locations from MCS
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(b) Optimal well locations from MCS-MADS

Figure 4.12: Optimal well locations displayed on the final oil saturation of the top
layer of Pierce model (red indicates oil). This shows higher volumes of oil produced
using well placements suggested by the MCS-MADS algorithm.
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Figure 4.12 displays the final oil saturation map of the top layer in addition to the

optimal well locations of the best solutions for both methods. It is clear that the

optimal well locations from MCS-MADS contribute to higher volumes of displaced

oil as opposed to MCS. This is partly because the majority of the wells are located in

areas of thicker oil column (middle of the field). In addition, the rest of the wells are

placed in the east flank where the injection rate is higher due to lower initial pressure.

The final filters for both MCS and MCS-MADS (run # 3) are depicted in Figure 4.13.

The red points represent the infeasible non-dominated solutions that define the filter

while the blue points represent the feasible solutions. The filter measures the sensitiv-

ity of the objective function J(p, u) to the constraint violation h(u)-similar analogy

to the pareto frontier in multi-objective optimization. It quantifies how much gain

can be realized in the objective function as a result of relaxing the corresponding con-

straints. If we relax the aggregate constraint violation by about 25% in Figure 4.13(b),

we would be able to achieve a NPV of $796 MM (an additional 9%).
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-590 -800
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

h(u) h(u)

(a) Final filter form the best MCS (b) Final filter form the best
run MCS-MADS run

Figure 4.13: Final filter for optimal well placement in Pierce model (run # 3). Blue
circles represent feasible solutions while red circles represent the non-dominated in-
feasible solutions. The filter envelope from MCS-MADS is closer to the feasibility
axis.
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Figure 4.14: Evolution of NPV for nonlinear constraints (run # 3) at the end of each
MADS iteration showing the effect of ROM update during optimization to keep the
solution from ROM close to that of FOM (Pierce model).

Figure 4.14 depicts the evolution of NPV using ROM at the end of each MADS

iteration (within the MCS-MADS algorithm) against that of FOM in the presence

of constraints for the best run (run # 3). A total of 18 MADS iterations have been

completed in this run. Consistent with observations from Case 1, we see continuous

improvement in the quality of the results achieved using the ROM. This is due to the

adjustment in the poll size to remain close to the root-point in addition to improving

the quality of the ROM by accumulating more snapshots and hence constructing richer

orthogonal basis. Figure 4.15 displays the progress of the calibration parameter K at

the end of each MADS iteration. A total of three iterations have been accepted in

this case as opposed to 17 in Case 1 which indicates the increase level of difficulty due

to the presence of constraints. Even though the percentage of accepted iterations is

relatively low (17% compared to 49% in Case 1), the effect of local search attained by

MADS is very significant as it improves the solution quality produced by the MCS
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algorithm.
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Figure 4.15: Calibration parameter for nonlinear constraints (Case 2) at the end of
each MADS iteration (Pierce model). Here (0) indicates accepted MADS iterations
where c < ii, while (x) represents rejected iterations. MADS iterations are mainly
rejected when the suggested optimization solution is far from the ROM's root-point

In this example, the MCS-MADS algorithm improves the mean NPV by approxi-

mately 21%. This significant increase in NPV incurs an additional computational

cost of only 3% (equivalent to a total of 21 FOM runs). This exemplifies the ben-

efit of using the hybrid MCS-MADS approach over the standalone MCS especially

when improvement in NPV is very significant compared to the associated increase in

computational cost.

4.1.4 Well Controls Optimization

We next search for the optimal well controls using optimal well locations attained in

previous section using MCS-MADS. Recall that well placements were achieved using
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a constant (time-invariant) BHP. Although this approach-referred to as sequential

approach-is suboptimal as shown by [61], we expect nonetheless an increase in the

overall NPV after finding optimal well controls.

We perform the optimization run using an initial guess in which all injection well

BHPs are set to 8000 psi while all production well BHPs are set to 1500 psi (similar

controls to those used during the well placement optimization case). We aim to

maximize the NPV using (4.1) under well water cut constraint. In this case, producers

are not allowed to produce water cut higher than 0.66. The constraint is aggregated

using (3.5) and we implement the optimization run using both ROM (guided and

updated using FOM) and standalone FOM.

Table 4.5 details the progress of the optimization run. The main model used during

this optimization run is the ROM and therefore we expect a gradual increase in

the NPV obtained from ROM (Jr) at the end of every trust-region step. FOM is

used at the end of each trust-region step in order to assess the quality of the ROM

results and update the orthogonal basis to construct a new ROM (using a new root-

point). A total of twelve trust-region steps are performed, out of which seven steps are

accepted. The calibration parameter p indicates how well the ROM results follow that

of the FOM. We are interested in the accuracy of the ROM as an absolute objective

function value (NPV) at the end of each trust-region run as well as the direction of

the objective function provided by the ROM-with higher emphasis on the latter. A

negative calibration parameter, (i.e., steps 4,6,8, 10, and 12) designates an opposite

progress in terms of NPV between the ROM and the FOM. Taking the fourth step

as an example, the ROM indicates an increase in NPV from $834 MM to $853 MM,

while the FOM shows a decrease from $860 MM to $806 MM. Clearly, the ROM

promotes a set of well controls that result in lower NPV. In this case, the trust-region

step is rejected and repeated with a smaller trust-region radius as a higher degree of
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deviation from the root-point may have occurred. A positive calibration parameter

indicates that both the ROM and the FOM yield an increase in NPV (similar ascent

direction). The magnitude of the calibration parameter determines the accuracy of

the ROM. In this example, we set the lower limit for the calibration parameter to

0.1. This means that we can tolerate a less accurate ROM result as long as it follows

the same NPV direction provided by the FOM.

Table 4.5 also lists the aggregate constraint violation at the end of each trust-region

step. Overall, we see that the ROM yields feasible solutions (examined by the FOM)

excepts for the first step. This demonstrates the ROM ability to solve nonlinear

constraint problems, in addition to the robustness of the filter approach to achieve

feasible solutions at the end of each step.

Table 4.5: Progress of NPV and nonlinear constraint at the end of each trust-region
step for ROM and FOM (Pierce model)

k p JA hk

# [$ MM] [$ MM]
1 0.66 738 0 695 1.45
2 1.32 837 0 826 0
3 5.67 834 0 860 0
4 -5.40 853 0 806 0
5 0.14 886 0 866 0
6 -1.56 895 0 852 0.0031
7 51.00 903 0 867 0
8 -0.22 912 0 865 0
9 2.67 918 0 907 0

10 -2.00 936 0 871 0
11 3.62 939 0 983 0
12 -3.92 977 0 834 0



CHAPTER 4. OPTIMIZATION OF REALISTIC FIELDS

1,000

950

900

2 850

> 800

750

700 -+-FOM
-u-ROM

650
0 2 4 6 8 10 12

Iterations

Figure 4.16: Evolution of NPV at the end of each trust-region step for optimal well
controls showing the effect of trust-region algorithm to keep ROM solutions close to
those obtained using FOM (Pierce model).

Figure 4.16 depicts the evolution of NPV using ROM at the end of each trust-region

step against that of FOM in the presence of constraints. We observe here the effect of

updating the trust-region radius on the ROM results. In multiple instances, the trust-

region framework is able to successfully change the direction of the objective function

and recover the accuracy of the ROM through adjusting the trust-region radius and

remaining within the vicinity of the root-point. Figure 4.17 visually depicts changes in

trust-region radius during the optimization. We generally observe a declining trend

in the trust-region radius especially toward the end of the optimization run as we

approach the optimal well controls.

Figure 4.18 shows the water cut trajectories corresponding to the optimal solution,

together with the constraint limit listed in Table 4.1. We observe that all wells honor

the imposed maximum water cut limit. The constraint is active for well P6 and the

water cut trajectory is bound to violate the constraint except that higher BHP control
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value is imposed by the algorithm for subsequent time steps.
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Figure 4.17: Evolution of NPV
step (Pierce model).
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Figure 4.18: Well water cut for optimal well controls in Pierce Model showing that
all wells satisfy the imposed constraint. Red dashed line indicates constraint limit.

. . . . . . . . . . . . . . . . . .

147



CHAPTER 4. OPTIMIZATION OF REALISTIC FIELDS

Figure 4.19 shows the progress of the NPV when the FOM is solely used as the

main objective function evaluation engine and compares it to the case when the

FOM is guided by the ROM (guided FOM). The guided FOM achieves a slightly

higher NPV of $983 MM while the standalone FOM achieves $979 MM. Figures 4.20

displays the optimal set of controls for the injection wells whereas Figure 4.21 displays

the optimal controls for the production wells for both cases. The optimal solutions

display different characteristics which is expected as the use of ROM alters the actual

objective function surface and attracts different optimal solution.

1,000

900

800

700

-0- FOM (guided by ROM)

-0- FOM (standalone)

600
0 5 10 15

Iterations

Figure 4.19: Comparison of the evolution of NPV for optimal well controls at the end
of each trust-region step using standalone FOM and FOM guided by ROM (Pierce
model).

The FOM entails a total of 1,250 simulation runs, while the runtime for the ROM

is equivalent to only 47 FOM simulation runs (including FOM assessment runs).

This exemplifies the ROM's capability to provide feasible solution with substantial

computational reduction. Thus, computational resources can be better utilized to

explore more of the solution space.
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Figure 4.20: Optimized BHP profiles for injection wells (Pierce model). Differences
in optimal control schedules exist as ROM provides an approximate solution.
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Figure 4.21: Optimized BHP schedule for production wells (Pierce model). Differ-
ences in optimal control schedules exist as ROM provides an approximate solution.
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4.2 Stata Model: SPE-10 Model (top 5 layers)

4.2.1 Description of the Simulation Model

The reservoir model employed in this example, depicted in Figure 4.22, represents

the top five layers of the SPE 1 0 th comparative study [34]. The model contains a

total of 66, 000 grid blocks (N = 60, Ny = 220, N, = 5). The physical dimension of

each grid block is 20 ft x 10 ft x 20 ft. There are four horizontal production wells

(designated P1 -P 4) initially located at the corners of the model and two injection wells

(designated 11-12) drilled in the middle. Production wells are completed in the top

layer while injection wells are completed at the bottom most two layers. Production

wells are under BHP control while injection wells are injecting water at a constant

rate equivalent to 0.7 PVI.

P4

Figure 4.22: Three-dimensional grid structure of Stata model with two vertical injec-
tors and four horizontal producers. (logi0 k, is shown in the background).

Figure 4.23 displays the permeability in the x-direction for each layer. The perme-

ability is taken to be a diagonal tensor, with k_ = k.. The porosity is constant in this

model and set equal to 0.25. The initial water and residual oil saturations are zero.

For oil, we set po = 45 lb/ft3 , p, = 3 cp; for water, we set pw = 65 lb/ft3 , [tw _ 1
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cp. The system is incompressible and capillary pressure is neglected in this example.

The relative permeabilities for the oil and water phases are specified using (2.47) and

(2.48) with ko, = ko? = I and a = b = 2.

1 2 3 4 5

-2 -1 0 1 2 3 4

Figure 4.23: Permeability in the x-direction for Stata model (log 0 k with k expressed
in mD).

4.2.2 Training and Testing Results Using ROM

In order to construct the ROM for this example, a training simulation run is performed

using FOM in order to collect solution state (saturation) and nonlinear term (flux)

snapshots. During the training simulation, all production wells operate at a constant

BHP of 1,000 psi (injection rates are kept constant throughout this example). The

training case is simulated for 5,000 days and a total of 320 snapshots are collected and

used to build the orthogonal bases. The reduced saturation and flux bases contain

55 and 161 columns respectively. A total of 966 interpolation points are selected
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using Algorithm 3 (including relational links for upwinding). Figure 4.24 displays

the spatial distribution of the flux term interpolation points. We observe in this

example that the interpolation points span the whole field, Unlike the Pierce model

(Figure 4.4) where they are concentrated in regions of high permeability.

Figure 4.25 displays the test schedule used to assess the accuracy of the ROM. Each

BHP control varies between 500 psi and 2,500 psi. It is perturbed every 625 days

comprising a total of eight perturbations. Figure 4.26 shows the oil and water pro-

duction rates from the four production wells. The ROM generally demonstrates close

agreement with the reference FOM with substantial reduction in computational costs.

In this example, one FOM run is approximately equivalent to 127 ROM runs.
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Figure 4.24: Spatial distribution of interpolation points selected to reconstruct flux
field for Stata model (background displays log10 k2. for grid blocks determined by the
DEIM Algorithm).
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Figure 4.25: Schedules for training and testing cases for the Stata model. Dashed
lines represent training BHP controls while solid lines depict testing BHP controls.
The training schedule is chosen to be constant while the training schedule is perturbed
every 625 days comprising a total of eight perturbations.
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Figure 4.26: Production rates for each well in Stata model. Dashed line represents
training run trajectory, circles indicate ROM results using testing schedule, and solid
line represents the reference testing run using FOM. Red designates oil while blue
designates water.
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4.2.3 Well Placements Optimization

In this example, we seek to maximize oil recovery through finding optimal well place-

ments and production controls. This is achieved by minimizing the Lorenz coefficient

for well placements (to improve recovery) and maximizing NPV for well controls (to

ensure highest economic revenue). The Lorenz coefficient is defined as:

LC 2 ( (F( ) - 4)cd), (4.2)

where both the flow capacity F and the storage capacity 1 are calculated using a nu-

merically computed flux field and streamline time-of-flight (TOF). Lorenz coefficient

measures the deviation of the F - P diagram from an idealized piston-like displace-

ment. It varies between 0 (homogeneous displacement) to 1 (infinitely heterogeneous

displacement) and therefore serves as a unique measure of the flow- or dynamic-

heterogeneity. It has been shown by [63] that minimizing Lorenz coefficient results

in an optimal volumetric sweep. However, minimizing Lorenz coefficient only does

not necessarily result in maximizing field's economic revenue especially at later times

when water production is excessive. Thus, we combine Lorenz function with NPV to

maximize both recovery and revenue.

Assuming horizontal trajectories remain within a single layer, a horizontal well can be

defined using two spatial points, the heel (ii, j1 ) and the toe (i2, j 2 ). However, such

a definition is not practical as it lacks the ability to predetermine the length of the

horizontal section (the well length is specified in practice before commencing drilling

process). Therefore, we follow the approach described in [107] where a total of four

parameters are used to sufficiently define the location of the well-reservoir contacts

with a predetermined horizontal trajectory length. These parameters include the heel

coordinates (II, ji), the azimuth angle 0, and the constant horizontal section length 1.
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Using simple trigonometry, we can then calculate the toe point (i2, j 2) which is used

in addition to the heel point as inputs to the simulator.

The reservoir simulator employed in this work follows a cell-centered approach where

reservoir properties and well coordinates are specified at the center of the grid blocks.

Therefore, we provide a mapping tool-represented by line-grid intersection algorithm-

to transform the well trajectory from the real space (normally a straightline trajec-

tory) to the grid space (staircase trajectory as shown in Figure 4.27).

Figure 4.27: Representation
case trajectory.

of a horizontal well on cell-centered grids showing stair-

We aim in this example to find the optimal locations of two vertical injection wells and

four horizontal production wells. This implies optimizing a total of twelve discrete

areal (i, j) parameters and four continuous angular 0 parameters.

Similar to the previous case example, we apply MCS and MCS-MADS methods to

determine the optimal well placements. We consider two cases: the first case assumes

the presence of only bound constraints while the second case incorporates nonlinear

constraints. These constraints, in addition to other key optimization parameters, are
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summarized in Table 4.6. In all cases, the production time-frame is 5,000 days and

the number of optimization variables is 16.

Table 4.6: Simulation and optimization parameters (Stata model)

Injection rate
Production BHP
Minimum oil production rate
Minimum well-to-well distance
Maximum well water cut

1000 STB/day
2000 psi

300 STB/day
10 grid blocks

0.7

The number of nests for the MCS algorithm is 70, and a maximum of 2n function

evaluations per MADS iteration is used (2n = 32 in this case). Both methods are

repeated five times starting from different initial guesses. Lorenz coefficients for the

five initial guesses, together with their mean E(Lc) and standard deviation (-), are

shown in Table 4.7.

Table 4.7: Lorenz coefficients corresponding to five initial guesses used in optimization
runs for Stata model (best is bold)

Run Initial guess
# Lc
1 0.732
2 0.717
3 0.734
4 0.655
5 0.824

E(Lc) 0.732
o- 0.071

Case 1: Bound Constraints Only

The optimization results for both MCS and the hybrid MCS-MADS are displayed

in Figure 4.28 and summarized in Table 4.8. Figure 4.28 shows the evolution of
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Lorenz coefficient versus the number of simulations (averaged over five runs) for each

method. Both methods achieve significant improvement over the mean initial guess

Lorenz coefficient. Again, we clearly see that the hybrid MCS-MADS outperforms the

standalone MCS for each single run as indicated in Table 4.8. MCS-MADS improves

the mean Lorenz coefficient

0.70

0.60

4

0.50

0.40

by 6% over the standalone MCS.

- MCS
- MCS-MADS

0 100 200 300 400 500 600
Number of Simulations

Figure 4.28: Evolution of mean Lorenz coefficient for bound constraints (Stata model).
Lorenz coefficient is lowered by 6% using MCS-MADS algorithm.

Table 4.8: Final Lorenz coefficient corresponding to five initial guesses used in opti-
mization run for Case 1 of Stata model (best is bold)

Run MCS MCS-MADS
# Lc Le
1 0.411 0.383
2 0.403 0.401
3 0.436 0.381
4 0.414 0.399
5 0.443 0.411

E(NPV) 0.421 0.395
0 0.017 0.013
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Figure 4.29 depicts the evolution of Lorenz coefficient using ROM at the end of each

MADS iteration (within the MCS-MADS algorithm) against that of FOM for the best

run (run # 3). Close agreement between the FOM and ROM is generally demon-

strated which exemplifies the robustness of the ROM in this example. Figure 4.30

displays the progress of the calibration parameter K during the optimization. Eight

MADS iterations are rejected in this case (out of 14 iterations) due to negative cali-

bration parameter.

0.55
FOM
ROM

0.50

4 0.45

0.40

0.35'
0 2 4 6 8 10 12 14 16

Iterations

Figure 4.29: Evolution of Lorenz coefficient for bound constraints (Case 1) at the end
of each MADS iteration showing the effect of ROM update during optimization to
keep the solution from ROM close to that of FOM (Stata model).

Figures 4.31-4.35 display the final oil saturation map for each layer in addition to the

optimal well locations. Although both methods share similar global characteristics

(injection wells are placed at the northern part of the field while production wells are

placed in the south), we see how MCS-MADS better positions producers to target

the bypassed oil. We observe in Figure 4.31(a) that P and P2 are placed close
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to each other which results in competitive drainage at late simulation times (due

to the absence of well-to-well distance constraints). In contrast, MADS-MCS in

Figure 4.31(b) better places P2 in order to target larger volumes of the bypassed oil.
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Figure 4.30: Calibration
model, bound constraints
eter value cut-off

parameter at the end of each MADS iteration for Stata
(Case 1). The dashed line indicates the calibration param-

The hybrid MCS-MADS algorithm in this case required an additional computational

cost that is equivalent to 21 FOM simulation runs over the standalone MCS ,which

required a total of 700 FOM runs. This added cost is associated with approximately

430 ROM runs during polling (equivalent to 4 FOM runs) and 17 FOM runs required

for accuracy assessment and training. Thus, the MCS-MADS algorithm adds only 3%

computational cost while lowering the average Lorenz coefficient by 6% (from 0.421

to 0.395).
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(a) Optimal well locations from MCS (b) Optimal well locations from MCS-MADS

Figure 4.31: Optimal well locations displayed on final oil saturation map of layer one
of Stata model for Case 1. MCS-MADS (right) results in better placement of P2

which targets larger volumes of bypassed oil (red indicates oil while blue is water).

I0

162



4.2. STATA MODEL: SPE-10 MODEL (TOP 5 LAYERS)
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(a) Optimal well locations from MCS (b) Optimal well locations from MCS-MADS

Figure 4.32: Optimal well locations displayed on final oil saturation map of layer two
of Stata model for Case 1 (red indicates oil while blue is water). More oil is displaced
using well placement from MCS-MADS algorithm.
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(a) Optimal well locations from MCS (b) Optimal well locations from MCS-MAD

Figure 4.33: Optimal well locations displayed on final oil saturation map of layer
three of Stata model for Case 1 (red indicates oil while blue is water).
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(a) Optimal well locations from MCS (b) Optimal well locations from MCS-MADS

Figure 4.34: Optimal well locations displayed on final oil saturation map of layer four
of Stata model for Case 1 (red indicates oil while blue is water). Both algorithms
place injectors at the northern part of the field with small differences due to the local
search ability of MCS-MADS algorithm.
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(a) Optimal well locations from MCS (b) Optimal well locations from MCS-MADS

Figure 4.35: Optimal well locations displayed on final oil saturation map of layer five
of Stata model for Case 1 (red indicates oil while blue is water). Both algorithms
place injectors at the northern part of the field with small differences due to the local
search ability of MCS-MADS algorithm.
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Case 2: Nonlinear Constraints

We now introduce constraints listed in Table 4.6 to this case. There are a total of 20

constraints (15 of which are well-to-well distance constraints). Table 4.9 summarizes

the optimization results for each method. We observe in this case that some initial

guesses do not result in feasible solutions. In such a case, the initial guess is most

likely far away from any feasible solution (this can be avoided by increasing the

number of cuckoo eggs). Although both methods do not yield feasible solutions in

Run # 2, we observe that MCS-MADS is able to find a feasible solution in Run

# 3. This emphasizes the importance of MADS in our framework as it increases

the probability of finding a feasible solution even when starting from a poor initial

guess. Figure 4.36 shows the progress of mean Lorenz coefficient for feasible solutions

(we include only runs that result in feasible solutions for both methods). MCS-

MADS finds its first feasible solution after 340 simulation runs while MCS takes

approximately 450 simulation runs. This and the lower mean Lorenz coefficient in

Table 4.9 clearly highlights the superiority of MCS-MADS over MCS.

Table 4.9: Final Lorenz coefficient corresponding to five initial guesses used in opti-
mization run for Case 2 in Stata model (best is bold)

Run MCS MCS-MADS
# Lc Le
1 0.413 0.390
2 N/A N/A
3 N/A 0.433
4 0.429 0.425
5 0.517 0.494

E(NPV) 0.453 0.436
a 0.056 0.043
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Figure 4.37 compares the the evolution of Lorenz coefficient computed using ROM

at the end of each MADS iteration with that of FOM (Run # 1). Consistent with

previous cases, the results obtained via ROM is very close to that of FOM except the

last few iterations which are already rejected. A total of 31 MADS iterations have

been completed with a success rate of 42%, as shown in Figure 4.38.
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Figure 4.36: Evolution of mean Lorenz coefficient for nonlinear constraints (Stata
model). MCS-MADS algorithm finds the first feasible solution after 340 simulations
while MCS takes approximately 450 simulations.

Figure 4.39 shows the final filter development for both methods for Run # 1. In this

case, we show only the nondominated solutions which define the filter envelope. MCS-

MADS provides more rigorous filter as we see more nondominated solutions close to

the feasibility threshold. As stated earlier, filters provide detailed analysis of the

relationship between objective functions and the corresponding constraints violation.

Taking MCS-MADS filter as an example (Figure 4.39(b)), we see that we can further

lower the Lorenz coefficient if we relax the aggregated constraint. In particular, we
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can lower Lorenz coefficient from 0.391 to 0.37 (equivalent to 3.67 $MM increase in

NPV) by relaxing the aggregated constraint to 0.004-For this particular point, the

only violated constraint is well P2 water cut and hence relaxing this constraint from

0.7 to 0.73 would achieve the aforementioned improvement.
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Figure 4.37: Evolution of L, for nonlinear constraints (run # 1) at the end of each
MADS iteration showing the effect of ROM update during optimization to keep the
solution from ROM close to that of FOM (Stata model).

Figures 4.40-4.44 display the final oil saturation map in addition to well locations.

We again observe that both MCS and MCS-MADS yield similar global solution with

MCS-MADS succeeding in targeting bypassed oil with the help of local search.

The hybrid MCS-MADS algorithm in this case required an additional computational

cost that is equivalent to 36 FOM simulation runs over the standalone MCS. This

added cost is associated with 600 ROM runs during polling (equivalent to 5 FOM

runs) and 31 FOM runs required for accuracy assessment. Thus, the MCS-MADS

algorithm adds 5% computational cost while lowering the average Lorenz coefficient

by 4% (from 0.453 to 0.436).
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Figure 4.39: Final filter for optimal well placement in Stata model (run 1).
circles represent the non-dominated infeasible solutions that define the filter.
final filter from MCS-MADS (right) is closer to the feasibility axis.
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(a) Final filter form the best MCS run
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(b) Final filter form the best MCS-MADS run

Figure 4.40: Optimal well locations displayed on final oil saturation map of layer
one of Stata model for Case 2 (red indicates oil while blue is water). MCS-MADS
algorithm results in better well placements that displace larger volumes of oil.
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(a) Final filter form the best MCS run
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(b) Final filter form the best MCS-MADS run

Figure 4.41: Optimal well locations displayed on final oil saturation map of layer two
of Stata model for Case 2 (red indicates oil while blue is water).
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0.1 0.2 0.3 0.4 O.A 0.6 0.7 0.6 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) Final filter form the best MCS run (b) Final filter form the best MCS-MADS run

Figure 4.42: Optimal well locations displayed on final oil saturation map of layer
three of Stata model for Case 2 (red indicates oil while blue is water).

173



CHAPTER 4. OPTIMIZATION OF REALISTIC FIELDS
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(a) Final filter form the best MCS run (b) Final filter form the best MCS-MADS run

Figure 4.43: Optimal well locations displayed on final oil saturation map of layer four
of Stata model for Case 2 (red indicates oil while blue is water). Both algorithms
place injectors at the northern part of the field with small differences due to the local
search ability of MCS-MADS algorithm.

so

0.7 0.6 0.3

174



4.2. STATA MODEL: SPE-10 MODEL (TOP 5 LAYERS)
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(a) Final filter form the best MCS run (b) Final filter form the best MCS-MADS run

Figure 4.44: Optimal well locations displayed on final oil saturation map of layer five
of Stata model for Case 2 (red indicates oil while blue is water). Both algorithms
place injectors at the northern part of the field with small differences due to the local
search ability of MCS-MADS algorithm.
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4.2.4 Well Controls Optimization

We now apply optimal well controls using the optimal well placements attained from

MCS-MADS. We use NPV as the objective function to optimize well controls in

this case to ensure highest economic revenue. The equivalent initial NPV (converted

from minimum Lorenz coefficient) is $220 MM. This case considers incompressible

flow which means that injected fluid has to equal produced fluids (oil and water)

at all times. Thus, both objective functions physically aim to primarily delay water

breakthrough time even though they approach it differently. A single control period is

considered in this case (well BHP value is constant throughout the entire production

time). Table 4.10 details the progress of the optimization run. A total of twelve trust-

region steps are performed (five of which are accepted). We observe that the ROM

is able to yield feasible solutions at the end of each trust-region run which illustrates

the robustness of the ROM approach. Optimal well controls improve the initial NPV

by approximately 11%. This is very significant given that wells are already located

in areas that maximize oil recovery and minimize water breakthrough time.

Figure 4.45 displays the optimal BHP controls and production results. We observe

that all controls have been adjusted (we started with all controls set at 2000 psi).

Water cut constraint is active for well P2. Well P4, which is the highest producer, is

chocked back to maintain water cut below the assigned constraint.
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Table 4.10: Progress of NPV and nonlinear
step for ROM and FOM (Stata model)

constraint at the end of each trust-region

k p JA hk

# [$ MM] [$ MM]
1 0.67 222 0 223 0.001
2 0.83 227 0 229 0
3 -0.4 229 0 224 0
4 2.5 237 0 229 0
5 0.23 240 0 242 0
6 2.5 245 0 244 0
7 -1.6 253 0 239 0
8 -0.3 245 0 245 0
9 -0.75 248 0 240 0

10 -0.23 248 0 231 0
11 -0.75 248 0 240 0
12 -4 249 0 243 0
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(c) Optimal well controls.

Figure 4.45: Optimal BHP controls and resulting production rates and water cut for
Stata model optimization study.
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4.3 Summary

In this chapter, we applied the developed decision-making framework based on ROMs

to two example cases. The first example comprises a sector model of a realistic field

located in the Middle East-referred to as Pierce Model-with 25,194 grid blocks

whereas the second example-referred to as Stata Model-comprises the top five lay-

ers of the SPE 1 0 th comparative study with a total of 66,000 grid blocks. These two

examples span different levels of complexities including several vertical wells, multiple

horizontal wells, several control periods, and different types of constraints. For the

well placement problem, the MCS-MADS hybrid approach utilizing ROMs for local

search exhibited superior performance over the standalone MCS in terms of mean

objective function, standard deviation, and probability to achieve feasible solutions.

This demonstrates the robustness of the MCS-MADS hybrid approach, which com-

bines local and global search capability. While MCS-MADS indeed consumes more

simulation runs, it was shown that significant improvement in the objective function

value was attained with minimum increase in computational demands due to the use

of ROMs which have low computational cost. For the well control problem, the de-

veloped trust-region approach based on ROMs exhibited tremendous computational

savings while achieving optimal solutions that are very close to those obtained us-

ing FOM. Trust-region approach provides the ability to assess and retrain FOMs.

This ensures that solutions provided by ROMs are always in close agreement to those

obtained using FOM. Although we presented the applications of ROMs for field de-

velopment, the use of ROMs can be easily extended to other applications such as

uncertainty quantification.
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Chapter 5

Conclusions and Future Work

5.1 Summary and Conclusions

The main objective of this dissertation is to develop and apply reduced-order models

for field development decision-making. It is divided into two components, the reduced-

order modeling and the optimization framework for field development strategy. We

now summarize each component and present recommendations for future work.

* A new reduced-order modeling approach was developed to reduce computational

demands and enable practical applications of reservoir management decision-

making. The approach incorporated the use of a new model reduction technique

based on Discrete Empirical Interpolation method (DEIM), Proper Orthogonal

Decomposition (POD) and Truncated Balanced Realizations (TBR) to build a

reduced version of the full-order model that was much cheaper to evaluate, yet

accurately reproduced the full models input/output behavior. The latter two

techniques allowed for concise representation of the FOM in terms of a relatively
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small number of variables while the former technique enabled efficient treatment

of nonlinear terms in the low-order space. POD procedure constructs reduced

basis by running FOM several times and recording solution snapshots. These

snapshots dictates the accuracy of the ROM and hence snapshots should con-

tain key flow features. TBR on the other hand performs a change of coordinates

where states are order from most important in terms of preserving flow charac-

teristics to least important. Since the computational requirements to construct

basis via TBR is substantial, a two-stage reduction procedure was devised where

POD was first used for intermediate model reduction before TBR was used to

construct the final reduced basis. This two-stage reduction was mainly applied

to the pressure equation to reduce the solution pressure states. The saturation

equation contained nonlinear terms and therefore required special treatments.

In addition to using POD basis to reduce the saturation states, DEIM was

used to efficiently reconstruct nonlinear terms and ensure that there was no

dependence on the original full dimension. This was accomplished by collecting

nonlinear snapshots and applying SVD to construct a new set of orthogonal ba-

sis. The DEIM algorithm was then applied to select interpolation indices (gird

blocks) that were capable of preserving the continuity of the saturation equa-

tion while performing nonlinear evaluations at only subset of grid blocks. We

extended the formulation of DEIM in this thesis to include three-dimensional

reservoir models with gravitational effects.

* The decision-making component included proposing optimal well locations and

controls via the use of optimization methods that enhance the overall field re-

covery. The core optimization framework for well placements included a local

search method (MADS), a global search method (MCS), and a new MCS-MADS

hybrid that combined the positive aspects of the previously standalone meth-
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ods. A major contribution here was the extension of the hybrid approach to take

advantage of the devised ROM procedure for well placement optimization. For

well control optimization, adjoint procedures were used to efficiently compute

gradients that were used within a trust-region framework. Reservoir manage-

ment is often performed under constraints which are usually nonlinear. These

constraints were treated via a filter method. The filter method is perfectly suit-

able as it does not require any parameter tuning, in addition to its ability to

provide useful information regarding trade-off between objective function and

constraints. The filter method had been previously incorporated in particle

swarm optimization (PSO) and MADS. We extended this procedure to MCS

algorithm.

ROMs are sufficiently accurate within a restricted zone around the root-point (the

decision variables used to construct the ROM) and thus they need to be updated

in a systematic manner over the course of the optimization. A major contribution

of this work was the development of adaptive framework that allowed for the use of

ROM to reduce computational demands. The framework also included error assess-

ment procedure to ensure minimum deviation from the FOM. During well placement

optimization, ROMs were used within the MADS algorithm as an acceleration proxy

to locally search for optimal solutions. A calibration parameter was computed at the

end of each MADS iteration to ensure the accuracy of the ROM. We note here that

we used FOM for global search while the ROM was used for local search without

interference. That is, the exchange of solutions between MCS (the global optimizer)

and MADS (the local optimizer) was performed using FOM to ensure solution con-

sistency. In well control optimization, gradient optimization was coupled with trust-

region method to achieve optimal solutions. The trust-region method was a natural

choice for ROM-based optimization as it restricted the optimization step within the
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ROM's validity, in addition to synchronizing ROM updates with information obtained

during the optimization.

The general decision-making framework, including ROM construction, was applied

to find optimal well placements and controls for two reservoir models (one is a real-

istic model). The optimization problem included bound constraints to ensure wells

remained within the boundaries of the reservoir as well as controls to be within the

operational limits. In addition, nonlinear constraints were imposed such as minimum

well-to-well distance, minimum oil production rate, maximum liquid production rate,

and water cut to satisfy any surface plant limits. The key findings from these example

cases are as follows:

" MCS-MADS was shown to provide better solutions than the standalone MCS

for most cases. This proved that the inclusion of local search procedures can

improve the quality of the overall approach by either feeding the global search

optimizer with better solutions or by further improving the quality of the final

global solution.

" The filter method used within MCS, MCS-MADS, and trust-regions proved to

be competent constraint handling techniques with vast generality. It was able

to find feasible solutions with modest number of function evaluations even when

starting from infeasible solutions. In addition, the filter method provided the

capability to perform sensitivity analysis at no additional cost.

" ROMs were shown to be able to reproduce the FOM input/output behavior

with high level of accuracy for both objective function and constraint violation.

The developed ROMs provided substantial computational speedups of 0(100)

when tested on three-dimensional models with gravitational forces.
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* The incorporation of ROMs in the hybrid MCS-MADS approach proved to im-

prove the optimal solution quality while incurring minimal computational costs.

For the Pierce model, the mean NPV improved by 22% while only increasing

the computational cost by only 3%. This exhibits the robustness of our general

framework which efficiently combines FOM and ROM into the well placement

problem.

5.2 Recommendations for Future Work

" Our reduced-order modeling procedure was applied to incompressible oil-water

system. This allowed us to apply POD-TBR on the linear pressure equation and

POD-DEIM on the nonlinear saturation equation. We recommend extending

the ROM approach to compressible systems with multiphase flow. This will

require applying DEIM to both pressure and saturation equations.

" Computing the Grammians to obtain TBR transformation matrices requires

solving two Lyapunov equations. For large-scale models, the pressure system

matrix may have singular values that are widely spread (up to eight order of

magnitude difference) which may result in ill-conditioning Lyapunov equations.

We thus recommend investigating the use of approximate balanced reduction

schemes such as the smith method [71], and the alternate direction iteration

(ADI) method [91].

" During development of reduced-order models, we construct a single orthogonal

basis for each state and nonlinear term that encodes important flow charac-

teristics. Thus, larger orthogonal basis matrix are required to cover complex

flow behavior such as in compositional simulation. Future work may include

developing multiple orthogonal bases of smaller size to encode complex flow
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behavior. An interesting starting point is presented in Appendix B where local-

ized DEIM (LDEIM) is applied to construct multiple orthogonal bases where

each can target specific flow behavior [110]. Initial results shows improvement

in solution accuracy as well as runtime speedup.

e Although we presented the concept of relative omitted energy in Sectoin 2.2 as a

criterion to determine the number of retained orthogonal basis, the orthogonal

basis determination process remains to be heuristic. Work presented in [52]

has shown that retaining basis with small energy-though increases solution

accuracy when similar training controls are used-may results in unstable ROMs

when applying ROMs in optimization. Comprehensive stability analysis may

lead to developing more sophisticated selection criterion that preserve ROM

stability.

e Our reservoir management optimization approach applied a sequential proce-

dure where we solve the well placement problem assuming a set of well controls

before solving the well control problem. This is suboptimal in the sense that

there is a strong dependency between well placements and controls. We suggest

applying a joint procedure, similar to that in [61], where we jointly optimize

for well placements and controls at the same time. This joint optimization will

of course require developing a new framework for ROM update and accuracy

assessment.

e The use of other optimization algorithms should be considered including other

varieties of CS families and firefly algorithms. A particularly interesting scheme

is to hybrid MCS and PSO to develop a more robust optimization algorithm.

e ROMs were used in this work for optimization and decision-making. Another

venue that is suitable for ROM is uncertainty quantification. The developed
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ROM should be coupled with an uncertainty quantification scheme such as

Markov Chain Monte Carlo (MCMC) to quantify geologic uncertainties.

" The optimization framework has thus far involved optimizing only a single ob-

jective function. A possible extension is to improve the framework to handle

multi-objective problems.

" The example cases considered in this work involved developing fields under

waterflooding. Other recovery processes such as CO 2 EOR and gas injection

are of particular interest. In addition, most techniques developed in this work

are general and we therefore recommend extending their applications beyond

the field of petroleum engineering.
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Appendix A

Recovery Enhancement Using

MCS

A.1 Introduction

In this section, we compare MCS to one of the most popular metaheuristic optimiza-

tion methods, genetic algorithm (GA). Two example cases involving two-dimensional

synthetic reservoir models are presented. The first case compares the performance of

MCS to that of genetic algorithm (GA) to maximize oil recovery by optimizing the

location of four injection wells. The second case entails the use of filter-based MCS

to maximize NPV under maximum water cut constraint at the production well.
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A.2 Example cases

The described filter-based MCS will now be applied to a synthetic field development

optimization problem subject to waterflooding. Two example cases are presented.

The first example will depict a comparison between one of the well known meta-

heuristic optimization methods-genetic algorithm- and MCS for the well placement

problem. The second example will use MCS to maximize net present value in the

presence of nonlinear constraints. The geologic model, also used in MRST example

cases, represents a sector of the first layer of the SPE 1 0 th comparative study [34].

The grid is 60 x 60 x I (N, x N. x N, where Nk is the number of grid blocks in

direction k). The permeability field is shown in Figure A.1, together with the initial

well locations. There are four injection wells located at the corners of the model and

one production well located at the middle. Table A.1 represents key simulation and

optimization parameters.

400

0 16 20 30 40 so 80

0.01 0.1 1 10 100 1000

Figure A. 1: Permeability in the x-direction in mD with initial well locations, blue
circles are injection wells and red circle represents the production well

The system is incompressible and capillary pressure and gravity effects are neglected.

The relative permeabilities for the oil and water phases, with initial water and residual

oil saturations set to zero, are specified as:
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Table A. 1: Simulation and optimization parameters

Physical cell dimensions
Initial pressure, pi
Mean areal permeability (kx = kv)
Mean porosity, <
pO and pw,
/1o and pw
ro

maximum well water cut
Injection rate range
Production BHP

20 ft x 10 ft x 2 ft
3500 psi

38.61 mD
0.16

45 and 60 lb/ft3

5 and 1 cp
$100/STB
$10/STB
$5/STB

0.75
[0 - 45.14] STB/day

500 psi

-k -I Sw -So a
kro(Sw) = k 1 ______

0S =S - Sor b
krw (Sw ) = kr (I-Sr-Sr

(A.1)

(A.2)

where ko and ko are the endpoint relative permeabilities. Here we set ko = k - 1

and a = b = 2.

In all example cases, the production time frame is 10 years. In case 1, the injection

rate for each well is equally set to 45.14 STB/day (equivalent to 3 PVI of total

injected water). This case is incompressible which implies that the total injection

rate is equal to the production rate. The production rate is kept constant throughout

the production time frame as we aim to optimize the well placements in this case.

In case 2, the optimal well locations are used to maximize NPV under water cut

constraint. The injection rates in this case are manipulated insofar as they maximize

the NPV while maintaining water cut at a maximum of 0.75.
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A.2.1 Case 1 - Optimal injection well locations

In this example, we seek to find the optimal locations of four injection wells that

maximize the oil recovered by the production well. This implies optimizing a total of

eight discrete areal (x, y) well locations. To do so, we choose to minimize the Lorenz

coefficient defined as:

LC = 2 Fd4D - 0.5). (A.3)

where both the flow capacity F and the storage capacity 1 are calculated using a nu-

merically computed flux field and streamline time-of-flight (TOF). Lorenz coefficient

measures the deviation of the F - (D diagram from an idealized piston-like displace-

ment. It varies between 0 (homogeneous displacement) to 1 (infinitely heterogeneous

displacement) and therefore serves as a unique measure of the flow- or dynamic-

heterogeneity. It has been shown by [63] that minimizing Lc results in an optimal

volumetric sweep.

The well placement optimization study is performed using MCS and GA to assess the

performance of MCS. For MCS, the number of nests is set to 50 nests running for 20

generations. The Levy flight step size is set to A/ G, where A is the distance between

the minimum and maximum optimization variables and G is the generation number.

For GA, the population size is set to 50 running for 20 generations. The crossover

fraction is 0.8 and the mutation rate is 0.1. There is one elite chromosome that

survives each generation. Due to the stochastic nature of both methods, each method

is run five times starting with different seeds to minimize statistical randomness.

The optimization results for this case are summarized in Table A.2. The optimization

run is repeated five times for each method, that is a total of ten optimization runs.
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Table A.2: Final Lorenz coefficient
are in bold)

from five runs using MCS and GA (best values

Run MCS GA
# L, coeff. L, coeff.
1 0.1079 0.1101
2 0.1039 0.1085
3 0.1143 0.1199
4 0.0996 0.1205
5 0.0996 0.1272

< L, > 0.1124 0.1172
- 0.0062 0.0078

The minimum Lorenz coefficient for both methods is highlighted in bold. The last

two rows indicate the average < L, >, and the standard deviation. In terms of

< L, >, we see that MCS outperforms GA. It also yields the best value in terms of

objection function. In fact, MCS achieves two equally good objective function values

with different solutions (well locations), which is expected as the objective function

surface is very complex with multiple local optima.

40

$-4

0.8
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0.4

0.2

0 11
0 200 400 600 800 1,0001,200

Number of simulations

Figure A.2: Evolution of Lorenz coefficient for the best run (case 1)

Figure A.2 depicts the performance of MCS and GA for the best runs (run 4 for

-MCS
-- GA
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MCS and run 2 for GA). It is clear that MCS exhibits faster convergence rate as it

converged after 250 simulation runs only while GA converged after 850 simulation

runs. This is due to MCS's robust search strategy which focuses on exploration at

early search stages and exploitation at later search stages.

1

0.8

0.6

0.4

0.2

(~IU0
0

- Base
- GA
-MCS
- Ideal displacement

0.2 0.4 0.6 0.8 1

Figure A.3: Storage and flow capacity for base and optimized well locations (case 1)

Storage and flow capacity curves are depicted in Figure A.3. Displacement from MCS

optimal well locations exhibits closer behavior to ideal displacement. This behavior

is translated into a higher recovery factor (close to 80%) as shown in Figure A.4-

an additional increase of 15% over the intuitive base case. Figure A.5 displays the

simulation results and well locations for the base solution, and the optimal solutions

found using MCS and GA. More oil is evidently extracted from the central field

region using optimal well locations suggested by MCS and GA with clearly higher oil

volumes extracted using well locations suggested by MCS.
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100
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Figure A.4: Recovery factor from base case and optimized well locations (case 1)

A.2.2 Case 2 - Optimal injection rate with nonlinear con-

straint

Case 1 above dealt with only bound constraints (well locations bounded by the size

of the model). This case will additionally include a nonlinear constraint. Here, we

will use the optimal well locations proposed by MCS to maximize the undiscounted

NPV by adjusting the injection rates while maintaining a maximum water cut of 0.75

at the production well. Specifically, we seek to maximize the objective function J(u),

where

J(u) = r0Q,(u) - cqpQ,,(u) - cqiQ,4(u). (A.4)

Here r0 is the price of oil ($/STB), cp and c.; are the cost of handling produced

water and the cost of water injection ($/STB) respectively. Q0, Q", and Q.i are

the cumulative oil production, water production and water injection in (STB) re-

spectively. The injection rates are perturbed every 2.5 years comprising a total of 16

control variables. The imposed water cut constraint is nonlinear in nature because the
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I. 10 30 4 1 1

(a) Base case permeability map

(c) GA-optimized permeability map

(e) MCS-optimized permeability map

(b) Base case final saturation map

II

F,
~0?

(d) GA-optimized final saturation map

-. 4 M

(f) MCS-optimized final saturation map

Figure A.5: Simulation results from the base solution and the MCS and GA optimized
solutions, showing the optimal well locations and final oil saturation map
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relationship between the control variables (injection rates) and the constraint (water

cut) involves reservoir simulation (i.e., nonlinear function evaluations). We use the

filter-based MCS described previously to maximize the NPV under constraint with

the same parameters used in case 1.

Table A.3: Final NPV from five runs

Run # NPV ($)
1 2,093,992
2 2,084,919
3 2,088,644
4 2,087,366
5 2,089,668

< NPV > 2,088,918
a 3,346

z

-2

-2.02

-2.04

-2.06

-2.08

-2.11
0

Figure A.6:

.106

200 400 600 800 1,000

Number of simulations

Evolution of NPV for run 1 (case 2)

Figure A.6 displays the evolution of NPV for the best run (run 1)-the results for all

runs are summarized in Table A.3. The stair-line depicting the NPV appears after

approximately 50 simulation runs (one generation). This implies that previous simula-

tions lead to infeasible solutions (i.e., solutions that violate the nonlinear constraint).
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Figure A.7: Oil production rate and water cut (case 2)

Even though all solutions in the first generation were infeasible, the filter-based MCS

was able to find feasible solutions at the second generation. Thanks to the initial bias

toward exploration, more Levy flight searches have been performed and accordingly

feasible solutions were quickly achieved with an overall fast convergence toward the

optimal feasible NPV. Figure A.7 shows the water cut from the production well with

the constraint being active at the final simulation times.

The final filter for run 1 is depicted in Figure A.8. The points in the plot represent the

infeasible non-dominated points that define the filter. This filter measures the sensi-

tivity of the objective function (u) to the constraint violation h(u) (similar analogy

to the pareto frontier in multi-objective optimization). It quantifies how much the

constraint needs to be relaxed in order to achieve more gain in the objective function.

For example, if we relaxed the constraint violation by 6.5%-equivalent to changing

the maximum water cut from 0.75 to 0.8-we would have been able to achieve a NPV

of 2.18 x 106 (an additional 4%). This is due to the obvious reason that higher water

cut is associated with more oil production sold at $100/STB.
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Figure A.8: Final filter for run 1 (case 2)

A.3 Conclusions

we present modified cuckoo search (MCS)-a new metaheuristic global optimization

method-for petroleum applications. The method is used to optimize well place-

ment and injection controls. We couple MCS with filtering technique for nonlinear

constraint handling. With this approach, the problem is viewed as a bi-objective opti-

mization in which we seek to minimize the constraint violation first before optimizing

the objective function. Two example cases have are presented. The first example

involves optimizing the location of four injection wells to maximize recovery. The

optimization is carried out using GA and MCS to provide a basis for performance.

MCS is able to outperform GA in terms of better results and rate of convergence (al-

though the results are less pronounced for this small example). The second example

involves optimizing the injection controls to maximize net present value (NPV) under

maximum water cut constraint (nonlinear constraint). A filter-based MCS is used to

guide the solution. The filter-based MCS is efficient in terms of finding a feasible
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solutions due to the initial increase in the number Levy flight search. The filtering

technique provides a sensitivity measure between the objective function and the con-

straint violation which can be used to assess the additional gain in objective function

as a result of constraint relaxation. In future work, we plan to rigorously compare

MCS with other metaheuristic techniques for petroleum applications. In addition,

we plan to incorporate the use of reduced-order models with MCS to optimize well

placements and controls which can address computational challenges associated with

reservoir decision-making.



Appendix B

Development of Reduced-order

Reservoir Models Using Localized

DEIM

B.1 Abstract

For applications of numerical reservoir simulation such as production optimization or

uncertainty assessment, hundreds or even thousands of simulation runs are required.

Such a huge computational cost is a major constraint in petroleum engineering ap-

plications, and hence reduced-order model (ROM) has been intensively studied as an

alternative to overcome the high computation cost. While POD-based reduced-order

models are generally associated with lower computational costs compared to full order

models (FOM), it is not quite efficient when it is applied to a typical large dimen-

sional nonlinear reservoir system. One of the reasons for the inefficiency is that in a

typical nonlinear reservoir system, POD-based ROM still depends on the dimension
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of the FOM. This is due to the fact that to compute the reduced nonlinear term in

the mass balance equation, one must first reconstruct the full-order state solution,

and then evaluate the full-order nonlinear term before projecting it onto a reduced

subspace. To free the projection process from the full-problem dimension, we develop

a reduced-order reservoir model that is based on a discrete empirical interpolation

method (DEIM) to approximate nonlinear potential terms so that the repeated on-

line evaluations of the ROM in Newton iteration are independent of the full-order

dimension. The independence comes from the fact that DEIM needs to evaluate

the nonlinear terms only at interpolation indices that represent grid blocks that are

important in terms of preserving the continuity properties of the mass balance equa-

tion. A case study is carried out to investigate the performance of DEIM compared

to POD. Although the testing schedule of well controls is far apart from the training

schedule of well controls, close matches are obtained. Thus, the ROM using DEIM is

expected to enable the practical application of reservoir simulator, such as production

optimization in which many simulation runs must be performed, in a reasonable time

frame by significantly relieving the required numerical effort.

B.2 Introduction

One of the primary goals of petroleum reservoir modeling and management processes

is to enable decisions that determine the direction and course of billions of dollars ev-

ery year. A decision-making framework requires identifying a methodology to propose

possible scenarios and develop an efficient technique to evaluate them. This can be

mathematically translated into an optimization problem where efficient optimization

methods such as gradient-based algorithms are used to propose possible scenarios and

reservoir simulation models are used to evaluate them. The use of finite-difference full-
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physics reservoir simulation models for reservoir optimization and decision-making is

computationally expensive. A typical reservoir model might require several hours of

run time, and the number of simulation runs required to make a particular reser-

voir management decision can be in the order of hundreds to even thousands. This

high computation cost hinders the popularity of optimization methods in reservoir

management decision-making.

Reduced-order models (ROMs) are used as alternatives to full-order models in order

to reduce computational demands and enable the practical application of reservoir

management dccision-making. Reduced-order models generally incorporate the use

of model reduction techniques to build a reduced version of the full-order model

(FOM) that is much cheaper to evaluate, yet accurately reproduces the full models

input/output behavior.

One of the widely used reduced-order modeling techniques is proper Orthogonal De-

composition (POD). It constructs reduced basis by running high-order simulation

models several times using different set of forcing input controls, i.e.; production

flowrates that covers a particular range of forcing input controls. These runs are

called "training runs" and the accuracy of the ROM is dictated by how well the

training runs cover the solution space. POD has been applied in various applications,

i.e.; [27, 113, 70], including reservoir simulation, [29, 30, 54, 93, 95], due to its ability

to handle nonlinear systems.

Since reservoir simulation equations are nonlinear, reduction techniques, although

reduce dimensions in the sense that far fewer variables are present, still depend on the

dimension of the original full-order model through nonlinear terms. The complexity of

evaluating the nonlinear terms remains dependent on the full-order model hindering

the performance and speed of the constructed ROM. This limitation was seen in

reservoir simulation by [29], where POD was effective at the linear solver level while
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full residual and Jacobian equations were still constructed at every iteration of every

time step before being reduced. Detailed description of computational complexity of

POD with nonlinear model can be found in [32].

In order to use the above mentioned reduction techniques to construct ROM for

reservoir simulation, an efficient treatment for nonlinearities must be devised. One

approach, Trajectory Piecewise Linearization (TPWL), uses first-order taylor series

expansion to approximate nonlinearities around saved "closest" equilibrium states,

[84, 29, 54, 96]. Reasonable accuracy and substantial speedups were reported by

Cardoso and Durlofsky [30] and He et al. [54] when TPWL was used for reservoir

simulation. The approach however requires storing Jacobian matrices for both states

and controls, in addition to solution states, which occupies substantial disk space as

these matrices can be quite large and difficult to manipulate. In addition, it requires

output of partial Jacobians such as flux Jacobian and accumulation Jacobian.

Chaturantabut and Sorensen [32] proposed a discrete empirical interpolation method

(DEIM) to deal with nonlinearities. DEIM enables the representation of nonlinear

terms through evaluation of the full-order nonlinear terms only at few selected grid

blocks (interpolation points). It can be thought of as a clever extension to reduction

techniques such as POD to retain nonlinearities at a lower dimensional space. DEIM

has been applied in various applications, i.e., miscible viscous fingering in porous

media [33], and reservoir simulation [93, 8].

To further improve the accuracy stability of DEIM, Peherstorfer et al. [83] proposed

a scheme of localized DEIM (LDEIM). Whereas DEIM projects nonlinear terms onto

one global subspace, LDEIM computes several local subspaces, each tailored to a

particular region of characteristic system behavior. LDEIM uses machine learning

methods to discover these regions via clustering. Then, local DEIM approximations

are computed for each cluster. Clustering, in addition local basis computation, is
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performed offline and hence incurs minimal computational demands. The selection

of an optimum approximation is conducted via machine-learning-based classification

during online phase. By using the multiple local DEIM approximations, it is possible

to reduce the number of interpolation points further, and as a result, reduce the

computational costs even further. To the best of our knowledge, LDEIM has not

been applied for reservoir engineering applications.

In this section, we construct a new reduced-order modeling procedure that does not

require the full-order state variables for constructing the nonlinear terms. This is

achieved by combining POD method with the localized discrete empirical interpola-

tion method (LDEIM). We show that the use of LDEIM improves the efficiency of

the resulting reduced-order model representation via comparison with its counterpart,

the vanilla DEIM.

The section progresses as follow. The modeling procedure for the proposed reduced-

order model is first derived. Then, it is compared with POD-DEIM-based ROM using

a synthetic geologic model. We finally conclude with future plans for this work.

B.3 Reservoir Modeling Procedure

In this section, we describe the governing equations-including the formulation of

the problem, the discretization procedure, the solution strategy, and the reduced-

order modeling techniques for three-dimensional two-phase flow reservoir model with

gravitational forces.
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B.3.1 Governing Equations for Two-phase Flow

Reservoir simulation models are derived by combining the constitutive mass balance

equation with multiphase Darcy's law. We consider incompressible oil-water flow sys-

tem and neglect capillary pressure effects. Also, there is no mass transfer between

phases, i.e., the oil component resides only in the oil phase while the water compo-

nent resides only in the water phase. Then, the continuity equation for each phase,

designated j (where j o for oil and w for water), is given by:

a
8t (#5 PiS3 ) + V.- (pjVj) =qj, (B.1)

where q is porosity, pj and Sj are the density and saturation of phase j respectively,

vj is the phase Darcy velocity, and qj is the source term. Assuming incompressible

flow, i.e., # and pj are constants, The continuity equation (B.1) is simplified into:

as + V - (Vq) =j- (B.2)
at pj

A more tractable system of equations consisting of a pressure equation and a satu-

ration (fluid-transport) equation can be written for easier dimensionality reduction.

The pressure equation (assuming no capillary effects) is given by:

V , v = qt, Vt =-K [AtVp + (AwPw + Aopo)YVz I (B.3)

where vt is total Darcy velocity, K is the absolute permeability (assumed to be a

diagonal tensor), At = Aw + A, is the total mobility, Aj = krj/ltj is the mobility of

phase j, pj is the respective phase viscosity, krj is the relative permeability of phase j,

p is pressure, qt = q, + q0 is the total flow rate, g is the gravity acceleration constant,
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and Vz is the negative upward vertical direction. The derived saturation equation is

given by:

' t" + V - f( S.) [vt - A 0(pw - p,)gKVz] = qw. (B.4)

where fw(Sw) = Aw/(Aw + A,) is the water fractional flow. The term fw(Sw)vt repre-

sents viscous forces while the term fw(Sw)A,(pw - po)gKVz represents gravitational

forces.

B.3.2 Discretization and Solution Strategy

The two-phase flow description for incompressible flow and no capillary effects entails

three equations and three unknowns (p, So, Sw). We select p and Sw as the primary

unknowns. Once these primary unknowns are computed, So can be readily determined

from the saturation constraint, i.e., Sw + So = 1. For the sake of brevity, we let Sw

- S as the water saturation.

The pressure equation (B.3) and saturation equation (B.4) are nonlinearly coupled

through the saturation-dependent mobilities in the pressure equation and through

the pressure-dependent total velocity in the saturation equation, in addition to other

terms that depend on pressure, e.g, viscosities. Following procedures developed by Lie

et al. [69], a sequential method is applied to obtain solution states where saturation

from previous step (or initial condition) is used to compute the saturation-dependent

coefficients, e.g., At in (B.3), before it is solved for pressure and subsequently total

velocity. Then, total velocity is kept constant while saturation from (B.4) is solved and

advanced in time. Next, the new saturation states are used to update the saturation-

dependent terms in (B.3) and pressure states are solved again, and so on. The pressure
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equation in (B.3) is discretized explicitly while the saturation equation in (B.4) is

discretized implicitly in time as follow:

T pn+1 - G = Bun+1 , (B.5)

Here T" n T(S") is a diagonal transmissibility matrix that relates flow in phase j to

the difference in pressure. It is calculated using a two-point flux approximation scheme

(see [18] for details). The superscript n represents time step, G" n G(Sn) is a vector

containing the gravitational effects, u is the input controls (boundary conditions),

i.e., well flow rates or BHP, B is the arrangement matrix for the controls and p is the

unknown pressure vector we seek to solve. The discretized pressure equation (B.5) is

a linear equation as the transmissibility matrix Tn does not depend on pressure (since

viscosity is constant for incompressible flow). The saturation equation is descritized

using finite volume:

sn+1 - n + A t Fn+1 +Q B6IF + I~ Q I (B.6)

Here Qw denotes the source/sink vector and Fn+1 F(Sn+l) is the numerical approx-

imation of the total flux from viscous and gravitational forces across all grid block

interfaces, e.g., for a grid block Qj and associated interfaces -Yjj (where ij represents

the shared interface between the grid block Qj and the neighboring grid blocks Qj):

FPn+1 
- j+ 1) [vij - gij(Sn+1 )] dV (B.7)

fw(Sn+1)ij designates the fractional flow function associated with Yij, vij is the Darcy

flux, and gij(Sn+) is the gravitational flux across the interface. The total flux term

(referred to as flux in this work) can be seen to introduce nonlinearity in (B.6) as it is
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a function of the saturation state we seek to solve. It is also clear from (B.7) that the

flux term introduces a direction dependency into the system. It is therefore treated

using "upstream weighting". Specifically, the evaluation of the flux term depends on

the direction of flow, as follows:

{ fw(Sn+1 ) if vij > 0,

fw (S + 1) if Vij <0. 
(B.8)

Therefore, the nonlinear flux vector in (B.6) represents a non-componentwise function

as the computation of each element depends on other spatially neighboring elements

due to upstream weighting. If the flux term is evaluated without being upstream

weighted, the numerical solution may display oscillations, overshoots, or undershoots

(e.g., saturation less than zero or greater than one), or converge to an incorrect

solution.

The source/sink term, right hand side in (B.4), represents wells which are the typical

boundary condition in reservoir simulation. Wells are modeled using the following

well equation:

- (qt)n+1 = (At)nWI(pn+1 - pw), (B.9)

where (qt)7+1 is the total volumetric flow rate from block i into the well (or vise versa)

at time n + 1, pf+l is the grid block pressure and pf is the wellbore pressure for well

w in grid block i, and WI is the well index. For a vertical well that fully penetrates

block i, WI is computed using Peaceman well model [82]

W = 2rkAz (B.10)
_ln(ro/rW)_=
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where r, is the wellbore radius and ro ~ 0.2Ax. Note that, if the well is operating

under bottom hole pressure (BHP) control, this is represented in the simulator by

specifying p" in the well equation (2.9).

The descritized pressure equation in (B.5) represents a linear system as all parame-

ters are independent of pressure-transmissibility is a function of saturation in the

case of incompressible flow. This system is solved using efficient linear routine, i.e.,

MATLAB's built-in solver [73] for small models or AGMG [78] for large models. In

contrast, the discretized saturation equation (B.6) represents a nonlinear set of al-

gebraic equations as the flux is a functions of saturation. Thus, it is solved using

Newton Raphson's method. The residual form of (B.6) is expressed as:

g = sn+1 _ sn _ At Fn+1 + QwI 0, (B.11)

The Jacobian matrix is represented as:

Jt = I - . (B. 12)
# aSn+1

B.4 Localized Discrete Empirical Interpolation

Localized DEIM (LDEIM) improves the accuracy and stability of the original DEIM

through constructing multiple local nonlinear bases where each basis represents dis-

tinctive local features of the nonlinear terms instead of constructing a global nonlin-

ear basis that approximates the overall nonlinear terms. This results in using lower

number of interpolation points per Newton iteration as each nonlinear local basis

approximates the nonlinear terms for a period of time.

Suppose F {F}I is the set of nonlinear term snapshots where k is the total num-
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ber of snapshots.LDEIM clusters similar snapshots that share certain flow behavior

and partitions them into {F1, - -- , Fk } of k subsets. Then, a local orthogonal basis

'j! is created for each subset using SVD procedures, in addition to its corresponding

interpolation points Zi where 'i = [zi, - - , zM]T E Rmx is a vector containing m

interpolation indices that are determined inductively via Algorithm 3. A classifier

c --+ {1, ... , k} is trained in the offline phase to select an optimal local DEIM ap-

proximation (Wj, Zi) with respect to an indicator v E V, Peherstorfer source. The

classifier is trained on the indicators of the nonlinear snapshots. In this work, the

indicator is defined as:

v = (VI)- 1 Fj,j where i =1,- , k (B.13)

where 'L' is the global basis extracted at the interpolation indices i and i it corre-

sponding interpolation points. In the online phase, a k-nearest neighbor algorithm

(KNN) is used to determine the classifier (basis and interpolation indices) that is

most suitable to an indicator. The indicator in this work is defined as:

v - (V1 )-1Fg(Sn) (B.14)

where 4P is the state basis obtained from POD.

B.5 Application Example

A case study is conducted to assess the quality of the order reduction methods in

terms of predictability with respect to changes in well controls. The tested geologic

model is shown in Figure B.1. It comprises a portion of the SPE 10th comparative
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study model. The grid is 30 x 110 x 4 (N, x N, x N_, where Nk is the number of

grid blocks in direction k) totaling 13,200 grid blocks. The physical dimension of

each grid block is 20 ft x 10 ft x 2 ft. There are four production wells located at

the corners of the model and one injection well located at the center. All of the wells

are under flowrate control. Permeability in the x-direction is depicted in Figure B.1.

Permeability is taken to be a diagonal tensor, with kx = ky. The porosity is constant

in this model and set equal to 0.25. The initial water and residual oil saturations

are zero. For oil, we set po = 45 lb/ft3, p, = 5 cp; for water, we set pw = 65 lb/ft3 ,

P,, =1 cp. The system is incompressible and capillary pressure and gravity effects

are neglected. The relative permeabilities for the oil and water phases are specified

as:

kro (Sw) = ko, 1 "W ,o (B. 15)1o - Swr Sor)

krw(S) f k or b (B.16)

where k'0 and ko? are the endpoint relative permeabilities. Here we set k? = k' = 1

and a = b = 2.

A training set of well production rates are devised to create a training run for the

reduced-order model. We specify the injection well to inject water at a constant

rate of 100 STB/day, while the four production wells produce also constantly at 25

STB/day. The training case was simulated for 1500 days using MATLAB Reservoir

Simulation Toolbox [69]. Snapshots of saturation and nonlinear phase potential term

are collected during every time step. The saturation bases are then constructed using

POD with 35 columns. We thus reduced the dimension of the problem from 13,200

variables to only 35 variables. In addition, the nonlinear phase potential term bases
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Figure B.1: Portion of the SPE 10 reservoir model (13,200 grid blocks) with four
producers and one injector. log10 k, is displayed with discrete interpolation points in
the background.

are constructed with 300 columns. The corresponding 300 interpolations points are

selected, which are shown in Figure B.1. For LDEIM, five clusters are considered,

and the number of interpolation points in each cluster is {149, 98, 72, 183, 246}. The

average number of interpolation points is 150, which is approximately half the number

of the DEIM interpolation points.

To test the performance of the reduced-order models, we follow He [52] which defines

a target flowrate schedule for each well. The target flowrate schedule for each well,

which is shown in Figure B.2, is randomly generated within an interval between 17

STB/day and 35 STB/day under the constraint that injected fluid (water) has to be

equal to produced fluid (oil and water) for incompressible flow model. The target
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schedule for each well is perturbed every 150 days. It is clear that the training

schedule, taken to be constant for all wells, is completely different from the target

schedule. We then interpolate between the training and target schedules to enable

systematic perturbation away from the training run. In particular, we specify the

test case flowrate as follows:

Utest = (1 - a)utraining + autarget, (B.17)

where Utraining is the training schedule, Utarget is the target schedule, and utest is the

test schedule interpolated by a weight factor a that is taken to be between 0 and

1. The error between the full-order model and the reduced-order model is expected

to increase with increasing a as the test case is entirely the target flowrate schedule

when a is 1. The error is quantified by the mismatch of the production rates of fluids.

For instance, the oil production rate mismatch is defined as:

=1 1Q0 ,FOM Q3,ROM (B.18)
nPW =1 ,FOM

where Qj,FOM is the oil production rate from the full-order model, Qi,ROM is the oil

production rate from the reduced-order model nP, is the number of production wells,

and T is the total simulation time.

Figure B.3 shows the simulation solutions of the oil water production rates and for the

four production wells using the training and target rate schedules. The dashed lines

show the training simulation solution that will be used to build the ROM, and the

solid lines display the reference target case solution, all of which are obtained by using

FOM. For the case of a = 1, computation times for FOM, POD, DEIM, and LDEIM

are presented in Table B.1, in which the accuracy indicator E0 is also presented. As

expected, the fastest method is LDEIM. Furthermore, LDEIM outperforms DEIM for
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Figure B.2: Training (dashed) and target (solid) well production schedules.
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accuracy even with much fewer interpolation points. Figure B.4 shows the simulated

flowrates for the four production wells using DEIM. The solid lines are the simulated

solution using FOM, while the dashed lines are the results out of DEIM. Although

the first production well shows a good match between FOM and DEIM, the other

wells show deviation from FOM results especially in the later part of the simulation.

This might be because the nonlinear term bases and the corresponding interpolation

points are not adequate to represent the physical characteristic for the corresponding

period of simulation. On the contrary, the results of LDEIM are in overall agreement

with the full-order model simulation results (Figure B.5). This means that the less

accuracy in DEIM can be rectified by using the bases and the interpolation points

tailored to the corresponding physical behavior. Table B.2 shows the oil production

mismatch estimates from using DEIM and LDEIM according to the value of a from

0 to 1. As it is expected, the error increases as a increases, and LDEIM always

outperforms DEIM.

Table B.1: Oil production mismatch and computation time of simulation runs (a = 1)

FOM POD DEIM LDEIM

Dimension 13,200 35 L= 50, M= 300 L= 50, M = 150
Eo (error) 0 0.010 0.039 0.026

Computation time (min) 563 9 6.9 5.3

Table B.2: Oil production mismatch estimates for reduced-order models (DEIM and
LDEIM)

a=0 a=0.2 a=0.4 a=0.6 a=0.8 a=1.0

DEIM 0.0050 0.0165 0.0240 0.0309 0.0376 0.0436

LDEIM 0.0051 0.0088 0.0133 0.0168 0.0197 0.0212

Overall, the results for all test cases demonstrate that the LDEIM is able to provide

simulation results in reasonable agreement with those from the full-order model. For
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this reservoir model, the full-order simulation runtime is about 563 minutes, while

the runtime for the LDEIM is about 5.3 minutes. We thus achieve a reduction of

computational time by a factor of 106. Although this reduction in computation is

considered modest as compared to computation time reduction of 0(1000) attained

by Chaturantabut and Sorensen [33] when using DEIM for nonlinear miscible viscous

fingering problem, we anticipate larger speedup factors when larger models are used.

This is because DEIM eliminates full evaluation of nonlinear terms and therefore less

time will be spent during Newton-Raphson iterations which will be very advantageous

for large models with large number of variables.
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Figure B.3: Training (dashed) and target (solid) simulations production rates.
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B.6 Conclusion

A reduced-order reservoir simulation model based on the combination of proper

orthogonal decomposition (POD) and a localized discrete empirical interpolation

method (LDEIM) is constructed. The application of LDEIM in 3D-reservoir sim-

ulation, in which the nonlinearity is significant due to gravity effects, has not been

attempted in the literature. The LDEIM depends on machine learning techniques in

order to train localized DEIM approximations and to find a corresponding indicator

during an online phase. A case study is carried out using SPE 10 geologic model, and

the result supports the use of LDEIM for efficiency with minimal loss of accuracy.

Therefore, the proposed reduced-order model based on LDEIM is expected to pro-

vide a good tool for efficient reservoir simulation. However, it should be noted that

the constructed reduced-order model is evaluated in terms of predictability only with

respect to changes in well controls. Thus, the developed reduced-order reservoir sim-

ulation model can be utilized for optimizing well control settings, which would require

a number of simulation runs when iterative schemes of minimization/maximization

are used. In future work, we plan to evaluate the applicability of the developed

reduced-order model for determining optimal well settings, also known as production

optimization.
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Nomenclature

Abbreviations

ared actual function reduction

B&B branch and bound

BHP bottom-hole pressure

BPIM best point interpolation method

CS cuckoo search

DE differential evolution

DEIM discrete empirical interpolation method

E&P exploration and producing

EIM empirical interpolation method

FD finite difference

FOM full-order model

GA genetic algorithms

GPS general pattern search

ICV inflow control valve

IPOPT interior point optimizer

LHS latin hyper-cube sampling

LTI linear time invariant

MADS mesh adaptive direct search
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MCS

MCS-MADS

MPE

MRST

NLP

NPV

POD

pred

PSO

PVI

ROM

SA

SLI

SPSA

SQP

STB

SVD

TBR

TOF

TPWL

WPO

Variables

B

C

F

G

g

modified cuckoo search

hybrid of modified cuckoo search and mesh adaptive direct search

missing point estimation

MATLAB reservoir simulation toolbox

nonlinear programming

net present value

proper orthogonal decomposition

predicted function reduction

particle swarm optimization

pore volume injected

Reduced-order model

simulated annealing

simplex linear interpolation

simultaneous perturbation stochastic approximation

sequential quadratic programming

stock tank barrel

singular value decomposition

truncated-balance reduction

time-of-flight

trajectory piecewise linearization

well pattern optimization

controls arrangement matrix

vector of nonlinear constraint functions

total flux vector

gravitational forces vector

residual vector
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Gc controllability Grammian

Go observability Grammian

I identity matrix

J Jacobian matrix

K absolute permeability tensor

p pressure vector

Q source/sink vector

T transmissibility matrix

U input control vector

v Darcy velocity

WL left transformation matrix (from TBR)

WR right transformation matrix (from TBR)

x poll center iterate

F filter set

F flux snapshots

P pressure snapshot matrix

S saturation snapshots

LB optimization variable lower bound

UB optimization variable upper bound

B reduced arrangement matrix

G reduced gravitational force vector

P reduced pressure vector

T reduced transmissibility matrix

D poll spanning direction matrix

ft water fractional flow

G generation number

g gravitational acceleration constant
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J optimization objective function

kr relative permeability

M set of poll trial points

nD poll spanning directions

p pressure

Pa egg discovery probability

q flow rate

,rW wellbore radius

S saturation

t time

z depth

WI well index

Greek Symbols

a schedule interpolation parameter or Levy flight step size

X merit function

A m  MADS mesh size

AP MADS poll size

E tolerance

71 poll size contraction parameter

rK calibration parameter for well placement

A phase mobility

<b L pressure left basis matrix

<b]a pressure right basis matrix

XF flux basis matrix

T saturation basis matrix

P, viscosity

Q control volume or bounded set of all allowed optimization variables
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porosity

S trial step increment for well control

mesh size contraction parameter

p density or calibration parameter for well controls

o- singular value or standar deviation

0 relative omitted energy

A trust-region size for well control

p1 golden ratio

p penalty parameter

h aggregated constraint violation function

Lc Lorenz coefficient

Subscripts

0 initial value

z interpolation indices vector

spatial index

spatial index or phase type

k iteration index

o oil phase

r reduced representation

t total

w water phase

Superscripts

R refer to function evaluated using ROM

F feasibility indicator

I infeasibility indicator

n time step, full-order dimension

w well
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