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Abstract

Competitive equilibrium provides a natural steady state for iterative combinatorial auctions
that maximize social welfare, and therefore the first step in auction design is to establish its
existence. Recent work by Baldwin and Klemperer (2012) has proved that the "demand type"

of valuations being "unimodular" is a necessary and sufficient condition for the existence of
a competitive equilibrium, but under the general setting where both buyers and sellers as
well as multiple copies of items may exist, and the supply could be any combination of items
available. In this work, we investigate the same condition under the more restrictive but
standard setting for combinatorial auctions, where only buyers and a single copy of each
distinct item are allowed and the supply is fixed to be the set of all available items.

First, we provide an alternative proof of the sufficiency result for unimodular "com-
plements" demand type, which defines a subclass of valuations for which a competitive
equilibrium exists according to Baldwin and Klemperer (2012). While their original proof
and analysis use tools from tropical geometry, our approach is based on linear programming.
Relying on a result from Bikhchandani and Mamer (1999) that a competitive equilibrium
exists if and only if a related linear program has an integral optimal solution, we provide a

direct proof that the linear program has an integral optimal solution. Our analysis provides
a fundamental understanding of the structure of the linear program and leads to various
properties which may be helpful in auction design.

Second, we provide an algorithm to determine the demand types of sign-consistent tree

graphical valuations, for which competitive equilibria are known to exist due to Candogan

et al. (2013). We then analyze the relationship between the set of the demand types of

sign-consistent tree graphical valuations and the set of unimodular demand types. Our

analysis implies that the unimodularity of demand type is not necessary for the existence of

a competitive equilibrium in combinatorial auctions.

Thesis Supervisor: Asu Ozdaglar
Title: Professor, Laboratory for Information and Decision Systems

Thesis Supervisor: Pablo Parrilo
Title: Professor, Laboratory for Information and Decision Systems
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Chapter 1

Introduction

In combinatorial auctions, a number of distinct, indivisible items are auctioned simul-

taneously and bidders are allowed to express preferences on combinations of discrete

items, rather than on individual items or continuous quantities. This is preferable to

auctioning each item separately when there are dependencies such as complements

and substitutes between different items. A spectrum auction is a well-known exam-

ple of a combinatorial auction, where there are complex complementary relationships

among the bands of electronic spectrums being sold. Combinatorial auctions are also

commonly used in truckload transportation, bus routes, and industrial procurement.

In many applications of combinatorial auctions, the main objective is to maximize

social welfare, which is the sum of the values of the bundles allocated to bidders.

Therefore, the existence of a Walrasian equilibrium, a set of allocation that maximizes

the welfare and prices that support the allocation, is a prerequisite for designing and

executing such auctions. Existing literature established the existence of the Walrasian

equilibrium either by imposing highly restrictive conditions on how demand behaves

when the price of an item is increased (such as Gross Substitutes (GS), Kelso Jr

and Crawford (1982), or Gross Substitutes and Complements (GSC), Sun and Yang

(2006)), or by requiring complex pricing structures that involve a different price for

each bundle of items and/or for each bidder (such as Bikhchandani and Ostroy (2002),

or Sun and Yang (2014)). The conditions in the former category do not support

complex complementary relationships between items, which are observed in various
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auctions. Those in the second category may not be practical, since the number of

different prices reported to the bidders at each stage of the auction is exponential

in the number of items and/or the different set of prices for each bidder is hard to

justify or be accepted. This motivates us to identify the weakest possible conditions

on valuations or demands under which a Warasian equilibrium exists, for the simplest

possible pricing structure, viz., linear and anonymous pricing.

Notable recent work by Candogan et al. (2013) identified a new class of valuations

for which a Walrasian equilibrium exists. This work investigates a special class of

valuations called graphical valuations, where the value of a bundle of items is given by

the sum of the individual values of items and values for the pairs of items that capture

the pairwise complementarity or substitutability between them. This valuation class

can naturally be represented in terms of a weighted undirected graph, where the nodes

correspond to items and the edges link pairs of items that exhibit complementarity or

substitutability. They established that for "sign-consistent tree" graphical valuations,

where the underlying graph is a tree and all bidders' valuations are according to the

same pairwise complementarity or substitutability relationships among the items, a

Walrasian equilibrium exists under linear and anonymous pricing.

Another remarkable recent work by Baldwin and Klemperer (2012) provided a

necessary and sufficient condition for the existence of a Walrasian equilibrium with

respect to any supply bundle, in a general economy with multiple copies of indivisible

items. In order to describe this condition, of valuations having "unimodular demand

type," they introduced a new framework of "demand types." Instead of working with

the direct utility functions as done in the previous literature, this framework is based

on certain properties on the geometric structure of the regions in the price space where

an agent demands different bundles. Intuitively, demand type can be thought of as

one possible way to represent complex complementary or substitutability relationships

among different bundles of items. This framework of "demand type" may be a useful

tool for categorizing and understanding demand, effectively incorporating existing

definitions (i.e., GS and GSC) from the literature discussed earlier.

In this work, we study this new framework of demand types under the standard
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setting for combinatorial auctions, in order to understand whether the same necessary

and sufficient condition applies to combinatorial auctions. Note that the work by

Baldwin and Klemperer (2012) is based on a general economy where both buyers and

sellers as well as multiple copies of items may exist, and the supply could be any

combination of items available. In contrast, we restrict our attention to the standard

economy for combinatorial auctions, where only buyers and a single copy of each

distinct item are permitted, and the supply is fixed to be the set of all available items. 1

This would allow our work to be more directly related and applied to combinatorial

auctions.

Our work provides two useful insights regarding the existence of a competitive

equilibrium in combinatorial auctions. First, we prove the sufficient condition for

the existence of a competitive equilibrium for a subset of unimodular demand types,

via linear programming. Our analysis leads to a fundamental understanding of the

structure of the linear program related to competitive equilibrium, which may provide

insights on auction design. Second, we analyze the demand types of sign-consistent

tree graphical valuations, for which a competitive equilibrium is known to exist due

to Candogan et al. (2013). Our analysis implies that the unimodularity of demand

type is not necessary for a competitive equilibrium to exist. In the rest of this section,

we explain our main contributions and in more detail.

In the first part of this work, we provide an alternative proof of the sufficiency

result from Baldwin and Klemperer (2012) for "unimodular complements" demand

types, which define a special subclass of unimodular demand types for which a com-

petitive equilibrium exists according to Baldwin and Klemperer (2012). While their

original proof and analysis use tools from tropical geometry, our approach is based

on linear programming. Relying on a result from Bikhchandani and Mamer (1997)

that a competitive equilibrium exists if and only if a related linear program has an

integral optimal solution, we provide a direct proof that the linear program has an

integral optimal solution.

'For more information about the difference between the model of Baldwin and Klemperer (2012)

and the standard model for combinatorial auctions, see Appendix A.
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Our analysis provides a fundamental understanding of the structure of the linear

program and leads to various properties which may be helpful in auction design.

In particular, the so-called "lattice" property from our analysis, which says that the

demand set of each bidder at any given prices forms a lattice with respect to the

partial order defined via subset inclusion, may be used in the design of auctions

with complementary items to reduce the communication complexity of auctions. For

example, instead of requiring bidders to report the entire demand set in each iteration,

we may ask them to reveal just the smallest and the greatest demanded bundles, since

such bundles exist for all bidders at any given prices, due to the lattice property.

In the second part of this work, we provide an algorithm to determine the demand

types of sign-consistent tree graphical valuations, for which competitive equilibria

are known to exist due to Candogan et al. (2013). Since both demand types and

graphical valuations are possible ways to represent complex complementarity and

substitutability among items, there exist natural relationships between demand types

and graphical valuations in some cases. In particular, we focus on graphical valuations

with respect to a "signed tree" graph, where the underlying graph is a tree with

signed edges and each edge weight is nonnegative for positive edges and nonpositive

for negative edges. Our algorithm generates the demand type of graphical valuations

with respect to a signed tree graph. Moreover, we show that any valuation that

has the demand type of graphical valuations with respect to a signed tree graph, is

graphical with respect to the same graph.

Using this result, we further analyze the relationship between the set of the de-

mand types of signed tree graphical valuations and the set of unimodular demand

types. We first identify some signed tree graphical valuations that have unimodular

demand types. We then present signed tree graphical valuations that have demand

types that are not unimodular. Finally, we show that there exist unimodular demand

types that do not correspond to any signed tree graphical valuation. Our analysis

implies that the unimodularity of demand type is not necessary for the existence of

a competitive equilibrium in combinatorial auctions. 2

2Although it may seem contradictory, this result is due to the fact the supply is fixed in combina-
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The outline of this thesis is as follows. In Chapter 2, we introduce the formal

model and preliminaries used in this work, such as efficient combinatorial auctions,

demand types, unimodularity, and graphical valuations. Chapter 3 is the first part of

our work, where we prove the existence of a competitive equilibrium when valuations

have a unimodular complements demand type. Chapter 4 is the second part of our

work, where we provide the algorithm to determine the demand types of signed tree

graphical valuations, and how they relate to unimodular demand types. Finally,

Chapter 5 concludes our work and presents possible future research directions.

torial auctions, and hence does not contradict Baldwin and Klemperer (2012). Please see Appendix

A for more details.
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Chapter 2

Model and Preliminaries

In this section, we describe the formal model and introduce relevant preliminaries used

throughout this work. In Section 2.1, we describe our model of efficient combinatorial

auctions, and discuss the notion of Walrasian equilibria. In Section 2.2, we present

the concept of tropical hypersurfaces and demand types. In Section 2.3, we define

unimodular demand types, which are the main focus of this work. In Section 2.4, we

present the definition of signed tree graphical valuations, which will be examined in

Part II.

2.1 Efficient Auctions and Walrasian Equilibria

In combinatorial auctions, there are single copies of N distinct, indivisible items to

be allocated among M bidders. We denote the set of items by . {1, . . ., N} and

the set of bidders by M = {1, . . . , M}. We denote a bundle of items as a vector s E

{0, 1}N, whose i-th component is set to 1 if i-th item is inthe bundle, and 0 otherwise.

Each bidder m E M has a value function, or a valuation, v" {0, }N - R+, where

V'm(s) is the value of any bundle s e {0, I}N to the bidder 7n. We assume that the

value functions are normalized, i.e., V'(0) = 0, and monotonically increasing, i.e.,

V"m(Sl) < v'(s2 ) if s1 < s2 .

Given bundles of items s" E {0, 1}N for all m E M, {s"1}meM is called a feasible

allocation if (i) each bidder m E M receives a bundle of items s', and (ii) each

12



item is assigned to at most one bidder. An efficient allocation is a feasible allocation

{sm}mEM that maximizes the welfare, defined as Zm vm(sm).

A simple and common pricing rule used in auctions is anonymous item pricing

rule, where a price pi for each item i E Af is suggested to all bidders and the price of

each bundle s is determined as the sum of prices of items in s. Given a price vector p =

(pi,. . . ,pN), the surplus of bidder m associated with bundle s is defined as Um(s)-p's.

We say that a bundle s* is demanded by bidder m if the maximum surplus lrm =

maxsE{O, 1jN{Vm(S) - pTs} is achieved for this bundle. The set of demanded bundles,

or the demand set of bidder m is denoted by D'n(p) = arg maxsE o,}1N{vrn(S) - pTS}.

A natural termination point for an iterative combinatorial auction is a set of

prices and an allocation where all bidders obtain one of their demanded bundles.

This outcome coincides with a Walrasian equilibrium, or a competitive equilibrium,

which is a classical equilibrium concept in microeconomic theory.

Definition 2.1.1 (Walrasian equlibrium). A Walrasian equilibrium, or a competitive

equilibrium, is a tuple (p, S), where p = (p1,... ,PN) is a nonnegative price vector

and S = (si,... ,s) is a feasible allocation such that (i) the bundle sm is demanded

by bidder m, i.e., s E Dm (p), and (ii) pi = 0 for all unallocated items i.

According to the first welfare theorem, an allocation S associated with a Wal-

rasian equilibrium is efficient. Moreover, the second welfare theorem implies that

given an efficient allocation S, there exists a price vector p that support a Warlasian

equilibrium whose allocation is S. Therefore, an auction terminating at a Walrasian

equilibrium maximizes social welfare. However, the Walrasian equilibrium may fail

to exist for some valuation profiles. Thus, establishing the existence of a competitive

equilibrium is a prerequisite for designing an efficient auction.

2.2 Tropical Hypersurfaces and Demand Types

Consider a bidder m with the valuation v m over the set of all items. Recall that the

demand set of the bidder is defined as Dm(p) = arg maxso, i}N{VM(S) -Ts}. The set

13



of prices p at which the bidder demands more than one bundle, i.e. {p I IDm(p) I > 1},

is known as a tropical hypersurface (TH) in a new sub-discipline of algebraic geometry

called tropical geometry. A tropical hypersurface can be thought of as a geometric

object that divides the price space into disjoint components, at which only one bundle

is demanded. Formally, a tropical hypersurface has a few identifiable components that

can be defined as follows.

Definition 2.2.1 (Basic Components of Tropical Hypersurface).

1. The cell interior of a TH at a price p consists of points p' such that Dm(p)

Drn(p'). A subset of a TH is a cell interior if it is the cell interior at some point

in the TH.

2. A subset of a TH is a cell if it is the closure of a cell interior of the TH. A cell

of dimension k is called k-cell, and an (n - 1)-cell is called a facet.

3. The boundary of a cell of a TH consists of those points in the cell that are not

in its cell interior.

4. A unique demand region is a connected component of the complement of a TH,

where a unique bundle is demanded.

A facet, or an (n - 1)-cell, of a tropical hypersurface is the set of prices at which

exactly two bundles are demanded except at the boundary, and is a border between

two unique demand regions. We can associate a primitive integer normal vector to

each facet, which represents a change in demand as we cross the facet in the price

space.

Definition 2.2.2 (Primitive Integer Normal Vector of Facet). Let F be a facet and

let s1 and s2 be the bundles demanded in the unique demand regions on either side.

The vector s2 - s1 is called a primitive integer normal of the facet F.

Note that the vector s2 - si is called a "normal" of the facet F in the definition. This

is because p - (s 2 - Si) is constant at all p E F, since the bidder is indifferent between

si and s2, that is, vr(si) P - S1 = V'r(S 2 ) - P - S2.

14



Having introduced the elements of tropical hypersurface, we can now define "de-

mand types." The notion of demand types was first introduced in Baldwin and

Klemperer (2012). Let D = {v 1, ... , V} be a set of primitive integer vectors in Z",

such that if v E D then -v E D. Note that we may often abuse the notation and

represent a demand type D by any n x E matrix whose columns comprise one repre-

sentative v of each pair v, -v E D, and refer to it as a demand type matrix, or the

matrix representation of a demand type.

Definition 2.2.3 (Demand type). A bidder or a valuation has a demand of type D

if all primitive integer normals to the facets of the corresponding tropical hypersurface

lie in the set D.

As an example, Figure 2-1 shows the tropical hypersurface for the value function

v {0, 1}2 -+ R+ defined as v((1, 1)) 3, v((1, 0)) = v((0, 1)) = 1, v((0, 0)) 0.

Note that the line segments L 1, L2 , ... , L5 do not contain the points A or B.

P2

U(1,o)

U(o,o)
2 L 1  A

L 
B L5

1 -1

U(1, 1)

L4 U(0,1)

12 Pi

Figure 2-1: The tropical hypersurface of the value function 'v: {0, 1}2 - R+ defined

as v((1, 1)) = 3, v((1, 0)) = v((0, 1)) = 1, v((0, 0)) = 0.

The basic components of tropical hypersurfaces can be identified according to

Definition 2.2.1:
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1. Cell interiors: L1 , L2 , ... , L5, A and B.

2. Cells that are facets: L 1 U A, L 2 UA, L 3 UAUB, L4 U B, and L5 U B.

3. Cells that are not facets: A and B.

4. Boundaries of the cell: A and B are the boundaries of the cells that include

them.

5. Unique demand regions: U(o,o), U(i,o), U(o,1), and U(0,0), where U. denotes the

unique demand region where s is the only bundle that is demanded.

The primitive integer normal vectors of facets L1 U A and L5 U B are (0, 1), of facets

L 2 U A and L4 U A are (1, 0), and of facets L 3 U A U B are t(1, 1), according to

Definition 2.2.2. It follows that the demand type of a bidder with value function v

1 0 1
is i , , 7 . We will often abuse the notation by including only

(0 ) 1
one representative of each pair (1,0), t(0, 1), and (1, 1) and using the matrix form

1 0 1
instead: .

2.3 Unimodular Demand Types

All bidders having a unimodular demand type is a sufficient condition for a compet-

itive equilibrium to exist for any supply bundle in a general economy, according to

Baldwin and Klemperer (2012). In order to define a unimodular demand type, we

first need a definition of totally unimodular matrices, which can be found in standard

textbooks on integer optimization such as Schrijver (1998).

Definition 2.3.1 (Totally Unimodular Matrices). A matrix A is totally unimodular

if each subdeterninant of A is 0, +1, or -1.

In particular, each entry in a totally unimodular matrix is 0, +1, or -1.

Then unimodular demand types can be defined as follows. 1

'Note that this definition is adopted from Baldwin and Klemperer (2012), but slightly modified
for our setup. Please see Appendix A for more details.
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Definition 2.3.2 (Unimodular Demand Types). We say that a demand type D is

unimodular if the matrix whose columns are the vectors of D is totally unimodular.

2.4 Signed Tree Graphical Valuations

Signed tree graphical valuations form a special class of valuations that exhibit fixed

pairwise complementarity and substitutability between items, predefined by the un-

derlying graph. Remarkable work by Candogan et al. (2013) established that com-

petitive equilibrium exists when bidders have graphical valuations with respect to a

signed tree. 2 The definition of graphical valuations below is due to Candogan et al.

(2013).

Definition 2.4.1 (Graphical Valuation). Let G = (AC, C) be a graph such that the set

of nodes correspond to the set of items K and the edges may exhibit complementarity

or substitutability. We say that the value function v : 2' -+ R+ is graphical with

respect to its value graph G, if it satisfies v(S) = ies 'i + E(ij)E-IijES Wij, where

{wju}g are the nonnegative node weights, and {wij}(ij)e are the edge weights.

In other words, a valuation is graphical if there exist node weights and edge weights

associated with the underlying value graph G, such that the value of any bundle S is

the sum of weights of the nodes and the edges contained in a subgraph of G induced

by the set of nodes S. Any edge with a positive weight signifies that the items that

correspond to the nodes connected by this edge exhibit pairwise complementarity,

and any edge with a negative weight signifies pairwise substitutability. Figure 2-2

shows an example of a graphical valuation.

In addition, let us define a signed graphical valuation. Recall that in graph theory,

a signed graph is a graph in which each edge has a positive or negative sign.

Definition 2.4.2 (Signed Graphical Valuation). A graphical valuation is signed if

the underlying value graph G = (K, E) is signed, and wij > 0 for each positive edge

(i, j) c E, and wij < 0 for each negative edge (i, j) E C.

2In Candogan et al. (2013), they use the term "sign-consistent" instead of "signed."
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V1

W13

U112

3

V3
V2 2

S

Figure 2-2: An example of a graphical valuation. The value of the bundle S above is

v(S) =v 1 + V2 + V 3 + w12 + W1 3 .

In other words, in a signed graphical valuation, the weight wj of each edge (i, j) E 9

has the corresponding sign of the edge in the underlying signed graph. Therefore, all

graphical valuations with respect to a signed graph have the same pairwise comple-

mentarity/substitutability structure among items.

For the rest of our discussion, when we say that a valuation is graphical with

respect to a signed graph, then we implicitly assume that the valuation is a signed

graphical valuation, in order to avoid unnecessary repetitions of the word "signed."

Finally, a signed tree graphical valuation is a signed graphical valuation, whose

underlying graph is a tree as well as signed.
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Chapter 3

Part I: Unimodular Complements

Demand Type is Sufficient for the

Existence of Competitive Equilibrium

In the first part of this work, we establish the existence of a competitive equilibrium for

a special subclass of the sufficient conditions introduced by Baldwin and Klemperer

(2012), i.e., when bidders have unimodular complements demand type. While the

original proof by Baldwin and Klemperer (2012) was based on tropical geometry, the

alternative proof we provide in this work is based on linear programming.

The outline of this part is as follows. In Section 3.1, we formally state the theo-

rem that we prove in this part. In Section 3.2, we introduce some preliminaries on

polyhedron that are required for the proof. In Section 3.3, we introduce our proof ap-

proach based on linear programming. Using the result from Bikhchandani and Mamer

(1997), we demonstrate that proving the the existence of a competitive equilibrium is

equivalent to proving the existence of an integral optimal solution to a certain linear

program. In Section 3.4 and Section 3.5, we discuss lattice lemma and zonotope con-

struction respectively, which are the main idea and tools for the proof. In Section 3.6,

we reformulate the optimal solution set of the linear program as another equivalent

system of equation and inequalities, and make use of the lattice lemma and zonotope

construction to show that an integral optimal solution exists.
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3.1 Problem Statement

The formal problem statement of the theorem we prove in this work is as follows.

Theorem 3.1.1. Suppose that all bidders have valuations of a demand type E con-

tained in {0, I}N. If the demand type D is unimodular, then a competitive equilib-

rium exists in a combinatorial auction with single copies of each indivisible item.

Note that this theorem is a rectricted version of the original one from Baldwin

and Klemperer (2012) for two reasons. First, for direct relevance and applicability to

combinatorial auctions, we restrict our economy to have single copies of each item and

only buyers, whereas Baldwin and Klemperer (2012) allows for multiple copies of items

and both buyers and sellers to be present. Moreover, while their work concerns the

existence of a competitive equilibrium with respect to all possible supply bundles, we

focused primarily on the existence of a competitive equilibrium with respect to a fixed

supply bundle consisting of all available items, which is standard in combinatorial

auction literatures. Due to this restriction, the necessary and sufficient condition

from Baldwin and Klemperer (2012) is sufficient but not necessary for the existence

of competitive equilibrium in our setup, as shown in Part II (Section 4). Please refer

to Appendix A for more details.

Second, we assume complementarity along with unimodularity of the demand

type. That is, for each vector in the demand type, all nonzero elements of the vector

are of the same sign. Such restriction would allow our proof using linear program-

ming to be simple, yet provide insights on why the unimodularity of the demand type

leads to the existence of competitive equilibrium. Moreover, it turns out that the

class of unimodular "complements" demand type has a nice structural property on

the demand set, which we call "lattice" property (see Section 3.4). Throughout this

work, we say that a demand type is complements if it is contained in {0, 1}N as in

the statement of the theorem above.
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3.2 Preliminaries on Polyhedra

In this section, we introduce some basic concepts and results on the geometric struc-

ture of polyhedra, which are treated in standard texts such as Schrijver (1998).

Let P := {x E R' I Ax < b} be a nonempty polyhedron in n dimensions. Sup-

porting hyperplanes, faces and edges of a polyhedron can be defined as follows.

Definition 3.2.1 (Supporting hyperplane). If c is a nonzero vector, and

6 = max{cT x | Ax < b}, then the affine hyperplane {x I cTx = 6} is called a

supporting hyperplane of P.

Definition 3.2.2 (Face and Edge). A subset F of P is called a face of P if F = P or

if F is the intersection of P with a supporting hyperplane of P. A face of dimension

1 is called an edge.

The following proposition states the condition under which a subset of a face of a

polyhedron is again a face of the same polyhedron.

Proposition 3.2.3. If F is a face of P and F' C F, then F' is a face of P if and

only if F' is a face of F.

Next, we introduce the definition of convex objects called cone and zonotope. A

nonempty set C of points in Euclidean space is called a (convex) cone if Ax + py E C

whenever x, y e C and A, p 0. The (convex) cone of an arbitrary set X C R" is the

set

cone(X) {Ax + ly I x, y E C, A, p > 0}

The cone generated by the vectors X1 ,... , Xd is the set

cone{xl,. .. , Xd} :{Aixi + - - - + Axa |A1 , ... , Ad 0}.

The following is a fundamental result in convex geometry from Carath6odory (1911).

Theorem 3.2.4 (Carath6odory's Theorem). If X C R' and x e cone(X), then

x E cone{x1,. . . , xd} for some linearly independent vectors x 1,..., xd in X.
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A zonotope is a set of points in Euclidean space constructed from vectors vi by

taking the sum of aivi, where each ai is a scalar between 0 and 1. Alternatively, it can

be viewed as a Minkowski sum of line segments connecting the origin to the endpoint

of each vector.

Finally, we introduce a well-known property of totally unimodular matrices, re-

lated to the integrality of polytopes.

Theorem 3.2.5. An integral matrix A is totally unimodular if and only if for all

integral vectors a, b, c, d the vertices of the polytope {x I c < x d, a < Ax < b} are

integral.

3.3 Linear Programming Approach

In contrast with the original work by Baldwin and Klemperer (2012), we use a linear

programming approach to prove the main theorem. In particular, we use the theorem

from Bikhchandani and Mamer (1997) that a combinatorial auction has a competitive

equilibrium if and only if a certain linear program (LP) has an integral optimal

solution. We use the following modification of the LP, where the theorem is not

affected as a result of modification.1

Primal Dual

max v"'(s)x"'(s) min 7 m + eTp
rnS m

s.t. X m(S) 1, Vm s.t. 7rm + STp ;> v"i(s), Vm, s
S

S Ys -x(s) + t = ep
M S

x"'(s) > 0, Vm, s

t ;> 0

'In effect, we have standardized the linear program from Bikhchandani and Mamer (1997) and
put it partially in a vector form to obtain the LP above.
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Note that the summations for s is over all possible bundles including the empty

bundle, all t = (t1 , ... ,tN) and p = (p1,... ,PN) are vectors, and e and 0 are the

vectors of all ones and all zeros, respectively.

In order to prove the existence of a competitive equilibrium, it is sufficient to show

that the primal LP above has an integral optimal solution, due to Bikhchandani and

Mamer (1997). Moreover, in an integral optimal solution to this LP, the values of

Xm(s) can be interpreted as an efficient allocation: xr"(s) is 1 if a bundle s is allocated

to bidder m, and 0 otherwise. In addition, p are the prices that support the allocation

in the competitive equilibrium, and 7r,, is a surplus of each bidder m.

We now take one step further by deriving a set of linear equations and inequalities

that is exactly the set of optimal solutions to the primal LP. To do this, we fix an opti-

mal basic feasible solution to the dual, and use the fact that the set of primal optimal

solutions is exactly the set of primal feasible solutions that satisfy complementary

slackness with the dual optimal solution, as follows.

First, note that the dual problem has at least one feasible solution since the feasible

set does not contain a line. Let (7r, p) be an optimal basic feasible solution to the

dual, where 7r = ( 1 ,... , 7rM). It is clear that 7n = max v'(s) -sTp, since (7r, P) is
sE{O,1}N

optimal. Let D"'(p) = arg max(v"'(s) - sTp), so m, s E D"'(p) are the indices of the
sE{O,1}N

active constraints among 7rm + sTp > Vrn(s) at (7r, p). Also let Z(p) = {I I pi = 0},

so Z(p) is the set of indices of active constraints among pi ;> 0.

Let x denote the vector (Xr"(s))ms . Suppose (x, t) is a feasible solution to the

primal. Then complementary slackness states that (x, t) and (7r, p) are the optimal

solutions to their respective problems if and only if

(CS) mrn( X (S) -)0, Vm
S

i( N si - X r(S) + ti - 1) = 0, V i
m S

Xm(S)(rm - sTp - V"m(S)) = 0, VM, s

tipi = 0, Vi.
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The first two lines of equations is always satisfied since (x, t) is feasible. The last

two lines of equations are equivalent to x'm(s) = 0 for m, s Dm(p), and tj = 0 for

i Z(p).

Let us rewrite the primal feasibility constraints with complementary slackness

conditions in the feasibility problem, (FP).

(FP) E ,s - X"(s) + It = e (3.1)
m sEDm(p)

Z xM (s)=1, Vm (3.2)
sEDm(p)

xm (s) > 0, Vm, s E Dm (p) (3.3)

tj ;> 0, V11 E Z (P) (3.4)

xM(s) = 0, Vm, s V Dm (p) (3.5)

ti = 0, Vi V Z(p) (3.6)

Following the discussion above, to introduce the next lemma.

Lemma 3.3.1. The solution set of (FP) is the set of optimal solutions to the primal

LP.

Proof. If (x, t) is a solution to (FP), then it is primal feasible and satisfies comple-

mentary slackness with the dual (optimal) feasible solution (ir, p). Therefore, it is

an optimal solution to the primal. Conversely, if (x, t) is a primal optimal solution,

then it is primal feasible and satisfies complementary slackness with (x, t). Thus, it

satisfies all equations and inequalities in (FP). E

The immediate consequence of this lemma is the following corollaries, which will

be useful for our proof.

Corollary 3.3.2. The solution set of (FP) is nonempty,

Proof. It follows from Lemma 3.3.1, since there exists at least one optimal solu-

tion to the primal. This is because the feasible set of the primal is nonempty (as
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x'(0) = 1,x'(s) = 0 for all s $ O,m E M and t = e is feasible) and the objective

value is bounded above. El

The next corollary is the most important result of this section.

Corollary 3.3.3. If there exists an integral solution to (FP), then a competitive

equilibrium exists.

Proof. Follows from Lemma 3.3.1, since an integral solution to (FP) is an integral

optimal solution to the LP. El

Therefore, in order to show that a competitive equilibrium exists, it is sufficient to

show that there exists an integral solution to (FP). We show this in the next few

sections. In Section 3.4, we show "Lattice" lemma, which states that at any given

prices, each bidder's demand set forms a lattice if the demand type is complements.

In Section 3.5, we use Lattice lemma to introduce how to construct a zonotope that

is equivalent to the convex hull of a demand set for each bidder, within the unit

hypercube whose vertex set is {0, 1 }N. These two sections provide the necessary tools

to prove that (FP) has an integral solution. In Section 3.6, we reformulate (FP)

as an "equivalent" system of equations and inequalities called (FP*), by replacing

the expressions for the convex hulls of demand sets with those for the corresponding

zonotopes as constructed in Section 3.5. The unimodularity of demand type will then

imply that (FP*) is an integral polyhedron, i.e., all its vertices are integral. This

will imply that (FP) has an integral solution by the "equivalence" of (FP) and (FP*),

which follows from the equivalence of the convex hulls of the demand sets and the

corresponding zonotopes.

3.4 Demand Set of a Bidder is a Lattice

In this section, we present an interesting structural property on the demand set of

a bidder when his demand type is complements in the "Lattice" lemma. The lemma

states that at any given prices, the demand set of a bidder with complements demand

type forms a lattice with respect to the partial order defined by subset inclusion (i.e.,
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s < t, if s C t). In this partial order, the meet (or infimum) V and the join (or

supremum) A are equivalent to the intersection and the union, respectively: that is,

s V t = s n t and s A t s U t.

Lemma 3.4.1 ("Lattice" Lemma). If a bidder has a demand type contained in {0, 1I}N

then for any given prices his demand set is a lattice with respect to the partial order

defined by subset inclusion.

Before we present the proof for this lemma, we first introduce a proposition needed

for the proof. The following proposition states that any vector that corresponds to

an edge in the convex hull of the demand set of a bidder, is contained in his demand

type.

Proposition 3.4.2. If there is an edge between bundles s1 and s2 in the convex hull

of bundles demanded by a single bidder at some prices, then s1 - s2 is in his demand

type.

Proof. If si and s2 are the only demanded bundles at the given prices, then the price

vector is on the facet between the unique demand regions for si and S2 in the tropical

hypersurface. Since Si - S2 is a normal to the facet, it is in the demand type by

definition.

Suppose there are other demanded bundles at the given prices p. Since there is

an edge between si and s2 in the convex hull C of demanded bundles, there exists a

supporting hyperplane cTs = 6 of C, whose intersection with C is the edge. It follows

that cTs, = cTs 2 = 6, and cTso < 6 for all other demanded bundlesSO o Si, s2-

Let us now perturb the price vector to p - cc for an arbitrarily small e > 0. If we

let 7r0 be the surplus of the bidder at the given prices p, then the surplus of the bidder

associated with a demanded bundle s at the perturbed prices is v'(s) - (p - ec)Ts =

ro + ecT s. So the maximum surplus is associated only with the bundles s, and s2

among the demanded bundles, as cTs is maximized at si and S2. Moreover, for an

arbitrarily small e, this value is greater than the surplus associated with any bundle

that is not demanded. Therefore, the surplus is maximized only for the bundles si

and s2 at the perturbed prices. This implies that at the perturbed prices p - cc, the
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only demanded bundles are s, and s2 , so the same argument follows as in the earlier

case. El

A direction consequence of Proposition 3.4.2 above is the following.

Corollary 3.4.3. If a bidder has a demand type contained in {0, 1}N, then every

vector that corresponds to an edge in the convex hull of his demand set at any given

prices is of the form {0, 1}N.

Having introduced the proposition and its corollary needed for the proof, we now

present the proof of the Lattice lemma.

Proof of Lattice lemma (Lemma 3.4. 1). If the bidder demands only one bundle, there

is nothing to prove. Assume that the bidder demands two or more bundles.

Let s and t be a pair of bundles that a bidder demands at a given price, denoted

as a 0/1 vector. We need to prove that s A t and s V t is also demanded by the bidder.

If either s < t or t < s, then since {s A t, s V t} = {s, t}, both s A t and s V t are

demanded. So let us assume that s and t do not include each other, and prove that

s A t and s V t are also demanded by induction.

Consider a pair of demanded bundles s and t that differ by just two items. Without

loss of generality, assume that s = (1, 0, v) and t = (0, 1, v) where v E {0, 1I}N-2.

Then s and t are on a 2-dimensional face F of a unit hypercube, and s V t = (0, 0, v)

and s A t = (1, 1, v) are the other bundles on F. Suppose that either s V t = (0, 0, v) or

s A t = (1, 1, v) is not demanded. Then there is an edge between s and t on the face

F, so there is an edge between s and t in the convex hull of demanded bundles, by

Proposition 3.2.3. However, the edge between s and t have the form s -t = (1, -1, 0),

which is a contradiction to Corollary 3.4.3.

Assume that for every pair of demanded bundles s and t that differ by less than

j items, both s V t and s A t are also demanded. Now, consider demanded bundles s

and t that differ by j items, and let us prove that both s V t and s A t are demanded.

Without loss of generality, let s = (1,... ,1,0,...,0, v) and t = (0, ... ,0, 1,...,1, v),

i j-i i j-i
where 1 < i <j (since otherwise s < t or t < s) and v E {0, 1IN-j.
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If some bundle x = (u, v) different from s, t, s V t, or s A t but shares the last

(N - j) items with s and t is demanded, then it is easy to show that both s V t
i i-i

and s A t must also be demanded. Let x =((1,...,10,...,01,1...10,...,01,V)

p q r s

S j-i

without loss of generality. Then s V x = (1,. . . , 10,. .. , 0, ... 0 v) and t V x

p q

i i-i

(0, ... , 0, 1, ... , 1, 0,... , 0, v) are both demanded, by the induction hypothesis. Since

either q > 1 or r > 1 (otherwise x = s), either s V x and t, or t V x and s, differ by at

most (j - 1) items. Therefore, either (s V x) V t or (t V x) V s must be demanded, by

the induction hypothesis. But in fact, (s V x) V t = (t V x) V s = s V t. Therefore, we

proved that s V t is demanded, and we can similarly prove that s A t is also demanded.

Let us now consider the case where every bundle other than s, t, sAt, and sVt that

share the last (N-j) items with s and t is not demanded. Assume, for a contradiction,

that either s V t or s A t is not demanded. We will show that there must be an edge

between s and t in the convex hull of demanded bundles, by constructing a supporting

hyperplane of the convex hull that contains only s and t among all demanded bundles.

This would contradict Corollary 3.4.3, since the edge between s and t is of the form

1(, . ,1, - 1, ..., - 1, 0, ... ,10).

i i-i N-j

Suppose that s V t is not demanded, and let v = (1,... , 1, 0,. .. , 0) without loss

k-j N-k

of generality. Then

s = (1,...,1 1,0,...,10,1,...,1 0,...,0), and t = (0, ... ,10,1, ... ,1,11, ... ,11,0,... 0).

j-i k-j N-k i j-i k-j N-k

We can construct a supporting hyperplane of the convex hull of demanded bundles

that contains only s and t among the demanded bundles as follows:

(x1 + - . + xj) (Xi+1 + - + Xj)a. Is ey to c +a(( -j+ ) + -o (1 - k)-e h k+y-l - s t aN

where a > 0. It is easy to check that s and t are on the hyperplane, while s A t and
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all bundles that do not share the last (N - j) elements with s and t are above the

hyperplane. All bundles other than s, t, s A t, and s V t that share the last (N - j)
items with s and t are irrelevant, since they are not demanded.

In the case where s A t instead of s V t is not demanded, the same hyperplane with

a < 0 instead of a >> 0 is the supporting hyperplane that contains s and t. FI

A direct consequence of the Lattice lemma (Lemma 3.4.1) is the following:

Corollary 3.4.4. If a bidder has a demand type contained in k{0, 1}N, then there

exists the smallest bundle in his demand set.

This property is the starting point for constructing the zonotope, as discussed in the

next section.

3.5 Zonotope Equivalent to the Convex Hull of a

Demand Set

In this section, we describe how to construct a zonotope that coincides with the

convex hull of each bidder's demand set, within the unit hypercube whose vertex set

is {0, 1I}N. Note that the demand type is assumed to be unimodular complements

throughout this section.

Let s' be the smallest bundle in D"'(p) for each m. Let sm, j = 1, . .. , Jm, be the

bundles in D"'(p) that are connected to s" by an edge in the convex hull of Dm (p).

Let d7 = s7 - sm, for all j 1,..., Jm. Then we immediately note the following:

Proposition 3.5.1. Each component of d," for j = 1,.. ., Jm is nonnegative.

Proof. For each j 1, . . . , Jm, s' is greater than s" by definition. It follows that s7

contains s", so d' = s. - s" must be a nonnegative vector. FI

The following lemma states that the vertex set of the zonotope constructed from

dl,. d and translated by sm, is the same as the demand set of a bidder, within

the unit hypercube whose vertex set is {0, I}N_
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Lemma 3.5.2. Consider s E {0, I}N. Then s E D"n(p) if and only if s = s" +

EZ3 dm for some index set J G {1,9..., Jm}.

Proof. Let us first prove the sufficient condition. Observe that the bundle s' is a

supremum of so + d7 for all j E Jm in the partial order defined by subset inclusion,

as so and dm's are nonnegative. Since s' + dT is in the demand set D" (p) for each

J E J, their supremum is also in Dm(p) by Lattice lemma (Lemma 3.4.1).

Let us now prove the necessary condition. Let us translate all demanded bundles

by -sm so that s' is at the origin. After the translation, the convex hull of demanded

bundles is contained in the cone generated by d, ... , dm. By Caratheodory's the-

orem, for each s E Dm(p), the vector s - s"' is in the cone generated by a set of

linearly independent vectors {d7}jEL, where L C ... , Jm}. In other words, there

exists nonnegative numbers aj,j c L such that s - s" =jCL ajd7.

In fact, it is easy to see that aj's are integers. This is because {d7}jEL form an

integral basis for the subspace they span, since they are in the demand type, which

was defined to be unimodular.

Moreover, we claim that aj's cannot be greater than 1. Suppose, for a contradic-

tion, that a3 > 1 for some j E L. Since s7 and s' are two different bundles, there

exists at least one nonzero component, say k-th component, of dm = s"' - s'. In fact,

this component is either +1 or -1, since all components of both s7 and s" are 0 or

1. So we have that the k-th component of aj d71 is greater than 1. Also, observe that

k-th components of all dj's have the same sign, and hence so do those of all ajdm's.

Therefore, the k-th component of Is - sm| = geEL IajdTI is greater than 1. This leads

to a contradiction, since s and s' are vertices of a unit hypercube, and therefore each

component of Is - sm"'I cannot be greater than 1.

Therefore, we have that s - s'= jEL ajd7 with aj = 0 or 1. The claim follows

by letting J = {j I a3 = 1}. l

This implies that the convex hull of the demand set of a bidder is the same as the

corresponding zonotope intersected with the unit hypercube, since the zonotope is

also convex. Such equivalence between the convex hull of the demand set and the
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zonotope will be used in reformulating (FP) as an "equivalent" system of equations

and inequalities, as discussed in the next section.

3.6 Equivalent Reformulation to an

Integral Polyhedron

In this section, we complete the proof of the main theorem of Part I (Theorem 3.1.1),

by showing that (FP) has an integral solution. This is done by reformulating it to an

"equivalent" system (FP*) of equations and inequalities, using the equivalence of the

convex hull of demand sets and the corresponding zonotopes as in Section 3.5. After

the reformulation, the vectors in the demand type show up in the coefficient matrix of

(FP*). Since demand type is unimodular, this will imply the integrality of (FP*). It

follows that (FP) has an integral solution, due to the "equivalence" between (FP) and

(FP*). Note that that the demand type is assumed to be unimodular complements

throughout this section.

First, we first reformulate (FP) as an "equivalent" system (FP*) of equations and

inequalities, by replacing the expressions for the convex hull of D" (p) for each bidder

m in (FP), with the expressions for the zonotope that is equivalent to the convex hull

within the unit hypercube with vertex set {0, 1I}N, as in Section 3.5.

(FP*) d. -X + It = e -Zs" (3.1)
m jm

0 < XT < 1 Vm,j (3.2)

tj > 0, Vi E Z(p) (3.3)

ti = 0, Vi < Z(p) (3.4)

By construction, (FP) and (FP*) is "equivalent" in a sense that, if there exists a so-

lution to (FP), then so does (FP*); and moreover, if there exists an integral solution

to (FP*), then so does (FP). The following lemma proves this.
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Lemma 3.6.1.

1. If there exists a solution to (FP), then so does (FP*)

2. If there exists an integral solution to (FP*), then so does (FP).

Proof. 1. By Lemma 3.5.2, for each s E D'(p), there exists a7 E {0, 1} forj

1,..., J, such that s = s' + 1:J ajmd". Let us fix one such representation for each

s E Dm (p), and define a7(s) to be the value of am in this representation.

Suppose that (x, t) is a solution to (FP), where x = (xr"(s))m's and t = (ti, . . . , tN)

Let XT = ZSEDm(p) am(s)xm(s).

We claim that ((XT)m,j, t) is a solution to (FP*). Lines (3.2), (3.3) and (3.4) are

clearly satisfied due to all constraints except for line (3.1) of (FP). Line (3.1) can be

verified as follows:

SM" + dml -xm + It

sm' x" (s) + dm ajm (s) xr"(s) + It
'M sED-(p) (sEDm (p)

(s' + a (s)d) x(s) + It
rm sEDm(p)

=1 E s-x(s)+It=e,
rm sEDm(p)

where the first equation holds since EEDm(p) X'r(S) = 1 by line (1) of (FP), and the

last equation follows from line (3.1) of (FP).

2. Suppose that ((x7)m,j, t) is an integral solution to (FP*).

We claim that sm := sm"+ E Xd" is in the demand set D m (p). To see this, first

observe that x7 is either 0 or 1, due to line 2. If we let Jm ={j = 1}, then

sM= s+X j dm, which is nonnegative and integral by definition and Proposition

3.5.1. In fact, sm is must be in {0, 1}N, since we have that Em s' + It = e from line

(3.1) of (FP*) and that s", t and I are nonnegative. Therefore, this bundle is in the

demand set Dm (p), due to Lemma 3.5.2.
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For each m, set Xm(s) = 1 only for s = sm, and set xm(s) = 0 for all other s. It

is easy to verify all conditions in (FP) are satisfied. Therefore, ((xm(s))m,s, t) is an

integral solution to (FP). El

Next, we show that the new system (FP*) is an integral polyhedron in the next

lemma. This is because the vectors that correspond to the edges of the convex hulls

of bidders' demand sets are in the unimodular demand type, and these vectors show

up as columns in the coefficient matrix of (FP*). Based on this, we show that the

coefficient matrix of the equations (3.1) in (FP*) is totally unimodular, which implies

that (FP*) is an integral polyhedron.

Lemma 3.6.2. The polyhedron described by (FP*) is integral.

Proof. Let us show that the coefficient matrix A of the equations (3.1) in (FP*) is

totally unimodular. Then by Theorem 3.2.5, it follows that (FP*) is an integral

polyhedron.

The coefficient matrix A is of the following form.

1. 1 1 .. Nl ..XM t .. t N

X1  x2  -- x - 1  -- 1 1

A=
d d ... d ... d ... dI

Since dm is an edge in the convex hull of Dm(p) for all m, j, by Proposition

3.4.2, it is in the demand type. Since demand type is unimodular, it follows that the

coefficient matrix A is totally unimodular (as appending an identity matrix preserves

total unimodularity). El

Using the lemmas we introduced in this section, we now prove that the main

theorem of this part (Theorem 3.1.1), by showing that (FP) has at least one integral

solution.
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Proof of Theorem 3.1.1. In order to show that a competitive equilibrium exists, it is

sufficient to show that (FP) has an integral solution due to Corollary 3.3.3. To do

this, we show that (FP*) has an integral solution. Then by Lemma 3.6.1, it follows

that (FP) also has an integral solution.

We claim that (FP*) is nonempty. To see this, recall that (FP) is nonempty from

Lemma 3.3.2. Since (FP) has a solution, it follows that (FP*) also has a solution by

Lemma 3.6.1. Also, recall that (FP*) is integral, from Lemma 3.6.2.

Since (FP*) is a nonempty and integral polyhedron, it has at least one vertex that

is integral. This vertex is an integral solution to (FP*).

To summarize, we have shown the existence of competitive equilibrium when ev-

ery bidder has the same unimodular complements demand type, in combinatorial

auctions. Our proof is based on linear programming, in contrast with Baldwin and

Klemperer (2012), which uses tools from tropical geometry. The LP-based approach

provides insights in two different perspectives.

First, we introduce a structural property of the demand set, i.e., the demand set

forms a lattice with respect to the partial order defined by subset inclusion. This

maybe used to in the design of combinatorial auctions, e.g., to simplify the demand

report by requiring bidders to report only the smallest and the greatest demanded

bundles.

Second, we gain an understanding of the fundamental structure of the LP related

to the competitive equilibrium. More specifically, we show that the LP has an integral

solution, due to the "hidden" unimodularity in the coefficient matrix of the system of

equations and inequalities (FP) corresponding to the set of optimal solutions. Such

"hidden" unimodularity is revealed by transforming (FP) so that the vectors corre-

sponding to the edges of the convex hull of the demand set appear in the coefficients,

since the edges are in the unimodular demand type.
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Chapter 4

Part II: Demand Types of Signed

Tree Graphical Valuations

In the second part of this work, we analyze the demand types of signed tree graph-

ical valuations in Section 4.1, and the relationship between the set of demand types

of signed tree graphical valuations and the set of unimodular demand types in Sec-

tion 4.2. Our analysis implies that for combinatorial auctions, the unimodularity of

demand type is not necessary for a competitive equilibrium to exist.

4.1 Determining the Demand Type of Graphical

Valuations with Respect to a Signed Tree

In this section, we provide a constructive algorithm for determining the demand type

of graphical valuations with respect to a signed tree. Recall that the signed tree

graphical valuations are the class of valuations for which competitive equilibria are

known to exist, due to Candogan et al. (2013). Therefore, analyzing the demand types

of signed tree graphical valuations will provide insights on whether it is necessary for

the demand type to be unimodular for a competitive equilibrium to exist, as discussed

in the next section. Before we present our result, we introduce some results from graph

theory that are required for our analysis.
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Let us first discuss a well-known result on signed graphs. A signed graph is an

undirected graph where each edge has a positive or a negative sign. A positive cycle

of a signed graph is the one in which the number of negative edges is even, and a

negative cycle is the one that is not positive. A signed graph is balanced if all its

cycles are positive. A theorem by Harary (1953) states that a signed graph G is

balanced if and only if the set of nodes of G can be partitioned into two disjoint sets

such that each positive edge joins nodes in the same set and each negative edge joins

nodes in different sets. Moreover, his constructive proof includes how to form such a

partition.

Note that a signed tree graph is balanced, so the theorem above can be applied.

Below is an algorithm to partition the set of nodes Af into the two disjoint sets /Ni

and K 2 with the desirable property described above for a signed tree graph, adopted

from Harary (1953).

Algorithm 1 Partition of the nodes of a signed tree graph into two disjoint sets

Input: a signed tree graph G = (N, 8).

Output: two disjoint sets M1 and X2, which is a partition of K, such that any positive

edge joins nodes in the same set and any negative edge joins nodes in different sets.

Pick an arbitrary node i in the graph, and assign it to the set K 1 .

for each node j do

if the number of negative edges in the path from i to j is even then

Assign j it to the set N1.

else

Assign j to the set K 2.

end if

end for

Figure 4-1 shows a signed tree graph and the partition of nodes generated by

Algorithm 1, after assigning node 1 to the set of black nodes.

36



2

S5 .7 8

Figure 4-1: A signed tree graph where the set of black node and the set of white

nodes form a partition of the nodes, such that any positive edge joins nodes in the

same set and each negative edge joins nodes in different sets.

Note that as long as the graph is connected, there is a unique partition that has

the desired property that positive edges connect nodes in the same set while the

negative edges connect nodes in different sets, ignoring the ordering of .AA and N2.

This ensures that the demand type of graphical valuations with respect to a given

signed tree graph is determined uniquely.

Note that in the partition generated by Algorithm 1 above, the items that cor-

respond to the nodes in the same set can only exhibit (pairwise) complementary re-

lationships among them, since any edge between the nodes that correspond to these

items is positive. Similarly, the items that correspond to the nodes in different sets

can only exhibit (pairwise) substitutability relationships between them. Therefore,

this partition, among all possible partitions, maximizes the sum of the values of the

sets in the partition for any graphical valuation with respect to the signed tree graph

used as input.

Such partition of nodes is used in the algorithm for constructing the demand

type of signed tree graphical valuations (Algorithm 2), to assign appropriate signs

to each element in the demand type. At each step of the algorithm, we add to the

demand type a pair of vectors ds corresponding to each subset S of nodes, when

the subgraph induced by S is connected. In ds, only the elements that correspond

to the nodes S are nonzero. Among these elements, the ones that correspond to the

nodes in one set of the partition will be +1, and the ones in the other set will be -1.

In other words, for each vector that is added to the demand type, any two nonzero

elements corresponding to the items in the same set of the partition are of the same
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sign, while any two nonzero elements corresponding to the items in different sets of

the partition are of different signs.

To see why this intuitively makes sense, let us consider how pairwise comple-

mentarity and substitutability are represented in the demand type. If two items are

complements to each other, the nonzero elements corresponding to these items in a

vector in the demand type have the same sign. On the other hand, if two items are

substitutes to each other, the nonzero elements corresponding to these items in a

vector in the demand type have the opposite sign. Figure 4-2 illustrates this for two

items that are complements and substitutes.

P2. P2.

Pi P1

(a) Tropical hypersurface for complements, (b) Tropical hypersurface for substitutes,
i.e., V((1, 0)) + V((0.1)) > V((1, 1)) i.e., V((1, 0)) + W((01)) > V((1, 1))

Figure 4-2: Tropical hypersurfaces for two items that are complements and substi-

tutes. For complements, (1, 1) is the normal to a facet; for substitutes, (1, -1) is

the normal to a facet. Note that the two nonzero elements have the same sign for

complements, and different signs for substitutes.

Since any pair of complementary items are in the same set of the partition gener-

ated by Algorithm 1, any vector added to the demand type by Algorithm 2 has the

same sign for elements corresponding to these items. Similarly, since any pair of sub-

stitutable items are in different sets of the partition, any vector added to the demand

type by Algorithm 2 has different signs for elements corresponding to these items.

This is consistent with the representation of complementarity and substitutability in

the demand type.

Let us now formally present an algorithm to construct the demand type of any

graphical valuation with respect to a given signed tree graph.
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Algorithm 2 Demand type of signed tree graphical valuation

Input: a signed tree graph G = (N, E).

Output: the demand type of any graphical valuation with respect to the input graph.

Partition the set of nodes N into K 1 and N'2 using Algorithm 1.

for each nonempty subset S of nodes do

Let Gs be the subgraph of G induced by S

if Gs is connected then

Add the vectors dS = i(di,..., dN) to the demand type, where each

component of ds is defined as:

+l, ifiESnN1 ,

di= -1 ifiESnl 2,

0, otherwise.

end if

end for

Figure 4-3 shows a tree graph and its demand type generated by Algorithm 2.

1 0 0 1 0 1

0 1 0 1 1 1

0 0 1 0 -1 -1

(a) A partitioned signed tree graph. (b) The demand type of (a)

Figure 4-3: A signed tree graph with a partition of nodes into the sets of black and

white nodes, and the corresponding demand type that Algorithm 2 generates.

Note that in the demand type of graphical valuations with respect to a signed

tree graph generated by this algorithm, each row corresponds to an item, and each

column corresponds to a subset of the nodes whose corresponding induced subgraph

is connected. Therefore, the number of rows is equal to the number of items, and the
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number of columns is equal to the number of subsets of the nodes whose corresponding

induced subgraph is connected.

Let us now introduce two lemmas regarding the conditions on the valuation func-

tion for which there does not exist a facet between the unique demand regions of

S, and S2 in the corresponding tropical hypersurface, where the two bundles S1 and

S2 differs by at least two items. Since the existence of the facet between the unique

demand regions of Si and S2 implies that the normal vector S1 - S 2 to the facet is in

the demand type, these lemmas specify how the conditions on the valuation function

relate to the demand type.1 Therefore, these lemmas are the main ideas used in the

proof of our main result that Algorithm 2 generates the demand type of graphical

valuations with respect to a signed tree graph.

Lemma 4.1.1 states that for any two bundles S1 and S2 that differ by at least two

items, if there exist another pair of bundles T1 and T2 whose sum is equal to the sum

of Si and S2 , such that v(Ti) + v(T2) > v(S1 ) + v(S2 ), then there is no facet between

the unique demand regions of Si and S2. 1

Lemma 4.1.1. Suppose that bundles S1 and S2 differ by at least 2 items, i.e., |S1 -

S21 > 2. Then there is no facet between the unique demand regions of S1 and S2 , if

there exists some bundles T1 and T2 such that (i) {T1, T2 } {S, S2}, (ii) T + T2 =

S1 + S2 , and (iii) v(Ti) + v(T2) > v(SI) + v(S2 ).

Proof. Suppose, for a contradiction, that there exists a facet between Si and $2. Then

there exists a price vector p such that v(Si) - p -S1 = v(S2 ) - p S2 > v(S) - p -S for

all bundles S # Si, S 2. It follows that for each pair of bundles T1 and T2 that satisfies

the conditions (i) and (ii) above, we have that v(Si) - p - S1 > v(Ti) - p - T and

v(S2 ) - p -52 = v(T2 ) - p -T2 . Summing up these two inequalities and using condition

(ii), we have that v(SI) + v(S2) > v(T1 ) + v(T2) for all pairs of bundles T and T2

satisfying the conditions (i) and (ii). Therefore, there does not exist bundles T1 and

T2 satisfying all three conditions (i), (ii), and (iii) above, which is a contradiction. El

'Note that throughout this section, we abuse the notation when describing bundles, by using

both the set notation and the vector notation interchangeably, which will be clear from the context.
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An equivalent statement to the lemma above is that if there is a facet between

the unique demand regions of S1 and S2 , then v(S1 ) + v(S2) > v(T1 ) + v(T2 ) holds

for any other pair of bundles T and T2 whose sum is equal to the sum of S1 and S2 .

From this, the conditions for a valuation function to have a certain demand type can

be obtained by examining each vector in the demand type.

Suppose that a vector ds is in the demand type where S denotes the set of

indices corresponding to nonzero elements in ds, and let Si and S2 are the set of

indices corresponding to entries +1 and -1 respectively. Then there exists some

X C K \ (S1 U S2 ) such that S1, S2 maximizes v(Si U X) + v(S2 U X), among the

partition of S into two sets, for any valuation v that has this demand type. That is,

there exists X C K \ (Si U S2) such that

{S1, S2} = arg maxv(T1 U X) + v(T2 U X),

T1UT2 =S
T1 nT2 =0

for any valuation that has the demand type containing ds.

This provides an intuition for our use of the partition of nodes in constructing

the demand type of graphical valuations with respect to a signed tree graph. Recall

that in the partition K1,AK 2 of nodes generated by Algorithm 1, positive edges join

nodes in the same set and negative edges link nodes in different sets. This implies

that for any set S C K of bundles, S n M1 and S n K 2 is the partition of S that

maximizes the sum of the values of the sets in the partition. Therefore, among any

partition of S with two sets, if there exists a facet between the unique demand regions

of the sets that comprise a partition, then this partition must be S A nK 1 and S n K 2 .

The normal vector to this facet (if it exists) is (S n K 1 - S n K 2). As a result, if

there exists any vector ds in the demand type, then ds must have +1 entries for the

elements corresponding to one set of the partition S n K 1 , S n K 2 , and -1 entries for

the elements corresponding to the other set.

Lemma 4.1.2 is the special case of Lemma 4.1.1, for when Si and S2 differ by ex-

actly 2 items. In this case, the sufficient condition from Lemma 4.1.1 for the existence
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of the facet between the unique demand regions of S, and S2 is also necessary.

Lemma 4.1.2. Suppose that bundles S1 and S2 differ by exactly 2 items, i.e.,

IS1 - S2 1 = 2. Then there does not exist a facet between the unique demand regions

of S1 and S2 , if and only if v(S1 ) + v(S2 ) < v(Ti) + v(T2 ) for the bundles T1 , and T2

such that (i) {T1 , T2 } {S , S2}, and (ii) T1 + T2 = S1 + S2.

Proof. The sufficient condition follows from Lemma 4.1.1. Let us prove the necessary

condition. Suppose the contrary, that v(Si) + v(S2 ) > v(Ti) + v(T2) for the bundles

T1 , and T2 that satisfy conditions (i) and (ii). Let S1 + 2 = (Xi, x 2 ,.- .-, xN). Due to

the condition that Si and S2 must differ by exactly 2 items, only the two elements of

S1 S+2 that correspond to the items that are included in exactly one of Si and S2

must be 1, while all other elements are either 0 or 2. Without loss of generality, let

the first two elements be the ones that are 1, i.e., X 1 = X 2 = 1, and xi = 0 or 2 for all

i=3, . . . ,IN .

Consider a price vector p = (pi,P2,.- , PN), where we fix arbitrarily high prices for

items i such that xi = 0, and arbitrarily low prices for items j such that xj = 2 . Then

at this price vector p, only the bundles S1, S2 , T1 and T2 may be demanded, where

T1 and T2 are the bundles that satisfy conditions (i) and (ii). From the inequality

v(Si) +v(S 2 ) > v(Ti) +v(T2) and condition (ii), we have that (v(S1 )- P -S) + (v(S 2) -

p - S 2) > (v(Ti) - p - Ti) + (v(T2 ) - p - T2 ) for any price vector p, and hence for the

price vector p we selected. In addition to the previously chosen elements p3, -.- , PN

of the price vector p, let us choose pi and P2 so that v(Si) - p - S1 = v(S 2 ) - p S2

and v(Ti) - p -T1 = v(T2) - p - T2 , which exists since the ratios of the coefficients of pi

to P2 in both equalities are different after moving all terms to one side. At this price

vector p, we have that v(S1) - p -S1 = v(S 2 ) - p - S2 > v(T1) - p -Ti = V(T2) - P -T2,

and therefore v(S1 ) - p -S = v(S2) - p - S2 > v(S) - p - S for all bundles S ' S1, S2 .

Therefore, there exists a facet between the unique demand regions of Si and S 2 . 1I

Having introduced all required lemmas, we now present the main theorems of this

section. Theorem 4.1.3 states that the output of the algorithm is the demand type of

any graphical valuation with respect to the signed tree input graph, and conversely,
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any valuation that has this demand type must be graphical with respect to the same

graph.

Theorem 4.1.3. Let G be a signed tree graph. Suppose that D is the demand type

generated by Algorithm 2 for the input graph G. Then:

1. D is the demand type of any graphical valuation with respect to G.

2. Any valuation with demand type E is graphical with respect to G.

The proof of the first part of the theorem is proceeded as follows. In order to show

that D is the demand type of any graphical valuation v with respect to G, we need to

show that for any vector d G {0, l}N that is not in the demand type, for any pair

of bundles Si and S2 such that S1 - S2 = d, there does not exist a facet between the

unique demand regions of S1 and S2 in the tropical hypersurface of v. This is because

SI - S2 is the normal to the facet between the unique demand regions of S1 and S2 ,

which must exist in the demand type if such facet exists. Let S,11 and 12 be the

set of indices of d the correspond to nonzero, +1, and -1 entries, respectively. Since

S1 - S2 = d, there exists X C K \ S such that Si = 11 U X and S2 = 12 U X.

In order to prove that there does not exist a facet between the unique demand

regions of Si and S2, it is sufficient to find the pair of bundles T and T2 that are

different from Si and S2 and satisfy T1 +T2 = S1+S2 and v(T1)+v(T2 ) > v(S1)+v(S2 ),

due to Lemma 4.1.1. Note that according to Algorithm 2, any d C {0, l}N that

is not in the demand type must fall into one of the two cases: (i) the subgraph

Gs of G induced by S is not connected, or (ii) the subgraph Gs is connected, but

d # ds, where ds is defined as in Algorithm 2. For case (i), we can find T1 and

T2 with the desired property, by using the fact that GS is not connected. For case

(ii), if we let K 1 , K 2 be the partition of the nodes K generated by Algorithm 1, then

T, = (SnK 1 ) U X, T2 = (SnK 2) UX are the desired pair of bundles. This is because

M, K 2 is the unique partition of the nodes such that each positive edge joins nodes

in the same set and each negative edge joins nodes in different sets. It follows that

S n K 1 , S n K 2 is the partition of S that maximizes the sum of the values of each set,

which implies that v(T1) + v(T2) v(Si) + v(S2 ).
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The proof of the second part of the theorem proceeds by induction. We assume

that the statement holds for any valuation whose domain is k > 2 available items, and

show that it holds for any valuation whose domain has k +1 > 3 items. Suppose that

G is a signed tree graph with k + 1 nodes corresponding to the items, and D is the

demand type generated by Algorithm 2 for the input graph G. Let v be any valuation

that has the demand type D, and we will show that v is graphical with respect to

G using induction. Let us pick two nodes n1 , n 2 in G that are not connected by an

edge. Let G-n, be the graphs that are obtained from G by eliminating the node ni

and its adjacent edges, and let G-2 be similarly defined for n2. We use the inductive

assumption on Gn, and G-n2 to argue that valuation v is graphical with respect to G,

for the bundles that are contained in either .A\ {n1} or .A\ {n1}. For the bundles that

are not contained in these sets, i.e., the bundles that contain both items ni and n2,

observe that a vector with only nr1 -th n 2-th entry being nonzero does not exist in the

demand set, since ni and n2 were defined to be not connected by an edge. Therefore,

due to Lemma 4.1.2, we have that v(X U {n, n2 }) +v(X)= v(XU{n1})+v(XU{n 2})

holds for any X C M \ {ni, n2 }. Since we already have that v(X), v(X U {n}), and

v(X U {n2 }) is graphical with respect to G, from this equation we can deduce that

the valuation v for any bundle of the form X U {n, n2}, i.e. any bundle that contains

both n, and n2 is also graphical with respect to G, completing the proof.

Proof of Theorem 4.1.3. 1. Let us first prove that the demand type D generated

by Algorithm 2 for the input graph G is the correct demand type of any graphical

valuation with respect to G. We need to show that all primitive integer normals to the

facets of the tropical hypersurface of v are contained in the the demand type D. It is

sufficient to show that for every possible primitive integer normal d E {0, l}N that

does not exist in , for every possible pair {S1 , S2 } of bundles such that S1 - S2 = d,

there is no facet between the unique demand regions of Si and S 2 .

Consider a possible primitive integer normal d = (d 1 ,.. . , dN) E {0, l}N that is

not contained in D. Let I+ := {i - +1}, 1- := Ii I di = -1}, and [L := {i I di =

0}. Consider any pair of bundles Si and S2 that satisfy S1 - S2 = d. Then there exists

a bundle X C [ 0 such that S1 = -T U X, S2 = I- U X.
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Let S be the set of indices i such that di is nonzero, i.e., S : = + U _, and let Gs

be the subgraph of G induced by S. Since d is not added in any step of Algorithm 2,

it must be the case that either (i) Gs is not connected, or (ii) Gs is connected, but

d 5 ds. First, suppose that case (i) holds. Since Gs is not connected, the set of

nodes S can be partitioned into two nonempty, disjoint set of nodes A and B so that

there is no edge that joins nodes in different sets. Let T, = (-E+ n A) U (l n B) U X

and T2 =(+ nB) U ( AnA) UX. Then Ti +T 2  S1+S2, and {T1 , T2 } 4 {S1, 2}.

Moreover, it can be easily shown that v(Ti) + v(T2) = v(S1 ) + v(S2 ), since the edges

contained in either T1 or T2 are exactly those in Si and S2. Therefore, by Lemma

4.1.1, there is no facet between the unique demand regions of Si and S2 .

Next, suppose that case (ii) holds. Let I 1 and N.2 be the partition of I that

the algorithm used for determining the demand type. Consider the bundles T1 :=

(SnM1) U X and T2 := (SnoK2) UX. Then T1 + T2 = S1+S2, and {T1 , T2 } / {S1, S2}

since d $ ds. Moreover, v(Ti) + v(T2) > v(Si) + v(S2 ), since S n. Hi and S n 2

is the partition of S that maximizes the sum of edge weights contained in either of

the sets, and the weight of any edge contained in X or between X and S is counted

exactly once for both v(T1) + v(T2) and v(S1 ) + v(S2) . Therefore, by Lemma 4.1.1,

there is no facet between the unique demand regions of Si and S2 .

2. Next, let us prove for any demand type D that is a possible output of Algorithm

2, any valuation with demand type D must be a graphical valuation with respect to

the corresponding input graph. We prove this by induction on N, the number of items

in the signed tree graph G that is used as an input to the algorithm for the output

D.

Base Case: For N = 2, the possible output demand types of the algorithm for

1 0 1
signed tree graphical valuations are for the connected two-node graph

1 0 1
with positive edge, and for the connected two-node graph with negative

(0 1 -1)
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1 0 1
edges. Suppose that v is a valuation with demand type . Since (1, -1) (

(0 1 1)
D2 , there must not exist a facet between the unique demand regions of (1, 0) and (0, 1).

Thus, by Lemma 4.1.2, we must have that v((1, 1)) + v((0, 0)) v((1, 0)) + v((0, 1)).

Let v, := v((1, 0)), v2 := v((0, 1)), and w12 : v((1, 1)) - V1 - v2 . Then v 1 , v 2 , W 1 2 > 0

by the monotonicity and the preceding inequality. Therefore, this valuation is a

graphical valuation with respect to a connected two-node graph with positive edge.

we can similarly verify that a valuation with demand type is a graphical

(0 1 -1)
valuation with respect to a connected two-node graph with negative edge.

Induction Step: Suppose that N = k, k > 2, if a valuation is of a demand type

that is a possible output of the algorithm for some signed tree graphical valuation

with N items, then it must be a graphical valuation with respect to the corresponding

input graph. Let us prove the same for N = k + 1. Let D be a demand type that

is an output of the algorithm for a signed tree input graph G = (K, ) with k + 1

items, and let v* be a graphical valuation with respect to G.

Consider a valuation v that is of the demand type D. Since k + 1 > 3, We can

find two nodes ni, n2 of G that are not connected by an edge.

i. n 2

Figure 4-4: Two nodes ni and n 2 that are not connected by an edge

Let v_, be the valuation over all items except for item ni, which can be obtained

by setting v,, (S) = v(S) for each S C K \ {ni1 }. If we fix an arbitrarily high price

for item ni for all price vectors p, then only the bundles that do not contain item ni

will be demanded at these prices. All facets that exist at these prices must be in the

demand type, so the valuation vn1 must have a demand type D-,,, which can be
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obtained by eliminating the n1-th row of the original demand type D.

Let G-,, be a graph that is obtained from G by eliminating the node ni and

its adjacent edges, and let V*_1 be the valuation over all items except for item ni1 ,

where v*l(S) = v*(S) for each bundle S C K \ {n,}. It is clear that G_, 1 is still a

signed tree graph, and that V* is still a graphical valuation with respect to G-n.

Moreover, Dn1 is the output of the algorithm for the graphical valuation v*n with

respect to the signed tree graph G__.

Therefore, by the inductive assumption, the valuation v-n1 is a graphical valuation

with respect to the signed tree graph G_,,. Let {vi}ieg\{n, 11 and {wij}(iJ)CE I jn, be

the node and edge weights, respectively, associated with the graphical valuation v_

Using an analogous argument by setting an arbitrarily high price for item n2 instead

of ni1, we can also establish that vn2 is a graphical valuation with respect to G-12

with node weights {V}iEg\{f 2 } and edge weights {W }(i ,j) -

It can be easily seen that all node and edge weights shared by the graphical

valuations v_, and v-, 2 are consistent: vi = v' for all i E n\{i, n2} and wij = wl

for all (i, j) C S such that {i,j} n {n,, n2} = 0. This is because v(S) = vnl(S)

LieS Vi + L(j)eE Ns ?wig = 0-A2() = Eies v + 2i( 3 )eE I idjS wl for eachSC

K \ {ni, n2}. Note that we have already defined the weights on all nodes and edges

in the signed tree graph G, since n1, n2 were defined as two leaf nodes that are not

connected by an edge. From now on, let us denote all the node and edge weights

defined so far, as {vi}Eg and {Wij}(iJ)eg, without an apostrophe(').

Thus far, we have established that the valuation for all bundles S such that C

Kr\ {n} or S C K \ {n 2} is graphical with respect to G = (K, E) with node weights

{ vi}tii and edge weights {wij}(ij)c. It remains to show that the valuation for all

bundles S that contain both item n, and item n2 is also graphical with respect to the

same value graph.

Note that any vector d{ni,n 2} C {0, l}N, where only the n-th and n 2-th elements

are nonzero, is not contained in the output demand type D of the algorithm for the

graphical valuation v* with respect to C as input. This is because the subgraph of

G induced by {ni, n 2} is not connected, by our definition that the nodes n, and n2

47



are not connected by an edge in G. Let X C K \ {ni, n2 }, S ={n, n2 } U X, T =

{ni} U X, T2 = {n2 } U X. Then T and T2 are the only pair of bundles such that

T1 + T2 = S + X, and {T1 , T2 } f {S, X}. There does not exist a facet between the

unique demand regions of S and X, nor between those of T and T2 , since the normal

vectors S - X and T - T2 of these facets, with only the ni-th and n 2-th element as

being nonzero, is not contained in D. Therefore, by Lemma 4.1.2 we must have that

v(S) + v(X) = v(TI) + v(T2 ). (4.1)

Note that we already know v(X), v(Ti) and v(T2 ) in terms of the graphical valuation

with respect to G with node weights {vi}ieg and edge weights {Wij}(i,j)cg. Moreover,

we have that

v(Ti) = v(X) +v, + ( wi,, v(T2) = v(X)+v, 2 + S wn. (4.2)
iEXI (i,ni)EE iCX I (i,n2)EE

Plugging (4.2) into (4.1) and rearranging, we obtain

v(S) = v(X U {ni, n2 }) = v(X) + vnj + vn2 + 5 win + Win2
iEX I (i,nri)E. iEX I (i,n2)ES

Since the valuation for each bundle X C K \ {ni, n2 } is graphical with respect to G,

we conclude that the valuation for all bundles that contain both item ni and item n2

is also graphical with respect to the same graph G.

Finally, the next theorem states that the output of Algorithm 2 is the "minimal"

demand type of a strictly signed graphical valuation with respect to G, in a sense that

for each vector in the demand type, there exists a facet whose normal is this vector in

the tropical hypersurface of the valuation. Here, strictly signed graphical valuation

with respect to G means that each edge weight is nonzero. This theorem ensures that

the demand type of signed tree graphical valuations constructed by Algorithm 2 does

not contain any unnecessary columns, when we analyze whether the demand type of

graphical valuations with respect to a particular signed tree graph is unimodular in

the next section.
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Theorem 4.1.4. Suppose v is a strictly signed graphical valuation with respect to a

signed tree graph G, i.e., the associated edge weights are strictly positive for positive

edges and strictly negative for negative edges. Let D be the demand type that is

generated by Algorithm 2 for the input G. Then for each vector d in the demand type,

there exist a facet with normal d in the tropical hypersurface of v.

Proof of Theorem 4.1.4. Let us prove that for each vector d in the demand type D

produced by Algorithm 2 for a strictly signed tree input graph G, there exist a facet

with normal d in the tropical hypersurface of a strictly signed graphical valuation v

with respect to G. Consider a vector d G D. Let + := {i I di = +1} and 1- :=

{i I di = -1}. It is sufficient to prove that there exists a facet between bundles I+

and 7_. To prove this, we will construct a price vector p = (Pi,. , PN) at which only

these two bundles are demanded.

Let S be the set of indices i such that di is nonzero, i.e., S :I+ U k. Consider

the subgraph Gs of the original graph G induced by S. Since d E D, the graph Gs

must be a connected tree. Moreover, if we let K1 and N2 be the partition of K that

the algorithm used for determining the demand type, then + g .A1 and I- C .N2,

without loss of generality.

Let L the leaf nodes of Gs. For each node i E L, let pi = v({i}) vi. In the

graph Gs, let N+(i) be the set of neighbors j of node i, such that the edge weight

wij is positive. For each node i E Gs, let pi = vi + 1 EjEN+(i) Wij- For each node

G Cs, set pi to be arbitrarily high. Let Gs n K 1 = U"Ai and Gs n 2 = UIBi

be the decomposition of Gs n -A and Gs n K 2 into the connected sets of nodes in

the subgraph of GS induced by Gs n 1 and Gs n K 2 , respectively. Then at the

prices p, only the unions of some Ai's, the unions of some Bj's, and the empty set are

demanded. Let us perturb p for an arbitrarily small E > 0 to obtain p(E) = p - E,

where EieGs1W Ei j = jEGsI2 ej. Then at the prices p(E), only the two bundles

Gs n K 1 and Gs n K 2 are demanded, as long as all edge weights are nonzero. El
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4.2 Demand Types of Signed Tree Graphical

Valuations vs. Unimodular Demand Types

In this section, we study the relationship between the set of the demand types of signed

tree graphical valuations and the set of unimodular demand types. We will present

three examples to illustrate this relationship. First, we show an example of some

signed tree graphical valuations whose corresponding demand types are unimodular.

However, another example shows that not all signed tree graphical valuations have

unimodular demand types. This would imply that the unimodularity of demand

type is not a necessary condition for the existence of competitive equilibrium under

the standard setting for combinatorial auctions. Finally, we present a unimodular

demand type that no signed tree graphical valuation can have.

Let us now present the first example of signed path graphical valuations, whose

demand types are unimodular. A signed path graphical valuation is a graphical

valuation with respect to a path graph that is signed, where the path graph with N

nodes can be defined as the graph G = (K, S) with nodes Kr {i}f 1 and edges E

{(i, z + 1)}N 1 . In order to show that the corresponding demand type is unimodular,

we argue that the demand type is equivalent to a network matrix, which is known

to be totally unimodular due to a remarkable work by Tutte (1965). The network

matrix can be defined as follows.

Definition 4.2.1 (Network Matrix). Let T = (V, A) be a directed tree graph that is

connected. Let A0 be another set of arcs on the same node set V. Let us define a

matrix M, where the rows correspond to the arcs A and the columns correspond to the

arcs A 0 . To compute each entry Mij of M at row i c A and column j = (s, t) E A 0,

look at the s - t path P in T; then the entry can be defined as

+1 if arc i appears forward in P,

Mij = -I if arc i appears backward in P,

0 if arc i does not appear in P.
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Such matrices are called network matrices. We say that T and A 0 represent M.

We now present the example of signed path graphical valuations, which have

unimodular demand types.

Example 4.2.2 (Signed Tree Graphical Valuations with Unimodular Demand Type).

A signed path graphical valuation has a unimodular demand type, since the demand

type of a signed path graphical valuation is a network matrix. Given a graphical

valuation with respect to a signed path graph G of demand type D, we can construct

a directed tree graph T, which represents the network matrix that is equivalent the

matrix representation of D, as follows. Refer to Figure 4-5 for an example.

1. Create N + 1 nodes for the directed tree graph T.

2. Create an arc (1, 2) from node 1 to 2. This arc corresponds to the first node of

the signed path graph G.

3. For i = 2, 3,...., N, if the edge (i - 1, i) in G is positive, then add an arc between

node i and i + 1 in the same direction as the arc between node i - 1 and i in

T. Otherwise, add the arc in the opposite direction. This arc corresponds to the

i-th node in G.

(a) A signed path graph

1 3 2 3 4 3 5 6

(b) A directed graph

Figure 4-5: Any graphical valuation with respect to the signed path graph in (a) has
the demand type whose matrix representation is equivalent to the network matrix
represented by the directed graph in (b) and all possible arcs on its nodes.

It can be easily verified that the network matrix represented by T and the set of

all possible arcs on its nodes is equivalent to the demand type matrix of the graphical
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valuation with respect to G. Since any network matrix is totally unimodular, this

implies that the demand type of a signed path graphical valuation is unimodular.

The next example demonstrates that graphical valuations with respect to a star

graph with 3 positive edges has a demand type that is not unimodular. It follows

that any graphical valuation with respect to a signed tree graph, where some node

has more than two adjacent edges of the same sign has a non-unimodular demand

type.

Example 4.2.3 (Signed Tree Graphical Valuations with Non-Unimodular Demand

Type). Consider graphical valuations with respect to a positive-edge star graph with 4

nodes, where node 1 is the center node.

2

+ 1 +

3 4

Figure 4-6: Example of a signed tree graphical valuation that has a non-unimodular
demand type.

The demand type corresponding to this signed star graph can be determined by

Algorithm 2 as:

1 0 0 0 1 1 1 1 1 1 1

0 1 0 0 1 0 0 1 1 0 1

0 0 1 0 0 1 0 1 0 1 1

0 0 0 1 0 0 1 0 1 1 1

This demand type is not unimodular, since the determinant of the submatrix indicated

by the square box above is -2. It is easy to see that this submatrix exist in the demand

type of graphical valuations with respect to any signed tree graph, where some node has

more than two adjacent edges of the same sign. Therefore, such signed tree graphical

valuations have non-unimodular demand types.
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This example implies that the unimodularity of demand type is not a necessary

condition for the existence of competitive equilibrium under the standard setting

of combinatorial auctions. This is because there exists a competitive equilibrium

if all bidders have graphical valuations with respect to the same signed tree graph,

according to Candogan et al. (2013). Since the demand type corresponding to the

example above is not unimodular, this is a case where there exists a competitive

equilibrium, even though all bidders have a non-unimodular demand type.

Our final example shows that there exists a unimodular demand type that cannot

correspond to any signed tree graphical valuation.

Example 4.2.4 (Unimodular Demand Type that Does Not Correspond to Any

Signed Tree Graphical Valuation). Any valuation with the following unimodular de-

mand type D cannot be a signed tree graphical valuation:

1 0 0 1 0 1

Df= 0 1 0 -1 1 0 (4.3)

0 0 1 0 -1 -1

This is a valid demand type, since the valuation v({1}) 2,v({2}) = 2,v({3}) =

2, v({1, 2}) = v({1, 3}) = v({2, 3}) = v({1, 2, 3}) = 3 is of this demand type.

Suppose that a valuation v with demand type D is a graphical valuation with respect

to a signed tree graph G, for a contradiction. By analyzing the demand types after

eliminating each row of D and using Theorem 4.1.3, we can easily see that there must

be a negative edge between the nodes {1 and 2}, {2 and 3}, and {1 and 3}, respectively,

in the signed tree graph G. However, these edges comprise a cycle, which contradicts

the assumption that G is a tree.

1

2 3

Figure 4-7: If we assume that there exists a signed tree graphical valuation that has
the unimodular demand type D in (4.3), then the underlying graph must have a cycle,
which is a contradiction.
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The Venn diagram shown in Figure 4-8 illustrates the relationship between the set

T of the demand types of signed tree graphical valuations and the set U of unimodular

demand types, as implied by the three examples above. Example 4.2.2 belongs to the

intersection T nU, and Example 4.2.3 and Example 4.2.4 belong to T \U and U \ T,

respectively. Note that C is the set of demand types D such that a competitive

equilibrium exists if each bidder has demand type D.

C

IT U

Figure 4-8: Relationship between the set T of demand types of signed tree graphical
valuations and the set U of unimodular demand types, where C is the set of demand types
D such that a competitive equilibrium exists if each bidder has demand type D.
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Chapter 5

Conclusion

This work analyzes the necessary and sufficient condition of having unimodular de-

mand type for the existence of a competitive equilibrium introduced by Baldwin and

Klemperer (2012). While they investigate this in a general setting where both buyers

and sellers as well as multiple copies of items may exist, and the supply could be

any combination of items available, we analyze the same condition under the more

restrictive but standard setting for combinatorial auctions, where only buyers and a

single copy of each distinct item are allowed and the supply is fixed to be the set of

all available items.

On the one hand, we provide an alternative proof via linear programming that all

bidders having a unimodular demand type is sufficient for a competitive equilibrium

to exist, when the demand type is restricted to be complements. Relying on a result

from Bikhchandani and Mamer (1997) that a competitive equilibrium exists if and

only if a related linear program (LP) has an integral optimal solution, we provide a

direct proof that the LP has an integral optimal solution. Our analysis illustrates why

the unimodularity is related to the existence of a competitive equilibrium, by showing

how the unimodularity of demand type contributes to the integrality of the optimal

solution set of the LP, resulting in the existence of a integral optimal solution to the

LP. Moreover, for the case of unimodular complements demand type, our analysis

unveils a property that the demand set of each bidder at any given prices forms a

lattice, which may be helpful in auction design.
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On the other hand, we provide a constructive algorithm that determines the de-

mand type of graphical valuations with respect to any signed tree graph, for which a

competitive equilibrium is known to exist due to Candogan et al. (2013). We show

that any graphical valuation with respect to a signed tree graph has the demand

type generated by this algorithm, and conversely, any valuation of this demand type

must be graphical with respect to the same graph. Using this result, we analyze the

relationship between the set of the demand types of signed tree graphical valuations

and the set of unimodular demand types. Our study shows that these two sets are

different: there exists demand types of signed tree graphical valuations that are uni-

modular, and some that are not unimodular; there also exists a demand type that

is unimodular, but does not correspond to any signed tree graphical valuation. The

existence of signed tree graphical valuations whose demand type is not unimodular

implies that the unimodularity of demand type is not necessary for a competitive

equilibrium to exist in combinatorial auctions.

Our work suggests a few possible future research directions. One possible direc-

tion is to study what conditions on demand types are necessary for the existence

of competitive equilibrium in combinatorial auctions. Such study may allow one to

extend the set of demand types or signed graphs for which a competitive equilibrium

exists, if all bidders have the same demand type or graphical valuations with respect

to the same signed graph. Another interesting direction is to design an auction for

unimodular complements demand type by utilizing the lattice property. For example,

one may consider an iterative auction in which each bidder reports the smallest and

the greatest demanded bundles instead of the entire demand set, which would reduce

the communication complexity of the auction.
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Appendix A

Differences Between the Model of

Baldwin and Klemperer (2012) and

the Standard Model for

Combinatorial Auctions

In this section, we describe the differences between the model of Baldwin and Klem-

perer (2012) and the standard model for combinatorial auctions. Understanding these

differences will help us resolve the results of our work that might appear contradictory

to that of Baldwin and Klemperer (2012).

Consider an economy with N items, which come in indivisible units. In the model

of Baldwin and Klemperer (2012), each agent has a valuation v : A -- R over a finite

set A C; ZN of possible bundles, called the domain of the valuation. Note that either

negative bundles are permitted to allow for sellers as well as buyers.

In contrast, in the standard model for combinatorial auctions that we use, we

assume that there is only a single copy of each item, so the set of available items can

be defined as KV {1, 2, ... , N}. Naturally, each bidder has a valuation v : 2A -+ R+,

where the domain is restricted to all possible subsets of available items K. Allowing

only a single copy of each item ensures that each bidder's valuation is concave. This
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is discussed in more detail in Section A.1. Moreover, restricting to have only a single

copy of each item allows us to adopt a slightly different definition of unimodular

demand type than in Baldwin and Klemperer (2012), which is equivalent, but easier

to describe. This is discussed in more detail in Section A.2.

In combinatorial auctions, the valuation for each bundle is assumed to be nonneg-

ative. We pose additional assumptions that the valuation is normalized, i.e., v(0) = 0,

and monotonic, i.e., v(S) < v(T), if S C T. These two assumptions would allow us

to restrict our attention to nonnegative price vectors, since all critical points of the

tropical hypesurface will be contained in the nonnegative orthant.

Besides the difference between the models, the statements of the theorem are

also different regarding for which supply bundle the competitive equilibrium exists.

In Baldwin and Klemperer (2012), they say that a concave demand type D always

has a competitive equilibrium, if for every set of agents with concave valuation of

demand type D, and for any supply bundle in the domain of aggregate valuation, a

competitive equilibrium exists. Here, the domain of aggregate valuation is defined as

the Minkowski sum of the domain of all agents. With this definition of always having

a competitive equilibrium, their actual theorem is the following:

Theorem A.0.5 (Baldwin and Klemperer (2012)). A concave demand type D always

has a competitive equilibrium if and only if it is unimodular.

However, the standard model for combinatorial auctions only concerns a compet-

itive equilibrium for a fixed supply bundle, namely the set of all available items /V.

We may restate the theorem from Baldwin and Klemperer (2012) according to this

model as follows. 1

Theorem A.0.6 (Restatement of Baldwin and Klemperer (2012) for Combinatorial

Auctions). Suppose that all M bidders have a valuation of demand type D. A demand

type D is unimodular if and only if a competitive equilibrium exists for each supply

bundle with at most M copies of each item.

'Note that we drop the "concavity" condition here since each valuation is guaranteed to be concave

under our setting.
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Clearly, if a competitive equilibrium exists for each supply bundle with at most

M copies of each item, then a competitive equilibrium exists in the standard sense of

combinatorial auctions. Therefore, Theorem A.0.6 implies our main theorem (Theo-

rem 3.1.1) of Part I (Section 3) that the competitive equilibrium exists if the demand

type is unimodular, but the converse may not be true.

Recall that the main objective of Part I was to provide an alternative proof of

this result via linear programming. In Part II, we have shown that the converse is

not true, but this does not necessarily contradict the original necessary and sufficient

result of Baldwin and Klemperer (2012). This is because, Baldwin and Klemperer

(2012) prove the necessary and sufficient condition for the existence of competitive

equilibrium with respect to all possible supply bundles, whereas we show that the same

condition is only sufficient for the existence of competitive equilibrium with respect

to a fixed supply bundle.

A.1 Concavity of Valuations

The theorem from Baldwin and Klemperer (2012) requires the valuations to be

concave. In this section, we show any valuation over all possible subsets of N -

{1, 2,... , N} as in the standard setting for combinatorial auctions is concave. We

first introduce the definition of concavity in this context.

Definition A.1.1. A function v : A -+ R is concave if A C ZNis convex (as a subset

of ZN) and if v can be extended to a weakly concave function on RN.

It has been proven by Milgrom and Strulovici (2009) that concave functions are

precisely those for which there are no bundles in A that are never demanded. That

is:

Lemma A.1.2. Let A C ZN. A function v : A -+ R is concave if only if for all

x c A, their exists p E RN such that x E D(p) := argmaxA{v(s) - pTs}.

In the following proposition, we show that any valuation over the set {0, 1}N is

concave by using Lemma A.1.2
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Proposition A.1.3. Any function v : {0, 1}N -+ R is concave.

Proof. Is sufficient to show that for all x E {0, 1}N, their exists p E RN such that

x E D(p) := arg max.E{0,1}N{V(S) - p s}, due to Lemma A.1.2. Consider a bundle

x E {0, 1}N. Set the price of every item i contained in the bundle x, i.e. xi = 1, to

be arbitrarily low and the price of all other items to be arbitrarily high. Then at this

price p, only the bundle x will be demanded; that is, x E D(p). l

Therefore, we do not have to be concerned about ensuring the concavity of valu-

ations under the standard combinatorial auctions setting.

A.2 Definition of Unimodular Demand Types

Our definition of unimodular demand types is slightly different from the original def-

inition in Baldwin and Klemperer (2012). However, the two definitions are consistent

in combinatorial auctions with only a single copy of each items. Before we discuss the

differences between the two definitions, let us introduce the definition of a unimodular

matrix, which is required for the discussion.

Definition A.2.1 (Unimodular Matrices).

1. Let U be a nonsingular square matrix. Then U is called unimodular if U is

integral and has determinant 1.

2. For any m x n matrix A of full row (or column) rank, let a basis of A be a

nonsingular submatrix of order m (or n). A matrix A of full row (or column)

rank is unimodular if A is integral, and each basis of A has determinant 1.

3. A matrix A of rank r is called unimodular if A is integral and if for each

submatrix B consisting of r linearly independent columns of A, the greatest

common divisor of the subdeterminants of B of order r is 1.

The definitions above are consistent with each other and are provided in the order of

increasing generality. Note that total unimodularity implies unimodularity, but the

converse may be false.

60



The following is a well-known property of unimodular matrices.

Theorem A.2.2. A matrix A is totally unimodular if and only if the matrix [I A]

is unimodular.

Baldwin and Klemperer (2012) defines a demand type D to be unimodular if any

linearly independent set of vectors in D is an integer basis for the subspace they

span2 . This condition is slightly weaker than the matrix representation D of demand

type D being totally unimodular, and stronger than D being unimodular:

D is totally unimodular #* D is a unimodular demand type => D is unimodular.

However, under the standard setting for combinatorial auction with a single copy

of each item, all three conditions above turn out to be equivalent, as the next propo-

sition shows. Proposition A.2.3 says that the demand type matrix D must contain

the identity matrix I. This implies that if D is unimodular, then D is totally uni-

modular due to Theorem A.2.2. Therefore, it follows that all three conditions above

are equivalent.

Proposition A.2.3. Given an economy endowed with N distinct indivisible items,

consider the set V of valuations over all possible bundles. Then the set Vv G V of

valuations that correspond to a demand type D is nonempty if and only if D contains

the set of coordinate vectors I = {ei 1 i= 1, . .. , N}.

Proof. First, let us prove the sufficient statement. Suppose that D contains I. Then

any linear valuation v that satisfies v(S U T) = v(S) + v(T) for all S, T such that

S n T = 0 is of demand type D. Therefore, V is not empty.

Now, for the necessary statement, it is sufficient to prove that the tropical hyper-

surface of any valuation v in V has facets with the normal ei for each i. Let us set

the price pi of an item i to be -1 and all other prices to be arbitrarily high. Then

2A set of s linearly independent vectors in Z' is an integer basis for the subspace they span, if
and only if among the determinants of all the s x s matrices consisting of s rows of the n x s matrix
whose columns are these s vectors, the greatest common factor is 1.
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these prices correspond to a unique demand region for the bundle of single item i. If

we keep increasing the price of item i, then at some point we will cross a facet and

reach a unique demand region for the empty bundle. The normal of this facet is ej,

so ej must be in the demand type D. Thus D contains I. 1l
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