In this Letter, we choose a hollow waveguide filled with gas as the generating medium because the diffraction of the laser beam is eliminated and nearly constant laser intensity can be maintained for an extended interaction length, which are favorable to the phase matching in general. The waveguide further decouples the laser’s geometric phase along the radial distance. This makes the hollow waveguide an ideal setup to keep a constant waveform as the laser propagates. The hollow waveguide has been widely used in harmonic generation experiments: for temporal and spatial pulse shaping of the drive laser [21,22], quasiphase matching (QPM) [23,24], fully phase-matched harmonic generation [25–27], cutoff extension with mid-infrared lasers [28,29], and the selection of electron trajectories [30].

To achieve highly efficient, bright HH generation in the soft x-ray range, we propose to combine two advanced laser technologies: waveform synthesis and laser guiding by the waveguide. We identify the optimal conditions for generating best-quality harmonics and uncover the underlying mechanism of dynamic phase matching. We show that the best phase-matched harmonics from the extreme ultraviolet (XUV) to soft x rays have low divergences (smaller than 1 mrad), which can be compared to vacuum ultraviolet (VUV) or XUV harmonics generated by traditional 800-nm lasers [31–36]. In comparison, soft x-ray harmonics generated with a midinfrared laser alone reported the full divergence angle of about 7 mrad [37] or 4 to 8 mrad [38] (half divergence angle should be compared to 1 mrad). The details of our simulations are given in the Supplemental Material [39].

To discuss the benefit of using a synthesized waveform, we first show the total harmonic yield at the exit of the hollow waveguide (near field) generated by the waveform (WF) of 1.6- and 0.533-μm laser pulses in Fig. 1(a). The laser parameters are shown in Table I (see WF1). To achieve the highest cutoff of about 250 eV (close to the single-atom cutoff) and the highest harmonic yield...
FIG. 1 (color online). (a) Total harmonic yield emitted at the exit of the hollow waveguide and (b) harmonic yield integrated within 1 mrad using an aperture in the far field for two-color (1.6 ± 0.533 μm) waveform (WF1 in Table I) and single-color (SC) laser, where gas pressure is 50 torr. The corresponding harmonic divergences in the far field given for WF1 (c) and for SC (d). Harmonic divergences of WF1 shown for two other gas pressures: 10 torr (e) and 100 torr (f). Length and radius of the waveguide are 5 mm and 125 μm, respectively. The vertical fringes in (c)–(f) represent individual harmonics.

simultaneously, we have varied both the waveguide length and the gas pressure, and found that the optimal values were 5 mm and 50 torr. In Fig. 1(a), we also show the total harmonic yield generated by the 1.6-μm laser alone with the peak intensity of 3.0 × 10^{14} \text{W/cm}^2 under the same condition. Clearly, WF1 generates harmonic yields about 1 to 2 orders of magnitude higher than the single-color (SC) pulse without much increase of the laser power.

The harmonic emissions in the far field for the two cases are shown in Figs. 1(c) and 1(d), where harmonic yields have been normalized to the maximum value in each figure independently. We can see desirable features in harmonics generated with WF1. Figure 1(c) shows that high harmonics covering from 70 to 250 eV are strongly localized at the propagation axis—their divergence is found to be within 1 mrad. For SC [see Fig. 1(d)], the harmonics generated in the same spectral region are located mostly off the axis. If one uses an aperture to filter out harmonics with divergence larger than 1 mrad (this is a common procedure for selecting the generated XUV harmonics as a light source, for example, in attosecond experiments), the harmonic yields with WF1 are mostly unchanged but are reduced significantly with SC. Figure 1(b) shows more than 3 orders of magnitude difference in useful high harmonics when one compares WF1 with SC. Note that the harmonics generated by the optimized waveform (WF1) in free space show poor spatial coherence and reduced plateau (see the Supplemental Material [39]).

We have checked that at the optimal pressure of 50 torr, the spatially coherent, low-divergence high harmonics can still be obtained with the WF1 pulse when the waveguide length is reduced to 3 mm. What about the harmonics if the gas pressure is changed? We consider two pressures, 10 and 100 torr, at the same waveguide length of 5 mm. The results of harmonic emission in the far field are shown in Figs. 1(e) and 1(f). For the 10-torr case, high harmonics are located both on axis and off axis, showing poor spatial distribution even though the cutoff of 250 eV is maintained. For the 100-torr case, the harmonics from 70 to 180 eV have low divergence angles, but the cutoff energy is greatly reduced. These results imply that phase matching of harmonic generation in the gas medium is very complicated. It is of interest to take a closer look at how phase matching works in the three gas pressures studied here.

It is well known that HHs are emitted from the recombination of “long”- and “short”-trajectory electrons with atomic ions. Since the accumulated phase of the long-trajectory harmonics is large and highly dependent on the driving laser intensity, these harmonics not only are difficult to phase match (longitudinal intensity change) but also have a large divergence in the far field (transverse intensity distribution) [57,58]. Therefore, short-trajectory components are favorable for the phase matching of HHs and thereby the generation of bright, low-divergence harmonics with excellent spatial coherence. However, for SC pulses, harmonic yields from each atom are much stronger for the long-trajectory electrons, especially for long-wavelength driving lasers [59]. On the other hand, the optimized waveforms in Ref. [8], including WF1 used here, were obtained to enhance the emission from short-trajectory electrons while suppressing the emission from long-trajectory electrons. Excellent phase matching with a waveform-optimized pulse like WF1 can be achieved when the following two conditions are satisfied: (i) the optimized waveform, especially the optimal relative phase between the two colors, needs to be maintained in the whole interaction volume; and (ii) HHs generated in the medium have to be phase matched over the entire interaction region. In the following, we demonstrate how gas pressure affects dynamic phase matching by evaluating how these two conditions are satisfied inside the waveguide.

As the laser propagates inside the waveguide, it is dispersed by the waveguide mode, neutral atom dispersion, and plasma. These factors enter in the refractive index for each color represented by [22]

\[
n_l \approx 1 - \frac{\mu_1^2 A_l^2}{8 \pi^2 a^2} + p(1 - \eta) \delta_l (\lambda_l) - \frac{p \eta n_0 r_e A_l^2}{2 \pi}.
\] (1)

Here, \(\mu_1 \) is the mode factor (= 2.405 for fundamental EH_{11} mode), \(a \) the radius of the waveguide, \(p \) the pressure, \(\eta \) the ionization level, \(\delta_l \) the neutral atom dispersion, \(n_0 \) the neutral atomic density, and \(r_e \) the classical electron radius. Each correction term on the right-hand side of Eq. (1) contributes to the time shift (or group delay) with respect to the reference frame (moving at the speed of light). For
OC means the optical cycle of the phase-matching conditions. Thus one has to consider dynamic decreases with the propagation distance. On the other hand, the ionization level increases with time as the field strength increases. Thus one has to consider dynamic phase-matching conditions.

In Fig. 2, we show the on-axis electric fields in the reference frame at three propagation positions $z = 0, 1, \text{ and } 5$ mm, for the three gas pressures studied in Fig. 1. For the 10-torr case, we draw attention to electric fields (marked by circles) where electrons are born that are to contribute to the harmonic generation. The phase of the electric field shifts monotonically to the left with increasing z. This leads to phase mismatch between harmonics generated from different positions of the waveguide, thus, resulting in harmonic spectra shown in Fig. 1(e). For the optimal phase-matched pressure of 50 torr, at the same matched times, the electric fields at $z = 1$ and 5 mm (as well as the region in between) overlap very well, indicating the harmonics will be well phase matched. At the leading edge, dispersion from the waveguide mode is compensated by the neutral atom dispersion. At the trailing edge, the atomic dispersion is compensated by the plasma effect. The different behaviors in leading and trailing edges at each z show the dynamic phase-matching features when the laser pulse propagates from the entrance to the exit of the waveguide. If the pressure is increased to 100 torr, the peak electric fields are reduced, leading to significant reduction in cutoff energy. At higher pressure, harmonics from long-trajectory electrons tend to suffer phase mismatch more significantly; thus, large divergence harmonics are not visible anymore [see Fig. 1(f)]. Figure 2 serves to illustrate the effect of pressure on dynamic phase-matching phenomena.

| Waveform | $|E_1|^2$ | $|E_2|^2$ | ϕ_2 |
|----------|----------|----------|---------|
| WF1 | 1.98 | 1.32 | 1.36 π |
| WF2 | 1.80 | 1.20 | 1.16 π |

We next investigate if the propagated laser pulses maintain their optimized waveforms, especially the relative phases between the two colors. As shown previously in Ref. [8], if the relative phase of a waveform is within $\pm 0.2\pi$ from the optimized value, the short-trajectory harmonics still dominate and the harmonic cutoff and yield can be maintained (see supplementary Fig. 3 for Ref. [8]). For the input WF1, we use WF2 to mimic the on-axis electric field at 5 mm. The parameters of both waveforms are given in Table I and the electric fields are plotted in Fig. 3(a). (Time-frequency analysis of harmonic emission is given in the Supplemental Material [39].) Compared to WF1, the relative phase between the two colors is reduced by 0.2π (equivalent to a time shift of 178 as for the 0.533-\(\mu\)m laser) and the field strength of each color decreases somewhat due to the dispersion effect in the medium.

First, we consider the time shift of each component of the incident two-color pulse due to mode dispersion. In Eq. (1), this term does not depend on the pressure; thus, it is the dominant dispersion term at low pressure. In Table II, the time shift from this term at 5 mm is 200 as for the 1.60-\(\mu\)m component and 22 as for the 0.533-\(\mu\)m component. This accounts for the 178 as time shift in the relative phase compared to WF1. We fix WF1 in the reference frame and move WF2 in Fig. 3(a) 200 as to the left. The resulting field is compared to the electric field calculated from the numerical simulation for the case of 10-torr pressure [see Fig. 3(b)]. Clearly, the two fields overlap well, demonstrating that at low pressure the field inside the waveguide is dominated by the mode dispersion. Next, we consider the time shift at $z = 5$ mm for pressure at 50 torr. Table II shows that the time shifts due to neutral atom dispersion are

<table>
<thead>
<tr>
<th>λ_1</th>
<th>Mode</th>
<th>Atomic</th>
<th>Plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600 nm</td>
<td>200 as</td>
<td>-72.9 as</td>
<td>183 as</td>
</tr>
<tr>
<td>533 nm</td>
<td>22 as</td>
<td>-73.4 as</td>
<td>20 as</td>
</tr>
</tbody>
</table>
about the same for the two colors. If we assume that the ionization level at \(z = 5 \) mm is constant at 0.54\%, the time shifts for the two colors are 183 and 22 as. However, the ionization level also increases with time. The time shift of the laser pulse from the plasma dispersion is time dependent, characterized by a time-dependent factor \(50\eta'(r') \) as, where \(\eta'(r') \) is the scaled ionization probability. To account for neutral atom dispersion, we move WF2 in Fig. 3(b) by 73 as to the right. Finally, we move it by 50\(\eta'(r') \) as to the left for the plasma effect. Thus, we obtain the final electric field which is shown to agree well with the numerical one directly from simulation [see Fig. 3(c)]. This analysis demonstrates the different roles played by the three dispersion terms in the waveguide. More details about the calculation of time shift and \(\eta'(r') \) are given in the Supplemental Material [39].

In short, we have uncovered that at the optimal condition, the propagated two-color waveforms maintain the same properties as the initial one. Together with dynamic phase matching, highly spatially coherent HHs are thus generated. Note that phase matching only occurs within the central part of a laser pulse at high gas pressure and low ionization level [28,62].

In the discussions above, the radius of the waveguide is fixed at 125 \(\mu m \). Next, we consider the effect of the waveguide radius, which is another key parameter of a hollow waveguide. We chose two radii, 75 and 200 \(\mu m \), and searched the optimal waveguide length and gas pressure to ensure the best cutoff and harmonic yield. For 75 (200) \(\mu m \), the optimal values of length and pressure are 1 mm and 120 torr (7 mm and 20 torr). The incident two-color beam waist is adjusted to ensure that the EH\(_{11} \) mode is guided. Thus, the input laser pulse energies are different in these two cases. The normalized harmonic emissions in the far field for two radii are shown in Fig. 4. For both cases, we can see highly localized on-axis harmonic emission. Note that the total harmonic yield of the 200-\(\mu m \) case is much stronger than the 75-\(\mu m \) one (not shown). Therefore, the physical mechanism proposed before is still valid if the radius of the waveguide is changed.

In summary, we investigated the generation of bright and spatially coherent high harmonics from the XUV to soft x rays by using waveform-optimized two-color pulses in a hollow waveguide. The physics behind this behavior is the dynamic phase-matching conditions. With technology advances of the waveform synthesis [16–19,63] and hundreds kHz and MHz high-repetition-rate lasers [34,36,64], our analysis promises to be a powerful tool for realizing all-purpose tabletop coherent light pulses available in many laboratories.

This work was supported by AFOSR FA9550-14-1-0255 and in part by Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. C. J. thanks Dr. Chien-Jen Lai from MIT for discussing the computational details, and Dr. He Wang and Dr. Wei Cao from Lawrence Berkeley National Laboratory for communication of the experimental status.
S.-W. Huang et al., Coherent soft x-ray generation in the water window with quasi-phase matching, Science 302, 95 (2003).

I. Pupoza et al., Compact high-repetition-rate source of coherent 100 eV radiation, Nat. Photonics 7, 608 (2013).

