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Computer Science and Artificial Intelligence Laboratory
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Abstract—In this work, we develop a monocular SLAM-
aware object recognition system that is able to achieve
considerably stronger recognition performance, as compared
to classical object recognition systems that function on a
frame-by-frame basis. By incorporating several key ideas
including multi-view object proposals and efficient feature
encoding methods, our proposed system is able to detect and
robustly recognize objects in its environment using a single
RGB camera in near-constant time. Through experiments,
we illustrate the utility of using such a system to effectively
detect and recognize objects, incorporating multiple object
viewpoint detections into a unified prediction hypothesis.
The performance of the proposed recognition system is eval-
uated on the UW RGB-D Dataset, showing strong recognition
performance and scalable run-time performance compared to
current state-of-the-art recognition systems.

I. Introduction

Object recognition is a vital component in a robot’s
repertoire of skills. Traditional object recognition meth-
ods have focused on improving recognition performance
(Precision-Recall, or mean Average-Precision) on specific
datasets [17, 29]. While these datasets provide sufficient
variability in object categories and instances, the train-
ing data mostly consists of images of arbitrarily picked
scenes and/or objects. Robots, on the other hand, per-
ceive their environment as a continuous image stream,
observing the same object several times, and from mul-
tiple viewpoints, as it constantly moves around in its
immediate environment. As a result, object detection and
recognition can be further bolstered if the robot were
capable of simultaneously localizing itself and mapping
(SLAM) its immediate environment - by integrating ob-
ject detection evidences across multiple views.

We refer to a “SLAM-aware” system as - one that has
access to the map of its observable surroundings as it
builds it incrementally and the location of its camera at
any point in time. This is in contrast to classical recog-
nition systems that are “SLAM-oblivious” - those that
detect and recognize objects on a frame-by-frame basis
without being cognizant of the map of its environment,
the location of its camera, or that objects may be situated
within these maps. In this paper, we develop the ability
for a SLAM-aware system to robustly recognize objects in its
environment, using an RGB camera as its only sensory input
(Figure 1).
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Fig. 1: The proposed SLAM-aware object recognition system is able to
robustly localize and recognize several objects in the scene, aggregating
detection evidence across multiple views. Annotations in white are
provided for clarity and are actual predictions proposed by our system.

We make the following contributions towards this end:
Using state-of-the-art semi-dense map reconstruction
techniques in monocular visual SLAM as pre-processed
input, we introduce the capability to propose multi-
view consistent object candidates, as the camera observes
instances of objects across several disparate viewpoints.
Leveraging this object proposal method, we incorporate
some of the recent advancements in bag-of-visual-words-
based (BoVW) object classification [1, 15, 22] and efficient
box-encoding methods [34] to enable strong recogni-
tion performance. The integration of this system with a
monocular visual-SLAM (vSLAM) back-end also enables
us to take advantage of both the reconstructed map
and camera location to significantly bolster recognition
performance. Additionally, our system design allows the
run-time performance to be scalable to a larger number
of object categories, with near-constant run-time for most
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Fig. 2: Outline of the SLAM-aware object recognition pipeline. Given an input RGB image stream I, we first reconstruct the scene in a semi-dense
fashion using an existing monocular visual-SLAM implementation (ORB-SLAM) with a semi-dense depth estimator, and subsequently extract
relevant mapM, keyframe K and pose information ξ. We perform multi-scale density-based segmentation on the reconstructed scene to obtain
object proposals O that are consistent across multiple views. On each of the images in the input RGB image stream I, we compute Dense-SIFT
(R128) + RGB (R3) and reduce it to Φ ∈ R80 via PCA. The features Φ are then used to efficiently encode each of the projected object proposals
O (bounding boxes of proposals projected on to each of the images with known poses ξ) using VLAD with FLAIR, to obtain Ψ. The resulting
feature vector Ψ is used to train and predict likelihood of target label/category p(xi | y) of the object contained in each of the object proposals.
The likelihoods for each object o ∈ O are aggregated across each of the viewpoints ξ to obtain robust object category prediction.

practical object recognition tasks.
We present several experimental results validating

the improved object proposition and recognition per-
formance of our proposed system: (i) The system is
compared against the current state-of-the-art [24, 25]
on the UW-RGBD Scene [23, 25] Dataset. We compare
the improved recognition performance of being SLAM-
aware, to being SLAM-oblivious (ii) The multi-view ob-
ject proposal method introduced is shown to outperform
single-view object proposal strategies such as BING [9]
on the UW-RGBD dataset, that provide object candidates
solely on a single-view. (iii) The run-time performance of
our system is analysed, with specific discussion on the
scalability of our approach, compared to existing state-
of-the-art methods [24, 25].

II. Related Work
We discuss some of the recent developments in object

proposals, recognition, and semi-dense monocular visual
SLAM literature that has sparked the ideas explained in
this paper.
Sliding window techniques and DPM In tra-

ditional state-of-the-art object detection, HOG [13]
and deformable-part-based-models (DPM) proposed
by Felzenszwalb et al. [18] have become the norm due to
their success in recognition performance. These methods
explicitly model the shape of each object and its parts via
oriented-edge templates, across several scales. Despite its
reduced dimensionality, the template model is scanned
over the entire image in a sliding-window fashion across
multiple scales for each object type that needs to be
identified. This is a highly limiting factor in scalability,
as the run-time performance of the system is directly de-
pendent on the number of categories identifiable. While
techniques have been proposed to scale such schemes
to larger object categories [14], they incur a drop in
recognition performance to trade-off for speed.
Dense sampling and feature encoding methods Re-

cently, many of the state-of-the-art techniques [26, 34]
for generic object classification have resorted to dense

feature extraction. Features are densely sampled on an
image grid [5], described, encoded and aggregated over
the image or a region to provide a rich description
of the object contained in it. The aggregated feature
encodings lie as feature vectors in high-dimensional
space, on which linear or kernel-based classification
methods perform remarkably well. Among the most
popular encoding schemes include Bag-of-Visual-Words
(BoVW) [12, 31], and more recently Super-Vectors [35],
VLAD [22], and Fisher Vectors [28]. In the case of BoVW,
a histogram of occurrences of codes are built using a
vocabulary of finite size V ∈ RK×D. VLAD and Fisher
Vectors, in contrast, aggregate residuals using the vo-
cabulary to estimate the first and second order moment
statistics in an attempt to reduce the loss of informa-
tion introduced in the vector-quantization (VQ) step in
BoVW. Both VLAD and Fisher Vectors have been shown
to outperform traditional BoVW approaches [8, 22, 28],
and are used as a drop-in replacement to BoVW; we do
the same utilizing VLAD as it provides a good trade-off
between descriptiveness and computation time.

Object Proposals Recently, many of the state-of-the-
art techniques in large-scale object recognition systems
have argued the need for a category-independent object
proposal method that provides candidate regions in
images that may likely contain objects. Variants of these
include Constrained-Parametric Min-cuts (CPMC) [6],
Selective Search [33], Edge Boxes [36], Binarized Normed
Gradients (BING) [9]. The object candidates proposed are
category-independent, and achieve detection rates (DR)
of 95-99% at 0.7 intersection-over-union (IoU1) thresh-
old, by generating about 1000-5000 candidate proposal
windows [21, 36]. This dramatically reduces the search
space for existing sliding-window approaches that scan
templates over the entire image, and across multiple
scales; however, it still bodes a challenge to accurately

1Intersection-over-Union (IoU) is a common technique to evaluate
the quality of candidate object proposals with respect to ground truth.
The intersection area of the ground truth bounding box and that of
the candidate is divided by the union of their areas.



classify irrelevant proposal windows as background.
For a thorough evaluation of the state-of-the-art object
proposal methods, and their performance, we refer the
reader to Hosang et al. [21].

Scalable Encoding with Object Proposals As previ-
ously addressed, sliding-window techniques inherently
deal with the scalability issue, despite recent schemes
to speed-up such an approach. BoVW, on the contrary,
handle this scalability issue rather nicely since the his-
tograms do not particularly encode spatial relations as
strongly. This however, makes BoVW approaches lack
the ability to localize objects in an image. The advent
of category-independent object proposal methods have
subsequently opened the door to bag-of-words-driven
architectures, where object proposal windows can now
be described via existing feature encoding methods.
Most recently, van de Sande et al. [34] employ a novel
box-encoding technique using integral histograms to
describe object proposal windows with a run-time inde-
pendent of the window size of object proposals supplied.
They report results with an 18x speedup over brute-force
BoVW encoding (for 30,000 object proposals), enabling
a new state-of-the-art on the challenging 2010 PASCAL
VOC detection task. Additionally their proposed system
ranks number one in the official ImageNet 2013 detection
challenge, making it a promising solution to consider for
robotics applications.

Multi-view Object Detection While classical object
detection methods focus on single-view-based recogni-
tion performance, some of these methods have been
extended to the multi-view case [11, 32], by aggregating
object evidence across disparate views. Lai et al. [24]
proposed a multi-view-based approach for detecting and
labeling objects in a 3D environment reconstructed using
an RGB-D sensor. They utilize the popular HOG-based
sliding-window detectors trained from object views in
the RGB-D dataset [23, 25] to assign class probabilities
to pixels in each of the frames of the RGB-D stream.
Given co-registered image and depth, these probabilities
are assigned to voxels in a discretized reconstructed 3D
scene, and further smoothed using a Markov Random
Field (MRF). Bao et al. [2, 3] proposed one of the
first approaches to jointly estimate camera parameters,
scene points and object labels using both geometric
and semantic attributes in the scene. In their work, the
authors demonstrate the improved object recognition
performance, and robustness by estimating the object
semantics and SfM jointly. However, the run-time of 20
minutes per image-pair, and the limited object categories
identifiable makes the approach impractical for on-line
robot operation. Other works [4, 7, 10, 20, 30] have
also investigated object-based SLAM, SLAM-aware, and
3D object recognition architectures, however they have
a few of glaring concerns: either (i) the system cannot
scale beyond a finite set of object instances (generally
limited to less than 10), or (ii) they require RGB-D input

to support both detection and pose estimation, or (iii)
they require rich object information such as 3D models in
its database to match against object instances in a brute-
force manner.

III. Monocular SLAM Supported
Object Recognition

This section introduces the algorithmic components of
our method. We refer the reader to Figure 2 that illus-
trates the steps involved, and provide a brief overview
of our system.

A. Multi-view Object Proposals
Most object proposal strategies use either superpixel-

based or edge-based representations to identify can-
didate proposal windows in a single image that may
likely contain objects. Contrary to classical per-frame
object proposal methodologies, robots observe the same
instances of objects in its environment several times and
from disparate viewpoints. It is natural to think of object
proposals from a spatio-temporal or reconstructed 3D
context, and a key realization is the added robustness
that the temporal component provides in rejecting spa-
tially inconsistent edge observations or candidate pro-
posal regions. Recently, Engel et al. [16] proposed a scale-
drift aware monocular visual SLAM solution called LSD-
SLAM, where the scenes are reconstructed in a semi-
dense fashion, by fusing spatio-temporally consistent
scene edges. Despite being scale-ambivalent, the multi-
view reconstructions can be especially advantageous in
teasing apart objects in the near-field versus those in
the far-field regions, and thus subsequently be useful
in identifying candidate object windows for a partic-
ular view. We build on top of an existing monocular
SLAM solution (ORB-SLAM [27]) and augment a semi-
dense depth filtering component derived from [19]. The
resulting reconstruction qualitatively is similar to that
produced by LSD-SLAM [16], and is used for subse-
quent object proposal generation. We avoided the use of
LSD-SLAM as it occasionally failed over tracking wide-
baseline motions inherent in the benchmark dataset we
used.

In order to retrieve object candidates that are spatio-
temporally consistent, we first perform a density-based
partitioning on the scale-ambiguous reconstruction us-
ing both spatial and edge color information. This is done
repeatedly for 4 different density threshold values (each
varied by a factor of 2), producing an over-segmentation
of points in the reconstructed scene that are used as
seeds for multi-view object candidate proposal. The
spatial density segmentations eliminate any spurious
points or edges in the scene, and the resulting point
cloud is sufficient for object proposals. These object
over-segmentation seeds are subsequently projected onto
each of the camera views, and serve as seeds to for
further occlusion handling, refinement and candidate



Fig. 3: An illustration of the multi-view object proposal method and subsequent SLAM-aware object recognition. Given an input RGB image
stream, a scale-ambiguous semi-dense map is reconstructed (a) via the ORB-SLAM-based [27] semi-dense mapping solution. The reconstruction
retains edges that are consistent across multiple views, and is employed in proposing objects directly from the reconstructed space. The resulting
reconstruction is (b) filtered and (c) partitioned into several segments using a multi-scale density-based clustering approach that teases apart
objects (while filtering out low-density regions) via the semi-dense edge-map reconstruction. Each of the clustered regions are then (d) projected
on to each of individual frames in the original RGB image stream, and a bounded candidate region is proposed for subsequent feature description,
encoding and classification. (e) The probabilities for each of the proposals per-frame are aggregated across multiple views to infer the most
likely object label.

object proposal generation. We cull out (i) small can-
didates whose window size is less than 20x20 px, (ii)
occluding candidates by estimating their median depth
from the reconstruction, to avoid mis-identification and
(iii) overlapping candidates with an IoU threshold of 0.5,
to avoid redundant proposals. The filtered set of win-
dows are subsequently considered as candidates for the
classification process downstream. Figure 3 illustrates
the different steps described in this section.

B. State-of-the-art Bag-of-Visual-Words with Object Proposals
Given the object proposals computed using the re-

constructed scale-ambiguous map, we now direct our
attention to describing these proposal regions.

Dense BoVW with VLAD Given an input image and
candidate object proposals, we first densely sample the
image, describing each of the samples with SIFT + RGB
color values, ΦSIFT+RGB ∈ R131 i.e. Dense SIFT (128-D)
+ RGB(3-D). Features are extracted with a step size of 4
pixels, and at 4 different pyramid scales with a pyramid

scale factor of
√

2. The resulting description is then
reduced to a 80-dimensional vector via PCA, called PCA-
SIFT Φ ∈ R80. A vocabulary V ∈ RK×80 of size K = 64
is created via k-means, using the descriptions extracted
from a shuffled subset of the training data, as done
in classical bag-of-visual-words approaches. In classical
BoVW, this vocabulary can be used to encode each of
the original SIFT+RGB descriptions in an image into a
histogram of occurrences of codewords, which in turn
provides a compact description of the original image.
Recently, however, more descriptive encodings such as
VLAD [22] and Fisher Vectors [28] have been shown
to outperform classical BoVW approaches [8, 22, 28].
Consequently, we chose to describe the features using
VLAD as it provides equally as strong performance with
slightly reduced computation time as compared to Fisher
Vectors.

For each of the bounding boxes, the un-normalized
VLAD Ψ ∈ RKD description is computed by aggregating
the residuals of each of the descriptions Φ (enclosed



Fig. 4: Various steps involved in the feature extraction procedure. Features that are densely sampled from the image are subsequently used to
describe the multi-view object proposals using FLAIR. Each proposal is described with multiple ([1x1], [2x2], [4x4]) spatial levels/bins via quick
table lookups in the integral VLAD histograms (through FLAIR). The resulting histogram Ψ (after concatenation) is used to describe the object
contained in the bounding box. Figure is best viewed in electronic form.

within the bounding box) from their vector-quantized
centers in the vocabulary, thereby determining its first
order moment (Eq. 1).

vk =
∑

xi:NN(xi)=µk

xi − µk (1)

The description is then normalized using signed-square-
rooting (SSR) or commonly known as power normaliza-
tion (Eq. 2) with α = 0.5, followed by L2 normalization,
for improved recognition performance as noted in [1].

f(z) = sign(z)|z|α where 0 ≤ α ≤ 1 (2)

Additional descriptions for each bounding region are
constructed for 3 different spatial bin levels or subdivi-
sions as noted in [26] (1x1, 2x2 and 4x4, 21 total subdivi-
sions S), and stacked together to obtain the feature vector
Ψ =

[
. . . vs . . .

]
∈ RKDS that appropriately describes

the specific object contained within the candidate object
proposal/bounding box.

Efficient Feature Encoding with FLAIR While it may
be practical to describe a few object proposals in the
scene with these encoding methods, it can be highly
impractical to do so as the number of object proposals
grows. To this end, van de Sande et al. [34] introduced
FLAIR - an encoding mechanism that utilizes summed-
area tables of histograms to enable fast descriptions for
arbitrarily many boxes in the image. By constructing
integral histograms for each code in the codebook, the
histograms or descriptions for an arbitrary number of
boxes B can be computed independent of their area. As
shown in [34], these descriptions can also be extended
to the VLAD encoding technique. Additionally, FLAIR
affords performing spatial pyramid binning rather natu-
rally, with only requiring a few additional table look-ups,
while being independent of the area of B. We refer the
reader to Figure 4 for an illustration of the steps involved
in describing these candidate object proposals.

Multi-class histogram classification Given training
examples, (x1, y1), . . . , (xn, yn) where xi ∈ RKDS are the
VLAD descriptions and yi ∈ {1, . . . , C} are the ground
truth target labels, we train a linear classifier using

Stochastic Gradient Descent (SGD), given by:

E(w) =
1

n

n∑
i=1

L(yi, f(xi)) + αR(w) (3)

where L(yi, f(xi)) = log
(

1 + exp(−yiwT xi)
)

is the
logistic loss function, R(w) = 1

2

∑n
i=1 wTw is the L2-

regularization term that penalizes model complexity, and
α > 0 is a non-negative hyperparameter that adjusts
the L2 regularization. A one-versus-all strategy is taken
to extend the classifiers to multi-class categorization.
For hard-negative mining, we follow [34] closely, boot-
strapping additional examples from wrongly classified
negatives for 2 hard-negative mining epochs.

C. Multi-view Object Recognition
We start with the ORB-SLAM-based semi-dense

mapping solution, that feeds a continuous image
stream, in order to recover a scale-ambiguous map M,
keyframes K, and poses ξ corresponding to each of the
frames in the input image stream. The resulting scale-
ambiguous reconstruction provides a strong indicator
of object presence in the environment, that we use to
over-segment into several object seeds o ∈ {1, . . . ,O}.
These object seeds are projected back in to each of the
individual frames using the known projection matrix,
derived from its corresponding viewpoint ξi. The me-
dian depth estimates of each of the seeds are estimated
in order to appropriately project non-occluding object
proposals back in to corresponding viewpoint, using a
depth buffer. Using these as candidate object proposals,
we evaluate our detector on each of the O object clusters,
per image, providing probability estimates of belonging
to one of the C object classes or categories. Thus, the
maximum-likelihood estimate of the object o ∈ O can
be formalized as maximizing the data-likelihood term
for all observable viewpoints (assuming uniform prior
across the C classes):

ŷMLE = argmax
y∈{1,...,|C|}

p(Do | y) ∀ o ∈ O (4)

where y ∈ {1, . . . , |C|} are the class labels, Do =
{x1, . . . , xN}o is the data observed of the object cluster
o ∈ O across N observable viewpoints. In our case, Do



Fig. 5: Illustration of per-frame detection results provided by our object recognition system that is intentionally SLAM-oblivious (for comparison
purposes only). Object recognition evidence is not aggregated across all frames, and detections are performed on a frame-by-frame basis. Only
detections having corresponding ground truth labels are shown. Figure is best viewed in electronic form.

Fig. 6: Illustration of the recognition capabilities of our proposed SLAM-aware object recognition system. Each of the object categories are
detected every frame, and their evidence is aggregated across the entire sequence through the set of object hypothesis. In frame-based object
recognition, predictions are made on an individual image basis (shown in gray). In SLAM-aware recognition, the predictions are aggregated
across all frames in the image sequence to provide robust recognition performance. The green boxes indicate correctly classified object labels,
and the gray boxes indicate background object labels. Figure is best viewed in electronic form.

refers to the bounding box of the oth cluster, projected
onto each of the N observable viewpoints. Assuming the
individual features in Do are conditionally independent
given the class label y, the maximum-likelihood estimate
(MLE) factorizes to:

ŷMLE = argmax
y∈{1,...,|C|}

N∏
n=1

p(xn | y) (5)

= argmax
y∈{1,...,|C|}

N∑
n=1

log p(xn | y) (6)

Thus the MLE of an object cluster o belonging to one
of the C classes, is the class that corresponds to having
the highest of the sum of the log-likelihoods of their
individual class probabilities estimated for each of the
N observable viewpoints.

IV. Experiments
In this section, we evaluate the proposed SLAM-

aware object recognition method. In our experiments,
we extensively evaluate our SLAM-aware recognition
system on the popular UW RGB-D Dataset (v2)[23, 25].

We compare against the current state-of-the-art solution
proposed by Lai et al. [24], that utilize full map and
camera location information for improved recognition
performance. The UW RGB-D dataset contains a total
51 object categories, however, in order to maintain a
fair comparison, we consider the same set of 5 objects
as noted in [24]. In experiment 3, we propose scalable
recognition solutions, increasing the number of objects
considered to all 51 object categories in the UW RGB-D
Dataset.

Experiment 1: SLAM-Aware Object Recognition Per-
formance Evaluation We train and evaluate our system
on the UW RGB-D Scene Dataset [23, 25], providing
mean-Average Precision (mAP) estimates (see Table I)
for the object recognition task and compare against
existing methods [24]. We split our experiments into two
categories:

(i) Single-View recognition performance: First, we evalu-
ate the recognition performance of our proposed system
on each of the scenes in the UW-RGB-D Scene Dataset
on a per-frame basis, detecting and classifying objects



Method View(s) Input Precision/Recall
Bowl Cap Cereal Box Coffee Mug Soda Can Background Overall

DetOnly [24] Single RGB 46.9/90.7 54.1/90.5 76.1/90.7 42.7/74.1 51.6/87.4 98.8/93.9 61.7/87.9
Det3DMRF [24] Multiple RGB-D 91.5/85.1 90.5/91.4 93.6/94.9 90.0/75.1 81.5/87.4 99.0/99.1 91.0/88.8
HMP2D+3D [25] Multiple RGB-D 97.0/89.1 82.7/99.0 96.2/99.3 81.0/92.6 97.7/98.0 95.8/95.0 90.9/95.6

Ours Single RGB 88.6/71.6 85.2/62.0 83.8/75.4 70.8/50.8 78.3/42.0 95.0/90.0 81.5/59.4
Ours Multiple RGB 88.7/70.2 99.4/72.0 95.6/84.3 80.1/64.1 89.1/75.6 96.6/96.8 89.8/72.0
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TABLE I & Fig. 7: Left: Object classification results using the UW RGB-D Scene Dataset [23, 25], providing mean-Average Precision (mAP)
estimates for both Single-View, and Multi-View object recognition approaches. We compare against existing methods([24, 25]) that use RGB-D
information instead of relying only on RGB images, in our case. Recognition for the single-view approach is done on a per-frame basis, where
prediction performance is averaged across all frames across all scenes. For the multi-view approach, recognition is done on a per-scene basis,
where prediction performance is averaged across all scenes. Right: Performance comparison via precision-recall for the Frame-based vs. SLAM-
aware object recognition. As expected, the performance of our proposed SLAM-aware solution increases with more recognition evidence is
aggregated across multiple viewpoints.

that occur every 5 frames in each scene (as done in [24]).
Each object category is trained from images in the Ob-
ject Dataset, that includes several viewpoints of object
instances with their corresponding mask, and category
information. Using training parameters identical to the
previous experiment, we achieve a performance of 81.5
mAP as compared to the detector performance of 61.7
mAP reported in [24]. Recognition is done on a per-
image basis, and averaged across all test images for
reporting. Figure 5 shows the recognition results of our
system on a per-frame basis. We ignore regions labeled
as background in the figure for clarity and only report
the correct and incorrect predictions in green and red
respectively.

(ii) Multi-View recognition performance: In this section,
we investigate the performance of a SLAM-aware ob-
ject recognition system. We compare this to a SLAM-
oblivious object detector described previously, and eval-
uate using ground truth provided. Using the poses ξ
and reconstructed mapM, multi-view object candidates
are proposed and projected onto each of the images for
each scene sequence. Using the candidates provided as
input to the recognition system, the system predicts the
likelihood and corresponding category of an object (in-
cluding background) contained in a candidate bounding
box. For each of the objects o ∈ O proposed, the summed
log-likelihood is computed (as in Eqn. 4) to estimate the
most likely object category over all the images for a par-
ticular scene sequence. We achieve 89.8 mAP recognition
performance on the 5 objects in each of the scenes in [25]
that was successfully reconstructed by the ORB-SLAM-
based semi-dense mapping system. Figures 1, 3, 6 and 9
illustrate the capabilities of the proposed system in pro-
viding robust recognition performance by taking advan-
tage of the monocular visual SLAM-backend. Figure 7
illustrates the average precision-recall performance on
the UW RGB-D dataset, comparing the classical frame-
based and our SLAM-aware approach. As expected, with
additional object viewpoints, our proposed SLAM-aware
solution predicts with improved precision and recall. In

comparison to that of HMP2D+3D [25], they achieve only
slightly higher overall recognition performance of 90.9
mAP, as their recognition pipeline takes advantage of
the RGB and depth input to improve overall scene recon-
struction. We do note that while we perform comparably
with HMP2D+3D [25], our BoVW+FLAIR architecture
allows our system to scale to a large number of object
categories with near-constant run-time. We investigate the
run-time performance and scalability concerns further in
Experiment 3.

Experiment 2: Multi-View Objectness In this exper-
iment, we investigate the effectiveness of our multi-
view object proposal method in identifying category-
independent objects in a continuous video stream. We
compare the recall of our object proposal method with
the recently introduced BING [9] object proposal tech-
nique, whose performance in detection rate (DR) and
run-time claim to be promising. We compare against the
BING method, varying the number of proposed object
candidates by picking proposals in descending order
of their objectness score. Figure 8 compares the overall
performance of our multi-view object proposal method
that achieves better recall rates, for a particular IoU
threshold with considerably fewer object proposals. The
results provided are evaluated on all the scenes provided
in the UW-RGB-D dataset (v2) [25].
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Fig. 8: Varying number of proposals: We experiment with varied number
of bounding boxes for the BING object proposal method, and compare
against our multi-view object proposal method that uses considerably
fewer number of bounding boxes to get similar or better recall rates.
The numbers next to the label indicate the average number of windows
proposed in the image.



Experiment 3: Scalable recognition and run-time
evaluation In this section, we investigate the run-time
performance of computing VLAD with integral his-
tograms (FLAIR) for our system and compare against
previously proposed approaches [24, 34]. We measure
the average speed for feature-extraction (Dense-SIFT)
and feature-encoding (VLAD) as they take up over 95%
of the overall compute time. All experiments were con-
ducted with a single-thread on an Intel Core-i7-3920XM
(2.9GHz).

Method |C| Run-time (s) mAP/Recall

DetOnly [24] 5 ≈ 1.8 s 61.7/87.9
DetOnly [24] 51 ≥ 5† s -
HMP2D+3D [25] 9 ≈ 4 s 92.8/95.3

Ours 5 1.6 s 81.5/59.4
Ours 10 1.6 s 86.1/58.4
Ours 51 1.7 s 75.7/60.9
†Expected run-time for sliding-window approaches as used in [24].

TABLE II: Analysis of run-time performance of our system (for frame-
based detection) compared to that of [24] and [25]. We achieve
comparable performance, and show scalable recognition performance
with a near-constant run-time cost (with increasing number of identi-
fiable object categories |C| = 51). Existing sliding-window approaches
become impractical (≥ 4 s run-time) in cases where |C| ≈ 51.

van de Sande et al. [34] reports that the overall feature
extraction and encoding takes 5.15s (VQ 0.55s, FLAIR
construction 0.6s, VLAD+FLAIR 4.0s) per image, with
the following parameters (2px step size, 3 Pyr. Scales,
[1x1], [4x4] spatial pyramid bins). With significantly
fewer candidate proposals, and careful implementation,
our system is able to achieve the same (with 4px step
size) in approximately 1.6s. With reference to [24], where
the run-time performance of the sliding-window ap-
proach is directly proportional to the number of object
categories detectable, the authors report an overall run-
time of 1.8s for 5 object categories. However, scaling up
their detection to larger number of objects would imply
costly runtimes, making it highly impractical for real-
time purposes. The run-time of our approach (based
on [34]), on the other hand, is scalable to a larger number
of object categories, making it a strong contender for
real-time recognition systems. We summarize the run-
times of our approach compared to that of [24] and [25]
in Table II.

Discussion and Future Work While there are benefits
to running a monocular visual SLAM-backend for recog-
nition purposes, the inter-dependence of the recognition
system on this backend makes it vulnerable to the same
robustness concerns that pertain to monocular visual
SLAM. In our experiments, we noticed inadequacies
in the semi-dense vSLAM implementation that failed
to reconstruct the scene on few occasions. To further
emphasize recognition scalability, we are actively col-
lecting a larger scaled dataset (in increased map area,
and number of objects) to show the extent of capabilities
of the proposed system. Furthermore, we realize the

Fig. 9: More illustrations of the superior performance of the SLAM-
aware object recognition in scenarios of ambiguity and occlusions. The
coffee mug is misidentified as a soda can, and the cap in the bottom
row is occluded by the cereal box.

importance of real-time capabilities of such recognition
systems, and intend to generalize the architecture to a
streaming approach in the near future. We also hope
to release the source code for our proposed method,
allowing scalable and customizable training with fast
run-time performance during live operation.

V. Conclusion
In this work, we develop a SLAM-aware object-

recognition system, that is able to provide robust and
scalable recognition performance as compared to clas-
sical SLAM-oblivious recognition methods. We lever-
age some of the recent advancements in semi-dense
monocular SLAM to propose objects in the environment,
and incorporate efficient feature encoding techniques to
provide an improved object recognition solution whose
run-time is nearly-constant to the number of objects iden-
tifiable by the system. Through various evaluations, we
show that our SLAM-aware monocular recognition solu-
tion is competitive to current state-of-the-art in the RGB-
D object recognition literature. We believe that robots
equipped with such a monocular system will be able
to robustly recognize and accordingly act on objects in
their environment, in spite of object clutter and recog-
nition ambiguity inherent from certain object viewpoint
angles.
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