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ABSTRACT

The basis for reciprocity has been studied in some
detail. It is shown that all linear Lagrangian systems
are reciprocal whether formulated on a lumped or distri-
buted parameter basis. Some non-reciprocal systems are
discussed and a general statement of electroacoustic
reciprocity including viscous losses is presented.

Method for describing the near field of a transducer
in terms of its far field are described. The acoustic
center and limit of the far field are defined. A graphi-
cal method is described for computing this limit directly
from the directivity gain plot. The technique is of great
use in estimating the error introduced by the close spacing
of transducers. All of these results are shown to have
meaning, whether the transducer is acting as a source or
a receiver. Some calculations are made for idealized trans-
ducers, a point source and a piston source on a hard sphere.

Measurements were made of the acoustic center and the
directivity patterns of a number of commercial microphones.
A free-field calibration was performed in a non-anechoic
space utilizing an approximation to a point source on a
hard sphere. A discussion of experimental techniques in-
cludes the following topics: the measurement of reciprocity
and linearity, effects of standing waves, effect of the
size of the enclosure, measurement of the microphone polar-
izing voltage, pulse techniques applied to detection of
reflecting surfaces and to calibration, transducer stability,
point-by-point and automatic data-taking techniques, and
factors governing the selection of a sound source.
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CHAPTER I

INTRODUCTION

1.1 Purpose

The fundamental tool of acoustic measurements is the

microphone. However, existing methods for the accurate

calibration of microphones are of sufficient complexity

to restrict their use to the well-equipped acoustical

laboratory. The errors introduced by simplifications in

technique cannot be predicted until the physical limita-

tions on microphone calibration are understood. It is

the purpose of the work described below to investigate

these limitations and to describe some resultant practical

considerations for free-field calibrations.

1.2 Results

The reciprocity technique is the most accurate and

convenient of the absolute calibration methods, and for

this reason other methods were not investigated. The

basis for reciprocity, however, has been studied in some

detail. It is shown that all linear Lagrangian systems

are reciprocal whether formulated on a lumped or distributed

parameter basis. Some non-reciprocal systems are discussed

and a general statement of electroacoustic reciprocity

including viscous losses is presented. This material is

useful in the design of experiments whose purpose is to

discover whether a transducer is reciprocal.
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Methods for describing the near field of a trans-

ducer in terms of its far field are described. The acoustic

center and limit of the far field are defined. A graphical

method is described for computing this limit directly from

the directivity gain plot. The technique is of great use

in estimating the error introduced by the close spacing

of transducers. All of these results are shown to have

meaning whether the transducer is acting as a source or

a receiver. Some calculations are made for idealized trans-

ducers, a point source and a piston source on a hard sphere.

Measurements were made of the acoustic center and the

directivity patterns, of a number of commercial microphones.

A free-field calibration was performed in a non-anechoic

space utilizing an approximation to a point source on a

hard sphere. A discussion of experimental techniques in-

cludes the following topics: measurement of reciprocity

and linearity, effects of standing waves, effect of the

size of the enclosure, measurement of the microphone pola-

rizing voltage, pulse techniques applied to detection of

reflecting surfaces and to calibration, transducer stability,

point-by-point and automatic data-taking techniques, and

factors governing the selection of a sound source.

1.3 History of Primary Means for the Measurement of Sound

The first important method of making an absolute

measurement of the sound pressure (actually velocity) of

a sound wave was suggested _by Rayle igh. A small circular

1Rayleigh, "On an Instrument Capable of Measuring the Inten-
sity of Aerial Vibrations," Phil. Mag., v. 14, p. 186, 1882.



disk suspended in a stream of air by a thin fiber tends

to rotate against the restoring torque of the fiber so

that the particle motion of the air is normal to its

surface. The position of the disk is unchanged by revers-

ing the direction of the stream of air. Thus a steady

angular displacement of the disk is observed in an alter-

nating sound field.

The thermophone method, first discussed quantitatively

by Arnold and Crandall1 consists of a small cavity acous-

tically excited by passing a pulsating direct current

through strips inside the cavity. If one knows the cur-

rent and the thermal properties of the components, it is

possible to calculate the sound pressure at the diaphragm

of a microphone located in the cavity.

The pistonphone method, perfected by Wente 2  is

similar to the thermophone in that the microphone is placed

in a cavity in which the pressure can be computed. In this

method the actual amplitude of motion of a piston located

in a wall of the cavity is observed. If one knows the

impedance of the cavity, the pressure acting on the dia-

phragm of the microphone may be computed.

The difference between the pressure calibration and the

free-field calibration was first discovered experimentally

1Arnold, H. D. and Crandall, I. B., "The Thermophone as a
Precision Source of Sound", Phys. Rev., v. 10, p. 22, 1917.

2Wente, "The Thermophone", Phys. Rev., v. 19, p. 333, 1922.
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by Ballantine when trying to check a thermophone cali-*

bration with a Rayleigh disk calibration. The difference

is caused by the diffracted wave introduced by the micro-

phone itself. For certain simplified microphones this

diffraction effect may be predicted.2,3,4,5,6,7

A method of calibration utilizing a perforated grille

located adjacent to the microphone diaphragm was suggested

by Ballantine.' To this grille is applied a pulsating

d-c voltage which exerts an electrostatic force on the

diaphragm. If one knows the dimensions of the grille,

it is possible to calculate the force acting on the dia-

phragm.

1Ballantine, S., "Effect of Diffraction Around the Microphone
in Sound Measurement", Phys. Rev., v. 32, p. 988, 1928.

2Ballantine, S., "Effect of Cavity Resonance on the Frequency
Response Characteristic of the Condenser Microphone", Proc.
Inst. Radio Eng. v. 18, p. 1206, 1930.

3Aldridge, A. J., "Calibration of Wente Condenser Transmitter",
Jour. Post Office Elec. Eng., v. 21, p. 223, 1928.

Barnes, E. J., "Discussion of a Paper by R. S. Cohen," Proc.
Inst. Elec. Eng., v. 66, p. 195, 1928.

5West, W., "Pressure on the Diaphragm of a Condenser Trans-
mitter," Proc. Inst. Elec. Eng., v. 5, p. 145, 1930.

60liver, D. A., "An Improved Condenser Microphone for Sound
Pressure Measurements," Jour. Scientific Inst., v. 7, p. 113,
1930.

7Ballantine, S., "Technique of Microphone Calibration", Jour.
Acous. Soc. Am., v. 3, p. 319, 1932.
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Schottky1 and later Ballantine 2 described the

reciprocity principle for electroacoustic transducers.

However, MacLean3 and Cook were the first to show how

this principle could be applied to microphone calibra-

tion. No solid foundation for the reciprocity calibra-

tion technique was established until the treatment by

Foldy and Primakoff.5 Essentially the method requires that

a microphone be put in its own sound field. The overall

transfer impedance is proportional to the square of the

microphone calibration. The only other quantities that

need be known are: the frequency, the separation between

the two locations of the acoustic center of the microphone,

and the density of the medium. The method has proven to

be the most accurate of all, and yet the experimental

techniques are comparatively simple.

1Schottky, W., "Tiefenpfangagesetz", Zeits. f. Physik, v. 36,
p. 689, 1926.

2 Ballantine, S. , "Reciprocity in Electromagnetic, Mechanical,
Acoustical, and Interconnected Systems", Proc. Inst. Radio
Eng., v. 17, p. 929, 1929.

3MacLean, W. R., "Absolute Measurement of Sound without a
Primary Standard", Jour. Acous. Soc. Am., v. 12, p. 140,
1940.

4 Cook, R. K., "Absolute Pressure Calibration of Microphones",
Jour. Acous. Soc. Am., v. 12, p. 415, 1941.

5Foldy, L.L. and Primakoff, H., "General Theory of Passive
Linear Electroacoustic Transducers and the Electroacoustic
Reciprocit Theorem I and II", Jour. Acous. Soc. Am., v. 17,
p. 109, 1945.
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14 Need for the Investigation

Accurate calibration of microphones is of primary

importance in mos.t acoustic measurements. The accuracy

of final data can never be superior to the accuracy of

the calibration of the microphone with which the data

were taken. Ideally, each element of a measurement chain

should be capable of yielding results with an accuracy of

the same order of magnitude as any other element of the

chain. At present the microphone is almost invariably

the weakest link of any acoustic measurement chain. Errors

of the order of 20 per cent are taken for granted, and

errors of ten or twenty times this size are not uncommon.

The errors in the remainder of the measurement chain (the

electrical components, the indicating device, and the ob-

server) can, with moderate care, be kept less than 5 per

cent.

Any methods yielding reasonable accuracy that would

not require large or costly facilities would aid almost

all branches of acoustic measurements. Several of these

branches have become extremely important recently and

probably will be even more important in the future. The

evaluation and quieting of industrial noise and the establish-

ment of damage risk criteria for the ear are two such branches

of acoustic measurements. The development of better micro-

phones and loudspeakers is greatly hampered by the inability

of the manufacturer to measure the performance of a new



device with precision.

The present state of affairs is not a result of any

basic theoretical trouble with classical methods of cali-

bration but rather an economic trouble. Only a half-dozen

laboratories in the nation have the expensive facilities

necessary for accurate calibration and, in general, these

laboratories find it difficult to spend the time required

to set up and perform accurate calibration. In addition

it is extremely difficult by existing methods to estimate

the errors introduced into a calibration performed under

less than ideal conditions. It is therefore of consider-

able interest to investigate the physical limitations on

the calibration of microphones.

1.5 Free-Field Calibrations

In the vast majority of measurement problems, one

needs to know either the free-field response of the micro-

phone or a response derivable from it. The thermophone,

the pistonphone, the electrostatic actuator, and coupler

reciprocity are all methods yielding the pressure response

of a microphone. It is not possible to derive the free-

field response from the pressure response except in cases

of extremely simple geometry. For this reason no pressure

methods are discussed. Other than reciprocity, the only
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free-field method in use is the Rayleigh disk, and it is

limited by a serious vulnerability to winds. In addition

the method fails when the dimensions of the disk are com-

parable to a wavelength.

The reciprocity method, on the other hand, may be

applied in either free-field or pressure calibrations.

There is no fundamental limitation on the method at either

low or high frequencies, providing the transducers involved

are reciprocal and have reasonable sensitivity.

Most of the experimental techniques discussed will

have particular reference to calibrations above about one

kilocycle. Below this frequency the wavelength of sound is

long enough that diffraction effects are of secondary im-

portance for most microphones. For this reason it is

probably easier to make a pressure calibration of a stand-

ard microphone and apply a free-field correction. Second-

ary comparison calibrations carried out with such a stand-

ard and in a moderately anechoic space can be quite accurate.

Above one kilocycle, however, almost all measurements

become more difficult. At some frequency dependent on the

size of the microphone and the gas used, all the coupler

methods will fail. The electrostatic actuator method may

still be used for condenser microphones and other types with

conductive diaphragms. _ But the free-field correction to

l"Application de la Methode Electrostatique d'Etalonnage
Absolu a Certains Types de Microphones," Note - 152, Centre
de Recherches Scientifiques Industrielles and Maritimes,
Marseille, 1947.
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the pressure calibration becomes larger and more difficult

to evaluate with accuracy. Free-field comparison calibra-

tions must be carried out with great care in order to main-

tain the accuracy obtained with ease below one kilocycle.

In practice one finds that the precautions necessary

to the performance of an accurate comparison calibration

at high frequencies are only slightly less stringent than

those necessary to the performance of an accurate reciprocity

calibration. Therefore, if accurate high-frequency com-

parison calibrations are to be carried out, the most prac-

tical method of primary calibration is probably the free-

field reciprocity technique.

1.6 Unit and Conventions

The units used throughout will be the rationalized

1
MKS system This c.hoice simplifies the form of the

electroacoustic reciprocity theorem considerably.

In general capital Roman letters without other mark-

ings will represent matrices. In some cases subscripts

on Roman letters will indicate an element of a matrix. In

any case capital Roman letters with subscripts will be

scalars except for the subscripts d and t. These notations

will indicate the dual matrix and the transposed matrix,

respectively.

1See for instance: Skilling, H.H., Fundamentals of Electric
John Wiley, New York, 1948.
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The term electrostatic transducer will describe all

those electroacoustic devices employing coupling by means

of piezoelectric mechanisms and/or static charge. The

term 'electromagnetic transducert will describe those

devices employing coupling by means of magnetostrictive

mechanisms or a steady magnetic field. Those transducers

that employ coupling of both the electrostatic and electro-

magnetic type are ruled out of both classifications.

The words 'level' and 'gain' and 'response' will

always be used in connection with logarithmic quantities

such as 'sound pressure level' . When these quantities

are contained in equations, it will always be stated.whether

the units are decibels or nepers.



CHAPTER II

RECIPROCITY IN LINEAR SYSTEMS

2.1 History

One of the first references to the phenomenon of reci-

procity is by von Helmholtz in 1859. He describes an ex-

periment with a simple source first located at A and then

at B. The proof that the intensity of the sound at B in

the first experiment is the same as that at A in the second

utilizes Green's theorem in the manner now well known. In

1873 Rayleigh2 described a general statement of the principle

of reciprocity which sets down, probably for the first time,

several of the simple ways by which the principle may mani-

fest itself. A great unifying step was taken by Lamb3 five

years later. He showed that many systems satisfying the

Lagrange equations will obey reciprocity.

Apparently Schottky was the first to realize that the

principle of reciprocity could be applied to an electro-

acoustic system such as a microphone located in a free field.

This subject was again studied by Ballantine5 who attempted

Helmholtz, H. von, "Theorie der Luftschwingungen in Rohren
mit offenen Enden," Crelles Journal, v. 57, p. 1, 1859.

2 Rayleigh, Lord, "Some General Theorems Relating to Vibrations",
Proc. London Math. Soc., v. 4, 1873.

3Lamb, H., "On Reciprocal Theorems in Dynamics," Proc. London
Math. Soc., v. 19, 1888.

4Schottky, W., "Das Gesetz des Tiefempfangs in der Akustik
und Elektroakustik", Zeits. f. Physik, v. 36, p. 689, 1926.

5Ballantine, S., "Reciprocity in Electromagnetic, Mechani-
cal, Acoustical and Interconnected Systems", Proc. Inst.
Radio Eng., v. 17, p. 929, 1929.
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the first proof of the reciprocity of electroacoustic and

electromagnetic transducers. His proof rested on the- assump-

tion that the transducer could be represented by an analogous

network of inductances, capacitances and resistances. It was

then a simple matter to complete the proof. This step cer-

tainly made electroacoustic reciprocity plausible, but the

necessity to assume that the system can be represented by

an electrical network seriously limited the application of

the proof. The question remained, "Which physical systems

are representable by this type of analog?"

Further light on the fundamental basis of the electro-

acoustic reciprocity theorem was not shed until after several

writers had shown how the principle could be applied success-

fully to the calibration of microphones. 1,2 It was Foldy

and Primakoff3 who finally laid the theoretical foundation

on which this reciprocity calibration is based.

2.2 Lumped Constant Systems

Some of the results in this section are not new. The

methods presented here are believed to be novel and useful,

however. In addition, the material provides the necessary

1MacLean, W.R., "Absolute Measurement of Sound without a

Primary Standard", Jour. Acous. Soc. Am., v. 12, p. 140, 19 40.

2 Cook, R.K., "Absolute Pressure Calibration of Microphones",
Jour. Acous. Soc. Am. , v. 12, p. 415, 1941.

Foldy, L.L. and Primakoff, H., "General Theory of Passive
Linear Electroacoustic Transducers and the Electroacoustic
Reciprocity Theorem I and II", Jour. Acous. Soc. Am.,
v. 17, p. 109, 1945. and v. 19, p. 50, 1947.



foundation for the new results in this and later sections.

The phrase "linear, lumped-constant, passive system"

quite often implies that the system is representable by

network equations or a schematic diagram employing re-

sistances, inductances, capacitances and ideal transformers.

Either one of these two devices is sufficient to specify

completely, or at least for normal purposes, the behavior

of the system once the boundary and initial conditions are

known. If any system is completely described by electrical

network equations, it must be linear, reciprocal, and have

a finite number of normal frequencies.

For the purposes of this section it will be conveni-

ent to generalize slightly the meaning of "linear, lumped-

constant system." Let us include within this category any

linear system that is completely represented for the purpose

at hand by a finite number of variables, all a function of

time or frequency only. Under these conditions the system

need neither satisfy reciprocity nor have a finite number

of normal frequencies. For instance, a transistor is not

reciprocal, and over a portion of its operating character-

istic it may be described by linear equations. Similarly,

the behavior at the terminals of a length of transmission

line may be described by linear equations even though the

line itself is a distributed system.



2.21 Conditions for Reciprocity

This generalized characterization of a lumped system

may be expressed mathematically by the matrix equations

EZ I (2.1)

or

I YE (2.2)

Here E and I are column matrices with the same number of

elements of the form E1 ,E2 ''' and I ,I2'' Throughout

this chapter Roman letters without subscripts will rep-

resent matrices. The addition of a subscript usually

indicates an element of the matrix. The impedance andad,-

mittance matrices Z and Y are square and the number of

elements per side is equal to E or I. The symbols E, I,

Z and Y are all complex functions of radian frequency and

do not involve time.

The generalized condition for reciprocity utilizes

the results of two experiments on the same system. The

variables pertaining to the two different experiments will

be identified by the superscripts (1) and (2) . These

superscripts will be applied to E and I, but not to Z or

Y, since the impedance or admittance matrices are invari-

ant as long as only one system is studied. The generalized

condition for reciprocity is

E . E ' - 0 (2.3)
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In this case I must become a row matrix. The statement

that the matrix product I')E (2) is invariant under the

interchange of superscripts is a necessary and sufficient

condition for reciprocity. This statement can be placed

in a more recognizable form by the substitution of the

system equations (2.1) or (2.2).

1I) ! Ill-, - I I'" - I[0 -1 Zt I'll =0 (2.4)

The subscript t indicates that the impedance matrix has

been transposed. Assuming that neither of the I matrices

vanish

Z- Zt =40] (i.e. Thk Zk)(2.5)

where [O] s the null matrix. Similar manipulations in-

volving the admittance matrix yield

Y - Y, [] (i..e. Yk Y kj ) (2.6)

These two equations describe the equality of the transfer

impedances and admittances connecting any two ports (termi-

nal pairs) of the system.

Some familiar aspects of reciprocity appear when the

behavior of any two ports of an electrical system are examined

separately. The condition for reciprocity now reads

E1 -E I + .EI1 -ei) (2.7)

L0
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Let experiment (1) be the measurement of the open-circuit

transfer impedance from port 1 to 2, z21 . Similarly, let

experiment (2) be the measurement of the open-circuit trans-

fer impedance from port 2 to 1, z12 . These two experi-

ments are illustrated in Fig. 2.la. Since the resulting

output voltages are measured under open-circuit conditions,

(2) ad~l
I (2 and I2(1) must vanish. Thus the first and last terms

of (2.7) become zero and the resultant equation may be re-

written to show that the transfer impedances are equal,

(I)

Z- = z I (2.8)

A second pair of experiments is shown schematically

in Fig. 2.1. These experiments yield a measurement of the

short-circuit transfer admittances, y2 1 and y12 and require

that E2 (1) and E1 (2) vanish. Dropping the second and third

terms of (2.7), the result may be rewritten,

y?,= = - = Yit (2.9)

The third pair of experiments (Fig. 2.1c) is a measure-

ment of the transfer ratios of the system, h2 1 and h12 '

These quantities are analogous to the turns ratio of a

transformer (see Guillemin1 ). In this case E2 (1) and I (2)

1Guillemin, E.A., Communication Networks, Vol. II, John
Wiley and Sons, Inc., New York, (1935), p. 137.
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in (2.7) vanish and one finds that

_= -= h, 2.10)

which is the same result that one would expect for the

turns ratio of a transformer. The current 12 is defined

flowing into the network rather than out, accountingi for the

negative sign.

Let us consider an interesting hypothetical situation

in which two engineers set out to measure the transfer im-

pedance of a rather large network. Unfortunately they are

from two different countries and occasionally misunderstand

each other. They plan to perform the experiment shown in

Fig. 2.la, but the man at the second port confuses the

words for voltage and current. He therefore measures the

short-circuit current instead of the open-circuit voltage

in experiment (1) . Similarly, he measures the voltage

supplied to the network rather than the current as he should

have in experiment (2). When the data are reduced they are

surprised to find that the transfer impedances are apparently

equal, but opposite in sign. This result could have been

predicted from Fig. 2.1c, since this illustrates that the

experiment actually performed was the measurement of the

transfer ratio.
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The above example serves to emphasize that confusion

of the quantity to be called voltage and that to be called

current can result in a device that apparently violates

reciprocity. This rather improbable experiment becomes more

significant when one investigates the reciprocity of an

electroacoustic transducer.

It has been shown that the reciprocity condition leads

directly to reciprocity as expressed by the three pairs of

experiments shown in Fig. 2.1. Likewise, equations like

(2.4) show that reciprocity from any one of the three pairs

of experiments will lead to the general condition for recip-

rocity (2.3).

2.22 Conservation of Energy

If the system described by (2.1) is lossless, it is

possible to show an interesting relation involving the trans-

fer impedances. The average power consumed by the system

must vanish. Therefore,

P.=i e I E) [*2I + I F*I*]= 0 (2.11)

Here the star indicates that the complex conjugate has been

taken. Script capitals like will in general be scalars.

Note that the factor 1/2 appears in front of the product

I *E indicating that variables are peak rather than root mean

square quantities.
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If the term IZ I in (2.11) is transposed, it is

possible to factor an I in front of and after the brackets.

For an arbitrary I this manipulation yields

z + * - [0] (2.12)

The above equation shows that any corresponding pair of

transfer impedances of a lossless and not necessarily

reciprocal system are equal in magnitude. The driving

point impedances must be imaginary, but the transfer im-

pedances may have any angle. It is only necessary that a

corresponding pair be images of each other in the imaginary

axis.

An equation similar to (2.12) may be obtained for the

admittance matrix. Thus any lossless system satisfies

reciprocity in magnitude, but not in argle. This proves

to be a tremendous weakening of true reciprocity. The ad-

dition of a reciprocal, but lossy system to a system satis-

fying reciprocity in magnitude only, in general, will yield

a completely non-reciprocal result. 1

2.23 Combination of Reciprocal Systems

By the methods of matrix algebra it is fairly difficult

to prove that any combination of two reciprocal systems with

many ports will give a new system that is reciprocal be-

tween all pairs of ports. A novel and relatively simple

proof of this theorem that avoids the use of matrices is

described below.

1McMillan, E.M., "Violation of the Reciprocity Theorem in

Linear Passive Electromechanical Systems," J.A.S.A. v. 18,

P. 344, 1946.
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Consider the three-port system and the load impedance

Z shown in Fig. 2.2a. This load impedance may be zero ifL*

one wishes to connect two terminal pairs together. If the

current I is applied at the port 1, the current flowing

in the load impedance can be calculated as shown in Fig.

2.2b. The open-circuit voltage at port 2, E2 , is a result

of the currents flowing at ports 1 and 3 times the proper

transfer impedance and is given by

EZ Zz I7 - Z 2 1  (2.13)

Note that this expression would have been the same if the

current had been input at port 2 and the voltage measured

at port 1 and if the original device was reciprocal. There-

fore, the addition of a load impedance leaves a reciprocal

system reciprocal. This proof is perfectly general, since

the ports 1 and 2 may be taken anywhere in the system.

It is now necessary to show that the replacement of

the load impedance ZL by a reciprocal system with many

ports will leave the resultant system reciprocal. The

tandem connection of systems shown in Fig. 2.2c can be

treated in a fashion like that above to obtain E in terms

of I. The result is

E4. ZZ3 Z 4 3 I-(.4
F Z2,+ Z 3
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Again interchanging the current generator and the voltmeter

will not alter the resultant transfer impedance provided the

original systems were reciprocal.

These two steps constitute a general proof that any

combination of reciprocal systems is reciprocal, since

parallel, series and other interconnections may be handled

one wire at a time. This concept is useful in the analysis

of a complex system. For instance, a complicated electrical

network can be resolved into the combination of-many T or wr

networks. The components are reciprocal by inspection and,

therefore, the combination is reciprocal. Likewise, acoustic

reciprocity may be proved by demonstrating reciprocity for

an infinitesimal volume of air. This, in turn, is trivial

because the infinitesimal volume must be symmetrical.

2.24 Systems Described by the Lagrange Equations

The Lagrange equations can be used to describe the be-

havior of a vast number of lumped systems. It is important,

therefore, to investigate the conditions under which these

equations display reciprocity.

Let us assume from the outset that the Lagrangian is

not an explicit function of time. This restriction is

probably of little importance, since a system with time-

varying parameters could hardly be reciprocal. The intro-

duction of such an element into an otherwise reciprocal

system would make the results of any significant experiment



different at different times. Even if the element varied

sinusoidally at the driving frequency, the output would

depend upon the phase relation between the input signal

and the driven element.

Thus for the purposes of this section, the general

Lagrangian . may be written as a function of a set of

generalized coordinates ql, q2, .. ., and their time deriva-

tives q1 , q2 ,..., but not as an explicit function of time.

Throughout this and several of the following sections the

matrix operations are not always as clear as in the above.

For this reason a single bracket will denote a row or

column matrix and double brackets will denote a rectangu-

lar matrix. Under these circumstances the Lagrange equa-

tions are given by the matrix equation

- = e] (2.15)

in which the elements of the second matrix are derivatives

of the Lagrangian with respect to each of the generalized

coordinates q1 , q2 ,... The first matrix is constructed in

a similar fashion from the time derivative of the Lagrangian

with respect to the generalized velocities. The final

--- ----------------------- -- -- -- --

1 See for instance: Slater and Frank, Mechanics, McGraw-
Hill, New York, p. 74, 1947.
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matrix contains any additional generalized forces el, e2 ,''

acting on the system. The unusual notation for these forces

has been introduced so that the results may be applied to

electrical circuits and to avoid notational confusion later.

The instantaneous power input to the system may be

evaluated by multiplying the Lagrange equations by their

respective velocities and summing. This may be written

-- e] (2.16)

Expanding the first term this becomes

GI J 9 (2.17)

but the second and third terms are the negative of the

total derivative of the Lagrangian with respect to time.

Thus

'D L e (2.18)

Since the righthand side of this equation is the total

power input to the system, the quantity within the parenthe-

ses must be identified with the energy of the system -

When is expressed in terms of generalized momenta pl,

P2, ... and coordinates ql, q2 , . . . it may be called the

Hamiltonian of the system. The relationship between the
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Hamiltonian and the Lagrangian is given by the equations

)#)pN (F) '9 + 0 (2.19)

(PI~~ 0) 0 ) z 1 (2.210)

2.25 Reciprocity of the Lagrange Equations

The review material of the preceding section has laid

the groundwork for an investigation of the requirements on

the Lagrange equations in order that they exhibit reciproc-

ity. In this investigation it is again necessary to per-

form two different experiments, (1) and (2), on the same

system. In addition, the time coordinate of one of the

experiments will be reversed and the origin shifted. The

transformation is accomplished by replacing t by 7 - t in

all variables pertaining to experiment (2). This change

in the time coordinate does not mean that the results of

experiment (2) are changed. On the contrary, it is simply

a device that allows us to combine in one equation the re-

sults of experiment (1) at time t and the results of experi-

ment (2) at a different time T - t.



-27--

With these changes the Lagrange equations for the two

experiments are

d act ) )j I=) e(t)]
d / 0) ("(t) (e)

d f 4 (T-t)) b ." T- t =e ( r- t)
dt~~. \2) ((,r) _g (t)

(2.21)

(2.22)

Note that the dot represents differentiation with respect

to the argument and not with respect to t. Multiplying

(2.21) by q(2) (f-t) and (2.22) by q(1 (t) and expanding

the first term of each will result in

(2.23)

M :~00 WL

+ O - 1)9

Here the notation that q(l) and q(2) are functions of t

and 'T -t has been dropped for brevity. Integrate both of

these equations with respect to time from negative infinity

to positive infinity. The total derivative terms will vanlsh

(2.24)

(z) + a 9 C) Z!0 = (Z) e(ll;it 3 ) q I
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because one or the other of the factors making up these

terms will be zero at the limits of the integral. At a

very large negative value of t experiment (1) has not be-

gun, and therefore, the system must be at rest. Since the

time coordinate has been reversed for the variables of

experiment (2), the system is at rest for very large

positive values of t.

After eliminating the total derivative terms, the

difference of the two equations is

~t Oe

(.ca+ 1)j' 1) i

-.. (2.25)

e I - (1) e*] dt

The righthand side is a convolution integral, and there-

fore, may be rewritten in terms of the transform of the

reciprocity condition in the frequency domain (2.3),

+000

(f-t) el(l' -911(t), e( )) (It
00 +00j~t (2.26)

where I and E are the Fourier transforms of 4 and e,

respectively. Thus in order that reciprocity hold for

the Lagrange equations (2.15), it is necessary that the

lefthand side of (2.25) vanish for arbitrary values of

I(') and I(2 ) . This is equivalent to stating that the
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integral

(2)

~2= 192  Olt -, ~ i (2,27)

be unchanged when evaluated with the superscripts inter-

changed and with arbitrary values of q and q(2)

Examination of the necessary conditions for reciproc-

ity can be accomplished by assuming that all the q's are

zero except for one in each experiment. Therefore, the

only variables will be q ,) (2) .() and 4(2) . A general

term of the power series expansion of the Lagrangian could

be qanm. This gives

= f ( 9 O)(('))- n"(A m) (gi))M d t (2.28)

Interchanging (1) and (2) will, in general, change the

value of the integral unless the Lagrangian is a quadratic

form in the q's and 6's. It is also possible to have a

Lagrangian that will contain a constant and linear terms

in the i's. The constant will vanish by differentiation.

The q terms can be integrated with respect to time and

will vanish for large positive and negative times if the

driving forces are not maintained for an infinite time and

if any of the external forces are dissipative. It is inter-

esting to speculate on the fact that a purely lossless sys-

tem may not show reciprocal behavior because of a current

that has been circulating forever.
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These conditions on the Lagrangian represent the antici-

pated restriction that the Lagrange equations be linear.

With this restriction the Lagrangian may be written in the

following more explicit form:

I r ax(.29

The square matrices contain the mixed partials with respect

to all the q's and ''s. These mixed partials must be con-

stants of the system. The result of substituting this ex-

pression into the integral (2.27) is

+00

(2.30)

The corresponding evaluation starting with the Lagrangian

for experiment (2) is just the transpose of the original

integral (2.30) . Of course, the square matrices are un-

changed when transposed because their elements are mixed

partials and the order of differentiation is immaterial.

It can be concluded, therefore, that linear and only linear

Lagrange equations exhibit reciprocity.

The general condition for reciprocity expressed in the

time domain is not as simple as the equivalent statement in
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the frequency domain (2.26). However, for a displacement

impulse 6 (t) at the time origin

= (2.751)

for both experiments, the general reciprocity condition

becomes

(f (- )e(t- (t) ei(--))t
Or** (2.32)

-ei) (I) - e"2~(')

This equation states that if a displacement impulse set off

at port 1 results in a certain force at port-2 at a time 1

later, then an equivalent impulse set off at port 2 will

result in an equivalent voltage at port 1 at a time T later.

2.26 Dissipative Systems

So far the system under consideration has been conserva-

tive. All dissipative elements were removed from the system

by including the resultant forces in the list of those acting

on the system externally. Dissipation can be included in the

system itself by subdividing the force matrix into those forces

resulting from lossy elements erl' er2 ,... and those applied

externally e51 , e s2 ... . If only viscous elements are

included, it is possible to write
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ejj es] el. = e. (2 .331)

where R is a square resistance matrix relating the 's to

the er is. As a matter of convenience all the matrices in

(2.33) have been defined with a number of zero elements so

that each is conformable with q . Thus ej may have zeros

corresponding to the dissipative forces and er] may have

zeros corresponding to the external forces. Substitution

of this modified expression for the forces into the left-

hand side of (2.26) yields

+V9

ie - e';J- R9]+q"' ) d+ 0 (2.34)

when the result is equated to zero. Noting that

+0

(Z)R(]- 9') R ] At R "(=) 0 (2.7

it is again possible to write

e "]- (2.136)

providing that the matrix R is symmetrical.

The system to which (2.36) applies has been generalized

to include viscous forces erl' er2, '' that are related to



the q's by a set of linear equations. Since R must be

symmetrical, it is possible to derive the viscous forces

from a quadratic form. This is called the Rayleigh dissi-

pation function and is defined by

The viscous forces in terms of the dissipation function may

be written

er] R 13 (2.38)

Therefore, the most general matrix equation describing a

realizable lumped system that displays reciprocity is

+ ]=e](2.139)

where both and are quadratic forms with X a func-

tion of the q's and 's and r a function of the q's only.

The function 0 may include a constant and linear terms in

the c's.

2.27 Conditions on the Energy of the System

The relationship between the Lagrangian and the

Hamiltonian of the system was given in (2.19) and (2.20)

If the Lagrangian is a quadratic form, it is clear that

the Hamiltonian must also be. Under these circumstances
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one can identify

.Y~iL ~ =(2 .40)

]) -) 91]9 (2.41)

However, the cross term

will drop out in the calculation of 9' from s.. Similarly

the cross term in

will drop out in the calculation of X . Therefore, if

such cross terms are allowed, there will be no unique re-

lationship between the Lagrangian and the total energy of

the system. Furthermore, a Lagrangian defined by (2.19)

cannot be a valid representation of a linear system con-

taining such a cross term in the energy because a computa-

tion of the energy from the Lagrange equations would omit

this term.
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Let us examine a few systems in which terms involving

q and p appear in the energy. Stated in another manner,

let us examine systems in which a given displacement will

do work that is proportional to one of the momenta.

'Perhaps the first system of this type that would come

to mind is the rotating top or gyroscope. The significant

aspects of the top can be illustrated by a much simpler

example, the rotation of a particle in central field of

constant magnitude. A physical realization of such a

system is a spherical mass, m, rotating in a conical bowl.

Under quiescent conditions the sphere rolls around the

bowl at radius r0 with constant angular velocity WO.

The equations describing incremental motion of the particle

about the quiescent conditions are

.. F(2.42)

m r -e. -- (ZM r. .) (2 .4

where f is the external force acting on the mass in a radial

direction exclusive of the steady force caused by gravity.

The quantity t is the incremental torque acting on the mass.

The equations (2.42) and (2.43) do not obey reciprocity

in the usual sense because the coefficient of 6 in (2.42)

is equal to the negative of the coefficient of i in (2.43)

The kinetic energy T of the sphere is
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T~ r0 w. + ' +~ (2,.44)

The total energy of the system is obtained by adding the

potential energy of the sphere resulting from the elevation

above the apex of the cone.

im-2nr +zmW, rz +mr,%2Z+Zmr,ri+94' (2.45)

where contains terms not necessary for the derivation of

the equations of motion and cubic and quartic terms in the

incremental variables. If the total energy had been evalu-

ated directly from the equations of motion, the next to

last term of (2.45) would not have appeared. (Incidentally,

94/would not have appeared either.) Thus, the sphere

rolling in a bowl is a simple example of the kind of con-

fusion that can be expected when the total energy of the

system contains both q and p in a single term.

The equations of motion (2.42) and (2.43) are like the

equations that would have been obtained experimentally by

the two engineers who set out to measure z12 and z2 1, but

actually measured h12 and h2 1. This suggests that inter-

changing one pair of quantities analogous to current and

voltage in the equations of motion would yield a recipro-

cal system. For instance, if the incremental angular

momentum p which, in terms of the steady momentum po, is



given by

P.+p = m (r. + r)' (w. + ).(4)PO 43 =(2.46)
mr. W.+ mr.16+ . nr.w. r

is substituted into the equations of motion, they may be

rewritten in the form

m +r-+ r (M mr3 r (2.47)

jZm~,r e(2.48)

Thus by recasting the equations in terms of the angular

momentum rather than the angular displacement, they become

reciprocal. Transposing the angular variables in this

fashion was apparently first discussed by Rayleigh

The total energy of the system expressed in terms of

the incremental angular momentum p is

' mr + +r4- ri-- - r + 4" (2.49)
m r.1  m r, Mr.

Except for the term N'the new equations of motion yield

the same expression.

The essential change that has been made in the expres-

sion for the energy is that p has been substituted for 6 as

a generalized coordinate. Under these circumstances p cor-

responds to a generalized velocity,eto a generalized

Lord Rayleigh, Theory of Sound, v. I, p. 154, Dover, New
York, 1945.
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momentum and e to a generalized force.

In order to understand the general application of the

manipulations discussed above, let us investigate the con-

ditions for the reciprocity of systems described by

Hamilton' s equations

91 F (2.50)

~ ~ J eJ (2.51)

Again consider two experiments (1) and (2) and again assume

that the argument of the (2) variables is 't-t. Multipli-

cation of (2.50) for experiment (1) by (2.51) for experi-

ment (2) will result in

.(Ie LI+ (2.52)

The integral

(2.53)

should be unchanged by interchanging (1) and (2) in order

that reciprocity hold. With the aid of integral relations

similar to (2.35), it is possible to switch the differentia-

tion with respect to time from the front to the rear of the
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terms. However, when the integral

(2)2-54)

is evaluated, the mixed terms in the pis and qts evidently

remain. Therefore, systems described by Hamilton's equa-

tions are reciprocal only when all mixed terms such as

those in (2.54) are absent.

For the example of the rolling sphere discussed above,

it was possible to transpose momentum and angular displace-

ment coordinates in a manner that yielded a reciprocal

system. That this technique is possible in general can

be demonstrated by considering a system whose energy con-

tains only mixed terms of the form

Ps (2.55)

where the q and p matrices have been subdivided into two

groups, a and b. It has been assumed that no terms coupling

a displacement with a momentum of the same group exist.

With the momenta and displacements in the b group inter-

changed, the reciprocity condition is

f(~'e~i e2 )- e)) d+ a(2.56)
e +1- (,2eb . 9 3
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The evaluation of the first two terms of this integral for

the system whose energy is given by (2.55) yields

e b e 6 j i

(2.57)

By means of (2.35) it is possible to see that it makes no

difference whether the differentiation with respect to time

is applied to the (1) or (2) experiment variables. Thus the

lefthand side of (2.56) vanishes and the system obeys reci-

procity.

The fact that it is possible to interchange momenta

and displacements for a portion of a system should not be

surprising. The symmetry of these variables is well known

in quantum mechanics. The electrical principle of duality

is another expression of this symmetry. If the dual rep-

resentation is possible, the potential energy may be written

in terms of the derivatives of a new set of coordinates

composed of linear combinations of the original momenta.

For lumped systems where the kinetic and potential energies

are separate quadratic forms, this new set of coordinates

can always be found.

The total energy as a function of time must of course

be the same in both coordinate systems. The new Lagrangian,

however, will be the negative of the old, since formally

the kinetic and potential energies have changed places.
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This change of sign does not alter the fact that the inte-

gral of the Lagrangian will be stationary. Therefore, the

form of the Lagrange equations will be the same whether they

are in terms of the old or the new coordinates. The formula-

tion of the Lagrangian on this dual basis for electrical

networks is given by Guillemin1 .

Since transformations of this sort leave the Lagrange

equations and, therefore, Hamilton's equations unchanged in

form, one should expect that they are a type of canonical

transformation The condition satisfied by a canonical

transformation is that the integral with respect to time

of the difference between the Lagrangians expressed in the

two coordinate systems be a function of the end points only.

The dual formulation for the Lagrangian satisfies this con-

dition, since the difference between the old and new

Lagrangian is just twice the old. The integral of this

difference is stationary and therefore dependent on the

end points only.

Returning to the total energy of the rolling sphere,

let us review the ways in which the coupling can be expressed.

If the notation is revised so that p, r and 8 are no longer

incremental quantities, but now represent the quiescent plus

1 Guillemin, E. A., op. cit. p. 250.

2 Morse, P. M. and Feshbach, H., Methods of Theoretical
Physics, McGraw-Hill Co., New York, p. 287, 1953.
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the incremental values, the energy involved in the coupling

of the rotational and rectangular systems is

m r (2.58)

It is now clear that the second form must be used and that

an angular momentum is analogous to a rectangular displace-

ment.

Another example of the same problem is the condenser

microphone. The energy stored is half the voltage e times

the charge q.

v-9 c (2.59)

where C0 is the quiescent capacitance of the microphone

with quiescent spacing S 0 and instantaneous spacing S .
The integral with respect to time of the voltage e is the

total flux A . Here the second form is again chosen and

charge is chosen as the quantity analogous to displacement.

This choice will also set current analogous to velocity

and is called the classical analogy.

One final example is the moving iron telephone receiver.

The energy stored is half the flux X times the current i.

Xi =~ i L.c.$= 2i2. .(2.60)



where L is the quiescent inductance of the receiver with

a quiescent spacing SO and an instantaneous spacing S .
In. this case the flux X is analogous to the displace-

ment, and therefore, the voltage is analogous to velocity,

the mobility analogy.

Thus, by examining the energy involved in the coupling

between two systems, it is possible to determine the coordi-

nates that will make the system reciprocal. Of course, in

systems involving more than one kind of coupling, it may

not be possible to choose coordinates that would make the

whole system reciprocal at one time.

The treatment of the material in this and several of

the preceding sections has been carried out in the time

domain. It seemed that these sections would be less ambigu-

ous done in this fashion rather than in the frequency domain.

In general, however, the manipulations encountered in the

study of reciprocity are easier to handle in the frequency

domain. Appendix I contains a section devoted to the evalua-

tion of the kinetic energy, potential energy, and dissipa-

tion function for the sinusoidal case. Also included is an

evaluation of driving point and transfer impedance in terms

of these energy functions.

2.3 Distributed Systems

Our intuition might tell us that any distributed linear

system can be approximated to any desired tolerance by a

lumped system. One would expect, therefore, that a distributed



system will be reciprocal if it is linear, is passive, con-

tains only viscous losses, has a kinetic energy that is a func-

tion of the velocities only, has a potential energy that is

a function of the coordinates only, and has no explicit

dependence on time. With the aid of the groundwork laid

in past sections, it is not difficult to prove that this is

indeed the case.

From an intuitive point of view one can examine a

differential volume of a linear distributed system. In

many cases the volume will be homogeneous and therefore

reciprocal. Since the combination of reciprocal systems

is reciprocal, it can be concluded that the whole system is

reciprocal. This point of view indicates that violations

of reciprocity are likely to occur at a boundary or as a

result of coupling between two systems. As shown in Section

2.27, this is actually the case when the coordinates of the

two systems are associated incorrectly.

Though the steps are straightforward, the details of

the proof of reciprocity for distributed systems is rather

involved and is therefore contained in Appendix I. The

basic techniques involved are identical with those used in

the lumped system case. The general distributed system

that obeys reciprocity can be described by a Lagrangian

density that is made up of two separate quadratic forms:

the kinetic energy density, a function of the generalized

velocities only and the potential energy density, a function

of the coordinates themselves plus all possible combinations
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of the coordinates and their spatial derivatives.

It is shown that a dual representation of the system

is always possible if the potential energy contains no terms

in the generalized coordinates themselves. In the case of

a large steady component of charge or magnetic field, the

dual representation is not possible. It turns out that it

is necessary to avoid combinations of such systems if one

expects reciprocity because both systems cannot be described

by the same generalized coordinates.

The general description of the viscous forces that can

be included in a distributed system without destroying reci-

procity is much the same as the general description of the

conservative forces. Another way of expressing this con-

clusion is to allow the constants in the Lagrange equations

to become complex for sinusoidal variations of the coordi-

nates. This modification of these equations will include

the most general form of viscous forces obeying reciprocity.

Also included in Appendix I is a demonstration of the

relationship between the general reciprocity condition and

the symmetry of the Greents function. A generalized imped-

ance has been defined so that the distributed systems may

be connected to lumped systems. This impedance for distributed

systemsr takes the form of a matrix of mode impedance

in the general case. If one of the coordinates is 'constant

over the area under consideration, the formulation may be

simplified so that only one impedance is necessary for a

1 Crout, P. D., "An Extension of Lagrange's Equations to
Electromagnetic Field Problems," Jour. of App. Phys.,

v. 19, p. 1007, 1948.
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particular coordinate.

The general description of the Lagrangian is shown to

include the special cases of hetrogeneous, anistropic elastic

and electromagnetic media. Viscous forces caused by ex-

pansive friction and slearing losses will be included as

will losses caused by electrical conductivity if the con-

ductivity matrix is symmetric.

Systems with steady rotational motion are not in general

reciprocal. If the motion is in an incompressible fluid, it

is possible to utilize the dual rotational coordinates as in

section 2.27 and obtain reciprocity. Similarly the proper

set of coordinates must be chosen in order than an electro-

static or an electromagnetic transducer be reciprocal. Let

us include within the classification "electrostatic trans-

ducer" all those employing coupling by static charge or

piezoelectric mechanisms. Likewise, "electromagnetic

transducers" include those coupled by magnetostriction or a

staticmagnetic field. For electrostatic coupling the mag-

netic field strength becomes a generalized velocity and for

electromagnetic coupling the electric field strength is the

generalized velocity.

The electroacoustic reciprocity theorem may be expressed

in terms of the complex current and voltage at the electrical

terminals i and e and the complex pressure and volume velocity

at an ideal acoustic point transducer, p0 and u0 . Utilizing

(55), (92), (118), (122), and (123) from Appendix I, the

reciprocity condition foi electrostatic transducers becomes
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0) (2 (11 (1) (> _&t (Z (Z _ >Q

(2.61)
-(E* H E He) d a= -eL +e L

aoc

where v is the complex velocity vector, 0... is the area of

a small sphere surrounding the acoustic point transducer,

E is the complex electric field vector, H is the complex

magnetic field vector and 0e is the area surrounding the

electrical terminals. With the same notation the reciproc-

ity condition for an electromagnetic transducer is

P* 0' U P6 Lt = ( p* vo -*V* a a

(2.62)
= a E H * -E' 0 H') a a,=e'i'- (1) i.'
40e

These relations will hold if the transducer is linear,

passive and has no time-varying parameters. In addition

it is necessary that no electrostatic coupling exist in an

electromagnetic transducer and vice-versa. Outside of

these restrictions the characterization of the transducer

is quite general.

2.4 Summary

It has been shown that certain systems described by

the Lagrange equations are reciprocal. Included in this



group are all linear, passive, lumped and distributed systems.

Also if a linear passive system is not reciprocal, it cannot

be described by linear Lagrange equations.

In some non-reciprocal cases it may be possible to

choose new coordinates for part of the system that will

restore reciprocity. In these cases the relationship be-

tween the energy and the Lagrangian will not be unique for

the original coordinates.

A simple example may demonstrate this condition more

clearly. Consider a two-port, lossless network. A per-

fectly general representation of such a network consists

of a shunt admittance, a transformer, and a series impedance.

Suppose that it is necessary to evaluate the impedances and

the transformer turns ratio by energy measurements only.

There is a unit current generator and a unit voltage genera-

available. If the current generator is applied to the series

impedance side of the network, the energy stored in this

element will be equal to the value of the impedance. This

result will be completely independent of the power input at

the other port. Conversely, if the shunt admittance is

measured with the voltage source attached to its terminals,

changes on the series impedance side cannot be detected.

The experimenter might erroneously conclude that there was

no coupling between the two halves of the system. With the

experiments described there is no possible way to evaluate

the transformer turns ratio.
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Therefore, if one expects to be able to describe the

system in terms of its energy, it is necessary that the same

coordinates be used on both sides of the transformer; i.e.,

current generators on both sides. By turning the genera-

tors off and on it would be possible to devise enough

experiments to evaluate the impedance, admittance, turns

ratio, and in addition prove that the device was reciprocal.

The major result of the chapter is given by equations

(2.61) and (2.62) . Here the results of Foldy and Primakoff

have been duplicated, and in addition viscous terms have

been included. The proof was based on energy considerations,

and the equations of motion were derived instead of serving

as the starting point. These results are specialized state-

ments arising from the fact that any linear Lagrangian

system is reciprocal.

----- - -- -- -- --------------- ----
Foldy, L. L. and Primakoff, H., 2Q. cit., Part II, Jour.
Acous. Soc. Am.,, v. 19, p. 50, 1947.



CHAPTER 1ff

TRANSDUCER THEORY

3.1 Introduction

An electroacoustic transducer is a device that con-

verts electrical energy into acoustic energy or vice-versa.

The complete behavior of a transducer is extremely diffi-

cult to formulate in terms of the general electromechanical

equations developed in the last chapter. Measurement of

all the parameters involved throughout the volume of the

transducer is almost an impossible task for a relatively

simple device. Even if all the parameters were known, the

computation of, for instance, the input impedance of the

device, would in general be impractical.

It would then seem wise to attack the problem from

the point of view of the information desired about the trans-

ducer rather than from the equations describing the device.

If the transducer is a sound source, one is usually inter-

ested in the relationship between the sound pressure at

some point and the electrical input. If the transducer is

a microphone, one is usually interested in the relationship

of the electrical output to the sound pressure that would

have been detected by an ideal point pressure detector.

In general these relationships will not be a function

of the transducer alone, but will include the effects of

the enclosure within which the system is located. One
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method of eliminating the effect of the enclosure is to

make it so small that wave motion can be neglected. This

method fails for large transducers and for high frequencies.

Another method of reducing the effect of the enclosure is

to place the transducer in or cause it to generate a

random field. As long as the field is uniformly random in

the neighborhood of the measurements, the boundary surfaces

of the enclosure will have an effect that is easily calcu-

lated.

A third method of eliminating the effect of the enclo-

sure is to place the transducer in a free field. This is

the obvious method and also yields the most general results.

The behavior of the transducer in many environments can be

predicted from certain properties measured in a free field.

For instance the random field response of a microphone can

be found from its free field response. The converse, how-

ever, is not true.

3.2 Source of Finite Dimensions in a Free Field

Consider a source of finite dimensions surrounded by a

homogeneous and unbounded acoustic medium. Henceforth, this

environment will be called a free field. No matter how com-

plicated the structure of the source may be, the complex

amplitude of the pressure p in the free field outside a-

hypothetical sphere enclosing the source will satisfy the

wave equation
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where r, E, and k are the radius, polar angle, azimuth

angle, and the wave number. The spherical wave functions

that satisfy this equation form a complete set, and there-

fore, the radiation from any source may be expressed by

an infinite series of these functions.

The radial part of the wave functions are spherical

Hankel functions h (2) (kr) if only outgoing waves are con-

sidered. The behavior of all the spherical Hankel func-

tions for a sufficiently large radius will be proportional

to 1/r(expjkr). Therefore, at some large distance it is

possible to factor out the radial dependence of the series

expression for the pressure. The remaining terms, dependent

on e and J only, describe the directivity pattern of the

source.

If one were given the directivity pattern of a source

and it was possible to expand this pattern in a series whose

terms would be the angular part of a spherical wave function,

one could then compute the pressure throughout the remainder

of the field. This is true because the process of expanding

the directivity pattern in terms of the angular functions

will automatically evaluate the coefficients of the series
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representation of the field for any radius. Since the

angular parts of the wave functions form a complete set

themselves, it will be possible to expand any directivity

pattern in this fashion.

Onemay conclude that the directivity pattern of a

source is sufficient to specify the field completely ex-

cept for points within a sphere that just encloses the

source. This is an extremely useful concept, since it

makes it possible to specify the source performance quite

completely in terms of three parameters: the directivity

pattern, the electrical input impedance, and the source

response. The input impedance is defined for the trans-

ducer immersed in a free field and the source response

gives the pressure at some large distance from the source

for a unit current input to the electrical terminals.

3.21 The Field of a Source in Terms of the Directivity

Pattern

Although any given directivity pattern can be expanded

in a series of angular functions by graphical or numeripal

methods if analytical techniques fail, a direct approach

to the partial differential equation will yield some inter-

esting relationships between the directivity pattern and

the remainder of the field. Let us investigate the solu-

tions Nf of a new partial differential equation which is

formed from (3.1) by means of the transformation



),e (35.2)

where 3 -= kr and po is a reference pressure measured at

0 = kr0 and e = 0. This new equation will have solutions

whose radial dependence vanishes for large values of kr.

The region in which the r dependence of p is 1/r(exp(-jkr)

and in which that of 4 is constant will be called the far

field of the source. The modified partial differential

equation is

- + LZ4V) a (3.3)

where Lo* is the differential operator

i / ac) I (4()
L9+() sin ii '" +smnze 4 (3-4)

The original differential equation (3.1) had a regular

singularity at r = 0 and an irregular singularity at r = .

The modified equation still has the same singular points.

One would like to expand / in inverse powers of 3 , since

the field from a finite source must vanish at an infinite

distance from the source. Since the irregular singularity

is present at infinity, it should be expected that such.an

expansion will be of the asyrtotic type. The series
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substituted into the differential equation (3.3) will lead

to the recurrence relation

2n Vn +(n--)nn_, + L.44 N )., (3.6)

Note that for n = 0 both sides vanish automatically, since

there can be no coefficient for terms in positive powers of

3. Therefore, it is possible to begin with any , a func-

tion of the angular variables, and compute all the 4If from

this relation, (3.6) . These functions 4,, together with

(3.5) and (3.2) provide us with a formal solution for the

pressure anywhere in the field of a sound source whose

directivity 4' is known. Practically, however, the compu-

tation becomes enormously complicated after the first few

terms.

3.22 The Field of an Axially Symmetrical Source

Some of the complexity involved in evaluating the I

is eliminated by considering only sources that are symmet-

rical about the polar axis. The field produced by such

sources will also have axial symmetry, and the angular

differential operator L.4 in (3.6) therefore becomes
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Appendix II shows that with the aid of the Legendre poly-

nomials it is possible to compute the n in terms of a

summation of the derivatives of 4I with respect to cos 6.

The coefficients of the first few terms of the series have

been evaluated for arbitrary 6. For 8 = 0, e = 6r, and

8 = V the coefficients can be expressed in closed form.

The resulting expression for cos e = - 1 is simply

nj.(*1)nn)I (Cos(.8)

where the superscript (n) indicates differentiation with

respect to cos 8 n times. This same result may be obtained

directly by comparison of the nth derivatives of h ()

and Pm(cos 6), the spherical Hankel function and the Legendre

polynomial of the order m.

For e 1 the expression for ( in terms of the deriva-

tives of ,0 is slightly more complicated

-- 0. (3.9)
*nj 2"j. -)! (V- n)!
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where all the odd derivatives vanish because their coeffi-

cients always contain the factor cos 6.

These results agree with what one would expect intui-

tively for the relationship between the directivity pattern

and the near field. If the directivity pattern is a rapid

function of angle, the series in inverse powers of the radius

will have increasingly large coefficients. It is therefore

necessary to get a large distance away from the source before

the far field is reached. At a discontinuity in the direc-

tivity pattern the coefficients of the inverse powers of

radius blow up. In this case it is never possible to get

far enough away from the source to reach the far field. For

instance, in the plane of symmetry of a dipole one would

expect to find large tangential velocities even at great

distances from the source. Thus the limit of the far field

will be much farther from the source in the vicinity of

the plane of symmetry than along the axis of the dipole.

The results described by (3.8) and (3.9) have been used

to investigate the near field of a piston in an infinite

baffle (Appendix II). The field on the polar axis (8 = 0)

may be calculated directly from the integral of the source

distribution for a pulsating pill box. The expansion of

this result in a series of inverse powers of radius checks

the calculation based on the directivity pattern and (3.8).

A series expression for the pressure in the plane 8 = V

has been calculated in Appendix II. This result is apparently

new and converges rapidly for low frequencies or large r. At
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high frequencies the series oscillates and converges rather

poorly unless r is quite large.

3.23 The Acoustic Center of a Source

In the far field of any sound source, the dependence

on the radius is the same as that for a simple source; i.e.,

1/r(exp-jkr). Thus, in the far field, for a given angle

it is possible to replace an arbitrary source by a simple

source of the proper strength. As a point receiver is

brought closer to the origin, the difference between the

source and its equivalent simple source will be detected.

At very great distances from the source, the exact

positioning of the equivalent source is of little consequence.

The distance at which differences between the source and its

equivalent appear will, however, be determined by this posi-

tioning.

Consider a simple source displaced a distance a away

from the origin along the polar axis (e = 0). The direc-

tivity pattern of the displaced source will be altered in

phase only

( +) = 9 (3.10)

The derivatives of4( with respect to cos 6 evaluated

at 6 = 0 may be substituted into (3.5) to obtain the field

of the displaced point source on the polar axis
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*(r,o)= I ++ + (3-11)

The general expression for \ (r,o) is given by

$.~ro=l+ (0)+ ( 1O(I +--- (3.12)

In both cases the reference point . in (3.2) has been chosen

so that *0(0) = 1. Thus if the equivalent source is adjusted

so that

the difference in the magnitude of the two expressions for

2
\ (r,o) will have a leading term of the order (1/r) . In

most practical cases one is interested in the magnitude of

the pressure only. The value of a given in (3.15) is there-

fore the best possible adjustment of the equivalent source

in order that it will duplicate the magnitude of the origi-

nal field as close as possible to the origin. Let us define

this position b,= ka as the acoustic center of the source.

For 6 = r the acoustic center is given by an identical

relation evaluated at the new angle. A source that is sym-

metrical about the equatorial plane will have its acoustic

centers for e = 0 and e = 7r located equidistant from the

equitorial plane as one might expect. This fact makes it
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clear that the location of the acoustic center is a func-

tion of angle. For other angles the best location is

difficult to evaluate and may not even be on the polar

axis. Fortunately, most practical interest in this topic

will be for measurements made along the polar axis.

If the directivity pattern is expressed in terms of

its phase b and the natural logarithm of its magnitude cc

which shall be called the directivity gain

(() =e (3.14)

some of the implications of the definition of the acoustic

center become more apparent

k fa ~ (o) (15.15)
Co e1=0

Thus the derivative of the phase of the directivity pattern

with respect to cos 6 is proportional to the location of

the acoustic center. If the differentiation is with respect

to e itself, the righthand side becomes the negative of the

second derivative. Note that the dirst derivatives of *, ,

(. , or p with respect to 6 must vanish at the polar axis

in order that the field have the assumed symmetry.

Therefore, changes in the magnitude of the directivity

pattern do not influence the location of the acoustic center.

A good illustration of this point is a source that is
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contained in the equatorial plane. If the elements of

such a source all radiate in phase, the directivity pat-

tern will be real for all angles. Thus, even though the

magnitude of *, may change rapidly with angle, the deriva-

tive of the phase will always be zero. The acoustic center

must then be at the origin, as one should have guessed.

The concept of an acoustic center is extremely useful

in the calibration of transducers because the far field

may be specified by a measurement at distances much closer

to the origin than would be otherwise possible. This is a

great practical advantage because large free field spaces

are expensive and difficult to construct. Before the

acoustic center can be used with confidence, it is neces-

sary to evaluate the error involved in replacing a source

by its equivalent simple source. This error will increase

as the distance to the origin is decreased. At some point

the error will become too great to tolerate in any given

experiment. This point will be called the limit of the far

field.

3.24 Limit of the Far Field

Let us assume for the purposes of this section that

the source has been adjusted so that its acoustic center

is at the origin. Any deviation of from the far field

value 4, will be indicative of an error that will appear
when the source is replaced by its equivalent simple source.
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Measurements will in general be made of the magnitude of

the pressure only. The error e resulting from the intro-

duction of the equivalent source is then

e(re)m j ~j-| = ++----- (3.16)

where the real part of the second term within the magnitude

signs must vanish, since the source is located so that its

acoustic center is at the origin.

On the polar axis the leading term for the error becomes

E(r, o) (0 (0().17)

where C is the directivity gain as defined in (3.14) . Here

the superscripts indicate differentiation with respect to

cos 8 as usual. If the differentiation had been carried out

with respect to e, the result would be

' zi - + + 0 (3.18)

Thus the error is determined largely by the shape of the

directivity gain pattern. The leading term of the error

can be expressed in terms of the slope and curvature of a

plot of the directivity gain oC against the cos E. If the
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directivity gain is plotted against e itself, the error

will be determined by the curvature and the fourth deriva-

tive.

Unless the directivity pattern is very irregular in

the vicinity of the polar axis, the leading term given in

(3.17) or (3.18) will give a good indication of the limit

of the far field. Usually one is interested in evaluating

small errors, and under most circumstances the term

will appear well before the higher order terms.

3.25 A Construction Approximating the Limit of the Far Field

At some frequencies for sources with smooth direc-

tivity patterns, it is often possible to neglect the second

term on the righthand side of (3.17) and (3.18). If the

source is an efficient radiator, most of the power will

be in the lower modes of radiation. Higher order sources

can never radiate well at low frequencies and tend to pro-

duce irregular directivity patterns at high frequencies.

Thus for many practical sources the term cC(O) may be small.

It would be convenient to be able to compute the limit

of the far field by means of a construction on the direc-

tivity gain pattern which is usually plotted in decibels.

Patterns of this sort may be obtained automatically with

the aid of a rotating microphone and a synchronized polar

plotter.

Since by symmetry the slope of the directivity gain

pattern will always be zero on the polar axis, the radius



of curvature p of the pattern at this point becomes

CL (o) (3.19)

if .(0) is the distance in nepers from the origin to the

pattern (Fig. 3.1) . Eliminating e'f(0) in (3.17) with the

aid of the radius of curvature, the error may now be ap-

proximated by

6 (r, o) (0a- ) ( i (3.20)

when 6 is expressed in nepers or

e(r, o) . (0) ( S.at 01 (3.21)
8.69) P

when c(() is expressed in decibels.

For a given &(o), note that the error is proportional

to the distance between the center of the plot and the

center of curvature divided by the radius of curvature.

Thus for patterns that are very little different from that

of a simple source, the center of curvature approaches the

center of the plot. This causes the numerator of (3.20)

and (3.21) to become quite small and will therefore yield

a small value for the error 6 . On the other hand, if p

becomes small, as it would for a directional source, the

error will become large unless the radius r is increased

-64-
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accordingly. Thus the limit of the far field for the direc-

tional source is at a much greater distance than that for

the omnidirectional source.

This construction is extremely simple, and use has

been made of it in the calculation of the limit of the

far field for a number of commercial transducers. In prac-

tical microphone calibration it provides a method whereby

the distance between source and receiver may be minimized

for a given error.

3.3 Reciprocal Transducers

By virtue of the electroacoustic reciprocity theorem

of Chapter II, it is possible to demonstrate that a recipro-

cal transducer has properties that are especially useful

in calibration work. Let us first evaluate the transfer

impedance between the terminals of a transducer and some

point in the free field surrounding the transducer. If

the device is reciprocal, the transfer impedance will be

the same whether measured from the electrical to the

acoustical side or vice-versa.

In Fig. 3.2a, a current i is input into the electri-

cal terminals and a pressure p observed at the point r and

6. This measurement defines either the transfer impedance

z2 1 (r,e) or the transfer ratio h2 l(r,e) . The reverse

experiment (Fig. 3.2b) involves a simple source of volume

velocity u placed at r and 6. The open-circuit voltage

e is proportional either to the transfer impedance z12
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or to the transfer ratio h12. By the electroacoustic

reciprocity theorem (2.61)

Ze~ ZIrg Le L v -d a.

(3.22)

0E a

the transfer impedances must be equal if the device is

electrostatic and the transfer ratios

P f (1.W.a-

will be equal and opposite in sign if the device is elec-

tromagnetic (2.62) . As indicated in Chapter II, the classi-

cal analogy must be used with electrostatic transducers and

the mobility analogy with electromagnetic transducers.

3.31 Parameters Describing a Reciprocal Transducer

In the following analysis the classical analogy will

be used. Strictly speaking, the results should only be

applied to electrostatic transducers. The only important

difference in the treatment for the mobility analogy is

that a negative sign will appear here and there. There-

fore, the results for electromagnetic transducers can be



inferred from the following treatment for electrostatic

transducers.

The speaker calibration of a transducer is the pres-

sure produced at some point in the far field by a unit

current input to the electrical terminals. In terms of

the transfer impedance z21 the speaker calibration S(r,e)

may be written

Z . - S (re ( 3.24)
r+-

where r must be large enough so that the measurement is

carried out in the far field (symbolically indicated by

The microphone calibration of a transducer is the

open-circuit voltage produced in a free field by a plane

wave of unit pressure amplitude incident upon the micro-

phone at an angle 6. The plane wave may be generated by

a simple source at a very large distance from the trans-

ducer. The pressure p that would be detected by a point

pressure detector if it were substituted for the transducer

would be

=PZI e u (35.25)

where z22 is the driving point impedance of a simple source,

a is the radius of the source, r is the distance to the

-69-
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transducer, k is the wave number, and u is the volume

velocity of the source. Let us define the reciprocity

parameter J(r) as the pressure p detected by the point

pressure detector divided by the volume velocity of the

simple source u.

= = C e - jk r
u ZXr (3.26)

Here the driving point impedance of the simple source has

been evaluated (see Appendix I, Section 9.) and p is the

density of air, c is the velocity of sound, and A is the

wavelength.

For large values of r the transfer rnpedance z12 may

be written in terms of the microphone calibration M(6)

and the reciprocity parameter J(r)

Z I.(re)" J (r)M~e (35.27)
r -- *c

and since the transfer impedances are equal

s(ra) - J(r) M(e) (3.28)

for any reciprocal electrostatic transducer. For recipro-

cal electromagnetic transducers the speaker calibration

will be equal to the negative of the reciprocity parameter

times the microphone calibration.



-71T-

The equations above are applicable in the far field

only, but may be generalized by rewriting (3.2) in terms

of the reciprocity parameter and the speaker calibration

p S(r.,e)r * (r, e) (3.29)

where S has been evaluated at the reference point where

pO was measured. This reference point is for convenience

on the polar axis and is always in the far field. Now from

Fig. 3.2a it is possible to identify the transfer impedances

z21 and z12

:21=-z 1 = S(r, e) *(r, e) J(r).M (0) I(r, e) (3.30)

and this expression is valid at any point in the field

outside of a sphere just enclosing the transducer. In the

far field 4 becomes *. the directivity pattern of the

microphone. Thus the directivity pattern of a reciprocal

transducer is the same whether it acts as a source or a

receiver.

In addition the deviation of the speaker response

from that of a simple source I is the same as the devia-

tion of the microphone response from that of a point pres-

sure detector. For the microphone this effect may be

visualized as a curvature of the wavefronts arriving at

the transducer as a result of placing the source in the

near field of the microphone. Therefore, the calibration
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of a microphone by means of a simple source placed in the

near field will differ from the calibration made with the

source in the far field. The relationship between these

two calibrations may be expressed in terms of the direc-

tivity pattern with the aid of the function 4 .

The computation of the first few terms of the func-

tion i/ from the directivity pattern will not only predict

the acoustic center and the limit of the far field of a

transducer acting as a sound source, but in addition will

predict the acoustic center of the transducer acting as a

microphone and the point at which the curvature of the

wavefronts becomes important. The expressions for 6 ,

(3.17), (3.18), (3.20), and (3.21) may therefore be inter-

preted as giving the error incurred by calibrating a micro-

phone with a simple source located at r.

Thus a reciprocal transducer can be characterized by

three parameters: the electrical input impedance, the

directivity pattern, and either the speaker or the micro-

phone calibration in the axial direction. All parameters

are measured with the transducer immersed in a free field.

If the transducer is placed in an enclosure, the change in

input impedance can be computed, formally at least, by

replacing all reflecting surfaces by sources whose velocity

is equal and opposite to that of the incident wave. Inte-

grating the response to a point source of arbitrary loca-

tion (3.30) over the reflecting surfaces will give an
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output voltage that is equal to the current times the

change in impedance.

The only other parameter that might be included in

a description of the transducer is the scattering pattern.

This pattern is proportional to the amplitude of a scat-

tered wave in the far field of the transducer as a result

of a plane wave incident at an arbitrary angle. The re-

sulting parameter is a function of both the angle of the

incident plane wave and the angle at which the scattered

wave is measured. Since the scattered wave is an outgoing

solution of the wave equation, the results obtained for

the directivity pattern of a source will apply equally

well to its scattering pattern.

3.32 Reciprocity Calibration

If two transducers, (a) and (b), are placed in a free

field, the transfer impedance z ab between the two electri-

cal ports can be computed

Z'a= M.,o) *.. (re.) S(ro ) 4 (roba) (3-31)

if one assumes that the pressure at the receiver is not

altered appreciably by the wave scattered from the source

as a result of the wave scattered from the receiver. This

is usually a second order effect at low and moderate fre-

quencies, but at high frequencies multiple reflections
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may become quite significant especially if the two trans-

ducers have plane, parallel surfaces.

If the results of a comparison calibration between

transducers (a) and (b) are included in (3.31) one can

write

id(r,e)MO. (0) T(r) =[ , (o) \V/, (r,a) (332)

where the spacing between transducers for the comparison

calibration is large. This expression (3.32) will reduce

to the usual reciprocity formula as the spacing is increased

and k, and b approach the directivity patterns *,,,and to .

An example of the use of (3.32) in the calibration of

a special transducer (a simple source on a sphere) is des-

cribed below. For most practical transducers, however, it

is hard to get accurate information about * by calculation

from the geometry of the transducer, by direct measurement,

or by computation from the directivity pattern. The direc-

tivity gain pattern usually may be measured with little

difficulty, but phase information about the pattern is

almost always inaccurate. The location of the acoustic

center and the limit of the far field can be found for all

transducers, and therefore, this information will be of great

value in the practical calibration of microphones and sound

sources.



3.4 The Field of a Spherical Source

In order to gain a better understanding of the acous-

tic center and the limit of the far field, it is helpful

to compute the field of some simple sources. A complete

description of the field of a general spherical radiator

with axial symmetry can be obtained in terms of the Legendre

polynomials P n (cos 8) and the spherical Hankel functions

hn(kr) . Two particular cases have been chosen for com-

putation: a point source located on the surface of the

sphere on the polar axis, and a spherical piston pulsating

in the surface of a sphere. The angle subtended by an arc

in the surface of the piston and passing through its center

is 120 degrees.

The calculations pertinent to the following discus-

sions will be found in Appendix II.

3.41 Calculation of the Acoustic Center

Fig. 3.3 is a plot of the location of the acoustic

center of a point source and a piston source located on

the surface of a hard sphere. The horizontal axis of

Fig. 3.3 is the wave number k times the radius of the sphere

rl. The vertical axis is the location of the acoustic center

a in terms of the radius of the sphere. The distance a is

measured from the origin along the 6 = 0 axis.

1See for instance, Morse, P. M., Vibration and Sound, McGraw-
Hill, New York, p. 319, 1948.
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At low frequencies the acoustic center for the point

source is a half radius in front of the sphere. As the

frequency is increased, the center moves toward the sur-

face of the sphere. Above kri = 1 (circumference of the

sphere equal to a wavelength) the position of the center

oscillates about the surface of the sphere with an ever-

decreasing amplitude. At very high frequencies the series

expressions involved in the evaluation of the location of

the center may be approximated by integrals, and one finds

as k approaches infinity a approaches unit. This is

actually the geometrical optics approximation, since the

wavelength will be very small compared to the sphere.

The point source appears to be radiating in an infinite

baffle and, as a result, acts like a simple source located

at r = r .

At very low frequencies the acoustic center for a

piston set in a sphere is given by

a = ,(+ cos . (3-33)

where 28 is the angle subtended by the piston. When 60

vanishes, this expression should give the acoustic center

for a point source on a sphere. Inspection of Fig. 3.3

and (3.33) indicates that this is indeed the case. If the

whole sphere is pulsating uniformly (60 = ), the right-

hand side of (3.33) vanishes. Thus the acoustic center of
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a simple source is at its center as one should expect.

Calculations have been made at higher frequencies

for the case 6 = , and the results are plotted in Fig.

3.3. The curve runs parallel to that for a point source

up to about kr1 = 1, but at higher frequencies gradually

drops toward zero. For sources with a well-behaved veloc-

ity distribution (no discontinuities in the slope), the

directivity pattern is proportional to the velocity dis-

tribution. Thus, if all the elements on the surface of

the sphere radiate in phase, the directivity pattern will

have constant phase. One can conclude that the acoustic

center of this sort of source is at the origin at high

frequencies.

The piston set in a sphere does not have a well-

behaved velocity distribution, but any physical realiza-

tion of this source will. Therefore, the acoustic center

will be at the origin for some high frequency; the sharper

the drop in the velocity at the edge of the piston, the

higher the frequency.

3.42 Calculation of the Field of a Point Source on a Sphere

The pressure on the axis in front of a point source on

a sphere has been calculated for three frequencies; kr 1  0.1,

kr  0.5, and kr = 1.0. These data are plotted in Fig.

3.4 as deviations from the pressure produced by a point

source located at the origin (a = 0) and then located at
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the acoustic center as given in Fig. 3.3. This procedure

emphasizes the advantage to be gained by choosing the

proper acoustic center. Note that the three bottom curves

indicate that the difference between the actual pressure

and that from an equivalent source is less than 0.5 deci-

bels as close as one diameter away from the surface of

the sphere for all three frequencies.

The low frequency curve deviates at larger distances

than do the other two. Examination of the series expres-

sion for It at low frequencies (see Appendix II) shows

2that the (1/kr1 ) term has a rather large coefficient that

is proportional to (kr 1 )2 . This term could not have been

predicted by the construction on the directivity pattern

given in Section 3.25,. The first term in the complete ex-

pression for the error (3.17) is proportional to (kr) 4 and

the second to (kr )2. Therefore, at low frequencies the

term that was neglected in the graphical construction pre-

dominates. This situation indicates that the graphical

method may fail at very low frequencies.

At kr 1 = 0.5 the second term of the error (3.17) is

still important, but at kr1 = 1.0 the graphical method pre-

dicts the error accurately. This might have been guessed

without calculation, since the first term of the error will

always predict an increase in A
1The directivity plots of a point source on a sphere used
here are from Morse, P.M., op. cit., p. 322. However, the
plots in this reference are not of great enough accuracy to
be used In determining the error 6 For this reason, the
original calculations were obtained through the cooperation
of the MIT RLE Computing Group.
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A series expression for the field of a piston in an

infinite baffle for 6 = 0 is given in Appendix I (21).

Examination of the error (3.17) for this source shows that

the situation is much the same as for the point source on

a sphere. The first term of (3.17) is again of the order

(kr) 2 whereas the second term has both (krl) 2 
and (kr )4

terms. At low frequencies the second term will predominate

and the graphical construction will be invalid. At moder-

ate and high frequencies both terms are about the same size,

and the construction will give a good approximation to the

error.

The closed form expression for the pressure in front

of the sphere at low frequencies given in Appendix II

allows one to make an accurate plot of the reciprocal of-

the pressure without difficulty. Such a plot is shown in

Fig. 3.5. It is interesting to note that a limited amount

of data taken no farther than 5r1 from the origin would

indicate that the acoustic center was located closer to

the surface of the sphere than Irl. Thus, in determining

the acoustic center, it is wise to take measurements well

beyond the limit of the far field in addition to those

taken near the limit.
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3.5 Summary

It has been shown that the near field of a sound

source is directly related to its directivity pattern.

Formulas for the acoustic center and the limit of the

far field were developed in terms of this pattern. These

formulas help to give the experimenter the answer to one

of the most frequent questions in microphone calibration:

"How closely can I space source and receiver?"

The calculations for the special sources gave greater

meaning to the concepts of acoustic center and the limit

of the far field and also pointed out some of the limita-

tions. The real test of the usefulness of these two con-

cepts will come in their application to experimental data.
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CHAPTER IV

MEASUREMENTS AND MEASUREMENT TECHNIQUES

4.1 Introduct on

The material discussed above has been entirely theo-

retical in nature. The work leading to the discussions in

Chapters II and III has helped to produce a more firm and

detailed understanding of the phenomenon of reciprocity and

the behavior of the field of a transducer. That many of

the concepts developed there are useful in practical cali-

bration work will be demonstrated in the present chapter.

Measurements of the directivity patterns and acoustic

center have been made for seven different types of commer-

cial transducers:

1) Altec-Lansing Model 633-A dynamic micorphone

2) Shure Rochelle salt Model 9898 crystal microphone

3) Western Electric Model 640-AA condenser microphone

4) Altec-Lansing Model 21-B condenser microphone

5) Altec-Lansing Model 21-C condenser microphone

6) Altec-Lansing Model 21-BR condenser microphone

7) Altec-Lansing Model L-1 dynamic pressure unit

mounted in a special spherical housing

In several cases more thrn one unit of a given type was

studied. Throughout the forthcoming discussion reference

will be made to these seven types of transducers by their

model numbers only.
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Following the presentation of the measured data is

a section describing experimental techniques of microphone

calibration. This discussion includes the method of appli-

cation of the acoustic center and directivity data to a

calibration setup. Also discussed are many of the other

limitations and errors that may arise in practice.

4.2 Measurements

All the measurements were carried out in the MIT

Acoustics Laboratory anechoic chamber. The free space

available was about 14 feet cubed. The chamber actually

has a longer dimension, but the full benefit of this ad-

ditional space could not be realized because of the panel

transmission apparatus. The chamber is designed to reflect

less than 10 per cent of the incident energy down to about

70 cps. Very few measurements were carried out below

1000 cps, however.

4.21 Experimental Apparatus

Most of the electronic equipment was mounted in a

trio of relay racks located just outside the chamber (Fig.

4.1). Included in this equipment are the following items:

1) Two-frequency audio oscillator

2) Power amplifier

3) Pulsed sine wave generator
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Fig. 4.1 Electronic equipment and
control panel.
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4) Precision attenuators

5) Universal microphone preamplifier panel

6) Condenser microphone line amplifier

7) Amplifier compensated for microphone response to

provide uniform output at all audio frequencies.

8) Tracking wave analyzer electronically coupled to two-

frequency oscillator

9) Expanded scale voltmeter for monitoring condenser

microphone polarizing voltage

10) Expanded scale output meter for making accurate

judgments of attenuator settings

11) Oscilloscope for monitoring output wave form

12) Oscilloscope for determining frequency by Lissajous

patterns against frequency standard

13) Graphic level recorder mechanically coupled to

oscillator

This equipment was found to be quite flexible and was

easily adapted to all the experiments conducted. Most of

the special equipment was designed and constructed by

Mr. B. G. Watters and is described in detail in his thesis.

In particular, a special transducer of his design was used

extensively' (Fig. 4.2). This device is an L-1 pressure

unit from a 633-A dynamic microphone enclosed in a spherical

housing about two inches in diameter. The acoustic circuit

1Watters, B.G., "Sound Sources for Microphone Calibration",
MIT Masters Thesis, 1953.
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Fig. 4.2 Altec-Lansing L-1 pressure unit mounted
in a 2-inch sphere.
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of the pressure unit has been modified so that the source

response of the unit is quite smooth between 1 and 20

kilocycles (kc).

4.22 Scanning Apparatus

An automatic method of scanning the field in front

of a sound source was found to be desirable. One of the

prime considerations was the accuracy with which the scan-

ning microphone was positioned. For this reason a dis-

mantled lathe bed was used as the basis of the scanner

(Fig. 4.3). A small and extremely quiet motor was at-

tached by 0-ring belts to the screw. Thus the scanning

frame was driven along by means of the lathe carriage.

The information desired from the experiment was the

deviation of the sound field from that of a simple source.

Therefore, a novel and simple method of recording the

position of the microphone was designed. A ten-turn

potentiometer was attached to the carriage and geared to

a rack fixed on the bed (Fig. 4.4). The audio signal

from the oscillator was fed to the potentiometer. The

output of the potentiometer was then proportional to the

distance travelled by the microphone. This voltage, pro-

portional to distance, was connected to the input of the

power amplifier which, in turn, was connected to the sound

source. If the scanner starts at the acoustic center of

a simple source, the pressure arriving at the microphone
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Fig. 4.3 Scanner for plotting field of a sound source.
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Fig. 4.4 Detail of scanner showing potentiometer.



will be independent of the movement of the scanner.

The scheme described above has several advantages.

The voltage output of the microphone will be approximately

constant allowing for close examination of any changes.

A large dynamic range is not necessary in the measuring

equipment. The information about the separation of

source and receiver is automatically taken into account,

thereby reducing the amount of data necessary. Finally,

it is possible to include an adjustable resistor in series

with the potentiometer to provide a means for positioning

at will the effective acoustic center of the scanner.

4.23 Acoustic Center Measurements

The procedure for making measurements of the acoustic

center of a transducer consisted of adjusting the series

resistor on successive scans until the curve with the

least deviation from a straight line was obtained. The

series resistor was calibrated in terms of the number of

centimeters between the acoustic center and some arbitrary

reference.

Two typical scans are shown in Fig. 4.5. The first

was taken at 2 kc and shows clearly the limit of the far

field at slightly under 5 cm from the beginning of the

scan. At large separations the effects of reflections

from the wall of the chamber begin to manifest themselves

as standing waves.
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Note that the vertical scale is quite expanded. The

amplitude of the standing waves shown is only about 0.1

db. This large scale was obtained by means of a differ-

encing circuit. The output of the wave analyzer was

rectified and compared with a d-c reference voltage. The

difference voltage was connected to an Esterline-Angus

recording milliameter and the scans shown in Fig. 4.5

are full size tracings from the original data.

Because of the high sensitivity of the system, great

care had to be exercised in order to avoid erroneous

readings as a result of amplifier drift. In general,

any suspected recording was rerun until several similar

plots were obtained. Recordings had to be taken during

periods when the line voltage was stable.

The second scan of Fig. 4.5 illustrates the effect

of multiple reflections between source and receiver. In

this case the L-1 pressure unit and a 640-AA were used.

The flat face of the 640-AA evidently served as an ideal

reflector at the fairly high frequency of this scan. Other

more complicated reflections occur after about 35 cm.

These may be caused by the scanning apparatus itself.

In spite of a certain amount of trouble at a few

frequencies caused by reflections from the scanner, the

scheme was much more satisfactory than others that were

tried. Point-by-point measurements were taken with extreme

care and perseverance every centimeter for a distance of
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80 centimeters and at five frequencies. From these data

it was difficult to guess the acoustic center within a

quarter of an inch. The results of these measurements

are shown for comparison in Fig. 4.6.

More data were taken on the L-1 unit because it was

to serve as the source in the measurement of the centers

of the other microphones tested. For the measurements

shown in Fig. 4.6 microphones with known acoustic centers

were used. At low frequencies a probe tube attached to

a 640-AA was employed. However, about about 5 kc the

attenuation of the probe became so great that noise and

flanking were insurmountable problems.

A Tibbets Rochelle salt Diabow unit was used for

measurements from 1 kc up to 16 kc. This unit is about

1/4-inch square and 1/16-inch thick. Its sensitivity

when attached to a double-shielded cathode follower input

is about -70 db re 1 volt and 1 microbar. Because of the

drop in the source sensitivity and the increase in the

acoustic background noise, this unit could not be used

with accuracy below 3 or 4 kc.

The Diabow unit was mounted on a long tube which acted

as the second shield for the shielded wire running up the

middle. Shielding problems were critical and trouble was

actually experienced as a result of a standing wave between

the acoustic and electrostatic field of the transducer.
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The vertical axis of the data and sketch of the L-1

unit are plotted double size in Fig. 4.6. The reference

for the location of the acoustic center is as shown. The

data re quite smooth, considering the scale to which they

are plotted. In addition, they appear to follow in a

general way the predicted curve for a piston in a sphere.

The low frequency value is what one would expect for a

piston in a sphere subtending an angle of 800 at the origin.

The high frequency value is between that for a piston in

a sphere and a plane source in an infinite baffle. These

data were used as a correction to all the subsequent data

taken on acoustic centers.

Figures 4.7 through 4.10 show similar data for the

other microphones. The data for the 633-A microphones

show an appreciable spread in the region between 3 and

8 kc. This may be explained by the fact that the far

field recedes in this frequency range. Perhaps the near

field is rather complicated in this range and was included

incorrectly in the scans determining the acoustic center.

The 21 series of condenser microphones has the least

change in acoustic center as a function of frequency. As

one would expect, the addition of the holes moves the

acoustic center forward. The accuracy of the data for

these three microphones as well as that for the others is

dependent on frequency. At high frequencies because of a

number of measurement difficulties, the error may be as
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Fig. 4.9 Acoustic Center for 640-AA
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large as 0.2 inch. In the remainder of the frequency

range except for the 633-A measurements, the error should

be less than 0.1 inch.

4.24 Measurements of a Point Source on a Sphere

An experimental verification of the calibration theory

set forth in (3.32) was carried out. This equation states

that a reciprocity calibration may be carried out in the

near field of one or both of the transducers, providing

the deviation of the field from that of a simple source

is accurately known. In Section 3.42 the near field of

a point source on a sphere was calculated. These curves

can be utilized in a reciprocity calibration if the second

transducer approximates a point receiver and does not

cause multiple reflections between the source and the

receiver.

An experimental setup that meets these specifications

is shown in Fig. 4.11. The sphere is a hollow copper float.

The point source on the sphere is approximated by a 633-A

microphone mounted flush with the surface of the sphere.

The point receiver is a 640-AA microphone with a double-

shielded extension cable between it and the preamplifier.

The sphere is 18 cm in diameter and its circumference

equals a wavelength (kr1 = 1) at about 600 cps. The sphere

is filled with glass wool to prevent resonances caused by

sound that leaks into the interior.
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Fig. 4.11 Apparatus for the measurement of the field
of a point source on a hard sphere.



Measurements of the field were made in the anechoic

chamber from 200 to 1000 cps. A typical plot of these

data is shown in Fig. 4.12. The measured points fall on

the theoretical curve within 0.1 db from 2.5r1 to 8r1

from the center of the sphere. Therefore, the source

proved to be an extremely satisfactory approximation to

a point source on a hard sphere. However, at frequencies

above 500 cps the first two points begin to depart from

the theoretical curve slightly.

Additional measurements were taken with the source and

receiver set up in the anechoic chamber control room. These

data show that the reflections from the walls of the room

begin to be important at greater than 3r . Measurements

taken closer to the source yielded data that were used in

a reciprocity calibration of the 640-AA. The resultant

response was within a few tenths of a decibel of the actual

calibration.

Of course the reciprocity measurement in the anechoic

chamber control room was only part of the complete cali-

bration. It was still necessary to perform a comparison

calibration of the 640-AA and the sphere. This was done

in the anechoic chamber, but could have been carried out

in a moderately dead room for frequencies below 1000 cps.

The method for this measurement will be discussed below.



- -20

4J,

24 
0

P4

0

4-a

0

bc 0

0- 0

-4o
4-)

0 Data taken in Anechoic Chamber at 400 cps

0 Data taken in Control Room at 400 ops

- Theoretical Curve

S - r 2r 3ri 4ri 5ri 6ri 7r 8r 9r lorl-50 1r 1  1. r1  5 1  r1  7 1  8 1 1  1 0r
I I| |-

Distance from Center of Sphere to Receiver, r

Fig. 4.12 Data on the Field in Front of a Point Source on the Surface of a Hard Sphere



-106-

4.25 Directivity Measurements

Directivity gain patterns were automatically recorded

at a number of frequencies for all seven types of trans-

ducers. The equipment used consists ofa rotating boom

and a synchronized polar level recorder. The source

was placed on the boom and rotated around the microphone

at a distance of about 40 cm. This distance was chosen

so that reflections from the walls would not be important

and yet the spacing would not be so close that the exact

position of the center of rotation would be critical.

The data have been traced directly onto Figs. 4.13

through 4.28. To save space only half the plot has been

shown in most cases. Fig. 4.17 is an exception which com-

pares the two halves of the directivity gain pattern of

a 633-A. At this frequency there is apparently a fairly

serious assymetry in this microphone. Other microphones

(the 640-AA, for example) do not show any assymetry, thus

ruling out the possibility that the difference shown in

Fig. 4.17 might be caused by reflections from the walls.

A special plot of the variation in response of the

9898 in the equitorial plane is shown in Fig. 4.20. Since

the microphone apparently has axial symmetry, it is rather

surprising that variations of the order of 20 db are ob-

served at 8 and 10 kc. These data emphasize the futility

of making one calibration at grazing incidence for such
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a microphone. If one expects to find an average grazing

response, azimuth directivity gain plots such as those

in Fig. 4.20 must be run at all the higher frequencies.

The accuracy of these directivity gain patterns will

be greatest for situations where the sensitivity is highest.

When the source is positioned at angles of 900 and greater

with respect to the axis of the microphone, sound energy

reflected from the wall of the chamber may arrive at the

microphone in the normal direction. The output voltage

caused by the reflected wave may be comparable to that

caused by the direct wave, and hence the rear two quadrants

of the pattern may be in error by several decibels at high

frequencies. The portions of the patterns that are on the

major lobe should be accurate to about one decibel, the

practical limit of the recorder.

4.26 Calculation of the Limit of the Far Field

The graphical construction described in Section 3.25

was applied to the directivity gain patterns (Figs. 4.13-

4.28). The results are plotted to show the minimum dis-

tance to which a point receiver may be brought without

observing more than a 3 per cent deviation from the pres-

sure radiated by a simple source. This minimum distance

for the L-1 unit is shown in Fig. 4.29a. Also shown in

this figure are the equivalent distances taken directly

from the scanner data. The prediction by means of the
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graphical construction seems to give a good indication of

the actual field, and, if anything, the estimate is a

little conservative. The scanner data are rather scattered

because the point at which the pressure deviates by 3 per

cent apparently depends on higher order terms which are

neglected in the graphical construction. The scanner

plots rarely made a smooth turn away from the horizontal

line.

The data for the other microphones (Figs. 4.29b and

c) indicate that the condenser microphones have the smallest

near fields. The far field of the 21-B recedes around 12 kc

as a result of the dipole action of the slots. This phe-

homenon is almost completely absent from the 21-C even

though the slots have not been eliminated. Apparently

the holes tend to shunt the volume velocity from the slots.

4.3 Measurement Techniques

The data of the previous sections and the theory of

Chapters II and III, together with additional information

gained through experience enable us to delineate the

physical limitations on the free-field calibration of

microphones. Let us assume that a reciprocity calibra-

tion of a certain transducer is to be carried out over a

specified frequency range and with a specified accuracy.

The experimenter may ask:
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1) Is the transducer to be calibrated reciprocal?

2) How closely can source and receiver be spaced?

3) What will be the error caused by reflections?

4) May pulse techniques be used to advantage?

5) Should the data be recorded point by point or

automatically?

6) What errors may occur in the measurement of elec-

trical quantities?

7) What factors should be considered in the selection

of a sound source?

With the aid of the material in the foregoing plus a cer-

tain amount of practical experience, it is possible to

give engineering answers to these questions.

4.31 Linearity and Reciprocity

As shown in Chapter II, the transducers used in a

reciprocity calibration will in general be reciprocal

for incremental signals. In any case one can prove that

they are reciprocal by making measurements of the electri-

cal transfer impedance of a pair of transducers. Equality

of these two transfer impedances for an arbitrary second

transducer will be sufficient grounds for concluding that

the first is reciprocal. It is wise to make the measure-

ment with two completely different types of transducers
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because it is possible that an identical onreciprocal

mechanism may exist in two transducers of the same type.

Let us assume that the transducers under considera-

tion exhibit reciprocity for incremental signals. The

question that the experimenter must still answer is, "At

what level will nonlinearities become important?"

A small, low-noise microphone should be placed as

close as possible to the transducer whose linearity is

to be studied. The frequency response is recorded for

several different input levels. Any changes in the shape

of the response indicate errors that will occur in a reci-

procity calibration.

Every effort should be made to make measurements at

input levels that correspond to the output levels obtained

when the transducer operates as a microphone. An illustra-

tion of this point is shown in Fig. 4.30a and b. The

response of an Altec-Lansing bull-horn driver was measured

at close range with a 640-AA microphone. The heavy curve

in both Fig. 4.30a and b was measured with a fairly small

voltage (about 40db below rated voltage) applied to the

driver. Bowever, reductions in the applied voltage of

20db (Fig. 4.30a) and 60db (Fig. 4.30b) show important

changes in the frequency response of the source. A limited

number of measurements over a range of about 10 db might

not show significant nonlinearities. It can be concluded
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that the horn driver will be a satisfactory reciprocal

transducer above 2 kc, but not below.

In general it is not safe to assume that a trans-

ducer is linear until measurements of the sort described

above have been conducted. Horn drivers will, in general,

exhibit nonlinearities like those shown in Fig. 4.30. Cone

louspeakers show even more erratic behavior. At frequencies

near the rim resonance the exact form of the cone break-up

will be strongly influenced by the level of the input volt-

age. In some cases the cone may not break up in exactly

the same way even when the same voltage is applied a second

time. Dynamic microphones like the 633-A show nonlinearities

at low frequencies for extremely small inputs. Most high

quality transducers are linear and reciprocal throughout

some usable portion of the frequency range, and it is al-

ways possible to use a number of sources of different types

in order to cover the entire audio range.

The data shown in Fig. 4.30 were recorded through a

narrow band wave analyzer, thus eliminating the contribu-

tion to the response of the higher harmonics. Often a

harmonic can be detected with greater ease than a corre-

sponding change in the fundamental. Unfortunately there

is no general relationship between the levels of the har-

monics and the change in the fundamental. It is interest-

ing to note, however, that even harmonics alone can never

cause changes in the fundamental. This is a result of the
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fact that a nonlinear element that is an even function of

some generalized coordinate can never produce a contribu-

tion to the fundamental or any odd harmonics.

A pertinent example of this kind of nonlinearity is

that introduced by the square term of a condenser micro-

phone. No matter how great the second harmonic distor-

tion may be, this transducer will exhibit no changes in

the fundamental. Of course, changes in the fundamental

may occur for other reasons. A nonlinear compliance will

usually cause changes in the fundamental and the result-

ant failure of the device to obey reciprocity.

Hysteresis mechanisms are basically nonlinear and

may therefore introduce violations of reciprocity. For

incremental variations in the coordinates, the area

enclosed by the hysteresis loop may be approximated by

an ellipse. This does not represent a nonlinearity but

merely the presence of a small linear dissipative element.

As the area enclosed by the loop increases, the direction

of the major axis or the ratio of the major to minor axis

may begin to change. It is at this point that the device

becomes nonreciprocal. In any case a test of linearity

by a method similar to that employed above will indicate

the maximum level at which the device may be operated

linearly.

1COx, J.R., "Nonlinear Analysis of the Condenser Microphone,"
Quarterly Progress Report of the MIT Acous. Lab., p. 4,
Oct.-Dec., 1951.
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4.32 Spacing of Source and Receiver

The limit of the far field can be predicted with satis-

factory accuracy from the directivity pattern (Section 4.26).

However, spacings as close as those indicated in Fig. 4.29

are probably not useful. The location of the acoustic

center varies slightly for different microphones of the

same type. Therefore, it will be necessary to space the

transducers far enough apart to reduce these individual

variations to negligible proportions or, alternatively,

to find the position of the center of each transducer.

If a calibration is to be conducted for which the

desired accuracy is of the order of 0.5 db, it is suggested

that the average values of the acoustic center be used. In

the worst case (that of the 633-A) this accuracy could

be maintained for a spacing of 5 inches, providing that

multiple reflections are unimportant. This will, in general,

be true at this spacing at low and moderate frequencies.

At high frequencies it may be necessary to use other tech-

niques.

If a greater accuracy is desired and space is limited,

it may be wise to find the exact location of the acoustic

center. Point by point measurements of the field at several

different spacings will serve to define the acoustic center

accurately if measurements close to but not in the near field

are made. Knowledge of the limit of the far field is necessary
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in order to eliminate errors like that illustrated for the

point source on a sphere (Fig. 3.5).

4.33 Reflections

The wave impedance of a spherical wave is

( 90 1 (4.1)
jkr

At low frequencies the reciprocal of jkr predominates even at

large distances from the source. Thus, if the wall of an

anechoic space is the order of a wavelength from the source,

the wave impedance will not be matched by the wall impedance

even if the wall is perfectly absorbing. Therefore, the

reactive term of (4.1) causes a reflection at the wall.

This problem has been treated in detail by Ingard and the

simplified result

+ 2(4.2)

may be obtained from his work if one assumes that the wall

has an impedance that is close to the characteristic impedance

of air and that the angle of incidence is normal. Here the

original source strength is Qs, the image source strength

is Q , the reflection coefficient of the wall is R., the

1 Ingard, U., "On the Reflection of a Spherical Sound Wave
from an Infinite Plane," Jour. Acous. Soc. Am.., v. 23,
p. 329, 1951.



-133-

distance from the image of the source to the receiver is r.

If the reflection coefficient is R = 0.1, the two terms

of (4.2) will be about equal in magnitude when the source

is located a half wavelength from the wall. A source

placed closer to the wall will tend to nullify the effect

of the absorbing material. If the wall has greater ab-

sorption, the source should be spaced even farther away

in order that the first term in 4.2 does not predominate.

Thus the low frequency limit of an anechoic enclosure

is determined by its size and the absorption of the walls.

Calibrations in the 100 cps to 1000 cps range may be carried

out with less expense in a large but only moderately absorba-

tive room. At higher frequencies it is profitable to make

the enclosure smaller and increase the absorption of the

walls.

Above 1 kc or 2 kc the first term of (4.2) may be

neglected by comparison with the reflection coefficient.

The directivity patterns of both source and receiver must

now be considered, however. The wall may be replaced by

an image source with a strength of R times the strength

of the original source. The directivity pattern of the

image source will naturally be the image of the original

pattern. The worst reflections will usually be from the

wall opposite the major lobe of the source. It will be

assumed then that this is the wall under consideration.

Obviously the least error resulting from the image source
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will be incurred when the major lobe of the directivity

pattern of the receiver faces the source. Other orienta-

tions such as that required for a grazing incidence cali-

bration will result in a greater error.

It is suggested, therefore, that all reciprocity

calibrations be carried out with both transducers at

normal incidence. If calibrations at other angles are

required, they may be obtained from the directivity pat-

tern and the normal incidence calibration. Lacking a

directivity pattern for the transducer, a comparison

calibration at the required angle may be carried out for

several different orientations in the anechoic space so

that errors caused by reflections will be smoothed. The

recording of the directivity pattern is naturally subject

to the same errors, but a large amount of data will have

been recorded, and the effect of reflections may be smoothed

somewhat by eye.

Let us consider two transducers facing each other. The

spacing between them has already been determined by con-

siderations similar to those discussed in Section 4.32.

The error caused by reflections may be approximated by

replacing the six walls of the enclosure by the images of

the source. The strength of these images will be equal to

the original source strength times (4.2). On the average

the reflected intensity for a cubicle enclosure will be
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six times the intensity reflected from one wall, since the

contributions of the image sources can be expected to add

incoherently.

Again taking the example of R = 0.1, the above con-

siderations lead to a ratio of path lengths for the direct

to the reflected sound of 1:5 for an error of 0.5 db and

aboutl1:25 for an error of 0.1 db. At low frequencies the

reactive part of the impedance of a spherical wave will

cause additional reflections.

4.34 Pulse Techniques

For frequencies greater than about 5 kc a train of

sine waves a few cycles long can often be used to advantage.

An oscillographic display of the microphone response to

such a pulsed sine wave will yield considerable information

about the magnitude of reflections and the total path length

involved. One may ignore the direct pulse and expand the

scale of the display so that the reflections are examined

in detail. It is then possible to track down the offending

reflecting surface with great rapidity, whereas plots of the

field yield little information other than the fact that

reflections are present.

The space length of the pulse should be 6 to 12 inches

so that distances of this order of magnitude can be resolved

on the oscilloscope screen. This corresponds to a minimum



-136-

pulse length of 2.5 cycles at 5 ke or 8 cycles at 16 ko.

Thus at low frequencies the bandwidth of the pulse will

be quite wide, and it is often necessary to accept a

longer pulse length unless the responses of the transducers

are smooth. A short pulse passed through a transducer that

has an irregular response (such as the 9898) will produce

a ringing in the transducer that may be mistaken for re-

flections. This ringing phenomena may be detected by

bringing the receiver into the near field of the source

so that the effect of reflections may be neglected.

In addition to use in studying reflections pulse tech-

niques may be employed directly in calibration work. More

emphasis is placed on the requirement that the frequency

response of the transducer be smooth, however, For in-

stance, if a portion of the response of a microphone can

be approximated by a simple resonant circuit with a certain

Q, the output of the microphone when exposed to a pulse of

sound will approach some steady-state value.When the output

is a fraction of a decibel (db) from the final value, one

may make the approximation

Sb = -.Se (4.3)

where d is the space length of the pulse in feet received

before the time of observation and f is the frequency in
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kc. For instance, if Q = 5 and f = 5 kc, almost 20 feet

of the pulse must be received before the output of the

microphone is within 0.1 db of the steady-state value.

Thus unless the space is large or the microphone response

smoother than above, pulse techniques will be of little

value in eliminating reflections from the walls.

In some cases multiple reflections between source and

receiver will cause errors. The beginning of this kind of

difficulty is shown in the lower scan of Fig. 4.5. At

higher frequencies sizeable variations in the field will

be found at much larger spacings. For both the L-1 pres-

sure unit and the 640-AA the frequency response is quite

smooth, and it was found that by pulsing the source it

was possible to eliminate these multiple reflections at

frequencies above 10 kc. When this technique is used,

great care must be exercised to be sure that the signal

is of sufficient duration to approximate steady-state

conditions.

4.35 Methods of Data Taking

There are two basic methods of recording the data:

discrete measurements at a number of frequencies and con-

tinuously recording the output as a function of frequency.

The point-by-point method can yield results with accuracies

in the vicinity of 0.1 db, but it is extremely laborious



and time consuming. It is necessary to obtain a Lissajous

pattern at each frequency and to obtain a balance between

the acoustic signal and that introduced by means of the

insert resistor. If the calibration is irregular, many

points will have to be taken within a small frequency

range.

On the other hand, if automatic recording techniques

are employed, the Inregularity of the response is of no

consequence. However, the accuracy of the data obtained

will be considerably less than 0.1 db. The recorder that

was used in this work had 0.25 db steps but was often in

error by 0.5 db. In the continuous recording technique

it is not possible to record frequency accurately. Small

inaccuracies in positioning the paper or slippage in the

drive can cause sizeable errors.

A combination of the two techniques can often be used

profitably. The frequencies at which point-by-point

measurements should be taken in order to obtain the re-

sponse curve with the minimum amount of data can be chosen

with the aid of an automatic recording. If accuracy of

the order of 0.5 db is required, it is often possible to

take only a few discrete points. The remainder of the curve

may be interpolated from the data recorded automatically.

If the frequency scale is in error, the discrete data will

disclose this. In some cases the frequency scale may be
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translated, and it will be possible to shift the automatic

recording so that it will fit the discrete data.

4.36 Electrical Measurements

The electrical measurements of magnitude of the

transfer impedance zab can be accomplished by comparison

with a calibrated attenuator. If the current into the

source is adjusted so that it is the same as that into

the attenuator, and if the attenuator is adjusted so that

the voltage introduced by the insert resistor is the same

as that produced by the microphone, the transfer impedance

will be directly related to the attenuator setting. An

accurately calibrated attenuator can yield data with an

error of less than 0.1 db.

The insert resistor must always be in series with the

equivalent voltage generator of the microphone. If the

impedance of the microphone is low, there is no problem.

If the impedance is high, for instance, a condenser

microphone, it is necessary to take special precautions

to be sure that no shunting capacitance appears between

the microphone and the insert resistor. Watters1 has shown

that the insert resistor may be located at the line amplifier

if the circuitry is arranged so that this capacitance is

negligible.

1Watters, B.G., ibid.
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In the calibration of condenser microphones the polar-

izing voltage must be accurately measured. Since the

microphone must face a high impedance, it is not practical

to measure this voltage directly. Usually a cathode fol-

lower preamplifier is employed in such a way that the

voltage across the cathode resistor supplies the microphone

bias. The cathode voltage is then closely related to the

bias voltage. However, if any current flows between grid

and cathode, the polarizing voltage may deviate appreciably

from the cathode voltage.

Figure 4.31 shows the variations in the sensitivity

of a 640-AA microphone as a function of the voltage across

the cathode resistor of the preamplifier. The straight

line shows the variation in sensitivity to be expected if

the polarizing voltage were known accurately.

The data of Fig. 4.31 were taken with the microphone

mounted first on a Cruft and then on an Altec-Lansing

preamplifier. The Cruft preamplifier had a 10-megohm

resistor connected between grid and cathode. The Altec-

Lansing preamplifier was measured as built with the grid

open. A 2-megohm resistor was then inserted between grid

and cathode.

The open-grid condition increases the uncertainty

of the measurement of the polarizing voltage. Grid current

plus very small currents flowing through the extremely

high leakage resistance of the tube evidently cause. these
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variations. The 2-megohm grid resistor reduces the varia-

tion of the grid bias markedly, but at a slight sacrifice

in the signal to noise level and in the low frequency

sensitivity. Usually these sacrifices can be tolerated in

microphone calibration work.

4.37 Selection of a Sound Source

The selection of a sound source is an important step

in the instrumentation for reciprocity calibration. There

are a number of desirable characteristics that one should

bear in mind. The frequency response should be smooth, the

front of the source should be free from flat surfaces, the

near field should be small, the acoustic center should change

smoothly with frequency, and the response should be prac-

tically independent of time and minor variations in tempera-

ture and pressure.

It is important to have a source with a smooth frequency

response for two reasons. First, small changes in frequency

should not cause large changes in the electrical output.

Such a situation makes the source impractical for use with

automatic recording equipment and inconvenient for use when

point-by-point data is taken. Second, a smooth frequency

response is desirable for pulse measurements.

The front of the source should not be flat so that

multiple reflections between source and receiver are mini-

mized. A spherical shape will diffuse the wave reflected



from the microphone most effectively. The L-1 pressure

unit has a dome-shaped diaphragm mounted in a spherical

housing (Fig. 4.2 - note that the diaphragm is removed

in this photograph), and even though the L-1 unit is

larger, this configuration was found to be more satis-

factory than that of the 640-AA (Fig. 4.9).

A smooth directivity pattern will usually insure

that a sound source has a small near field. This will

be a great advantage in conducting calibrations in a

small enclosure as discussed in Section 4.32. However,

a smooth directivity pattern does not always insure that

it is possible to make calibrations at close spacing. As

in the case of the 640-AA, a flat face may cause multiple

reflections.

An acoustic center that does not change irregularly

as a function of frequency is desirable for use in cali-

brations at close spacing. Erratic behavior of the acoustic

center, like erratic behavior of the response, will cause

large changes in electrical output for small changes in

frequency. Such behavior will make the accurate measure-

ment of the acoustic center more difficult, since scans of

the field at a large number of frequencies will be necessary.

Finally, the stability of the source under normal

variations of pressure and temperature should be observed.

The 640-AA microphones are by far the most stable of those

-143-
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studied. The 21 series of condenser microphones prove to

be slightly less stable in general. A few of the 21

series microphones exhibit quite large instabilities, but

this is probably a production difficulty that will be

eliminated in the future. The 633-A microphones have

excellent short-term stability, but their sensitivity

may change by several tenths of a decibel over a period

of days or weeks. In practice it was found that the L-1

pressure unit (used in 633-A microphones) need to be

calibrated against the 640-AA only at the beginning and end

of a group of calibration runs. At the end of the runs,

from 2 to 4 hours, later the sensitivity was found to be

unchanged. The stability of the crystal microphones is

poor because both the coupling constant and the electrical

capacitance depend on temperature. The 9898 microphone is

better than most crystal microphones in this respect, but

not as stable as the other microphones studied.

4.4 Summary

The measurements and techniques discussed in this

chapter should be of assistance in the instrumentation

for the free-field calibration of microphones. Given

microphones of the type studied here and given the desired

accuracy, one should be able to determine the optimum

spacing of source and receiver. If one knows the reflec-

tion coefficient of the acoustic material to be used on



the walls of the enclosure, it is possible to compute

the minimum dimensions that will be consistent with the

given error.

In addition a number of other pertinent topics have

been discussed including reciprocity linearity, pulse

techniques, data taking, electrical measurements, and

selection of a sound source. It is hoped that this informa-

tion will lead to microphone calibrations of increased

accuracy.
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APPENDIX I

1. Energy Functions and Reciprocity for Sinusoidal Signals

.Section 2.27 contained a proof stating that a reciprocal

system must have a kinetic energy that is a function of the

velocities only and a potential energy that is a function

of the displacements only. The dissipation function was

shown to be a function of the velocities only. Each one

of these functions was a quadratic form with no explicit

dependence on time.

Under the above conditions and with sinusoidal signals

the kinetic energy T is

e 
-w A( e " + I e~~tat L (I e j*t+ I*e~3* (1)

where L is the square matrix

a " 5'(2)

The kinetic energy given in (1) can be separated into two

parts, an average part 6
jV, that is independent of time,

= I LI* (3)

and a double frequency part &iv

I' -4 I L I( (4)
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so that

**- e + ej (5)

The potential energy I can be separated in the same fashion.

An w2 factor will appear because it is necessary to express

the charges in terms of the currents.

,= I

,- -- I5I

(6)

(7)

where the square matrix S is

S [ (8)

Likewise the two parts of the dissipation function 7 are

'rd = IRI

74 =IRI

where the square matrix R is

R = __~

(9)

(10)
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Utilizing the matrices L, S, and R, the Lagrange

equations may be written in a more compact fashion,

L 9] + S 91 = el e]- R ] (12)

Sinusoidal behavior of the system will be described by

jwLI + RI +-= E,=ZI (15)

the familiar electrical network equations. Following the

analysis of Bode1 , it is possible to evaluate the driving

point impedances and admittances in terms of the energy

functions. The complex power absorbed by the network is

I*E,=I*RI + j (I*LI - a ) (14)

which in terms of the average energy functions is

I* ES 4'7, + 4 j w (15)

where the average Lagrangian lOV is

S 
a (16)

1 Bode, H. W., Network Analysis and Feedback Amplifier Design,
D. Van Nostrand Co., New York, p. 128, 1945.



The complex power into the network may be expressed in terms

of the admittance matrix

IE = (1 E)* = EY E(1)

The nth driving point admittance may be evaluated by setting

all the driving forces or voltages except E equal to zero,

nn = 4 I (18)J snI* j snIz

where the superscript (n) indicates that the energy and

dissipation functions have been evaluated with only E

non-zero.

To illustrate the dual representation of the system,

consider the alternate definition of the energy and dissi-

pation functions

'ta=~ -, AC ) '19)

j7f'A] (20)

The notation here is electrical. The results can be applied

equally well to a mechanical system, however, with X
standing for the momenta instead of the fluxes. The dual
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of (13) is

f"E_
jwCE +GE +-3 - I,=Y E (22)

where Is is a matrix containing the driving currents or

velocities. The nth driving point impedance is

S(n) (l

Znn 4 qLv -) ' A. AA (235)

where notation similar to that in (18) has been employed.

The proof of the reciprocity of systems described by

(13) or (22) is extremely simple. It is only necessary to

remember that L, r , R, G, S, and C are symmetrical matrices,

since they were all derived from quadratic forms. By inspec-

tion of (13) and (22), one sees that Z and Y are also sym-

metical. A more formal proof utilizes the two experiments

(1) and (2).

I " =I (R I + jW(I '"LI " - (24)

and clearly

I'E, - E' = 0 (25)

the condition for reciprocity.
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Evaluation of one of the transfer admittances in terms

of the energy and dissipation functions is somewhat more

difficult than that carried through above for the driving

point admittances and apparently has not been reported

before. In experiment (m) all the source voltages except

E vanish. In experiment (n) all except E vanish.

(26)

Utilizing the notation

(m''"' t I n'))~l' I"n)= " (m) LI + n

(27)

the expression for the transfer admittance Ymn becomes

S (a(+ On) f("-n) i (M+) r:- h) (m(sh) CP--)

lmn Es Esn 74' +jwt 10 df + yf

(28)

Interchanging m and n will not alter the result as long as

the energy and dissipation functions are quadratic forms.

I'Es" = Es., Yan Eso = I ""R I""+ j W (I"'L f'' -- .
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2. Lagrange Equations for a Distributed System

Assuming that the necessary conditions for reciprocity

in a lumped system will also have to hold in a distributed

system, makes it possible to simplify the analysis greatly.

Therefore, let us assume that the system has a kinetic

energy density that can be written in the form

T= i4 LI i(29)
L__4

where the elements of the symmetrical matrix L are inde-

pendent of time. This is exactly the same as the kinetic

energy of a lumped system.

The potential energy density V will, however, be

considerably more complicated. In general it will depend

on the coordinates themselves and their derivatives with

respect to each of the space coordinates.

V9 v., V.,. V.3 9 1
. . .~ ~ ~ (30)

")/ i s ia, ,V,. 0 V,, Vl V,,
~~ VZ. Vz, VUL V2

V, V,, V37 V Y3,

This description of the potential energy is overly clumsy

and the following symbolic notation will be useful:

*(131)
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It should be remembered that each element of the matrices

shown in (30) and (31) is itself a matrix. Each one of the

submatrices associated with the coordinates in (30), for

instance have as many elements as there are generalized

coordinates.

Utilizing (31) the potential energy may be written

2 V.. Vx

where the square matrix of (150) has been partitioned as

indicated by the dotted lines and

V [v., v.1 v.,3]

v,, V, 2  V,,3

S Lz(34)

Note that elements of the submatrix V may be grouped

together to form a dyadic. Such dyadics have nine ele-

ments and operate on the vector Vq to produce a new vector.

Similarly elements in the submatrix VX may be grouped to-

gether to form a vector. Each vector will, of course, have

three elements and will operate on V q to produce a scaler



-154-

or on q to produce a vector.

The equations of motion derived from the kinetic and

potential energies given in (29 and (32) will, in general,

have terms involving the coordinates themselves. These

terms will be in addition to the usual terms involving the

first spatial derivatives and the second spatial and time

derivatives. This circumstance will, in general, make it

impossible to set up a dual representation of the system.

As will be seen below, one cannot find a satisfactory set

of new coordinates that makes it possible to express the

potential energy in terms of the time derivatives of these

coordinates.

Although distributed systems whose potential energies

contain the coordinates themselves in addition to their

spatial derivatives can be shown to display reciprocity,

they will not be included in the following general discus-

sion. With this, simplification the Lagrangian density .

becomes

which yields the Lagrange equations

where f is the generalized force density vector opposing

at any point forces not included in the Lagrangian density;

i.e., viscous forces. The power density removed from the
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conservative part of the system as a result of these forces

is

but this can be rewritten in terms of the time derivative

of the energy density ~-j (158)4

where ~fstands for the negative of vector within the paren-

theses. Clearly the power absorbed by the dissipative

mechanisms within a volume plus the total power flow out

of the volume plus the rate of increase of the stored

energy within the volume must vanish. Thus is identified

with the outward intensity vector (Poynting vector) when (18)

is integrated over a volume
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.3. Dual Representation of the System

In most physical problems the intensity vector can

be written in a symmetrical fashion in terms of components

that have the dimensions of a generalized velocity and

components that have the dimensions of a generalized stress.

The above observation can be stated in a general way by

defining the dual set of coordinates 2

[MX V9 V9 (4o0)

where M is a dimensionless matrix whose elements are vectors

independent of space and time. The purpose of M is to com-

bine the new coordinates in a manner analogous to the combin-

ing of element voltages to get node voltages in a lumped

1"
system . Like the lumped system case the matrix M need

not be square. This is a result of the fact that the number

of node equations necessary to describe a system need not be

the same as the number of loop equations.

In terms of the new coordinates the intensity vector

becomes

(4.1)

1In a lumped electrical system one may write the node volt-
ages in terms of the capacitance and inductance voltages with
the aid of a similar M matrix where the q's are the charges
associated with the loop currents . Substitution of these
expressions into the homogeneous Lagrange equations for the
loop charges q will show that the node fluxes X also satisfy
the Lagrange equations.
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an expression that is symmetrical in appearance. In this

case X will have the dimensions of a generalized momentum

per unit area.

One should not expect to be able to find the dual of a

system which involves the arbitrary forces described by the

matrix f], since these forces may have no dual presentation.

Therefore, consider only the homogeneous Lagrange equations

T9 ] - '--Vq = o (42)

If the new coordinates defined by (40) are substituted

into (42), one finds that

~.M]=MVXJ = T ] (43)

since M is independent of space.

Thus, in terms of the dual coordinates the kinetic

energy density is

.y-JM4~ -TM-X (44)
'ir V --v-(M) T M- x

and the potential energy density is

M V -M (45)

where the inverse of the matrices T and V are obtained in

the usual fashion. Since each element of V is a dyadic, it



-158-

may be more straightforward to take the inverse of the ex-

panded form (34) and then recombine elements to form the

dyadics.

Utilizing the dual matrices

TA = M. V M (46)

VA- MtT M (47)

it is possible to define a dual Lagrangian density 4

4t TAX X VAVX ((8

which is identical in form to the original. The actual

magnitudes of the two are, however, opposite in sign.

Both expressions for the Lagrangian density will obey

Hamilton's principle and both q and X will satisfy a

set of Lagrange equations.

4. Reciprocity for Distributed Systems

Let us perform two separate experiments, (1) and (2),

on a system described by the Lagrange equations (36). If

the system undergoes sinusoidal motion, these equations for
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the (1) experiment will be

jTW 1~* * J - I (49)jw T J'' VO V - V J'= F") 49

where the J matrix gives the complex amplitude of the 6's; i.e.,

~] Rete I (50)

and the F matrix is defined in terms of the f's in a similar

fashion. By analogy with the treatment of ljumped systems,

(49) is multiplied by j(2)

(1) ( 1 J(Z) U> (51)Jj TJ -jJV-V-VJ - F

The second term of this expression may be expanded to get

jo~~~~ J1 J'+ ,-J ' 1- J" -; -(J ('V-. _ (0')-d W'F (52)

An expression identical to this (52) except with the super-

scripts interchanged can be obtained by starting with the

Lagrange equations for the (2) experiment. The volume

integral of the difference of these two expressions is

~ ~ -$ (5d)
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The vanishing of the righthand side of this equation is

the reciprocity condition for distributed systems. The

similarity between this expression and the equivalent

for lumped systems can be seen if one substitutes S,

the matrix that is the dual of the J

p1 MS = V-VJ (54)

into the lefthand side of (53) to get the reciprocity

condition

fa( M -J(s Ms )=O (55)

In the lumped constant case a summation over all the ports

of the system was implied. For distributed systems this

summation becomes an integral over the surface of the system.

If no arbitrary forces are present within the system, the

F matrix will vanish and the system will satisfy the reci-

procity condition (55).

5. Dissipation in Distributed Systems

If the forces F do work on dissipative mechanisms of

the viscous type, it is possible to demonstrate that the

entire system will still display reciprocity. The form of

these forces must be similar to the general description of

the conservative forces. This statement results from a

consideration of the matrix product, JF. In order that the

righthand side of (53) vanish, JF must lead to a quadretic
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form in the generalized velocities and the spatial deriva-

tives of the generalized velocities. The most general form

for JF is, therefore, a quadratic form similar to (30) for

the potential energy except that q would be replaced by q

plus a divergence term that will vanish when integrated

over the volume of the system.

With these considerations in mind, the general form

for the viscous forces is

F = V- R - VJ + R..3 (56)

where the R and R matrices must be symmetrical. The

righthand member of (53) becomes

f(J'3'F ~)J"' F 1)eAv + = J l-

which will vanish if there is either no dissipation or no

power flow at the boundary surface. The dual matrix S may

be defined differently so that these viscous terms are in-

cluded in the lefthand side of (53) . This corresponds to

the rearrangement in the node voltages that might take place

when resistances are added t: an otherwise lossless network.

A simpler method of handling viscous forces would have

been to transfer them from the righthand side of the Lagrange

equations (49) and include them in the conservative forces.

This method is not quite as straightforward as that used

above because it hides the mechanics of the proof. It does

have the virtue of a simplified notation.
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In summary, systems whose behavior is described by the

differential equations

jeoTJ- ' / "V = 0 (58)

where T and V may be complex, will be reciprocal and there-

fore satisfy (55).

6. Relationship to Greents Function

Suppose that power is fed into the system by means of

simple point sources. On the boundary surface of the system,

the intensity vector is zero, and therefore, the integral

(55) will vanish except for the small spherical surfaces

surrounding the point sources. Assume that in the (1) ex-

periment the kth coordinate has an impulse at the point r(l)

Sr \ - '(59)

and in the (2) experiment the Ith coordinate has an impulse

at the point (

JCR T - r (60)
1r,~ r

If these functions are substituted into the reciprocity

condition, only the coefficients of VJk and Vi will remain

J. f (')kV(' -=J3 "')J *V. ( )-n (61)



4 where n is a unit vector normal to the surface of Integra-

tion and summation over the repeated indices is implied.

The integral averages the diagonal components of the

dyadics VA and may be eliminated with the aid of the

Spur of the dyadics. The Spur is written 1V~,I and is equal

to the sum of the diagonal elements of Yil

.= r t()j (62)

If the matrix V has only diagonal elements (remember that

each element of the matrix is a dyadic which is not neces-

sarily diagonal or symmetric), the summation may be elimi-

nated, yielding a more familiar form for the reciprocity

of the Green's function. That is, an impulse of magnitude

Vjj ("')I located at '" will produce a response at r

that is equal to that produced at v- by an impulse of

magnitude lVil')1 located at ' . A similar but more com-

plicated relationship could be developed for a dipole source

instead of a point source. For an electromagnetic field the

Spur of will be zero, and therefore, it becomes neces-

sary to use the dipole source.

7. Generalized Impedance

A generalized impedance for a distributed system should

bear a close relationship to the impedance of a lumped system.

-163-



A convenient bridge between the two kinds of systems are

the Lagrangians. In Section 1. of this Appendix, it was

shown that a driving point impedance may be written in terms

of the average Lagrangian ,, . For a distributed system,

it is possible to proceed in an analogous fashion by evalu-

ating the volume integral of the average Lagrangian density

4wovJ!W(J'TJ -( ~j/ia=1 (635)

where the system under consideration is conservative, and

therefore, T and V are real. If an impedance matrix can

be defined, one would expect that a matrix product of the

form I ZI would be equal to the surface integral on the

right.

So that the situation may be visualized more easily,

let us assume that the surface integral is zero over all the

boundary surface of the system except over an area C . There

will be a set of solutions, or ,eigenfunctions, to the differ-

ential equations describing the system that will be zero at

the boundary except over 61. These eigenfunctions will be

denoted by A(k) I*1'*2' 3), the kth solution for the 2 th

coordinate. If these eigenfunctions form a complete set at

the surface C1, a linear combination of them can always be

found that will be equal to each of the elements of the matrix

J. Therefore, it is possible to write the matrix equation

-164-
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J--A 1 (64)

where A(k) is a diagonal matrix whose elements are kth solu-

tions for each of the coordinates. The constants Ik (k) are

independent of the spatial coordinates and form the column

or row matrix I(k). Summation over the repeated superscripts

Is implied.

The definition of a generalized impedance matrix becomes

clear when the set of solutions (64) is substituted into (63)

i l -b ( J) ' %. (65)

making it possible to identify the impedance matrix coupling

the jth and kth modes of the system

(ks(k)

ZE 4W C VA -d (66)

From experience with lumped systems, one would expect that

the product at the right of (65) should equal complex power.

Comparison of this expression with (38) where the time

dependent intensity vector is defined, allows us to define

a complex intensity vector

~4 w = -f . cl cl = I (67)
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and as expected the integral of the complex intensity over

the area 0 flowing out of the system gives the negative of

the total complex power flowing into the system.

If on the surface 0 the matrix J is chosen so that

all its elements except J are zero, one gets the set of

driving point impedances

4 La (, = (, Z 1, (68)

and if the distribution of J n on Q is such that only the

kth mode is excited, the impedance Z(kk) may be written innn

terms of the average Lagrangian density for these conditions

)(69)

Another simplification of the general result occurs

when J is constrained to be independent of the coordinates

over the area Ct. The matrix A(k) is diagonal and there-

fore possesses a simple inverse. If a unit matrix composed

of A(k) and its inverse is substituted into (65), the result

may be written

~4- J1s(Ak f OclI A \/JC( ]VJJ (70)

and a different set of impedances defined
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=(A 1;i A CL(71)

In this case the mode impedances no longer play a part be-

cause J has been constrained to behave in a certain way and

the impedance is associated with the total reaction on the

area 0 . It is possible to go one step further. The matrix

J could have been made up of prescribed functions over 6 .

The amplitude of J could then be taken from under the inte-

gral as in (71). The impedance would then be modified to

contain the normalized prescribed function both inside and

outside of the integral sign.

8. Some Distributed Systems that Obey Reciprocity

Up to this point the discussion has been in extremely

general terms. In this section, however, certain physical

systems will be examined to see if they satisfy the condi-

tions necessary for reciprocity.

One of the simpler distributed systems is the fluid.

It may be described in terms of the three coordinates of a

packet of fluid, 8 19 8 2 and 3 plus the time derivatives

of these coordinates. A S vector may be formed from the 5

matrix with the aid of a unit vector matrix cL so that

01 S1 (72)VL-JOJ
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A change in the volume of the fluid av is

AV =rV. SOuoL 0 v*Vb =v J (73)

if only linear terms are included and rectangular coordi-

nates are used. The9J matrix is a column matrix formed

from the three scalar elements of the del operator. The

zero subscripts indicate rest conditions. The potential

energy density )\ is equal to the work done per unit volume

during a compression or expansion of the fluid

V (74)

and if the total pressure p is dependent on the change in

volume only, it is possible to write

where terms higher than quadratic have been discarded. The

matrix V

V('v.= )IV (76)
0

can be identified and substituted into the expression for

the potential energy density
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which except for the linear term is the form assumed in the

general discussion. If (77) is substituted into the general

Lagrange equations, this linear term of V will yield the

gradient of p0 . Therefore, unless p0 is constant, the

Lagrange equations become non-linear and non-reciprocal.

If p0 is constant, however, no trouble is experienced. Note

that for constant p0 this extra term will drop out in the

total potential energy, since v-S may be integrated directly

and will vanish at the boundary surface if none of the fluid

is allowed to cross.

The kinetic energy density for the fluid is, of course

T~S.=~L TI (78)

where p is the density of the fluid. If p is not a function

of the displacement of the packet S , the matrix T

T = 1P 0 o(79)

will be in the proper form for reciprocity.

Therefore, the limitations on a fluid or acoustic

system in order that it obey reciprocity are simply those

of linearity. Variations in the ambient pressure p0 as a

result of winds or vortex motion may cause reciprocity to

fail.
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same as that

density is

OV 8

where C is

for a anisot

the strain n

pendent comp

The mat

netic energy density of an elastic medium is the

for a fluid (78), but the potential energy

(80)

a matrix containing the 81 Hooke's law constants

ropic elastic medium. Actually, since C and

atrix G are symmetric, there are only 21 inde-

onents of C).

rix V is

V N-\C -4N

where the dyadic matrix N is

a~3 01 01 3 Ckj

It should not be surprising that an equation as complicated

as (80) can be written in terms of the dyadic matrix V, since

this represents the most general quadratic form containing

all the spatial derivatives of all the coordinates. Both

andV have been written in the standard form, and it can
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(81)

C-I a3

O, O + C (82)

ir- V )t [A - (- S1 + V1 C; G

At-AV
N
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therefore be concluded that the linear model of a aniso-

tropic, heterogeneous, elastic medium is reciprocal.

It is not clear whether electrostatic or electromag-

netic energy should be associated with kinetic or poten-

tial energy. However, the energy density must be

H E [el E +iNI[,]KI (83)

where the matrix E contains the elements of electric field

strength,,.e] is the dielectric matrix, H is the magnetic

field strength, and A~is the permeability matrix. Suppose

that the generalized coordinates are chosen so that

31
Utilizing one of Maxwell' s equations

0.~ (85)

it is possible to write the magnetic field strength in terms

of the coordinates

H= ~ VA -' (86)
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where the vector matrix

0 a -a's C
)= a, -a, =( a] Y% (87)

has been substituted for the cross product terms. The

energy in terms of these coordinates is

Identifying V and T with

T = 16]

(88)

(89)

(90)

makes it clear that a anisotropic, hetrogeneous, electro-

magnetic medium will satisfy reciprocity if it is linear.

The dual variables = H give for the intensity

vector

ndher dnity-X]~= x (91)

and the energy density

14 = L '* I I F-1 X
z t I oil (92)

as one should expect. The dual matrices Td and Vd are

therefore

----------
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Ta = {p)(93)

The R matrix describing the losses due to expansive

friction Y in a fluid may be obtained easily by analogy

to the V matrix for a fluid. The losses resulting from

the shearing of the fluid 1- may be included by analogy to

the V matrix for an elastic medium. Thus,

R = V ' 2 , '--I N,- N (95)

which is symmetrical, since X and Tt are scalars denoting

the second and first viscosity coefficients. Therefore,

the addition of viscous forces to fluid medium does not

destroy reciprocity. Although the reciprocity of the loss-

less systems considered above is well known, the author be-

lieves that viscous forces have never before been considered

explicitly.

For resistive losses in a conductive medium, the

current density vector is analogous to the dissipative

force density. In this case the R0o0 matrix is simply

Ro = (95)(95)
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where[c1 is the conductivity matrix which must be symmetric

for reciprocity. In the dual representation the dissipative

force density is

f]= X~~I~1 (96)

If [e]<rf does not vary markedly with space, it is pos-

sible to write for the dual matrix Roo d

Rooa =LEV E<r zlIy (97)

which in general will not be symmetrical.

The material of this section up to this point has shown

that electromagnetic, fluid, and elastic systems are recipro-

cal. It has really been an exercise in fitting some well-

known equations into the formalism that was used in the

general proof of reciprocity. There is no doubt that the

straightforward method of proving reciprocity for these sys-

tems taken one at a time would have been simpler. When all

three types of systems are combined, however, the simplifi7

cation and insight provided by the general method becomes

apparent.

As the first example of a mixed system, let us examine

a general mechanical system that is undergoing steadyrotation

motion. The kinetic energy density becomes
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where -' is the radius vector from the center of rotation,

r is the incremental radial displacement vector of a packet

of material originally located at 77 0 is the steady angu-

lar rotation vector and 27 is the incremental angular rota-

tion vector. The quadratic terms of the kinetic energy

density are given by

-. & Ab f.A. .h.2.r . - 4-r (o + r. % w (r A o (99)

where T contains the remaining terms. The presence of

the cross term between the radial displacement and the angu-

lar velocity indicates that the system will not obey reci-

procity.

The potential energy of the system will be unchanged

whether expressed in a stationary or a rotating coordinate

system. This follows from the fact that the stress dyadic

depends on differences in displacement rather than on the

displacements themselves.

Let us investigate the possibility of using a dual

coordinate system for the rotational coordinates. By analogy

to the lumped system discussed in Section 2.27, substitute

the angular momentum density into (99). The last three terms

of (99) will then be included in an apparent potential energy

of the system if the angular momentum density is assumed to
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be a generalized coordinate. Unfortunately the potential

energy itself will now have cross terms between the radial

displacement and the time derivatives of the angular momen-

tum density.

In general it is not possible, therefore, to make such

a rotating system reciprocal. For the special case of an

incompressible medium, the potential energy is of no con-

sequency. It is possible, then, to make the change to the

dual coordinates to obtain reciprocity.

Since (99) is actually the Lagrangian of a system with

no potential energy, one wonders why it cannot be substi-

tuted directly into the Lagrange equations. As shown in

Section 2.27, the quadratic expression will yield the cor-

rect equations of motion, but the computation of the energy

from these equations will not contain the cross term between

radial displacement and angular velocity. This is another

indication of the fact that the energy of a linear but non-

reciprocal system is not uniquely related to the Lagrangian.

Turning to a general electroacoustic system, the total

energy density will be made up of the mechanical kinetic

energy density 'Y

(100)

the mechanical potential energy density NVm

- $(101)
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and the electromagnetic energy density 4

'E D + HB (102)

where ., , G, E, D, H, and B are matrices containing

the components of velocity, stress, strain, electric field

intensity, electric displacement, magnetic field strength,

and magnetic induction.

Piezoelectric and magnetostrictive coupling effects

are taken into account by the constitutive relations

D ~ ~ E + L jG (103~)

B= [X]H +.{i} (104)

5L CI-- 1 E - (105)

where e , 'p, C, oc, and are the dielectric, permeability,

Hooke's law, piezoelectric coupling and magnetostrictive

coupling matrices. The total energy of the electromechani-

cal system may be computed by adding the components (100)

through (102). The variables D, B, and S may be eliminated

with the aid of the relations (103) through (105)

{~ ~~ ~~~~f i ]+ [ - eE+jHH (106)

, a C- wztmx==h 
I
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The coupling terms apparently drop out of the expression.

However, both sets of electromagnetic coordinates q and A

must be used to express the energy in this form. In order

to eliminate one or the other of these variables it is neces-

sary to use one of Maxwell's relations

-- k.= +t (107)

-I. H= 0 + ] (108)

where the effects of the moving medium have been included

and all non-linear terms excluded. It has been assumed

that a strong steady magnetic induction with components B01

may be present. Similarly, a large steady charge pe may also

be present. Since losses cannot be included in the formu-

lation of the equations of motion by Hamilton's principle

except by inclusion as external forces, it must be assumed

that these dissipative mechanisms are temporarily outside

of the system. Therefore, all conductors have infinite

conductivity and all dielectrics have zero conductivity.

Expressing the two Maxwell's relations given above in

terms of the coordinates q and A , it is possible to write

- ?.{] 0 B + .}= + G + v-.2}1 (109)
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V LY DeeE] (110)

where the abbreviation

has been used. If using (109), H is eliminated from the

expression for the total energy, the result may be expressed

in terms of the 8, 8, V&, X, and N . The coupling des-

cribed by)1] and e will not appear in the energy, and

therefore, the equations of motion derived from this ex-

pression by means of Hamiltonts principle will not show any

evidence of electrostatic coupling. This is the kind of

situation that arose in the derivation of the equations of

motion for a rotating system.

The electrostatic coupling will be included in the

total energy if E is eliminated with the aid of (111) . In

this case, however, the magnetic coupling described by the

matrices [_] and will disappear. One must conclude

that both electrostatic and magnetic coupling cannot be

present simultaneously if reciprocity is to apply. Further-

more, a linear system with both kinds of coupling cannot be

described by a Lagrangian, since the linear Lagrange equa-

tions are always reciprocal.

Utilizing the coordinates X and allowing no electro-

static coupling, the application of Hamiltonts principle will

give the equations of motion
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v -[NtN,{{ +G4 NoH (112)

If electromagnetic but no electrostatic coupling is present,

the q coordinates must be used and the equations of motion

are

r-t TL r-G (115)

These two sets of equations describe reciprocal systems of

great generality. The first pair describe coupling resulting

from piezoelectric effects and the presence of a steady charge.

The second pair describe coupling resulting from magnetostric-

tive effects and the presence of a steady field. Both sets

include losses resulting from expansive friction, shearing
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viscosity and electrical conductive losses. If the equa-

tions are written in terms of the complex magnitudes of the

variables, it is possible to include many other kinds of

loss by assuming that the parameters on the lefthand side

of these equations may be complex.

9. Some Examples of the Impedance of a Distributed System

The driving point impedance at a point source is par-

ticularly simple to evaluate. The radius of the sphere is

chosen small enough so that it can oscillate in only one

mode* i.e., constant amplitude over the surface. The A

matrix (64) giving the dependence on the space coordinates

of the generalized velocities, degenerates to the single

element

Akk (116)

where r is the radial coordinate and a the radius of the

sphere. The point source driving point impedance of the

kth coordinate becomes

VkkZk-'- -T1Ta (117)

where lVkkI is the contracted form of the dyadic.
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Let us evaluate this result for a pressure point

source in acoustic medium. Defining the dual matrix M

in terms of the incremental pressure p

M M~ ?M=S (118)

makes it possible to write for the dual matrix Vd

.. LW(z ( 119)Va=MT Mt = (119)

thus the driving point impedance of an acoustic point source

is

4. = 0, =.(120)

where u0 is the complex volume velocity and p0 the com-

plex pressure.

The definitions of the two principle kinds of imped-

ance for acoustic systems may be written in terms of the

complex intensity vector .. when either one or the other

of the dual pair of coordinates p0 and V0, the normal veloc-

ity, is constant over the area G(. The mechanical impedance

ZM is obtained if the normal velocity is constant

y* *+ 4-A .* pd (121)
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where the righthand integral is the total force reacting

on 0I. The dual acoustical impedance ZA is obtained if

the pressure is constant

f= + cV9 p C. CL (122)

where the righthand integral is the total volume velocity

passing through 0.. The equivalent relationship for the

definition of the electrical impedance is slightly more

complicated and has been treated in detail by Foldy and

1Primakoff . The result of course must be

IZj =.- . L = I V (123)

if no extra power is radiated at the electrical terminals.

Here V is the voltage drop between the terminals.

1Primakoff, H. and Foldy, L. L., op. c_it., Part II, Jour.
Acous. Soc. Am., v. 19, p. 50.



APPENDIX II

1. Expansion of the Yn in Terms of Derivatives of the

Directivity Pattern q
First let us expand Y n

in a series of Legendre

polynomials Pm (x)

YnP 1x (1) P
MnMO

where x = cos 6 and the ) nm are constants independent of

r and e. Application of the operator Lx( ) gives the series

(2)
L (( -= 30)$x)

Equation (2) may be substituted into the recurrence relation

(3.6) yielding

0I. Z. + + n ) - r ( -1 jP ( X = 0
Mo

(11)

and since the summation must vanish for all x, one has the

m equations

(4)I ( n+) sy eM + (n- m )(n+ o r + 1)

It can easily be demonstrated that



(m-n)i (n) "' ''" (5)

will satisfy all the equations (4) . Here the notation

m (1) indicates that Pm(x) has been differentiated n

times with respect to x and has been evaluated at x . 1.

Let us attempt to express the Y n in terms of deriva-

tives of the directivity pattern. At x = 1 the directivity

pattern is

Yo PrI 4o m(1) = y V (6)

and the nth derivative of Y' evaluated at x = 1 is

(7)

but by (5) this is just equal to a summation of nm

over m. Thus

Similar manipulations at x = -l will show that
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(8)

(9)

P (Svil
YO 0 rn rn

T" CO
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To evaluate $ n for arbitrary x is more difficult.

Let us first expand 4O(x) in terms of its derivatives

evaluated at x = 0

(x) =() (10)

where qp')(0) is the 1th derivative of the directivity

pattern evaluated at x = 0. The powers of x may be ex-

panded in a series of Legendre polynomials.

ro mV 7.-( P, X)Cos 7E7-~

x"- _ rn

-( +.m+1 0) (o P ( c.osT ( " )
MWO

If (11) is substituted into (10) in place of the powers

of x and the result substituted into the recurrence re-

lation (1.6), it is possible to write

4y~x)00q) ( Z) B ()* ( ) (12)

where

1Byerly, W.E., Fourier's Series and Spherical Harmonics,
Ginn and Co., Boston, p. 178, 1893.



m=If

B W(x) = Z (2). p (0)
YNVri 0Z

The lowest non-zero values of Bn may be found without

much difficulty:

B %n(X) = Fly, ( (1)

B (x)

B (x)

=P", x)

= Po +x) -(2.n+ z ) Rk 2x)
2.(2.n + 3)

For other terms the recurrence relation

?-(n l) B%+%*-V+ + nVZ L(V - n (n+ )] Bn Y

may be used. This relation may be proved by direct sub-

stitution of the B n (x) from (13) . The first few B
n~v

have been computed and are shown in Table 1.
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('3)

(15)

(16)

(17)

P, ( ) C Os1T (FP" (x')



TABLE 1.

(APPENDIX II)

Values of B (x) - See (13)

S 0 3 2 3 4

0 P0  P 1(X) P0 P2(x) P0(x) P (x) P 0  2 (x) P4(x)
6 + 10 + 15 120 + 105

1 0 P(x) P2 (x) P1 (x) 2P 3(x) P2 (x) 2P4 (x)
10 + 5 21

2 0 0 P 2 ()P3 ()p2 W 34 (X

3 0 0 0 P (x) P 4(x)

4 0 0 0 0 P4 (x)
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After a little experimentation it is possible to guess

a general form for the B evaluated at x = 0

v/X -1
B (0) = )/ n ---C05 -TZ (18)"" 2. i I(n - ) (v- n)

Substitution of (18) into the recurrence relation (17) will

prove that this is the correct choice. Note that at x = 0

the B exist for even values of the integer v only.

2. The Near Field of a Piston in an Infinite Baffle

The piston in an infinite baffle is equivalent to a

thin pill box pulsating outward on both sides and there-

fore may be treated by the theory developed in Chapter III

and the previous section of this appendix. The results

check a simpler formulation for x = 1 and yield a new

result for x = 0.

The directivity pattern of a piston in an infinite

baffle is

ZJ,(Isn e) _ 'f a (.5in (19
YO= - - \z (19)sine v. (v+i),

where - kr and r is the radius of the piston. The sin 6

terms may be expanded about x = 1
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(sin e) = (-X '= Y . vA(-)(f y-X) (20)

where ( ) indicates the binomial coefficients. Collect-

ing terms for n= /, it is possible to write for the nth

derivative of the directivity pattern

vzn -AV

'4 0)I ~- nX (21)

which will be the coefficient of the (j-g )-n term of the

expansion of + on the axis in front of a piston in an

infinite baffle. An expression for Q?, in closed form can

be obtained by direct integration of the source distribution.

-1-.i~x ~~f7 i1 (22)
q)= 2. * ~ Z~. -1 t -1 (2

Term by term expansion of this function shows that at least

the first half dozen terms are identical with (21).

It is possible to evaluate the pressure in the near

field of a piston source in the equatorial plane (x = 0).

The ?/ th derivative of the directivity pattern evaluated in

this plane can be shown to be

Stewart, G.W., and Lindsay, R.B., Acoustics, Van Nostrand,
New York, p. 251, 1930.
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v0 (0) JOV Zi '(3') (3

for even I and is zero for odd v. Equations (18) and (23)

can be substituted into (12) to yield a series expression

for the coefficient of the (j 3)-n term in the expansion

of + for this source.

3. Calculation of the Acoustic Center for a Spherical Source

The pressure in front of a general axially symmetrical

spherical source of radius r1 is

S/ p x)(24)
p(r,) = QcY }~..h nh ()(4

where Vm is the velocity amplitude of the mth mode of vibra-

tion of the surface of the sphere, and as usual = kr and

=kr . The prime on the spherical Hankel function hm

indicates differentiation with respect to the argument. At

low frequencies only the zero order term remains

______I ( PC \

(25)

J (r) .4. r& V. e']

AW
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where the term in the brackets must be the volume velocity

emitted by the sphere.

At large distances

r--b co 3 Mu

gives the expression for the far field pressure. Here

the spherical Hankel functions of the second kind are used

so that (26) will represent an outgoing wave for a positive

jot time dependence. If (26) is normalized by the pressure

on the polar axis, one obtains the directivity pattern

* ~ ; P n . - (2 7 )
P 0) 

e 0

The acoustic center a as defined in (3.13) is given by

. [ mm+( e28)m)=ko=. rnuo_ (28)

r ~~ v rn ( .. m~e

The mode velocities Vm for a point source are
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\/m = (2. M + 1) V. (29)

and for a piston that subtends the angle 26 0 at the origin

the Vm are

x) - P (x] j(30)

where X = cos 6 .

Substituting the Vm for a piston into the expression

for the acoustic center and evaluating the result at low

frequencies, one finds that the important term is

3b = 3_(+_X)__ (31)

This low frequency result and the general expression

obtained by inserting either (29) or (30) into (28) were

used in the numerical calculations leading to Fig. 3.3.

The tables prepared by Morse, Feshbach and Lax1 were found

to be very useful.

1 Morse, P.M., Feshbach, H. and Lax, M., "Scattering and
Radiation from Circular Cylinders and Spheres", OSRD Report
No. 62.lR, 1945.



4. Radiation from a Point on a Sphere at High Frequencies

The expression for the acoustic center becomes rather

hard to evaluate directly at high frequencies. The spherical

Hankel functions have almost constant magnitude up to the

term in which the order equals the argument. Thus if kr1= 20,

one expects about twenty terms of equal magnitude before the

series will show any signs of converging. Above the 20 th

term the magnitude of the hm increases very rapidly and the

series practically breaks off. The phases of the terms below

m = 20 rotate rapidly, resulting in small differences of

large numbers.

An integral approximation to the summation seemed to

be the obvious method of circumventing the difficulties

outlined above. The starting point for such an integral

1 1over m must be m = since the - are evei functions of m47

e _ _ __, (32)

Let us assume that the coefficient of the hm term can be

l n
written as a series with terms of the form (m + I) . Con-

sider the general sum

dv-i
3M-E (2V
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where the continuous variable V= m + - is substituted

under the integral.

Watson gives an asymptotic form for the Bessel func-

tions that is valid over the path of integration. Chang-

ing his notation slightly and avoiding explicit reference

to higher order terms in one may write

. ,c Wi- YsihV

where = jsinhY in contrast to Watson's notation.

This expression may be differentiated with respect to the

argument of the spherical Hankel function

- (V- ( - Cos VIY - Vs'%iV)(

h,_1 e + = -iohYe 04)(35)

where higher order terms have again been included in 0(l).

The expression (35) is of the form usually used in

saddle-point integration. Theexponent will contribute a

rapidly rotating phase at high frequencies along the present

Watson, G.N., Theory of Bessel Functions, reprinted by
McMillan, New York, pp. 260-267, 19h.
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path of integration. However, deforming the contour so

that it leaves the saddle point at -V= 0 on the path of

steepest descent will cause the main contribution to the

integral to occur at the origin. The path chosen will

leave the origin at 45 0 and then proceed to infinity in

the first quadrant. Consulting Watson ts figure giving

the regions of validity of the expression (34) tells us

that this path is satisfactory.

By the usual methods of saddle-point integration,

it is possible to obtain

Se~ ~ (156)

In order to compute the far-field pressure produced by a

point source on a sphere at high frequencies, one should

multiply (36) by 2V0 pc and select n = 1. The pressure

becomes

V. -0.C

r --+ o

which appears to be right, since the pressure has been

doubled and the phase changes by--i over the low frequency

case (25).

Noting that only the highest power of m need be con-

sidered in evaluating any series at high frequencies, the

1Watson, G.N., OP. cit., p. 265.



-197-

expression for the acoustic center may be approximated by

Z (38)
k ---b c

The general term in the expansion of the pressure in

inverse powers of r in front of this source may be evalu-

ated at high frequencies by means of (36). The pressure

turns out to be just twice that radiated by a simple

source with the same volume velocity located at r = r 1 .

This should not be surprising, since this is what the

geometrical optics approximation would predict.

5. Pressure on the Axis from a Point Source on a Sphere

On the polar. axis the pressure radiated by a point

source on a sphere is

p(ro) M. ) M (1) (39)

This expression was used to calculate the curves of Fig.

3.4. Most of the points for kr = 1.0 have been calculated

by Stenzel , and his data were used. At low frequencies

it is possible to derive a simplified expression, since

7,) (40)

k-*o

1Stenzel, H., "Guide for the Calculation of Sound Processes",
Translated for Bureau of Ships, Navy Dept. Washington, D.C.,
P. 154, 1947.
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the pressure becomes

p (r, 0) =' /
"%-+- 1 (41)

which may be put into closed form

p~r,0)=gc\/+ r Ynt-) (42)

This last expression makes the calculation of the pressure

for the curve of Fig. 4.5 quite simple and accurate.
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