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Abstract

Humans can quickly and effortlessly recognize objects, and people and their actions
from complex visual inputs. Despite the ease with which the human brain solves this
problem, the underlying computational steps have remained enigmatic. What makes
object and action recognition challenging are identity-preserving transformations that
alter the visual appearance of objects and actions, such as changes in scale, position,
and viewpoint. The majority of visual neuroscience studies examining visual recog-
nition either use physiology recordings, which provide high spatiotemporal resolution
data with limited brain coverage, or functional MRI, which provides high spatial res-
olution data from across the brain with limited temporal resolution. High temporal
resolution data from across the brain is needed to break down and understand the
computational steps underlying invariant visual recognition.

In this thesis I use magenetoencephalography, machine learning, and computa-
tional modeling to study invariant visual recognition. I show that a temporal associa-
tion learning rule for learning invariance in hierarchical visual systems is very robust
to manipulations and visual disputations that happen during development (Chap-
ter 2). I next show that object recognition occurs very quickly, with invariance to
size and position developing in stages beginning around 100ms after stimulus onset
(Chapter 3), and that action recognition occurs on a similarly fast time scale, 200 ms
after video onset, with this early representation being invariant to changes in actor
and viewpoint (Chapter 4). Finally, I show that the same hierarchical feedforward
model can explain both the object and action recognition timing results, putting this
timing data in the broader context of computer vision systems and models of the
brain. This work sheds light on the computational mechanisms underlying invariant
object and action recognition in the brain and demonstrates the importance of using
high temporal resolution data to understand neural computations.

Thesis Supervisor: Tomaso Poggio
Title: Professor of Brain and Cognitive Sciences
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Chapter 1

Introduction

Humans can process complex visual scenes within a fraction of a second [138, 171,

42, 139, 140]. The main computational difficulty in visual recognition is believed to

be transformations that change the low-level representation of objects and actions,

such as changes to size, viewpoint, and position in the visual field [32, 5]. The ability

to effortlessly discount these transformations and learn from few examples make the

human visual system superior to even state of the art computer vision algorithms.

Better understanding the neural mechanisms underlying visual recognition in humans

will greatly improve artificial intelligence (AI) systems and provide insight into how

the brain solves one of the most complex sensory problems.

Studies using single neuron and neural population recordings have provided high

spatiotemporal resolution data about object and action recognition, but their coverage

is limited to recording from one or two brain regions at a time. fMRI studies have

improved our understanding of the spatial organization of the brain and functional

regions of interest; however, fMRI its still limited in its temporal resolution.

Understanding when different invariant representations are computed across the

brain is a crucial component missing from many neuroscience efforts, and will help

further our understanding of the algorithms underlying visual recognition. In order

to break down the computational steps required to solve the complex problem of

visual recognition, it is important to know what the intermediate steps are (to go

from pixels/retinal response to invariant representations of objects and actions) and

15



when and in what order they are computed. This thesis focuses on when and how

different properties of invariant recognition are computed in the brain, using mag-

netoencephalography (MEG), machine learning, and computational models of the

human visual system.

The remainder of this chapter describes the state of the field for object and action

processing in the brain, as well as an overview of state of the art computer vision

systems and biologically plausible models of the human visual cortex. Finally, it

provides some details on the methods used in this thesis.

1.1 State of the field

1.1.1 Visual recognition in the brain

Visual signals enter the brain via the retina and lateral geniculate nucleus (LGN) and

first enter the cortex in the primary visual cortex (V1). The visual cortex has been

roughly divided into two pathways - the ventral (or "what") pathway, which processes

objects, and the dorsal (or "where") pathway, which processes actions and spatial

location [121, 57]. This distinction is somewhat of an oversimplification as there

are many interconnections and feedback between areas in both pathways [44, 116].

Despite these complexities, the visual cortex is still considered to be hierarchically

organized with the responses of one visual layer, serving as input to the subsequent

layer.

Object recognition occurs along the ventral stream. We consider the initial visual

response to be occurring in a primarily feedforward manner with connections proceed-

ing from visual area V1 to V2 to V4 to inferior temporal cortex (IT), see Figure 1-1.

Invariance and selectivity increase at each layer of the ventral stream [10, 147, 152].

In the dorsal stream, visual signals also originate in V1, where cells are selective for

local, directed motion. These motion signals then enter area MT, where cells are

selective for motion direction invariant to pattern [122], and neural responses have

been closely linked with motion perception [36, 3]. MT then projects to areas MST

16



and FST in the superior temporal sulcus (STS) [175, 31, 791.

Object processing along the ventral stream

Beginning with Hubel and Wiesel's seminal studies in V1 [761, single-cell physiology

studies have helped explain many properties of the ventral stream. Hubel and Wiesel

showed in the cat and the macaque that cells in VI fire in response to oriented lines

or edges, and are selective for a given orientation [77, 781. They also discovered two

different cell types within V1: simple and complex cells. V1 simple cells are selective

(or "tuned") for a given feature (i.e. a line or edge of a given orientation) within a

small receptive field. Complex cells receive input from these simple cells and compute

an aggregate measure (or "ipool") over these features to provide invariance over the

union of the simple cells' receptive fields. Due to the retinotopic organization of

Vi, by pooling over neighboring simple cells, complex cells achieve selectivity to a

given feature within a particular spatial region, providing local position invariance

(see Figure 1-2 for a model diagram of this process).

Mid-level object and shape representations have been harder to explain than those

in V1. Cells in V2 share many properties of shape response with V1 cells and they are

also selective to orientation and spatial frequency [73, 74, 8, 38]. It has also been shown

that V2 cells are sensitive to higher order statistical dependencies than V1, which

may play a role in recognizing image structure [50]. Cells in V4 appear to have more

complex shape representations including polar, hyperbolic and Cartesian gratings

[54, 551, contours and curvature [129], and complex shape and color [154, 96, 145].

The final layer of the primate ventral stream, IT, is generally divided into a posterior

portion and an anterior portion. The posterior portion is selective to object parts

and partially invariant, and cells in the anterior portion are selective to complex

objects, including faces, and invariant to a wide range of scale and position changes

[61, 29, 28, 168, 132, 167].

fMRI studies over the last two decades have revealed similar organization for

the human ventral stream [39, 186, 72, 9], and that the transition from low-level

statistics to object-level information increases gradually along the ventral stream [581.
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In addition, there exist several object-specific regions in visual cortex, which respond

preferentially to certain ecologically relevant categories, including faces, places, and

bodies [90, 41, 35, 130, 60]. Recent studies have shown that these object-selective

regions exist in the macaque, and fMRI-guided physiology has been used to show

correspondence with object-selective single cells [173, 84].

Recordings from IT neurons and voxels in object-selective cortex reveal these

areas are remarkably invariant to a range of transformations, including not only affine

transformations such as changes in size and position [85, 80, 21], but also non-affine

transformations such as changes in illumination and viewpoint [113, 59, 111, 51, 16].

All objects undergo affine transformations in the same manner (e.g. they scale and

translate in the same manner), so a neural mechanism used to deal with these types

of invariance can, in principle, be used for all objects. This is not true of non-affine

transformations, such as rotation in depth, which depend on the 3-D structure of an

individual object or class of objects, and thus must be learned for each class of objects

[180, 13, 105].

Action recognition in the brain

As they do with objects, humans can also recognize actions very quickly, even from

very impoverished stimuli. Action recognition, however, has been much less studied

than object recognition, and the majority of action recognition studies are focused on

experiments with simple, controlled stimuli. These stimuli are mostly static images,
which contain only form information, or point light displays (created by placing dots

on the joints of a moving human), which contain biological motion information with

little to no form information [88].

Previous experiments using such stimuli revealed that neural representations for

biological motion exist in the macaque STS [141, 133, 127, 179], and in a posterior

region of the STS in humans (pSTS) [62, 63, 177, 14, 130]. The STS is a long

sulcus that spans the temporal lobe, and receives input from both the ventral and

dorsal streams. The STS has also been implicated in general motion processing, face

recognition, and social perception [31, 19, 4, 69, 153, 53].
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Actions can also be recognized from static images, and in general this elicits similar

activity in motion-selective areas, including MT/MST [97] and STS, as well in the

extra striate body area (EBA), a region traditionally considered to be more involved

in form processing [120, 110].

In addition to distinguishing biological motion types of motion, fMRI studies have

also shown that pSTS can distinguish between different types of actions [178], and

can do so in a mirror symmetric manner [64]. Physiology studies have found that

neurons in the macaque STS can identify both action invariant to actor and actor

invariant to action, showing that the same neural population can be both selective

and invariant to each of these features [159].

The computational steps required to go from oriented lines and edges to invariant

representations of whole objects, or from directed motions to actions (particularly

from natural video stimuli), are still largely unknown. The timing of different stages

of visual processing can help explain these underlying neural computations.

1.1.2 Timing in the brain

Most timing information known about the primate ventral stream comes from electro-

physiological studies of macaques. Latencies of visual areas along the ventral pathway

are known in the macaque, ranging from 40-60ms in V1 to 80-100ms in IT, and timing

between each area is approximately 20 ms [126, 155, 172, 801 (see Figure 1-1). These

latencies, however, are still largely unknown in humans.

Some recent work using electrocorticography (ECoG) in human patients with

pharmacologically intractable epilepsy has provided the rare opportunity to record

from the surface of the human brain. These studies have shown that, as in the

macaque, human visual signals that are invariant to size and position exist after 100

ms [111]. ECoG methods are limited by the lack of spatial coverage, and the scarcity

of eligible subjects.

The majority of human timing results have come from noninvasive studies ex-

amining evoked responses in electroencephalography (EEG), and to a lesser extent,

MEG. Simon Thorpe showed that humans can solve a visual categorization problem
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Figure 1-1: A diagram outlining the timing of different steps in the macaque brain to
during a rapid object categorization task. Visual areas along the ventral stream are
highlighted in green. The latencies of the visual areas along the ventral stream have
been measured in the macaque. Figure modified from [172].

(distinguishing between scenes with or without animals) very quickly, with reaction

times as fast as 250 ms, and divergence in EEG responses evoked by the two cate-

gories occurring at 150ms [171]. In addition, object-specific signals, such as the N170

response to faces, a strong negative potentiation in certain EEG channels 170 ms

after image onset in response to faces versus non-faces [15], have a similar latency. It

has been shown that the N170 response is also elicited by facial and body movements

[187].

Using MEG decoding, others have shown that high-level categorization can be

performed, such as distinguishing between two categories of objects (faces vs. cars)

[21] or higher-level questions of animacy vs. inanimacy [22, 24], around 150ms. These

signals occur late relative to those in the macaque summarized above [126, 155, 172,

80] (Figure 1-1). These results raise the question: what are computational stages in

human visual processing, and their timing, that lead to invariant object recognition?
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1.1.3 Visual recognition with convolutional neural network

models

Hubel and Wiesel's findings in visual cortex, namely that there are simple cells that

are feature selective and complex cells that pool over simple cells to build invariance,

have inspired a class of computer vision models. These models consist of a hierar-

chical organization of alternating convolutional or "tuning" layers and subsampling

or "pooling" layers. The convolutional layers perform template matching between a

given feature (e.g. an oriented Gabor filter, as found in V1 simple cells) and over-

lapping regions of an input image (analogous to cells' receptive fields in the visual

field). The pooling layers perform a max (or other pooling operation) to build in-

variance over that pooling range (e.g. if a complex cell pools over several simple

cells that are selective for the same orientation, that complex cell will be selective

for that orientation feature anywhere in its pooling range, invariant to position) and

reduce sample complexity (the number of training examples needed to learn a new

category) [5, 191] (see Figure 1-2). These models can be broken into two categories,

biologically-inspired models and performance-optimizing deep neural networks, based

on their architecture and training procedure. (It is important to note that the term

"deep neural network" refers to any algorithm that uses many layers of feature extrac-

tors and uses the outputs of one layer as input to the next, and not necessarily deep

convolutional neural networks, which are one specific type of deep neural network. In

this chapter, we will use "deep neural networks" to refer to the specific type of deep

convolutional neural networks.)

Biologically-inspired computer vision models

The first type of model, biologically-inspired, was introduced by Fukushima [52].

The models' architecture and parameters are set to closely model properties of cells

in the visual cortex, and they are usually trained in an unsupervised manner to mimic

natural visual experience [184, 144, 157, 174, 1881. These models have been expanded

to recognize actions from videos, by including a temporal component to the templates
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Figure 1-2: An outline of the HMAX model, one type of biologically-inspired convo-
lutional neural network, adapted from [1561. The model consists of alternating layers
of simple 'S' cells, which are tuned for a particular feature (oriented lines in the case
of SI and more complex shapes sampled from natural images in S2), and complex 'C'
cells which pool over the responses of 'S' cells to build invariance. (The pooling range
for a given C1 or C2 cell are highlighted for illustration.) The final C2 feature vector
for each image can be compared to the response of a population of IT cells and used
to classify images into different categories.

and pooling [56, 87], and to recognize faces invariantly to non-affine transformations

(e.g. rotation in depth, changes in background) 1105, 109]. A particular instantiation

of these Hubel and Wiesel-inspired (HW) models used in this research, known as the

HMAX model, is described in section 1.2.3 and Figure 1-2.

In these models, the pooling regions are hard-wired, which raises the question of

how these arise in the brain? People have proposed theories for how these invariant

representations may be learned in development by taking advantage of the fact that

objects typically move in and out of the visual field much slower they transform, and

linking temporally adjacent views of the same object [49, 146, 189, 37, 162]. A recent

computational theory has suggested that learning how a few objects transform in

development and storing "templates" for their transformed views can lead to trans-

formation invariance for novel objects [5]. This theory further explains why these
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hierarchical networks have achieved such success at object recognition, and states

that the main goal of cortical hierarchies is to encode invariant representations of

objects. Further, these invariant representations decrease the sample complexity for

recognition - i.e. allow the brain to learn from few labeled examples [6, 7].

Deep convolutional neural networks

In recent years the second type of neural network models, deep neural networks, have

achieved unprecedented human-level performance on a series of vision challenges, in

particular, on the object recognition challenge ImageNet, a 1000 category categoriza-

tion problem which includes thousands of training images per category and over 14

million total images [160, 43, 151]. In 2012, the winner of the ImageNet challenge em-

ployed a deep neural network, which outperformed other systems by a unprecedented

extent [99]. Today, most high-performing computer vision systems employ these deep

neural networks. These convolutional neural networks were pioneered almost 30 years

ago [150, 137, 103, 104], and again were inspired loosely by the architecture of brain

and the model of Fukushima [52]. While the recent success of these algorithms is

undeniable, it seems to be in large part due to the availability of better comput-

ing power and the prevalence of large training sets of example images, rather than

any changes to the networks architecture [991. One key distinction with the above

biolgically-inspired models is that these networks' architecture and parameters are

set for performance rather than biological fidelity. In particular, the weights in the

network are learned through "back-propagation" the process of using gradient descent

to propagate error signals on training data to update the weights.

As with object recognition, deep convolutional networks are also the top perform-

ing computer vision systems on action recognition tasks [101, 93]. In the case of

action recognition though, these systems do not achieve the same high, human-like

performance as they do with objects (they achieve 40-80% accuracy instead of over

90% achieved on the ImageNet Challenge). It is still unclear if the performance of

deep neural networks on action recognition tasks will improve as more large datasets

of labeled videos are created.
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In addition to their high performance on computer vision tasks, deep neural

networks have shown a remarkably high correspondence with primate neural data

[192, 18]. The top stages of these networks are able to explain most of the variance in

IT recordings, and middle network layers show similarly high correspondence with V4

neurons, both of which have been notably challenging to model. This work suggests

that the performance optimizing aspects of these deep neural networks are solving

the same optimization as the brain. Surprisingly, this work has even shown that these

models predict neural responses even better than models fit with neural data. This

is likely due to the fact that there is not enough neural data to constrain such large

and complex models.

Despite the recent success of deep neural networks, their basis on the architecture

of the brain, and correspondence with neural data, there are several ways in which

these algorithms are distinctly different from, and arguably inferior to, human vision.

Primarily, these models require thousands of labeled examples to learn a new class

of objects, while children and adults can learn a new category of object from only

a few labeled examples [20, 114, 190]. Second, while some work has been done to

address higher-level tasks (such as image captioning and narration) it is unclear how

many tasks beyond visual categorizations can be explained by these models. The goal

of many recent neuroscience and AI research efforts is to find new discoveries that

will, just as previous neuroscience insights have inspired the above algorithms, further

propel progress towards more intelligent and human-like computer vision systems.

1.2 Background methods

1.2.1 MEG

With the complexity of the visual system, one would ideally record simultaneously

with high spatiotemporal resolution from across the visual cortex. Unfortunately,

this is infeasible with today's recording technologies. Here we focus on measuring

high temporal resolution data with broad brain coverage using MEG. As mentioned

24



above, these two aspects in concert have been understudied and can provide great

insight into the brain's computations. Specifically, timing data can help explain how

(in what order) invariant representations are computed, which can constrain existing

and inspire new algorithms for object and action recognition.

MEG is a direct, non-invasive measure of whole-head neural firing with millisecond

temporal resolution. EEG and MEG detect the electrical and magnetic fields, respec-

tively, that are produced by synchronous neural firing. MEG requires on the order

of 50 million neurons oriented in the same direction to fire synchronously, and thus

detects signals primarily from pyramidal neurons aligned perpendicular to the sur-

face of the cortex. Due to the geometry of the cortical surface and resulting magnetic

fields, MEG is primarily sensitive to neural sources in the sulci and EEG primarily

detects activity primarily from the gyri. Unlike electric fields detected with EEG,

magnetic fields are not impeded by the skull and scalp 1102], and thus MEG is a less

noisy measure of neural activity.

Typical MEG methods involve analyzing event-related fields evoked by a cer-

tain stimulus. This is done by presenting a stimulus on the order of 100 times and

averaging the value of the magnetic field measured in a given channel over the multi-

ple stimulus repetitions to improve the signal-to-noise ratio. This has led to several

discoveries of visual timing hallmarks, described in section 1.1.2 [171, 151. This proce-

dure, however, has several notable drawbacks, mainly that it requires several stimulus

repetitions, is not a direct measure of and is limited by the univariate nature of the

analysis.

Source localization methods are often used in conjunction with this event-related

field analysis to estimate where the neural sources driving MEG or EEG measure-

ments are located. Source localization, however, is an ill-posed problem. Even when

taking into account geometric constraints of cortical shape and orientation of mag-

netic fields, there are still orders of magnitude more sources one tries to estimate than

sensor measurements that are made with MEG. This limits the spatial resolution of

MEG. The most widespread way to overcome the ill-posed nature of the problem is

to regularize the inverse problem with the L2 norm, leading to the minimum norm
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estimate [67, 11]. This minimum norm estimate minimizes the total power of the

sources, which has little physiological basis. Other methods that impose sparsity of

the sources by regularizing with Li or L1-L2 norm combinations have also been used

[66]. Recent results have shown that incorporating fMRI data into source estima-

tion methods can greatly improve the spatial resolution of MEG/EEG measurements

[1281. Other new methods have also taken advantage of the dynamic information in

MEG to create better temporal models of the inverse problem [100].

Neural decoding analysis is a tool that can be applied to source- or sensor-level

data and, unlike the above methods, provides a direct measure of stimulus information

present in the data. Neural decoding has been largely unexplored for analyzing MEG

visual data.

1.2.2 Neural decoding analysis

Neural decoding analysis uses a machine learning classifier to assess what information

about the input stimulus is present in the recorded neural data (for example, what

image the subject was looking at). Decoding analysis has the advantage of being able

to extract information from the pattern of neural activity across multiple sensors or

voxels, and as a result has increased sensitivity over univariate analyses [80, 68, 94,

131].

Decoding analysis, or multi-voxel pattern analysis (MVPA), has been widely used

in fMRI visual research and led to great progress in predicting visual cortical response

to a range of visual stimuli [68, 89, 70, 94, 185], and even reconstructing visual stimuli

purely based on fMRI data [125]. Decoding analysis has also been applied to electro-

physiology visual data [80, 119, 193], and to a lesser extent to EEG and MEG visual

data. MEG decoding has been used recently to show category-selective signals with

some position invariance present at 150 ms [21], and other properties about objects,

such as animacy/inanimacy, between 150-200 ms [22, 24].

One main advantage of neural decoding is that it makes it possible to test for

the presence of invariant information in the visual signals. By training the classifier

on stimuli presented at one condition (a given, position or scale, for example), and
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testing on a second condition (a different position or scale), it is possible see if the

neural information can generalize across that transformation. This technique has

been applied to fMRI data [701, electrophysiology data [80, 193], and MEG data [211.

1.2.3 HMAX

HMAX falls in the class of Hubel and Wiesel-inspired models described above in

section 1.1.3. One particular instantiation consists of two layers of alternating simple

and complex cells. The first simple cell layer, S1, contains features or templates

that are Gabor filters of varying scales and orientations. A dot product is computed

between each of the Gabor filters at each location in the image (a convolution). In the

first complex cell layer, C1, a local maximum is computed across position and scales

to provide invariance in these local regions. In the second simple cell layer, S2, the

templates are drawn from random natural image patches that are fed through the S1

and C1 layers of the HMAX model, which serve as an intermediate layer feature. In

the final C2 layer, pooling is performed for each feature across all sizes and positions

to provide global size and position invariance (Figure 1-2). The final C2 vector can

then be used as input to a machine learning classifier trained on various tasks, such

as object recognition. This model has been shown to match human performance on a

feedforward object categorization task where images are masked to prevent feedback

processing 11571.

Some key questions about this model remain: how biologically faithful is it, namely

is there evidence that the brain employs this alternating tuning and pooling beyond

V1? And to what extent and on what subset of tasks do these feedforward models

explain human visual performance?

1.3 Contributions

1.3.1 Main contributions

In this thesis I show that:
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" Visual signals containing information sufficient for object recognition exist as

early as 60 ms after stimulus onset in the human visual system.

* Size and position invariance begin at 100 ms after stimulus onset, with invari-

ance to smaller transformations occurring before invariance to larger transfor-

mations.

" Action selective visual signals occur as early as 200ms after video onset.

* These early representations for action are also invariant to changes in actor and

viewpoint.

" The same feedforward, hierarchical models for visual recognition can explain

both these object and action recognition timing results.

1.3.2 Organization of this thesis

Chapter two implements a temporal association learning rule, a popular computa-

tional mechanism for learning invariance in development, in the HMAX model. Sim-

ulations with this model demonstrate the robustness of this learning mechanism. We

find that, as in recent behavioral and physiology studies, we can learn and subse-

quently disrupt position invariance in single model units through temporal associa-

tion learning. Despite this single cell disruption, a population of cells remains robust

to these manipulations, demonstrating the fidelity of this learning rule across many

neurons.

Chapter three describes the dynamics of size- and position-invariant object recog-

nition in the human brain. Using MEG decoding, we show that object identity can be

read out in 60ms, with invariance to size and position invariance increasing in stages

between 100-150 ms. These results uncover previously unknown latencies for human

object recognition, and compelling evidence for a feedforward, hierarchical model of

the visual system.

Chapter four describes the dynamics of viewpoint invariant action recognition in

the brain and an accompanying computational model. Here we use video stimuli to
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better examine realistic visual input and understand how the brain uses spatiotem-

poral information to recognize actions. We show that, like object recognition, action

recognition is also fast and invariant, with a representation for action that is invariant

to actor and view arising in the brain in around 200 ms. We extend the same class

of hierarchical feedforward computational model to account for these MEG results.

Finally we show that, like the MEG signals, the model can recognize action invariant

to actor and view.

Chapter five concludes the thesis by examining common themes in this work and

future directions for using temporal dynamics to understand visual computations in

the brain.
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Chapter 2

Robustness of invariance learning in

the ventral stream

This material in this chapter was published in Frontiers in Computational Neuro-

science in 2012 [82]. Joel Z. Leibo and I contributed equally to this work.

Learning by temporal association rules, such as Foldiak's trace rule [49], is an at-

tractive hypothesis that explains the development of invariance in visual recognition.

Consistent with these rules, several recent experiments have shown that invariance

can be broken by appropriately altering the visual environment. These experiments

raise puzzling differences in the effect size and altered training time at the psychophys-

ical [26, 1831 versus single cell [107, 108] level. We show a) that associative learning

provides appropriate invariance in models of object recognition inspired by Hubel

and Wiesel [76], b) that we can replicate the "invariance disruption" experiments

using these models with a temporal association learning rule to develop and maintain

invariance, and c) that we can thereby explain the apparent discrepancies between

psychophysics and singe cells effects. We argue that this mechanism in hierarchical

models of visual cortex provides stability of perceptual invariance despite the under-

lying plasticity of the system, the variability of the visual world and expected noise

in the biological mechanisms.
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2.1 Introduction

Temporal association learning rules provide a plausible way to learn transformation

invariance through natural visual experience [49, 115, 161, 184, 189]. Objects typically

move in and out of our visual field much slower than they transform, and based on

this difference in time scale the brain learns to group the same object under different

transformations. These learning methods are attractive solutions to the problem of

invariance development. However, these algorithms have mainly been examined in

idealized situations that do not contain the complexities present in the task of learning

to see from natural vision or, when they do, ignore the imperfections of a biological

learning mechanism. Here we present a model of invariance learning that predicts the

invariant object recognition performance of a neural population can be surprisingly

robust, even in the face of frequent temporal association errors.

Experimental studies of temporal association and the acquisition of invariance

involve putting observers in an altered visual environment where objects change their

identity across saccades. Cox et al. showed that after a few days of exposure to

this altered environment, the subjects mistook one object for another at a specific

retinal position, while preserving their ability to discriminate the same objects at

other positions [26]. A subsequent physiology experiment by Li and DiCarlo using a

similar paradigm showed that individual neurons in primate anterior inferotemporal

cortex (AIT) change their selectivity in a position-dependent manner after less than

an hour of exposure to the altered visual environment [107]. It is important to note

that the stimuli used in the Cox et al. experiment were difficult to discriminate

"greeble" objects, while the stimuli used by Li and DiCarlo were easily discriminable,

e.g., a teacup versus a sailboat.

This presents a puzzle, if the cells in AIT are really underlying the discrimination

task, and exposure to the altered visual environment causes strong neural effects so

quickly, then why is it that behavioral effects do not arise until much later? The fact

that the neural effects were observed with highly dissimilar objects (the equivalent

of an easy discrimination task) while the behavioral effects in the human experiment
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were only observed with a difficult discrimination task compounds this puzzle.

The physiology experiment did not include a behavioral readout, so the effects of

the manipulation on the monkey's perceptual performance is not currently known;

however, the human evidence suggests it is highly unlikely that the monkey would

really be perceptually confused between teacups and sailboats after such a short

exposure to the altered visual environment.

We present a computational model of invariance learning that shows how strong

effects at the single cell level do not necessarily cause confusion on the neural pop-

ulation level, and hence do not imply perceptual effects. Our simulations show that

a population of cells is surprisingly robust to large numbers of mis-wirings due to

errors of temporal association. In accord with the psychophysics literature 126, 183],

our model also predicts that the difficulty of the discrimination task is the primary

determiner of the amount of exposure necessary to observe a behavioral effect, rather

than the strength of the neural effect on individual cells.

2.2 Temporal association learning with the cortical

model

We examine temporal feature learning with the HMAX model [157, 144]. The results

presented should generalize to other models in the class of Hubel-Wiesel models [52].

The model learns translation invariance, specifically in the S2 to C2 connections,

from a continuously translating image sequence, as shown in Figure 2-1, left. During

training, an image (face or car) is translated left to right over a time period, which we

will call an "association period". During this association period, one C2 cell learns

to pool over highly active S2 cells. Correct temporal association should group similar

features across spatial locations, as illustrated in Figure 2-1, left. Potential "mis-

wiring" effects of a temporally altered image sequence are illustrated in Figure 2-1,

right.
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Figure 2-1: An illustration of the HMAX model with two different input image se-
quences: a normal translating image sequence (left), and an altered temporal image
sequence (right). The model consists of four layers of alternating simple and complex
cells. S1 and C1 (Vi-like model): The first two model layers make up a Vi-like
model that mimics simple and complex cells in the primary visual cortex. The first
simple cell layer, S1, consists of simple orientation-tuned Gabor filters, and the fol-
lowing complex cell layer, C1, performs max pooling over local regions of a given S1
feature. These are identical to the first two model layers in 1157]. S2: The next sim-
ple cell layer, S2, performs template matching between C1 responses from an input
image and the C1 responses of stored prototypes (unless otherwise noted, we use pro-
totypes that were tuned to natural image patches). Template matching is performed
with a radial basis function, where the responses have a Gaussian-like dependence
on the Euclidean distance between the (CI) neural representation of an input image
patch and a stored prototype. The RBF response to each template is calculated at
various spatial locations for the image (with half overlap). Thus the S2 response to
one image (or image sequence) has three dimensions: x and y corresponding to the
original image dimensions, and feature the response to each template. C2: The final
complex cell layer, C2, performs global max pooling over all the S2 units to which

it is connected. The S2 to C2 connections are highlighted for both the normal (left)

and altered (right) image sequences. To achieve ideal transformation invariance, the

C2 cell can pool over all positions for a given feature as shown with the highlighted

cells.
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2.2.1 Learning rule

In Foldiak's original trace rule, shown in Equation 2.1, the weight of a synapse between

an input cell and output cell is strengthened proportionally to the input activity and

the trace or average of recent output activity at time t. The dependence of the trace

on previous activity decays over time with the 6 term [49].

Foldiak trace rule:

AW9 oC xiy

(2.1)

g(t = (1 - 6)y t1 + 6y?

In the HMAX model, connections between S and C cells are binary. Additionally,

in our training case we want to learn connections based on image sequences of a

known length, and thus for simplicity should include a hard time window rather

than a decaying time dependence. Thus we employed a modified trace rule that is

appropriate for learning S2 to C2 connections in the HMAX model.

Modified trace rule for the HMAX model:

for t in T :

if xj > 6, wi = 1 (2.2)

else, wij = 0

With this learning rule, one C2 cell is produced for each association period. The

length of the association period is T.
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2.3 Robustness

2.3.1 Training for translation invariance

We model natural invariance learning with a training phase where the model learns

to group different representations of a given object based on the learning rule in

Equation 2.2. Through the learning rule, the model groups continuously-translating

images that move across the field of view over each known association period T. An

example of a translating image sequence is shown at the top, left of Figure 2-1. During

this training phase, the model learns the domain of pooling for each C2 cell.

2.3.2 Accuracy of temporal association learning

To test the performance of the HMAX model with the learning rule in Equation

2.2, we train the model with a sequence of training images. Next we compare the

learned model's performance to that of the hard-wired HMAX [157] on a translation-

invariance recognition task. In standard implementations of the HMAX model, each

C2 cell pools all the S2 responses for a given template globally over all spatial loca-

tions. This pooling gives the model translation invariance and mimics the outcome

of an idealized temporal association process.

We test both models on a face vs. car identification task with 20 faces and 20 cars

that contain slight intraclass variation across different translated views1 . We collect

hard-wired C2 units and C2 units learned from temporal sequences of the faces and

cars. We then test each model's translation invariance by using a nearest neighbor

classifier to compare the correlation of C2 responses for translated objects to those in

a given reference position. The accuracy of the two methods (hard-wired and learned

from test images) for different amounts of translation is shown in Figure 2-2. The two

methods performed equally well, confirming that the temporal associations learned

from training yield accurate invariance results.

'The training and testing datasets come from a concatenation of
two datasets from: http://www.d2.mpi-inf.mpg.de/Datasets/ETH80, and
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Figure 2-2: The classification accuracy (AUC for ROC curve) for both hard-wired
and temporal association learning model plotted for different degrees of translation
compared to a reference position with a nearest neighbor classifier. The model was
trained and tested on separate training and testing sets, each with 20 car and 20 face
images. For temporal association learning, one C2 unit is learned for each association
period or training image, yielding 40 learned C2 units. One hard-wired C2 unit was
learned from each natural image that cells were tuned to, yielding 10 hard wired C2
units. Increasing the number of hard-wired features has only a marginal effect on
classification accuracy.

2.3.3 Manipulating the translation invariance of a single cell

To model the Li and DiCarlo physiology experiments in [107] we perform normal

temporal association learning described by Equation 2.2 with a translating image of

one face and one car. The S2 units are tuned to (i.e. use templates from) the same

face and car images as in the training set to mimic object-specific cells that are found

in AIT. Next we select a "swap position" and perform altered training with the face

and car images swapped only at that position (see Figure 2-1, top right). After the

altered training, we observe the response of one C2 cell, which has a preference for

one stimuli over the other (to model single cell recordings), to the preferred and non-

preferred objects at the swap position and at a second, non-swap position that was

unaltered during training.
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(a) Figure from Li and DiCarlo 2008 1107] summarizing the ex-
pected results of swap exposure on a single cell. P is response to
preferred stimulus, and N is that td non-preferred stimulus.
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(b) The response of a C2 cell tuned to a preferred object before

(time point 1) and after (time point 2) altered visual training

where the preferred and non-preferred objects were swapped at

a given position. To model the experimental paradigm used in

[107, 108, 26, 183], training and testing were performed on the
same altered image sequence. The C2 cell's relative response

(Z-score) to the preferred and non-preferred objects at both the

swap and non-swap positions are plotted.

Figure 2-3:
experience.

Manipulating single cell translation invariance through altered visual

As shown in Figure 2.3.3 the C2 preference has switched at the swap position: the

response for the preferred object at the swap position (but not the non-swap position)

is lower after training, and the C2 response to the non-preferred object is higher at
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the swap position. As in the physiology experiments performed by Li and DiCarlo,

these results are object and position specific.

2.3.4 Individual cell versus population response

In the previous section we modeled the single cell results of Li and DiCarlo, namely

that translation invariant representations of objects can be disrupted by a relatively

small amount of exposure to altered temporal associations. However, single cell

changes do not necessarily reflect whole population or perceptual behavior and no

behavioral tests were performed on the animals in this study.

A cortical model with a temporal association learning rule provides a way to model

population behavior with swap exposures similar to the ones used by Li and DiCarlo

[107, 108]. A C2 cell in the HMAX model can be treated as analogous to an AIT cell

(as tested by Li and DiCarlo), and a C2 vector as a population of these cells. We

can thus apply a classifier to this cell population to obtain a model of behavior or

perception.

2.3.5 Robustness of temporal association learning with a pop-

ulation of cells

We next model the response of a population of cells to different amounts of swap

exposure, as illustrated in Figure 2-1, right. The translating image sequence with

which we train the model replicates visual experience, and thus jumbling varying

amounts of these training images is analogous to presenting different amounts of

altered exposure to a test subject as in 1107, 108]. These disruptions also model the

mis-associations that may occur with temporal association learning due to sudden

changes in the visual field (such as light, occlusions, etc), or other imperfections of

the biological learning mechanism. During each training phase we randomly swap

different face and car images in the image sequences with a certain probability, and

observe the effect on the response of a classifier applied to a population of C2 cells.

The performance, as measured by area under the ROC curve (AUC), versus different
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neural population sizes (number of C2 cells) is shown in Figure 2-4 for several amounts

of altered exposure. We measured altered exposure by the probability of flipping a

face and car image in the training sequence.

1 -
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0.6 -prob switch = 0
-prob switch = 0.125
-prob switch = 0.25
-prob switch = 0.5
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Number of C2 units

Figure 2-4: Results of a translation invariance task (+/- 40 pixels) with varying
amounts of altered visual experience. To model the experimental paradigm used in
[107, 108, 26, 1831, training and testing were performed on the same altered image
sequence. The accuracy (AUC for ROC curve) with a nearest neighbor classifier
compared to center face for a translation invariance task versus the number of C2
units. Different curves have a different amount of exposure to altered visual training
as measured by the probability of swapping a car and face image in training. The
error bars show +/- one standard deviation.

A small amount of exposure to altered temporal training (0.125 probability of

flipping face and car) has negligible effects, and the model under this altered training

performs as well as with normal temporal training. A larger amount of exposure to

altered temporal training (0.25 image flip probability) is not significantly different

than perfect temporal training, especially if the neural population is large enough.

With enough C2 cells, each of which is learned from a temporal training sequence, the

effects of small amounts of jumbling in training images are insignificant. Even with

half altered exposure (0.5 image flip probability), if there are enough C2 cells then

classification performance is still fairly high (Figure 2-4). This is likely because with
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similar training (multiple translating faces or cars), redundant C2 cells are formed,

creating robustness to association errors that occurred during altered training. Similar

redundancies are likely to occur in natural vision. This indicates that in natural

learning, mis-wirings do not have a strong effect on learning translation invariance,

particularly with familiar objects or tasks.

2.4 Discussion

We use a cortical model inspired by Hubel and Wiesel [76], where translation invari-

ance is learned through a variation of Foldiak's trace rule [49] to model the visual

response to altered temporal exposure. We first show that this temporal association

learning rule is accurate by comparing its performance to that of a similar model

with hard-wired translation invariance [157]. This extends previous modeling results

by Masquelier et al. [115] for models of V1 to higher levels in the visual recognition

architecture. Next, we test the robustness of translation invariance learning on single

cell and whole population responses. We show that even if single cell translation

invariance is disrupted, the whole population is robust enough to maintain invariance

despite a large number of mis-wirings.

The results of this study provide insight into the evolution and development of

transformation invariance mechanisms in the brain. It is unclear why a translation

invariance learning rule, like the one we modeled, by [26, 107, 108], would remain

active after development. We have shown that the errors associated with a contin-

uously active learning rule are negligible, and thus it may be simpler to leave these

processes active than to develop a mechanism to turn them off.

Extending this logic to other transformations is interesting. Translation is a

generic transformation; all objects translate in the same manner, so translation in-

variance, in principle, can be learned during development for all types of objects.

This is not true of "non-generic" or class-specific transformations, such as rotation in

depth, which depends on the 3-D structure of an individual object or class of objects

[148, 106, 105]. For example, knowledge of how 2-D images of faces rotate in depth
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can be used to predict how a new face will appear after a rotation. However, knowl-

edge of how faces rotate is not useful for predicting the appearance of non-face objects

after the same 3-D transformation. Many transformations are class-specific in this

sense (e.g. changes in illumination, which depend on both 3-D structure and material

properties of objects [105]). One hypothesis as to why invariance-learning mechanisms

remain active in the mature visual system could be a continuing need to learn and

refine invariant representations for more objects under non-generic transformations.

Disrupting rotation in depth has been studied in psychophysics experiments. Wal-

lis and Bulthoff showed that training subjects with slowly morphing faces, disrupts

viewpoint invariance after only a few instances of altered training [183]. This effect

occurs with a faster time course than observed in the translation invariance experi-

ments [26]. One possible explanation for this time discrepancy is that face processing

mechanisms are higher-level than those for the "greeble objects" and thus easier to

disrupt. However, we conjecture that the strong, fast effect has to do with the type

of transformation rather than the specific class of stimuli.

Unlike generic transformations, class-specific transformations cannot be gener-

alized between objects with different properties. It is even possible that we learn

non-generic transformations of novel objects through a memory-based architecture

that requires the visual system to store each viewpoint of a novel object. Therefore,

it is logical that learning rules for non-generic transformations should remain active

as we are exposed to new objects throughout life.

In daily visual experience we are exposed more to translations than rotations in

depth, so through visual development or evolutionary mechanisms there may be more

cells dedicated to translation-invariance than rotation-invariance. We showed that the

size of a population of cells has a significant effect on its robustness to altered training,

see Figure 4. Thus rotation invariance may also be easier to disrupt, because there

could be fewer cells involved in this process.

Two plausible hypotheses both point to rotation (class-specific) versus translation

(generic) being the key difference between the Wallis and Bulthoff and Cox et al.

experiments. We conjecture that if an experiment controlled for variables such as
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the type and size of the stimulus, class-specific invariances would be easier to disrupt

than generic invariances.

This study shows that despite unavoidable disruptions, models based on tempo-

ral association learning are quite robust and therefore provide a promising solution

for learning invariance from natural vision. These models will also be critical in un-

derstanding the interplay between the mechanisms for developing different types of

transformation invariance.
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Chapter 3

The dynamics of size- and

position-invariant object recognition

in the human visual system

The material in this chapter was published in the Journal of Neurophysiology in 2014

[83].

The human visual system can rapidly recognize objects despite transformations

that alter their appearance. The precise timing of when the brain computes neural

representations that are invariant to particular transformations, however, has not

been mapped in humans. Here we employ magnetoencephalography (MEG) decoding

analysis to measure the dynamics of size- and position-invariant visual information

development in the ventral visual stream. With this method we can read out the

identity of objects beginning as early as 60 ms. Size- and position-invariant visual

information appear around 125 ms and 150 ms, respectively, and both develop in

stages, with invariance to smaller transformations arising before invariance to larger

transformations. Additionally, the MEG sensor activity localizes to neural sources

that are in the most posterior occipital regions at the early decoding times and then

move temporally as invariant information develops. These results provide previously

unknown latencies for key stages of human invariant object recognition, as well as
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new and compelling evidence for a feed-forward hierarchical model of invariant object

recognition where invariance increases at each successive visual area along the ventral

stream.

3.1 Introduction

Humans can identify objects in complex scenes within a fraction of a second ([138,
171]. The main computational difficulty in object recognition is believed to be

identifying objects across transformations that change the photoreceptor-level rep-

resentation of the object, such as position in the visual field, size, and viewpoint

[32]. Invariance to these transformations increases along the ventral visual pathway

[112, 10, 147, 152], and the latencies of the visual areas along this pathway (from V1

to IT) are known in the macaque [126, 155, 172, 801. For instance, position and size in-

variance is found in macaque IT at about 100 ms. In humans, electroencephalography

(EEG) studies have shown that neural signals containing object category information

can be found at 150ms or later [15, 171, 95], however, the timing and steps to develop

the invariant object representations that drive this categorization are still unknown.

To understand the timing of invariant object recognition in humans, we use a tech-

nique called neural decoding analysis (also known as multivariate pattern analysis,

or readout). Neural decoding analysis applies a machine learning classifier to assess

what information about the input stimulus (e.g., what image the subject was looking

at) is present in the recorded neural data. This technique is widely used in functional

magnetic resonance imaging (fMRI) [70] and brain-machine interfaces [34], and has

also been applied to electrophysiology data [80, 119], EEG data [134, 135, 142], and

MEG motor [182] and semantic data [163]. These analyses, however have only been

applied to visual data in a few instances [65, 21, 22]. MEG provides high temporal

resolution, whole-head neural signals, making it a useful tool to study the different

stages of invariant object recognition throughout the brain. Using MEG decoding we

could identify the precise times when neural signals contain object information that

is invariant to position and size. We also examined the dynamics of these signals with
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high temporal accuracy and estimated their underlying neural sources. Finally, we

compared the timing data uncovered here to a feed-forward model of invariant object

recognition in the ventral stream. These results allow us to draw conclusions about

when and where key stages of invariant object recognition occur, and provide insight

into the computations the brain uses to solve complex visual problems.

3.2 Materials and Methods

3.2.1 Subjects

Eleven subjects (three female) age 18 or older with normal or corrected to normal

vision took part in the experiment. The MIT Committee on the Use of Humans

as Experimental approved the experimental protocol. Subjects provided informed

written consent before the experiment. One subject (Si) was an author and all

others were unaware of the purpose of the experiment.

3.2.2 Experimental Procedure

In this experiment, subjects performed a task unrelated to the images presented.

The images were presented in two image blocks and the fixation crossed changed

color (red, blue or green) when the first image was presented, then changed to black

during the inter-stimulus interval, and then turn a second color when the second

image was presented. The subjects' task was to report if the color of the fixation

cross was the same or different at the beginning and end of each two image (Figure

3-1), and thus helped ensure that they maintained a center fixation while both images

were presented (this was also verified for two subjects with eye tracking, see below).

To evaluate the robustness of the MEG decoding methods, three subjects (S1, S2,

S3) were each shown a different dataset of images presented at one size and position.

Subject S1 was shown 25 scene images (from stanford.edu/fmriscenes/resources.html)

presented in the center of the visual field at a size of 4x6 degrees of visual angle,

Subject S2 was shown 26 black letters on white background presented in the center
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Same

Different

200 ms 50 ms 700 ms 50 ms

Figure 3-1: Experimental task. In order to keep their gaze at the center of the screen,
the subjects' task was to report if the color of the fixation cross was the same or
different at the beginning and end of each two image. a) Illustrates a trial where the
fixation cross is the same color (red) at beginning and end, and b) illustrates a trial
where the fixation cross changes color (from red to green) between beginning and end.
The fixation cross changed color when the images were on the screen and was black
between stimulus presentations.

of the visual field at a size of 5x5 degrees of visual angle, and Subject S3 was shown

25 isolated objects on a gray background, presented in the center of the visual field at

a size of 5x5 degrees of visual angle (Figure 3-2, right). To study size- and position-

invariance, eight subjects (S4-S11) were shown the same subset of six images from the

isolated objects dataset, presented at three sizes (two, four and six-degrees of visual

angle in diameter) in the center of the visual field, and three six-degree diameter

images shown at three positions (centered, and +/- three degrees vertically).

Images were presented for 48ms with 704 ms inter-stimulus interval. Image order

was randomized for each experiment, and each stimulus was repeated 50 times. All

images were presented in grayscale on a 48cm x 36 cm screen, 140 cm away from the

subject, thus the screen occupied 19 x 14 degrees of visual angle.
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3.2.3 Eyetracking

To verify that the above subjects maintain central fixation, eyetracking was per-

formed during MEG recordings for two subjects (S9, S10) with the Eyelink 1000 eye

tracker from SR Research. A 9-point calibration was used at the beginning of each

experiment. We discarded trials that were greater than two degrees away from the

mean eye position, which we used as center to account for calibration errors, or that

contained artifacts such as blinks. 6% of trials were rejected for subject S9 and 11%

were discarded for subject S10. Discarding data did not have a significant effect on

decoding, so the data shown contains all trials for each subject.

3.2.4 MEG recordings and data processing

The MEG scanner used was an Elekta Neuromag Triux with 102 magnetometers at

204 planar gradiometers, and the MEG data was sampled at 1000 Hz. The MEG data

were pre-processed using Brainstorm software [166]. First the signals were filtered

using Signal Space Projection for movement and sensor contamination [1701. The

signals were also band-pass filtered from 2-100 Hz with a linear phase FIR digital

filter to remove external and irrelevant biological noise, and the signal is mirrored to

avoid edge effects of band-pass filtering. Recent studies have shown that high-pass

filtering may lead to artifacts that affect evoked response latencies in MEG/EEG data

[1, 149]. To ensure that the high-pass filter threshold did not affect our results, we

performed one set of analyses with a 0.01 Hz high-pass filter threshold, and observed

no noticeable difference in the latency or shape of decoding accuracy.

3.2.5 Decoding analysis methods

Decoding analyses were performed with the Neural Decoding Toolbox [117], a Matlab

package implementing neural population decoding methods. In this decoding proce-

dure, a pattern classifier was trained to associate the patterns of MEG data with

the stimulus conditions that were present (the identity of the image shown) when

the MEG recording were made. The amount of information in the MEG signal was

49



evaluated by testing the accuracy of the classifier on a separate set of test data. In

our analyses, data from both magnetometers and gradiometers were used as features

that were passed to the pattern classifier (we found both types of sensors had informa-

tion that contributed to increasing the decoding performance). We also averaged the

MEG in 5 ms non-overlapping bins (i.e. each sensor's activity was averaged within

each 5 ms time window) prior to beginning the decoding procedure.

All decoding analyses were performed with a cross-validation procedure where the

classifier is trained on a subset of the data and then the classifier's performance is

evaluated on the held-out test data. Our recordings consisted of 50 repetitions of

each stimulus condition (see 'Experimental Procedures' above). For each decoding

run, data from these 50 trials were divided into 5 sets of 10 trials, and the data from

each set of 10 trials were averaged together. We were also able to decode without

this averaging (using single trials), but found that averaging trials led to an increase

in the signal to noise ratio of our results (see Figure 3-3). This gave rise to five cross-

validation splits. The classifier was trained on 4 of these splits (80% of the data) and

then tested on the remaining split (20% of the data), and the procedure was repeated

5 times leaving out each cross-validation split.

In each training phase of the decoding procedure, the mean and standard deviation

of the each sensor over the entire time series was used to Z-score normalize the data.

Additionally, an analysis of variance (ANOVA) test was applied to the training data

to select the 25 sensors at each time point that are most selective for image identity

(those sensors with the lowest p-values determined by an F-test). The test data

was then z-score normalized using the mean and standard deviation learned from

the training data, and only the top 25 sensors that had the lowest p-values were

used when testing the classifier. The pattern of the most selected sensors was very

localized to the occipital portion of the sensor helmet beginning 60ms after stimulus

onset (Supplemental Video 1).

Decoding analyses were performed using a maximum correlation coefficient classi-

fier. This classifier computes the correlation between each test vector x* and a vector

f that is created from taking the mean of the training vectors from class i. The test
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point is assigned the label of the class of the training data with which it is maximally

correlated. This can be formulated as:

i* = argmaxi(corr(x*, fi))

The classification accuracy is reported as the percentage of correct trials classified

in the test set averaged over all cross-validation splits. This decoding procedure was

repeated for 50 decoding runs with different training and test cross-validation splits

being generated on each run, and the final decoding accuracy reported is the average

decoding accuracy across the 50 runs. For more details on the decoding procedure,

and to view the code used for these analyses, please visit http://www.readout.info.

The decoding parameters, including number of stimulus repetitions, number of

trials averaged, number of sensors used, bin width, and classifier used in decoding

were chosen to maximize a signal to noise ratio (SNR), defined as the peak decoding

accuracy divided by the standard deviation during the baseline period. Using data

from the initial 3 subjects on the 25 image discrimination tasks (Figure 3-2), we

found good SNR values for most of these parameter settings (Figure 3-3(a)-(e)). The

results showed 50 stimulus repetitions were more than sufficient to provide good

SNR, and that averaging 10 trials and selecting 25 features led to a clear increase

in decoding performance. In addition, small bin size not only led to an increase in

decoding performance, but also allowed us to interpret our results with finer temporal

resolution. Next, we performed the decoding analysis using several different classifiers

(correlation coefficient, support vector machine, and regularized least squares with

linear and Gaussian kernels), and found that classifier choice did not affect decoding

accuracy (Figure 3-3(f)). Consequently, in order to have the clearest results possible

to examine the effects of interest, we use 50 stimulus repetitions, the average 10 trials,

the 25 most selective features, 5 ms bin width, and a correlation coefficient classifier

for subsequent invariance analyses.
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3.2.6 Significance criteria

We assessed significance using a permutation test. To perform this test, we generated

a null distribution by running the full decoding procedure 200 times using data with

randomly shuffled labels with 10 cross-validation split repetitions used on each run.

Decoding results performing above all points in the null distribution for the corre-

sponding time point were deemed significant with p<0.005 (1/200). The first time

decoding reached significantly above chance ("significant time") was defined as the

point when accuracy was significant for two consecutive time bins. We chose this

significance criterion was selected such that no spurious correlations in the baseline

period were deemed significant. This criterion was met for all decoding experiments,

except one subject in one position-invariance condition (S7, train down/test up con-

dition) whose data was still included in our analyses.

3.2.7 Significance testing with normalized decoding magni-

tudes

To examine the effect of decoding magnitude on significance time, we also performed

a procedure to approximately normalize the peak decoding accuracy across trials. We

then repeated this significance testing to see the latencies across different conditions

with normalized magnitudes. To normalize the decoding magnitude for different con-

ditions, we included less data for those conditions with higher decoding accuracy: if

the peak decoding magnitude was above .7 for one condition or pair of conditions

(in the case of invariance conditions, the average of each train and test pair was

considered) we performed decoding with 20% of data collected, if the peak decoding

magnitude was between 0.6-0.7 we performed decoding with 30% of data collected,

and if the peak decoding magnitude was between 0.44-0.6 we performed decoding

with 50% of the data collected. After this normalization procedure, peak decoding

accuracy for all conditions fell within the same narrow range of 33%-43%. Decoding

analysis was still performed with five cross-validation splits, and all the data in each

split (3 trials for those conditions using 30% of data, and 5 trials for those condi-
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tions using 50% of data) was still averaged at each cross validation run. All other

decoding parameters were kept the same. This procedure adjusted the peak decoding

magnitudes for each condition so they were between the 0.33-0.44 desired range.

3.2.8 Source localization

We used the minimum norm estimate (MNE) distributed source modeling method,

which finds the set of sources along the cortical surface that minimizes the total power

of the sources [67], for three subjects (S9-S11) using Brainstorm software. MNE was

performed using the cortical orientation constraints and with the default SNR value

(signal-to-noise ratio of power of data) of 3. The sources were estimated on the colin27

standard brain template [75]. (Head positions for S1-S8 were not measured in the

scanner, so they were excluded from this analysis.) A head model was generated

for each subject's head position using the overlapping spheres method. A full noise

covariance matrix from the 233 ms baseline period of 1530 visual presentations was

generated for each subject, and used in the MNE algorithm. Sources that were

p<0.001 significant (based on a t-test versus the baseline period, Bonferroni corrected

for multiple comparisons) were selected.

3.2.9 Cortical modeling (HMAX)

To model the MEG invariant decoding results, we tested the HMAX model [157]. The

model consists of alternating layers of simple units and complex units. Simple cells

perform a template matching operation between its inputs and stored templates (in

the first layer these templates are oriented Gabor functions, similar to those found

in primary visual cortex) to build selectivity, and complex cells perform a pooling

operation over local regions (here we use max pooling) to build invariance. HMAX was

implemented using the Cortical Network Simulator GPU-based framework [123]. The

HMAX parameters used were the same as in [157]. 1000 model units were randomly

sampled at each model layer, and used as the feature vector for classification. As

in the decoding procedure, a correlation coefficient classifier was used to classify the
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same image across two different sizes or positions, at each model layer. This procedure

was repeated ten times and results were averaged.

3.3 Results

3.3.1 Fast and robust readout for different types of stimuli

To examine whether we could extract visual information from MEG signals, we first

decoded the identity of the presented images. Three subjects were each shown a

different stimulus set, which consisted of either images of scenes, images of letters, or

images of isolated objects (Figure 3-2 (a)-(c), right), while MEG signals were recorded

from 306 sensors covering the full head. The stimulus sets each had 25 images, and

each image was shown 50 times to each subject. We trained a correlation coefficient

classifier to discriminate between the different images based on the subject's MEG

data. The MEG signals were averaged over 5ms time bins, and data from 10 different

trials were averaged together. The classifier was trained and tested separately on each

time bin and the 25 most selective sensors were chosen in training for each time point

(see 3.2.5). These decoding parameters were chosen maximize signal to noise in the

recordings (Figure 3-3).

For each image set and subject, we could reliably decode the identity of the 25

different images in the set. Decoding was significantly above chance (based on a

p<0.005 permutation test) from 60-335 ms after stimulus presentation for scene im-

ages, 70-325 ms for letter images, and 60-370 ms for object images (Figure 3-2(a)-(c),

left). The peak decoding accuracies ranged from 38-70% correct (chance accuracy is

4%), showing that we were able to reliably extract information from MEG signals

from a large range of different stimulus sets.
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(b) 25 black letters on white background, presented at 5x5 degrees
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(c) 25 isolated objects on a gray background, presented at 5x5 degrees (thumbnail images
in blue box indicate the subset used in subsequent invariance experiments).

Figure 3-2: Decoding accuracy versus time for three different image sets. Time zero
corresponds to the time of stimulus onset. Each image set was run on a separate date
with a separate subject. Please note the change in scale for classification accuracy
(y-axis) across the three sub-plots. The horizontal line indicates chance performance.
The bars at the bottom of each plot indicate when decoding was significantly above
chance (p<0.005, permutation test).
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Figure 3-3: Parameter optimization. The effect of a) number of stimulus repetitions
used in decoding (using single trial data, he top 25 features, and 5 ms bin width),
b) number of trials averaged (using 50 stimulus repetitions, the top features, and 5
ms bin width), c) number of sensors used in decoding (using 50 stimulus repetitions,
the average of 10 trials, and 5 ms bin width), and d) bin width (using 50 stimulus
repetitions, the average of 10 trials, and the top 25 sensors) on signal to noise ratio
(SNR). SNR is measured by the peak decoding height divided by the baseline noise
(standard deviation of the decoded signal before stimulus onset). SNR data is aver-
aged for three subjects (S1-S3) on three different data sets (25 scenes, 26 letters, and
25 isolated objects), and the error bars show standard error from the mean. e) The
combined effects of different number of trials averaged and number of sensors used
in decoding on decoding accuracy versus time for one subject (Si). f) The effect of
classifier on decoding accuracy versus time for one subject (S1).

3.3.2 Timing of size and position invariant visual representa-

tions

Once we established that we could decode basic visual information from MEG signals,

we then tested whether we could detect visual representations that are invariant to

image transformations. To do this we presented a subset of six of the isolated object

images (shown in Figure 2c, right in blue box) at various sizes and positions to eight

different subjects. We presented large images (6x6 degrees of visual angle) centered

and in the upper and lower halves of the visual field (+/- 3 degrees vertically), and

presented centered images at medium and small sizes (4x4 and 2x2 degrees of visual

angle, respectively). To make sure any invariant information we extracted was not due

to eye-movements we used a brief presentation time of less than 50 ms and randomized

position and size of the image. Humans require at least 80-100 ms to make a saccadic

eye movement [45, 17], thus presenting images for only 50ms in a random position

ensured subjects would not be able to saccade to peripheral images. Eye position was

also measured for two of the eight subjects (see 3.2.3).

As a first check to make sure that we could extract similar visual information

from this new stimulus set, we decoded the identity of the images at each of the five

different position and size conditions (Figure 3-4(a)). The results showed a similar

time course as the larger image sets in (Figure 3-2(b)), indicating that our initial
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results generalized to both the new stimulus set and the larger number of subjects.

We next sought to detect position-invariant information by training the classifier

on data from images presented at one position and testing it on images presented

at a second position. This technique allowed us to detect when common neural

representations arose between images of the same object presented at two different

positions - i.e., representations that are invariant to position. Using this method, we

detected position invariant visual signals for the six different position comparisons

beginning at 150 ms on average (Figure 3-4(b)). Similarly, to detect size-invariant

visual signals, we trained the classifier on data from images presented at one size

and tested it on data from images presented at a second size for six different size

comparison cases (Figure 3-4(c)). On average, size-invariant information was first

detected around 125 ms. These results provide previously unknown human latencies

for size and position invariant object recognition, which are consistent across subjects.

Additionally they uncover a potential latency difference between size and position

invariant processing, which may have interesting implications for how and where in

the visual pathway these two types of transformations are processed.

3.3.3 Varying extent of size and position invariance

To quantify when non-invariant, position-invariant and size-invariant information

rises and peaks, we looked at the first time decoding rose significantly (p<0.005 per-

mutation test) above chance for two consecutive 5ms time bins, and the time when

decoding reached peak performance. The non-invariant information appeared at 80

ms and peaked at 135 ms, on average, which was before the size-invariant information

(125 ms appearance, 170 ms peak) and the position-invariant information (150 ms

appearance, 180 ms peak) (Figure 3-5(a)).

We also looked at the individual invariant decoding conditions, which showed that

position and size invariant information developed in stages, with the decoding signals

from the smaller transformed cases rising before signals from the larger transformed

cases (Figure 3-5(b)). The three-degree position-invariance cases (lower/centered and

centered/upper) both developed before the six-degree position-transformation cases
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Figure 3-4: Assessing position and size invariant information. Six different images

of isolated objects (Figure 3-2c, right in blue box) were presented at three different

positions (centered, and +/- three degrees vertically) and three different sizes (two,
four and six degrees in diameter). The different training and test conditions are illus-

trated using a bowling ball-like object, one of the six images used in this experiment.
Classification accuracy versus time is plotted for a) average of subjects' results to five

non-invariant conditions (illustrated below plot); b) average of subjects' results to

six position-invariant conditions; c) average of subjects' results to six size-invariant

conditions. Please note the change in scale for classification accuracy (y-axis) across

the four sub-plots. The horizontal line indicates chance performance. Error bars

represent the standard error across mean accuracy per subject. The bars below each

plot indicate when decoding was significantly above chance (p<0.005, permutation

test) for four (thinnest line), six (middle line), or all eight (thickest line) subjects for

each condition, indicated by the color of the bar.
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(lower/upper). A similar order was true of the size invariant cases with the 2.25x area

increase appearing first (larger/middle), followed by the 4x increase (middle/small),

and finally the 9x size increase (large/small). A similar trend is true when you examine

peak times, however, there is much less spread in these latencies as most signals tend

to peak around the same time (Figure 3-5(c)). This modular development indicates

that size and position invariant signals are being computed in stages by a hierarchical

system that increases invariance in a feed forward manner.

An alternative possibility is that the difference in decoding latencies is an artifact

of the different magnitudes of decoding accuracy across conditions. In general, con-

ditions with higher peak decoding accuracy also had shorter latency, and its possible

that these conditions could surpass the level of noise sooner thus with significance

testing appear to have shorter latencies only due to their higher magnitude. To test

this possibility, we normalized the decoding magnitudes for different decoding con-

ditions by including only a fraction of the MEG data for the conditions with higher

accuracy (Table 1). By including 20-50% of the data for certain conditions (please

see 3.2.7) we were able to approximately normalize the decoding magnitudes across

condition. Importantly, there was little effect on decoding latency, and the decoding

order shown in Figure 3-5 still held for normalized decoding magnitudes.

3.3.4 Combined size- and position-invariance

Using these results, we were also able to look at combined size- and position-invariant

visual processing, by performing decoding across the two types of transformations:

training with centered, large images and testing with small or medium images pre-

sented in the upper and lower halves of the visual field, and vice versa (Figure 3-6). In

two cases (center/small versus up/large, and center/small versus down/large, Figure

6a-b), the corresponding size-invariant and position-invariant decoding had similar

magnitude, but in the two other cases (center/medium versus up/large, and cen-

ter/medium versus down/large, Figure 3-6(c)-(d)), the corresponding size-invariant
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Figure 3-5: Significant and peak invariant decoding times. Significant and peak de-
coding times averaged across subjects for (a) the mean of all non-invariant, position-
invariant and size-invariant conditions, (b) significant decoding time for each individ-
ual condition, and (c) peak decoding time for each individual condition. Significant
decoding times indicate the first time decoding is significantly above chance (p<0.005,
permutation test) for two consecutive 5ms time bins. Peak decoding time is the
maximum decoding performance over the entire time window. Error bars represent
standard error across subjects.

62

Peak time

(a)



Condition Decoding
magnitude

Sig. time
(ms)

Peak time

(ms)
Proportion
data in nor-
malization

Norm.
coding
nitude

de-
mag-

Norm. sig.
time (ms)

Norm. peak
time (ms)

Up, large 0.66 91 113 0.30 0.40 101 125
Center, 0.78 75 140 0.20 0.42 88 137
large
Down, 0.69 75 135 0.30 0.42 91 111
large
Center, 0.70 83 147 0.30 0.42 96 148
mid I
Center, 0.59 95 149 0.50 0.41 98 148
smal
Train 0.58 86 155 0.50 0.38 102 161
large, test
mid
Train mid, 0.69 90 160 0.50 0.38 102 161
test large I
Train 0.44 123 199 0.50 0.33 127 183
small, test
mid
Train mid, 0.41 130 170 1.00 0.41 130 170
test small
Train 0.39 147 172 1.00 0.39 147 172
small, test
large
Train 0.34 161 179 1.00 0.34 161 179
large, test
small
Train 0.47 125 165 0.50 0.37 120 164
down, test
center
Train cen- 0.43 130 178 1.00 0.43 130 178
ter, test
down
Train up, 0.42 153 171 1.00 0.42 153 171
test center
Train cen- 0.37 154 181 1.00 0.37 154 181
ter, test
up
Train up, 0.34 185 195 1.00 0.34 184.50 195
test down _ _ __

Train
down, test
up

0.33 178 223 1.00 0.33 178 223

Table 3.1: The above table summarizes the average magnitude of the peak of decoding
accuracy, significant time, and peak time for the different size and position conditions
using all data (columns 2-4). For those conditions with highest decoding accuracy, a
fraction of the total data (column 5) was used to normalize peak decoding accuracy

(see 3.2.7), and the modified peak accuracy, significant time and peak time with a
fraction of the data are also shown (columns 6-8). Latency values for the normalized
decoding values (columns 7-8) are very similar to those from decoding performed with
all data (columns 3-4), suggesting that different latencies are not due only to different
magnitudes of decoding performance.
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decoding occurred much earlier and with larger magnitude than the position invari-

ant decoding. In all four cases the combined size- and position-invariant decoding

had similar magnitude and latency to the corresponding position-invariant decoding.

This suggests that the slower and lower accuracy transformation, in this case position,
limits combined size- and position-invariant decoding, and thus visual processing.

3.3.5 Dynamics of decoded signals

We examined the similarity in the decoded signals at different times by performing

a temporal-cross-training analysis (TCT analysis) [119, 1181. In TCT analysis, a

classifier is trained with data from one time point, and then tested on data from

different trials that were taken either from the same time point or from a different

time point. This method yielded a matrix of decoding accuracies for each training

and test time bin, where the rows of the matrix indicate the times when the classifier

was trained, and the columns indicate the times when the classifier was tested. The

diagonal entries of this matrix are the same results as plotted in Figure 3-2, where the

classifier was trained and tested with data from the same time points, and again show

that there is high decoding accuracy from about 70ms-300ms after stimulus onset.

Additionally, this new analysis showed very low classification accuracy when the

classifier was trained and tested at different time points (off-diagonal elements), in-

dicating that different patterns of MEG sensor activity contained object information

at different time points in an experimental trial (Figure 3-7(a)). The same pattern

was true for a position-invariant case (Figure 3-7(b)) and a size-invariant case (Fig-

ure 3-7(c)) with the six-object image. The width of the well-decoded window along

the diagonal is 20-50 ms wide, indicating that the neural signal is highly dynamic.

Further analysis showed that these dynamics are not due to information moving to

different sensors, but instead to the information in a given set of sensors changing over

time (Figure 3-7(d)). It is important to note that each sensor coarsely samples several

brain areas, so these results do not speak directly to the specific regions driving the

decoding.
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Figure 3-6: Assessing combined size and position-invariant information. Six different
images of isolated objects (Figure 3-2(c), right in blue box) were presented at three
different positions (centered, and +/- three degrees vertically) and three different sizes
(two, four and six degrees in diameter). The different training and test conditions
are illustrated using a bowling ball-like object, one of the six images used in this ex-
periment. Classification accuracy versus time is plotted for individual size-invariant

(red, blue traces), position-invariant (green, cyan traces) and the corresponding com-
bination of size and position-invariant (pink, yellow traces) decoding in each subplot
(a-d). 66
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Figure 3-7: Dynamics of object decoding. Temporal cross-training matrices showing
the decoding results for training the classifier at one point in time and testing the
classifier at a second point in time. The color bar on right indicates classification
accuracy for one subject on: (a) six-object images as in Figure 3-2 (presented three
degrees below center), (b) six-object images decoded invariant to position (train at
center, test at three degrees below), and (c) six-object images decoded invariant to size
(train at 4 degree diameter, test at 6 degree diameter). High decoding accuracies are
only achieved when the classifier is trained and tested within the same time window,
indicating that the object information is contained in unique patterns across the
sensors at different time points. d) Matrix of classification accuracy (for same subject
on six-object dataset) with 25 sensors selected at one time (y-axis), and decoding
(training and testing) performed at all other times using these sensors (x-axis). Color
bar on right indicates classification accuracy for the experiment.
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3.3.6 Neural sources underlying sensor activity and classifica-

tion

To understand which brain areas were behind the high decoding performance, we used

a distributed source localization algorithm to determine where the primary neural

sources are located at key decoding times (see Section 3.2.8). We measured head

position in the scanner for three subjects during the six-image invariance experiment.

We examined the sources for images presented at each individual position and size, as

well as for an average of all image presentations across all positions and sizes, shown

in (Figure 3-8). Sources for the individual conditions looked similar to the overall

average.

When identity-specific information first appears in most subjects, at 70ms, the

strongest neural sources were localized in the occipital lobe near early visual areas

(Figure 3-8, top row). When both size and position invariant information is present in

the signal, at 150ms, the neural sources were located more temporally, further down

the ventral visual stream (Figure 3-8, bottom row). The strongest sources at each

time point are a good indication of the brain region carrying visual information (see

Section 3.5), and indicate that very occipital areas are driving early decoding, while

later visual areas contain size and position invariant visual information.

3.3.7 Invariant recognition with a cortical model

To make sure that low level visual features could not account for the invariance results,

we tested a hierarchical model of object recognition, HMAX [157], on our six-object

dataset to compare with our experimental invariance results. The model, which is

inspired by Hubel and Wiesel's findings in V1 [76], consists of alternating layers

of simple cells that build selectivity and complex cells that build invariance. Each

stage of the model yields a set of features that models the representations contained

in different brain regions in the ventral visual processing stream. To test whether

features from different stages of the model could account for the invariant decoding

results, we applied the model to the same six-object image set presented at the same
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S2

70 ms

150 ms

Figure 3-8: Source localization at key decoding times. Source localization results for
MEG signals of three subjects (left, center, right) on a standard cortex at (top row)
70 ms, when decoding first rises significantly above chance, and (bottom row) 150
ms, when position and size invariant decoding both rise significantly above chance.
Ventral view is presented. Color bar at right indicates magnetic poles strength in
picoAmpere-meters. Sources are thresholded to only show source activity that is
significantly above chance with p<0.001 significance criteria based on a t-test versus
the baseline period, Bonferroni for multiple comparisons (see 3.2.8).
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sizes and positions and then applied a classification analysis to the different layers of

model outputs that was analogous to MEG invariance analyses.

The results showed that a Vi-like model, consisting of the first pair of sim-

ple/complex cell layers, was not able to achieve above-chance performance on the

size and position invariance-decoding task. A mid-level visual model, consisting of an

additional layer of simple/complex cells, however, could classify smaller transformed

images with above chance performance. The final model output, which modeled cells

in anterior inferior temporal cortex and employed global tuning/pooling, was able

to classify the transformed images with high performance for each invariance case

(Figure 3-9). The model results show a sequential order of invariance (smaller trans-

formations before larger transformations), which is similar to the MEG experimental

results. This data provides further evidence that a feed forward, hierarchical model

can account for the timing of experimental invariance results, suggesting that the

timing may be directly related to the location of the invariance computations.

3.4 Discussion

While it is widely believed that the ventral visual processing stream is involved in

object recognition, how this pathway builds up representations that are invariant to

visual transformations is still not well understood. Here we addressed this issue by

comparing the time course of invariance to two types of transformations, position

and size, in the human brain. Using MEG decoding we were able to see the temporal

flow of invariant information much more clearly than was possible using conventional

analyses.

We detected image identity information as early as 60 ms, and size and position-

invariant visual signals at 125 and 150 ms, respectively. The timing of the initial

identity decoding is similar to the latency of macaque V1, which is around 60 ms.

Additionally, the timing for size and position invariant information is close to the

latencies of size and position-invariant signals in macaque IT, which first occur around

100 ms [80]. The slightly longer latencies seen in our study are likely due to the fact
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image). Each model layer (Cl, C2, C3) consists of an additional pair of simple and

complex cell layers that perform tuning and pooling operations. See [1571 for model

and parameter details. Dashed horizontal line (at 16.67% accuracy) indicates chance

performance.
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that human brains are larger, which is believed to lead to longer neural latencies [172].

Unlike previous physiology studies of invariant object recognition, which are limited

in the number of brain regions they can record from, we were able to see a clear

latency difference between the initial identity signal and size and position invariant

information.

The source localization results showed that neural activity moved to more ventral

regions when invariant information developed at 150 ms (Figures 3-8). While one

potential criticism is that there is a fair amount of variation in the sources across

subjects, and source localization algorithms taking into consideration structural and

functional MRI data may provide a finer picture of where in the brain invariance

computations occur [67], these results do show a clear progression in each subject

where activity appears to move down the ventral stream. These source localization

results combined with timing data and our results showing that it was not possible

to decode invariant information from a V1-like model (Figure 3-9), all suggest that

early visual areas are driving the initial identity decoding, and later visual areas are

computing the invariant representations.

The timing between neural events recorded through EEG/MEG and behavioral

reaction times for visual tasks has not always been consistent in the literature. For

example, humans can distinguish between scenes with or without animals with sac-

cades that are as fast as 120 ms [95], yet the earliest differences between EEG event

related potentials (ERPs) on this task were not observed until 150ms after stimulus

onset [171]. Similarly, the N170 ERP (a negative potential observed in certain chan-

nels at 170 ms) response to faces [15] also occurs late relative to behavioral reaction

times and latencies in the macaque. A reason for this discrepancy might be that ERP

analysis is too coarse a method to capture the earliest components of object related

information. By using decoding based methods, we are able to see discriminative vi-

sual signals at significantly earlier latencies in humans, also see [111, 21]. In the study

by Carlson et al., the authors found similar latencies for position-invariant MEG de-

coding using a categorization task. They were able to categorize faces, cars, and face

and car textures as early as 105-135 ms post-stimulus onset. Interestingly, in contrast
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with our results, Carlson et al. did not detect a difference in latency between their

position-invariant and non-invariant decoding conditions. This discrepancy may due

to the fact that the authors used a categorization task, which requires generalization

(unlike our identification task) and may occur when the neural signals already show a

certain degree of invariance. A recent study by the same group shows that more ab-

stract categorization has a longer decoding latency [22], supporting this explanation.

With our experimental paradigm, we were able to see a clear range of latencies from

the initial non-invariant identity signal to size- and position-invariant neural signals,

which help to frame previous human timing results.

Our timing results also showed that both size and position invariance developed in

a sequential order, meaning that smaller transformations were decoded before larger

transformations. This sequential development is consistent with a hierarchical, feed-

forward visual model where receptive fields pool at each successive visual layer to

first create local invariance and then build invariance over a larger area. We tested

this theory with a biologically inspired object recognition system, which employs this

feed-forward hierarchical architecture, known as HMAX [157] (Figure 3-9). HMAX

performance had a similar trend to the order of the MEG experimental results: an

early visual model could not decode stimuli invariant to size or position with above

chance accuracy, a mid-level visual model could decode small transformations with

above chance accuracy, and an IT-like model could decode all transformations with

above chance accuracy. These results give new and compelling evidence that such

a feed-forward hierarchy is a plausible model for invariant object recognition in the

human ventral stream.

The order and timing information presented here have valuable applications not

only for constraining models of the visual system, but also for answering more complex

algorithmic questions about invariant object recognition, for example: do different

types of invariance arise at different times in the ventral visual pathway? These

results allow us to directly compare varying extents of these two transformations,

position and size. The shorter latencies for size-invariant decoding, suggest that

size-invariance may begin to develop before position-invariance. However, it was
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not the case that all size-invariance cases arose before position-invariant cases. The

timing difference between the two types of invariance is being driven largely by the

early rise of the smallest size-invariant shift (between 4 degree and 6 degree images).

Additionally, it is difficult to directly compare the "extent" of two different types of

transformations. For example, how does a 2-degree linear size increase compare to

a 2-degree translation? Our results, however, do suggest that both size and position

invariance develop in several areas along the ventral stream and appear significantly

later than the initial identity signal.

The MEG decoding methods outlined in this study are a powerful tool to examine

the dynamics of visual processing. Unlike conventional methods examining evoked

responses, which require recordings from 50 or more stimulus repetitions to be aver-

aged, decoding analysis is sensitive enough to detect visual signals by averaging only

a few trials, or even from single trial data (Figure 3-3). The results and decoding

methods presented here serve as a framework to examine an extended range of trans-

formations, which should help lead to a real computational understanding of invariant

object recognition.

3.5 Appendix - Decoding in source space

This section includes follow-up experiments performed to examine the information in

our source estimates shown in Figure 3-8. This work appeared in the proceedings of

the 2013 NIPS workshop on machine learning and interpretations for neuroimaging

(MLINI).

Above we showed that size- and position-invariant visual signals can be decoded

from MEG sensor-level data, and that the underlying neural sources localized to

regions along the ventral stream. Further examining these source localization results

would allow us to answer more precise anatomical questions about invariant object

recognition, but these interpretations may be limited by the accuracy of the source

localization. Here we compare MEG decoding analysis using features in sensor and
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source space in the same size- and position-invariant visual decoding task in order

to both assess the promise of decoding in source space and attempt to gain a better

spatiotemporal profile of invariant object recognition in humans.

We compare decoding in sensor and source space using data from the same ex-

perimental paradigm described above in Section 3.2. We assess if there is relevant

stimulus information in the most active source estimates from across the brain, as well

as investigate decoding in individual anatomically defined regions of interest (ROIs)

to examine how invariant visual information evolves across the human ventral stream.

3.5.1 Methods

Two additional subjects participated in the MEG experiment described in figure 3-1,

and we collected structural MRI for both subjects.

Source localization

Source localization was performed using the Minimum Norm Estimate (MNE) dis-

tributed source localization method, which finds the set of sources that minimizes the

total power (L2 norm) of the sources [67]. Structural MRIs were collected for both

subjects, and cortical reconstruction and volumetric segmentation was performed

with the Freesurfer image analysis suite [27, 47, 46]. We estimated 15,000 sources

constrained to each subject's cortical surface. Source localization was performed us-

ing fixed orientation constraints, with the default signal-to-noise ratio (proportional

to inverse of the regularizer) of 3.

Sensor and source feature selection

In figure 3-3, we showed that using between 10 and 50 sensors at each time point

from the above ANOVA feature selection procedure provides optimal signal to noise

ratio for decoding with sensor data. Here we are selecting 30 (approximately 10% of

the total) features at each time point. To compare decoding in source space with the

sensor-level data, we also perform feature selection to downsample the large number
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of sources. We can assess the information in the active sources, by choosing the top

1500 (10% of the total) most active sources at each time point, calculated for the

average of all image presentations, and performing source level decoding with only

sources in these locations. While the source locations were chosen based on aggregate

data, decoding was performed as described in the above section with individual trials

in each cross-validation split.

Cortical Parcellation

Cortical parcellation of each subject's MRI was performed automatically using Freesurfer.

We examined how the visual signals evolve in different brain areas, by decoding in

four visual regions of interest: VI and V2 (defined by the Brodman Area atlas in

Freesurfer), and the occipital inferior and temporal inferior regions (both gyri and

sulci defined by the Destrieux Atlas [48] in FreeSurfer). The four regions are illus-

trated on the cortex of Subject 1 in Figure 3-12(a).

3.5.2 Results

3.5.3 Source estimates at key decoding times

As in Figure 3-8, but now using the subjects' own anatomy rather than a common

reference brain, we show the sources at two key decoding times, 70 ms: the time

when stimulus information can first be decoded, and 150 ms: the time when size-

and position-invariant signals can be decoded, shown in Figure 3-10. At both time

points, sources in the occipital lobe are highly active, consistent with the visual task

the subjects performed. Additionally, at 150 ms, there are more active sources that

have spread further down the temporal lobe, near later visual areas.

Decoding with top sensors and sources

The decoding results using the 30 (approximately 10%) most selective sensors and

1500 (10%) most active sources as classifier features are shown in Figure 3-11. We

see that source space features have similar performance to the sensor-level features
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70 ms 150 ms

Figure 3-10: A left view of source estimates on cortex of subject 1 at 70ms after
stimulus onset, the time when image identity can first be decoded, and 150 ms after
stimulus onset, the time when size- and position-invariant information can be decoded.
Color bar right indicates absolute source magnitude in picoAmpere-meters.

for the non-invariant, size- and position-invariant conditions even though, unlike the

top sensors, they were not explicitly chosen to contain stimulus identity information.

These results indicate that the most active sources contain important invariant visual

information.

Decoding within anatomically defined ROIs

The decoding results in four visual ROLs: VI, V2, occipital inferior and temporal

inferior regions are shown in Figure 3-12(a). Decoding results for the non-invariant,

size-invariant, and position-invariant conditions are shown for these four brain regions

in Figure 3-12.

For the non-invariant decoding conditions, information appears to progress in a

feedforward manner throughout the different visual regions: VI and V2 have the

highest accuracy and an earlier onset latency, while the two later visual areas have

longer latencies and slightly lower decoding performance, Figure 3-12(b). For the

position invariant decoding, the latest visual region, temporal inferior, has slightly

higher accuracy, but all four regions appear to have similar latency for both the

size- and position-invariant condition, Figures 3-12(c) and 3-12(d). Additionally, its

important to note that regions sampled outside of the temporal and occipital lobes

did not contain any relevant visual information (results not shown), supporting the
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accuracy of the source localization at a coarse level.

3.5.4 Discussion

In this work we performed source localization using MNE for two subjects performing

a visual object recognition task. We showed that the most active sources moved

further down the temporal lobe as invariant information developed, and that these

sources contained invariant visual information. Both of these results support the

accuracy of the source estimates. Finally, we decoded within different visual regions

of interest to gain a spatiotemporal profile of how invariant visual signals evolve in

the ventral stream.

The non-invariant decoding results in Figure 3-12(b) show a distinction between

different visual areas, and a progression of visual stimulus information in a feedforward

manner along the ventral stream. The size- and position-invariant results in Figures

3-12(c) and 3-12(d), however, show that invariant information develops in all visual

areas at the same time and with similar accuracy. Additionally, although the source

estimates have become more active further down the temporal lobe at 150 ms, there

are still active sources in the early, occipital regions. This may represent an actual

spread of invariant visual information across these regions, or, is more likely due to

the fact that the source estimates are not resolved at a fine enough spatial scale to

distinguish between adjacent cortical regions. So although the non-invariant results

show a feedforward progression of visual information, the spatial resolution does not

seem high enough to draw definitive conclusions about feedforward versus feedback

processing in our size- and position-invariant visual tasks. It is possible that a more

sparse source localization method utilizing the Li norm [176], or a combination of

the Li and L2 norms [128], as well as methods incorporating spatial and temporal

smoothness constraints [100], may provide more precise anatomical estimates and be

better suited to answer these questions.

In this work we were able to evaluate the MNE source estimates on different levels:

we affirmed that the most active sources were along the occipital and temporal lobes,

that they had relevant invariant visual information, and that we could see some
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distinctions between visual information in nearby brain regions. These results show a

coarse picture of how invariant visual information travels through the ventral stream,

and provide a framework for future studies to answer visual processing questions at

a finer anatomical level with more precise source estimates.
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Figure 3-11: Comparison of decoding with most selective sensors (blue) and most
active sources (red) for (a) non-invariant, (b) size-invariant and (c) position-invariant
conditions. (Please note the different scales of the y-axes in a-c.)
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and (c) position-invariant conditions. The regions of interest are highlighted with
their corresponding from (a). (Please note the different scales on the y-axes in b-d.)
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Chapter 4

Invariant representations for action in

the human brain

A version of this chapter is in preparation to be submitted for publication. Andrea

Tacchetti and I contributed equally to this work.

The human brain rapidly parses a constant stream of visual input. Most visual

neuroscience studies, however, focus on responses to static images. We use magne-

toencephalography (MEG) decoding and a computational model to study invariant

action recognition in videos. We created a well-controlled, naturalistic dataset to

study action recognition across different views and actors. Actions, like objects, can

be decoded from MEG data in under 200 ms, and this early representation is invariant

to changes in both actor and viewpoint. We developed a biologically inspired com-

puter vision model, extending hierarchical models of object recognition. This model

can achieve viewpoint invariance by pooling across views, through the same mech-

anism as it achieves invariance to affine transformations by pooling across position

and scale. These results provide a temporal map of the first few hundred millisec-

onds of human action recognition, and a mechanistic explanation of the computations

underlying invariant action recognition.
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4.1 Introduction

As a social species, humans rely on the ability to recognize the actions of others as

a crucial part of their everyday lives. We can quickly and effortlessly extract action

information from rich dynamic stimuli, despite variation in the appearance of these

actions due to transformations such as changes in position, size, viewpoint and actor.

The computations underlying this process, however, are still poorly understood, as

evidence by the fact that humans still drastically outperform state of the art computer

vision algorithms on action recognition tasks [101, 93].

Several studies have examined which regions in the brain are involved in processing

actions and biological motion. In humans and nonhuman primates, the extrastriate

body area (EBA) has been implicated in recognizing human form and action [35,

120, 110], and the superior temporal sulcus (STS) has been implicated in recognizing

action and biological motion [141, 133, 127, 179]. In humans, the posterior portion of

the STS (pSTS) in particular has been found to be involved in recognizing biological

motion [62, 63, 177, 14, 130]. fMRI BOLD responses in this region are selective

for action from biological motion [178] and can also recognize action in a mirror-

symmetric manner [64]. Recent studies have also shown that neurons in macaque

STS recognize actor invariant to action and action invariant to actor [159].

These studies all focus on the neural response to simple artificial stimuli, and do

not provide information about the underlying computations across the brain or their

timing. We hope to better understand invariant action recognition by first, looking

at responses to natural movies, rather than simple artificial stimuli, second, under-

standing the dynamics of neural processing to help elucidate the underlying neural

computations, and finally, implementing these insights into a biologically-inspired

computational model. Here we use magnetoencephalography (MEG) decoding anal-

ysis and a computational model of the visual cortex, to understand when and how

different computations are carried out to perform actor and view invariant action

recognition in the visual system.

We filmed a realistic yet controlled dataset to study action recognition invariant to
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actor and viewpoint, and examine the effects of form and motion on invariant action

recognition. We showed with MEG decoding that actions are recognized very quickly

(in under 200 ms after the video onset) and this early representation is invariant to

non-affine transformations (view and actor). These MEG data localizes to neural

sources in ventral and dorsal stream, including the pSTS, consistent with previous

physiology and fMRI studies. We next used these insights to extend a computational

and theoretical framework for invariant object recognition to recognize actions from

videos in a manner that is also invariant to actor and viewpoint on the same dataset.

We showed that, despite being invariant to actor, there are still neural representations

for actor identity in MEG signals, and the same class of computational models can

perform both actor-invariant action recognition and action-invariant actor recogni-

tion. We also showed using behavioral data, MEG, and the model that both form

and motion are important for action recognition.

4.2 Results

4.2.1 Novel invariant action recognition dataset

To study the effect of changes in view and actor on action recognition, we filmed

a dataset of five actors performing five different actions (drink, eat, jump, run and

walk) on a treadmill from five different views (0, 45, 90, 135, and 180 degrees from

the front of the actor/treadmill) [Figure 4-11. The dataset was filmed on a fixed,

constant background. To avoid low-level object/action confounds the actors held the

same objects (an apple and a water bottle) in each video, regardless of the action

they performed. This ensures that the main variations between videos are the action,

actor, and view, and allows controlled testing of different hypotheses of invariant

recognition. The videos were cut into two-second clips that each included at least

one cycle of each action, and started at random points in the cycle (for example, a

jump may start mid air or on the ground). The dataset includes 26 two-second clips

for each actor, action, and view, for a total of 3250 video clips. The dataset allows
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(a) Five actors performing five actions

(b) At five different views

Figure 4-1: Dataset consisted of five actors, performing five actions (drink, eat, jump,
run and walk), on a fixed position in the visual field (with a treadmill) and fixed
background across five different views (0, 45, 90, 135, and 180 degrees). To avoid
low-level confounds, the actors held the same objects in each hand (a water bottle
and an apple), regardless of action.

testing of actor/view invariant action recognition, with few low-level confounds. A

motion energy model (Cl layer of the model described below) cannot distinguish

action invariant to view (Figure 4-14).

4.2.2 Readout of actions from MEG data is early and invariant

Five subjects viewed the above dataset while their neural activity was recorded in

a MEG scanner. We use decoding analysis, which applies a linear machine learning

classifier to discriminate stimuli based on the neural response they elicit, to analyze

the MEG signals. By repeating the decoding procedure at each 5ms time window,

we can also see when different types of stimulus information are present in the brain.
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Figure 4-2: Action can be decoded from subjects' MEG data as early as 200 ms after
stimulus onset (time 0). Results are from the average of five different subjects. Error
bars represent standard error across subjects. Horizontal line indicates chance de-
coding (20%). Lines at bottom of plot indicate significance with p<0.01 permutation
test, with the thickness of the line indicating if the significance holds for 3, 4 or all 5
subjects.

Action can be read out from the subjects' MEG data as early as 200ms after the

video starts (after only about 6 frames of each two-second video) [Figure 4-2].

We can test if these MEG signals are invariant to actor by training the machine

learning classifier on data from subjects viewing videos of four actors and testing the

classifier on the fifth held out actor. Similarly, we can verify that the MEG signals

are invariant to view by training the classifier on data from subjects viewing actions

performed at four views and testing the classifier on the fifth held out view. View

and actor invariant MEG signals have a similar accuracy and latency to the case

without any variation [Figure 4-3]. These MEG results suggest that the brain quickly

computes a representation for action that is invariant to both the actor performing

the action and the viewpoint at which the action is recorded.
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Figure 4-3: Action can be decoded invariant to actor (train classifier on four actors,
test on fifth held-out actor), or view (train classifier on four views, test on fifth

held-out view). Results are from the average of five different subjects. Error bars

represent standard error across subjects. Horizontal line indicates chance decoding

(20%). Lines at bottom of plot indicate significance with p<0.01 permutation test,
with the thickness of the line indicating if the significance holds for 3, 4 or all 5
subjects.
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4.2.3 Extreme view invariance

It is possible that the actor and view invariant action decoding look so similar to the

case without variation, because the classifier has a large range of viewpoint variation

in the training data. In other words, perhaps generalizing to a fifth view is not very

challenging for a classifier that was trained on four other views. To examine if the

neural signals can perform a more extreme viewpoint generalization task, we recorded

MEG data from five additional subjects viewing videos at two views (0 degrees and

90 degrees). We then decoded by training only on one view (0 degrees or 90 degrees),

and testing on a second view (0 degrees or 90 degrees). Even with a more limited

training set, MEG signals can generalize across view. There is no difference in the

latency between the across views case (train on 0 and test 90, or train on 90 and test

on 0) and the within view case (train and test at 0, or train and test at 90) [Figure

4-4], suggesting that the early action recognition signals are indeed view invariant.

4.2.4 Recognizing actions with a biologically-inspired hierar-

chical model

We extended a hierarchical feedforward model of visual cortex for object recognition

from static images [52, 144, 157, 147, 123] to recognize actions from videos. This

system is organized hierarchically: the sensory input goes through a layer of compu-

tation, and the output of this layer serves as input for the following layer. Within

each layer many functional units (cells) perform the same computation on different

portions of the input (e.g. match a template to a specific region of the visual field,

a process analogous to a cell firing when a prefered stimulus is in its receptive field).

This hierarchical model is inspired by Hubel and Wiesel's findings in primary visual

cortex, and is constructed by alternating layers of simple and complex cells [77]. In

simple cell layers, each unit computes a measure of similarity between a portion of

the input (e.g. an image patch, or a clip of a video) and a pre-stored template (e.g.

an oriented Gabor patch) to build selectivity. In complex cell layers, units pool over

the output of simple cell units that store the same transformed template to build
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Figure 4-4: Action can be decoded with "extreme" view invariance: train and test on
same view ('within-view' condition), or train on one view (0 degrees or 90 degrees)
and test on second view ('across view' condition). Results are from the average of five
different subjects. Error bars represent standard error across subjects. Horizontal line
indicates chance decoding (20%). Lines at bottom of plot indicate significance with
p<0.01 permutation test, with the thickness of the line indicating if the significance
holds for 3, 4 or all 5 subjects.
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invariance.

The model we describe here extends this architecture to video stimuli, by adding

a temporal component to simple cell templates and complex cell pooling regions.

Furthermore, by pooling over cells that contain templates that are rotated in depth

(in addition to the traditional pooling over position and scale), our model computes

a response that is invariant to this transformation.

Our model consists of two simple-complex layers pairs. At the first simple layer

(Si), tuning functions are moving Gabor-like stimuli that model the receptive fields

found in primate V1 and MT [2, 158, 122, 124]. The first complex layer (Cl) applies

local max pooling to the S1 output and its output serves as input to a second simple

layer (S2). Templates in S2 layers are sampled randomly from the C1 responses of

training videos 4-5.

To build invariance to viewpoint, the model's C2 units compute the max of the

response elicited in all cells whose tuning function come from videos containing the

same actor performing the same action across different views [Figure 4-6 (a)]. Many

theories and experimental evidence have suggested how this wiring across views is

learned in development (cite Foldiak, Wiskott/Sejnowski, Wallis and Bulthoff). We

compare this experimental model to an unstructured control model, which contains

the same templates, but where action is not taken into account in the pooling scheme

and instead each C2 cell pools over a random, unstructured set of S2 cell templates

[Figure 4-6 (b)].

Both the experimental and control models can recognize action within one view

(82+/-7% and 79+/-5% accuracy, respectively). The model with structured pooling

provides significantly better accuracy on the view-invariant action recognition task

(49 +/-5% vs. 36+/-5% accuracy) [Figure 4-7], suggesting this structured pooling

across different views of each action is important for achieving view invariance. In

addition, the model is always tested on videos from a held-out actor, so, like the MEG

data, the model can also recognize actions invariant to actor.
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Figure 4-5: An input video is convolved with the Si Gabor templates. At the Cl
layer, a local max pooling is applied across position. At the S2 layer, the inputs are
convolved with filters sampled from training videos that are passed through the S1-Cl
model layers. At the final layer a global max across positions and views is computed.
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(a) Structured pooling across views
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(b) Random pooling across views

Figure 4-6: To build invariance to viewpoint, the model's C2 units pool over S2 units
whose templates come from videos containing the same actor performing the same
action across different views. We keep track of the which video each template comes
from so that we can enforce structure in the wiring between simple and complex
cells at the S2-C2 pooling stage. We compare this experimental model (a) to an
unstructured control model (b), which contains the same templates, but where each
C2 cell pools over a random, unstructured set of S2 cell templates.
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Figure 4-7: The model can recognize action when trained and tested on the same
view ('within-view' condition), or trained on one view (0 degrees or 90 degrees) and
tested on second view ('across view' condition). The Experimental model employs
structured pooling as described in Figure 3B, top, and the Control model employs
random C2 pooling as described in Figure 3B, bottom. Error bars indicated standard
deviation across model runs. Horizontal line indicates chance performance (20%).
Asterisk indicates a statistically significant difference with p<0.01.
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Figure 4-8: We can decode actor from the subjects performing the above action
recognition experiment, even though they are explicitly doing a task to discount
actor. Results are from the average of five subjects. Error bars represent standard
error across subjects. Horizontal line indicates chance decoding (20%). Lines at
bottom of plot indicate significance with p<0.01 permutation test, with the thickness
of the line indicating if the significance holds for 3, 4 or all 5 subjects.

4.2.5 Recognizing actor invariant to action

Both MEG and model data can recognize action invariant to actor. This raises the

question: can information about actor still be extracted from this data? With the

same MEG data used for action recognition, we can decode actor at a similar latency

to when we can decode action [Figure 4-81 . It is important to note that subjects were

doing an action recognition task, and this attentional effect on action may explain

the lower decoding accuracy for actor.

Similarly, the model can also recognize actors invariantly to action [Figure 4-

9]. Much like in the viewpoint invariance case, a structured wiring pattern from

simple to complex cells helps recognition. In this case, all responses elicited in cells

whose tuning function came from the same action and viewpoint (regardless of the
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Figure 4-9: The same model class was tested to also recognize actions invariant to
actor. In the Experimental model, the S2 cell responses whose tuning function came
from the same action and viewpoint (regardless of the actor) were pooled by the
same complex cell. This model is again compared to the above-described control
model where the wiring between simple and complex cells is randomized in [Figure
3B, bottom]. Error bars indicated standard deviation across model runs. Horizontal
line indicates chance performance (20%). Asterisk indicates a statistically significant
difference with p<0.01.

actor) were routed to a single complex cell. This model is again compared to the

above-described control model where the wiring between simple and complex cells is

randomized in [Figure 4-6]. Although we can recognize action across actors, actor

information is still represented in brain and model.

4.2.6 The roles of form and motion in invariant action recog-

nition

To test the effect of form and motion on action recognition, we used two limited

stimulus sets. The first 'Form' stimulus set consisted of one static frame from each

video (no motion information). The second 'Motion' stimulus set, consisted of point
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light figures that are comprised of dots on each actor's head, arm joints, torso, and

leg joints and move with the actor's joints (limited form information) [881.

Five subjects viewed each of the form and motion datasets in the MEG. We

could decode action within view in both datasets. Decoding performance across

view, however, was significantly lower than the case of full movies [Figure 4.2.6]. In

addition, subjects' behavioral performance dropped from 92% correct with full movies

to 76% correct on the 'Form' dataset and 78% on the 'Motion' dataset, suggesting

that the lack of motion information hinders recognition and this recognition deficit is

reflected particularly in the MEG results.

We examined the effects of form and motion with our model by testing both

stimulus sets on a model trained on full videos. While it is still possible to classify

correctly which action was performed, performance was significantly lower than in

the case where full videos were used 4-11.

4.2.7 Neural sources of action recognition

To understand where in the brain these invariant action signals originate, we per-

formed source localization on three subjects who performed the extreme view invari-

ance experiment. To reconstruct their neural activity, we computed the minimum

norm estimate (MNE) [67] constrained by their structural MRI.

About 100 ms after video onset, the neural sources are localized to very early visual

regions. Around 200-225 ms when decoding first goes significantly above chance,

the neural sources have moved along the ventral and dorsal streams (Figure 4-12).

Notably, we see activity in all three subjects in the posterior STS, an area implicated

in fMRI and electrophysiology as being responsible for biological motion processing

and invariant action recognition. By 500 ms the power in most sources has attenuated.

There is little source activity outside of ventral and dorsal streams. The pattern of

neural activity at key decoding times suggests that the actor and view invariant action

recognition signals we are detecting is driven largely by the visual system, including

both the ventral and dorsal streams and the pSTS.
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(b) Decoding action from motion information

Figure 4-10: (a) Action can also be decoded invariantly to view from static images.
(b) Action can be decoded from biological motion only (point light walker stimuli).
Results are each from the average of five different subjects. Error bars represent
standard error across subjects. Horizontal line indicates chance decoding (20%).
Lines at bottom of plot indicate significance with p<0.01 permutation test, with the
thickness of the line indicating if the significance holds for 3, 4 or all 5 subjects.
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Figure 4-11: The model can recognize action from static frames, but the performance
is much lower than with full videos. The Experimental model employs structured
pooling as described in Figure 3B, top, and the Control model employs random C2
pooling as described in Figure 3B, bottom. Error bars indicated standard deviation
across model runs. Horizontal line indicates chance performance (20%). Asterisk
indicates a statistically significant difference with p<0.01.
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Figure 4-12: Neural sources for three subjects performing "extreme" view experiment
at 200 ms after movie onset (initial decoding peak). Minimum Norm Estimates, with
p<0.0001 significant sources (determined by t-test, corrected for multiple compar-
isons) versus baseline period. Sources are localized primarily to ventral and dorsal
streams, including activity in pSTS.
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Figure 4-13: The model was trained using templates from four of the five actions to see
if templates for a given action are required to recognize that action. The figure reports
the classification accuracy (y-axis), with the standard deviation across model runs,
for each action when templates for that action (light gray bars) or templates for one of
the four other actions were removed (dark gray bars). For each action, performance
between the case removing class or non-class templates is similar, suggesting that
templates for a given action are not required to recognize that action, and the model
can generalize to recognize actions for which it does not have stored templates..

4.2.8 Generalization to novel actions with a fixed model

To see if templates for a specific action are required to recognize that action, we

performed a set of experiments where we fixed the model to contain templates sampled

from videos of only four actions, and then tested the model's ability to recognize all

five actions. The model's recognition of each action was similar, regardless of which

templates the model had stored [Figure 4-13]. This suggests that it is plausible for

such a model with stored templates to be able to generalize to new actions even after

development (when templates are formed and stored) is over.
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4.3 Discussion

4.3.1 Fast, invariant action recognition and implications for

model architecture

We analyzed the dynamics of invariant action recognition in the human brain to find

that action recognition occurs as early as 200 ms after a video begins. This early neu-

ral representation is invariant to changes in actor and position. These timing results

provide compelling evidence that these computations are performed in feedforward

manner, and interestingly that invariant representations for action are computed at

same time as non-invariant representations. This seems to be in contrast to ob-

ject recognition where invariance increases at subsequent layers in the ventral stream

[10, 147, 152] and over time [83].

Action recognition occurs on a similar fast time scale, but slightly later than,

object recognition in humans [111, 21, 22, 83, 24]. It is possible that since actions

require information about both form and motion, higher level visual features are

required for even basic action recognition than simple image discriminations (which

are based on low-level features like lines and edges), and therefore the early action

representation is already invariant.

We used these neural insights to develop a feedforward cortical model that per-

forms action recognition invariantly to actor and view (non-affine transformations).

The computations underlying the model's invariance to complex transformations are

performed in the same model layer and using the same pooling mechanism as size

and position (affine transformations). Our modeling results offer a computational

explanation of the underlying neural mechanisms that lead to this fast and invariant

response in visual cortex. In particular, our model showed that a simple-complex cell

architecture [5, 6], extends to video stimuli and complex transformations. The model

architecture is inspired by [56] and is a direct extension to non-affine transformations

of the model proposed by Jhuang et al. [87]. The idea of building invariance to non-

affine transformations by simply pooling over them was proposed for face 3D rotation
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in artificial stimuli in [105], the work presented here extends that framework for the

first time to realistic videos.

The highest performing computer vision systems on action recognition tasks are

deep convolutional neural networks, which have a similar architecture to our model,

but more layers and parameters that are tuned for performance on a given classifica-

tion task using backpropogation [93]. Our model, in contrast, is developed to have

biologically faithful parameters and mimic human visual development. This model-

ing effort is primarily concerned with describing the neural data, and providing an

interpretable architecture to explain viewpoint invariance, rather than optimizing for

absolute performance gains.

4.3.2 Actor invariance and recognition

Singer and Sheinberg showed that the same population of neurons was both selec-

tive and invariant to actor and action (cite Singer/Sheinberg 2010). Previous object

recognition studies have shown that transformation invariance does not eliminate in-

formation about the discounted transformation from even high-level neural represen-

tations [33]. Indeed here we show that despite the fact that subjects were performing

an actor-invariant action recognition task, information about actor identity is still

present in the neural signals at a similar latency to the action recognition signals. In

addition, the same class of model can perform both an actor-invariant action recog-

nition task and action-invariant actor recognition task, showing good fidelity with

biological data. Despite the fact that actor can be discounted to recognize actions

invariantly, this information is still represented in the brain and model.

4.3.3 Neural sources underlying invariant action recognition

Our source localization results show that neural activity during key decoding times

is localized primarily in the ventral and dorsal streams. These results, however,

suffer from the limited spatial resolution of MEG due to the ill-posed nature of the

source localization problem [67]. Without any ground truth measure of the underlying
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neural activity for this task, these results provide only an estimate of the spatial

activation in the brain. A network of brain regions involved in processing action,

including both form [110, 120] and motion areas [62, 63, 177, 14, 130, 64, 178] has

been mapped in humans using fMRI. This work provides rough agreement with those

neural locations, and helps put into context the timing of different steps for form and

motion in invariant action recognition.

4.3.4 Form and motion in invariant action recognition

As shown previously [88, 62, 177, 159, 141, 133, 127, 179], we found that biological

motion and form are each enough alone to recognize actions, however decoding and

model performance for the viewpoint invariant decoding drops to almost chance when

either form or motion information is removed. This is also reflected in a slight drop

in behavioral performance.

For the form and motion experiments, the model was trained on full videos and

likewise, the S2 templates were sampled from the original naturalistic videos. This

was done to mimic the visual experience of humans, who mostly experience actions

from full video stimuli and due to the limited size of the reduced datasets. Given this

training though, it is perhaps unsurprising that the model did not perform as well on

the form or motion datasets.

While these limited data sets afford more experiment control, it is worth con-

sidering if they are the best way to understand the neural mechanisms underlying

action recognition. Humans can indeed recognize action from diminished stimuli, but

here we show it elicits different neural response than full video stimuli, particularly in

the case of viewpoint invariant recognition. Moving toward more naturalistic stimuli,

possibly in conjunction with controlled experiments with form or motion-only data,

is thus important to understand the full range of neural responses to human action

recognition.
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4.3.5 Conclusion

This work highlights the advantages of using natural video stimuli, as well as the

importance of using timing data to constrain the computational steps of invariant

recognition and implementing these insights into an interpretable and biologically-

plausible model. The results also fit into the broader context of models that have

achieved wide success for cortical modeling and computer vision. Close interchange

between artificial intelligence and neuroscience efforts may help move towards a deeper

understanding of more realistic perception of humans actions.

4.4 Methods

4.4.1 Action recognition dataset

We filmed a dataset of five actors performing five actions (run, walk, jump, eat and

drink) from five views (0, 45, 90, 135, and 180 degrees from the front) on a treadmill

in front of a fixed background. By using a treadmill we avoided having actors move

in and out of frame during the video. To avoid low-level object confounds, the actors

held a water bottle and an apple in each hand, regardless of the action they performed.

Each action was filmed for 52 seconds, and then cut into 26 two-second clips at 30

fps.

For single frame dataset, single frames that were as unambiguous as possible for

action identity were hand selected (special attention was paid to actions eat and

drink and occluded views). For the motion point light dataset, the videos were put

on Amazon Mechanical Turk and workers were asked to label 15 points on each actors

on every single frame: center of head, shoulders, elbows, hands, torso, hips, knees,

and ankles. The spatial median of three independent labeling of each frame was used

to increase the signal to noise ratio. The time series for each of the 15 points was

independently low-passed to reduce the high frequency artifacts introduced by the

single-frame labeling we used
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4.4.2 Subjects

Twenty subjects age 18 or older with normal or corrected to normal vision took part

in the experiment. The MIT Committee on the Use of Humans as Experimental

approved the experimental protocol. Subjects provided informed written consent

before the experiment. One subject (S5) was an author, and all others were unfamiliar

with the experiment and its aims.

4.4.3 MEG experimental procedure

In the first experiment, five subjects were shown 125 two-second image clips (one

for each of five actors, actions, and views), each presented 10 times. In the second

experiment, five subjects were shown 50 two-second video clips (one for each of five

actors, actions, and two views, 0 and 90 degrees), each presented 20 times. In the

third experiment, five subjects were shown 50 static images, which were single frames

from the videos in Experiment 2, for 2 seconds presented 20 times each. In the fourth

experiment, five subjects were shown 10 two-second video clips, which consisted of

point-light walkers traced along one actor's videos in experiment two, presented 100

times each.

In each experiment, subjects performed an action recognition task, where they

were asked after a random subset of videos or images (for each of 125 videos in

experiment one, and twice for each of the fifty each videos or images in experiments

two through four) what action was portrayed in the previous image or video. The

purpose of this behavioral task was to ensure subjects were attentive and assess

behavioral performance on the various datasets. The button order for each action

was randomized each trial to avoid systematic motor confounds in the decoding.

4.4.4 MEG data acquisition and preprocessing

The MEG data was collected using an Elekta Neuromag Triux scanner with 102

magnetometers at 204 planar gradiometers. The MEG data were sampled at 1,000

Hz. The signals were pre-processed using and preprocessed using Brainstorm software
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[166]. First the signals were filtered using temporal Signal Space Separation (tSSS)

with Elekta Neuromag software. Next, Signal Space Projection (SSP) was applied

for movement and sensor contamination, and band-pass filtering from 0.1-100 Hz to

remove external and irrelevant biological noise were applied using Brainstorm software

[170].

4.4.5 Eyetracking

To verify that the subjects' eye movement could not account for the action discrimina-

tion, eye tracking was performed during MEG recordings for Experiment 1 (subjects

S1-S5 viewing five actors performing five actions at five views) with the Eyelink 1000

eye tracker from SR Research. A nine-point calibration was used at the beginning of

each experiment. We then performed decoding using the position data for the left and

right eye, and found that decoding performance was not significantly above chance

for more than two consecutive 5ms time bins, much below the significance threshold

outlined for decoding (Figure 4-15).

4.4.6 MEG decoding analysis methods

MEG decoding analyses were performed with the Neural Decoding Toolbox [118], a

Matlab package implementing neural population decoding methods. In this decoding

procedure, a pattern classifier was trained to associate the patterns of MEG data with

the identity of the action (or actor) in the presented image or video. The stimulus

information in the MEG signal was evaluated by testing the accuracy of the classifier

on a separate set of test data.

Decoding analysis was performed using a cross validation to assess the classifier

accuracy where the classifier was trained on on 80% of data and tested on the held out

20%. To improve signal to noise, we averaged the different trials for each stimulus in a

given cross validation split. Z-score normalized and performed sensor selection (used

an ANOVA to choose sensors selective for stimulus identity with p<0.05 significance

based on F-test) based on the data in the training set only. Decoding analyses were
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performed using a maximum correlation coefficient classifier, which computes the

correlation between each test vector and a mean training vector that is created from

taking the mean of the training data from a given class. Each test point is assigned

the label of the class of the training data with which it is maximally correlated.

We averaged the data in each sensor into 50 ms overlapping bins with a 5 ms

step size. We repeated the above decoding procedure in each time bin to assess the

decoding accuracy versus time. Decoding accuracy is reported as the average percent

correct of the test set data across all cross validation splits.

We assessed significance using a permutation test. To perform this test, we gener-

ated a null distribution by the decoding procedure for 100 time bins using data with

randomly shuffled labels with 10 cross-validation split repetitions used on each run.

Decoding results performing above all points in the null distribution for the corre-

sponding time point were deemed significant with P < 0.01 (1/100). The first time

decoding reached significantly above chance was defined as the point when accuracy

was significant for five consecutive time bins. This significance criterion was selected

such that no spurious correlations in the baseline period were deemed significant.

See Chapter 3 for more decoding methods details.

4.4.7 Source localization

We collected structural MRIs for three subjects (S6-S8) who performed the 'extreme

invariance' (Experiment 2). We used Freesurfer software [27, 47, 46] to reconstruct

each subject's MRI, and used this as input to the Minimum Norm Estimate (MNE)

source localization algorithm. We used the Minimum Norm Estimate (MNE) source

reconstruction in Brainstorm. An overlapping spheres head model was constructed

using each subject's MRI, a full noise covariance matrix was computed for the data

from 200 ms prior to stimulus onset, source reconstruction was constrained by a

loose orientation constraint with an orientation parameter of 0.2. Sources that are

significantly above baseline period (p<0.0001 with t-test Bonferroni corrected for

multiple comparisons) are displayed.
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4.4.8 Model

The model was written using the CNS: Cortical Network Simulator [123] and is com-

posed of 4 layers. The input video is scaled down, preserving the aspect ratio, with

the largest spatial dimension being 128px. A total of three scaled replicas of each

video is run through the model in parallel; the scaling is by a factor of 1/2.

The first layer is composed of a regular grid of simple cells placed ipx apart (no

sub-sampling), the tuning functions for these units are Gabor receptive fields that

move in time while they change phase (as described in [2, 158]). Cells have spatially

square receptive field of size 7, 9 and 11 px, extend for 3 4 and 5 frames and compute

the dot product between the input and their template. The Gabor filters in each

receptive field move exclusively in the direction orthogonal to the spatial modulation

at 3 speeds, linearly distributed between 4/3 and 4 pixels per frame.

The second layer is a grid of complex cells that compute the maximum of their

afferent simple cells. Cells are placed 2 units apart in both spatial dimensions (sub-

sampling by a factor of 2) and every unit in the time dimension. Complex cells at

the C1 level have spatial receptive fields of 4 simple cells and span 2 scales with one

scale overlap, bringing the number of scaled versions from 3 to 2.

The third layer is composed of a grid of simple cells that compute the dot product

between their input and a stored template. The templates at this level are sampled

randomly from the training set (and never from the test set). We sample 512 different

templates uniformly distributed across classes and across videos within each class.

The cells span 9, 17 and 25 units in space and 3, 7 and 11 units in time.

The fourth layer, C2, is composed of complex units that compute the maximum

of their inputs and cells pool across all positions and scales. The wiring between

simple and complex cells at the C2 layer is described by a matrix with each column

corresponding to a complex cell and having a list of indices for the simple cells; in the

structured models these correspond to transformations, in control models, the rows

of this matrix are scrambled. S2 template sizes are always pooled independently from

one another. The output of the C2 layers is concatenated over time and cells and
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serves as input to a supervised machine learning classifier.

4.4.9 Video pre-processing and model classification

We used non-causal temporal median filtering background subtraction for all videos

[136]. All classification experiments for the model were carried out using the Gaussian

Kernel Regularized Least Squares classification pipeline available in [165]. Both the

kernel bandwidth and the regularization parameter were chosen using leave-one-out

cross validation.

4.4.10 Model experiments

For each of the experiments reported the computer vision model was an instance of

the general architecture outlined above and the training and test set were a subset

of the dataset described above. A few details were modified for each task in the S2

and C2 layers to make sure the model tested the hypothesis we set forward in that

experiment and to avoid having S2 templates sampled from the test set. For the same

reasons, we used different set of videos for each experiment. Here we describe these

slight modifications.

For the action recognition task [Figure 4-7], templates were sampled from videos

of four of the five actors performing all five actions and at all five views. In the

experimental model, all S2 cells of the same size, with templates sampled from videos

of the same actor-action pair (regardless of viewpoint) were wired to the same C2 cell

yielding a C2 layer composed of 60 complex cells. In the control model we scrambled

the association between templates and videos of origin (after sampling). The training

set for this experiment was composed of 600 videos of four of the five actors performing

all five actions at either the frontal or side viewpoints. The test set was composed of

150 videos of the fifth actor performing all five actions at either the frontal or side

viewpoint. We only used either one of the viewpoints to train or test so as to verify

the ability of the model to recognize actions within the same view and to generalize

across views. This train/test split was repeated five times, using each actor for testing
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once and re-sampling the S2 templates each time.

For the actor recognition experiment [Figure 4-9], templates were sampled from

videos of three of the five actors performing all five actions at all five views. In the

experimental model, all S2 cells of the same size, with templates from the videos of

the same actor-viewpoint pair (regardless of action), were wired to the same C2 cell

yielding a C2 layer composed of 45 complex cells. The training set for this experiment

was composed of 600 videos of the two held out actors performing four of the five

actions at all viewpoints. The test set was composed of 150 videos of the two left out

actors performing the fifth action at all five viewpoints. The experiment was repeated

five times changing the two actors that were left out for identification and the action

used for testing, the S2 templates were re-sampled each time.

The form only classification experiment [Figure 4-11] was conducted using the

method described above for the action recognition experiment with the only difference

that the test set was composed of videos that only featured one frame repeated for

the entire duration of the clip. The motion only classification experiment was also

conducted using the method described above for the action recognition experiment

with the only differences being that only 100 form depleted videos of the held out

actor were used for testing and that the experiment was not repeated using different

actors for the test phase due to the prohibitive cost of acquiring human annotation

for joint location in each frame (see 4.4.1).
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4.5 Supplemental figures

4.5.1 C1 model performance on action recognition dataset
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Figure 4-14: The output of the CI layer of the model, similar to the motion energy

model [2, 158], can classify action within view (no invariance) with relatively high

accuracy, but cannot classify action invariant to viewpoint.
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4.5.2 Effect of eye movement on action decoding
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Figure 4-15: We train a classifier on the output of eyetracking data for five subjects

as they view five actors perform five actions from five views. Results are from the

average of five subjects. Lines at bottom of plot indicate significance with p<0.01

permutation test. Both decoding performance and behavioral performance are lower

than for full videos. We cannot decoding significantly above chance for more than

two consecutive 5ms time bins, suggesting that the subjects eye movements cannot

account for the above decoding performance.
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Chapter 5

Conclusions

5.1 Summary of findings

Humans have the remarkable ability to understand a visual scene in a fraction of a

second and can learn new visual categories from few labeled examples. What are

the computational steps underlying this ability and how can they be implemented in

computer systems? This thesis examined these questions by analyzing how object and

action recognition develop in the human brain, and tested the mechanisms underlying

these findings with a computational model of visual cortex. In particular, this research

led to the following findings.

5.1.1 Temporal association training is a robust method for

learning invariance in development

In Chapter 2, we showed that the HMAX model can employ a temporal association

training rule [49, 189] for learning position-invariance, rather than having this in-

variant architecture hardwired. The learned system works as well as a traditional

hard-wired instantiation of HMAX on position-invariant recognition. We next found

that we could replicate recent physiology experiments showing that a cell's preferred

stimulus could be switched in a given position through "altered training", which dis-

rupts position invariance [107]. Despite single unit disruption, however, the readout

115



from all model units (analogous to an entire population of IT cells) did not con-

fuse different stimuli, even with extensive amounts of altered training. These results

suggest that, despite errors that may occur during training due to visual disruptions

such as changes in lighting, occlusions, or noise in the biological mechanism, temporal

association learning is a robust method to learn invariant recognition in development.

5.1.2 Size- and position-invariant object recognition have fast

dynamics that match feedforward models of visual cor-

tex

We next investigated the mechanisms behind size- and position-invariant object recog-

nition in the brain. By developing and applying new methods for MEG decoding,

we showed that object identity can be read out as early as 60 ms after stimulus on-

set. Size- and position invariant visual signals were present in the MEG data later,

between 100-150 ms after stimulus onset. In addition we found that invariance to

smaller transformations arose earlier than invariance to larger transformations (i.e.

we could decode across to a two-degree position shift before a four-degree position

shift). This is consistent with a feedforward hierarchical model, such as the HMAX

model, where the early layers employ complex cell pooling over a set of simple cells

to build invariance to a small, local region, and the final layer achieves global size

and position invariance by pooling over all sizes and spatial locations. Finally, we

performed source localization to see where the neural signals originated. The sig-

nals were localized primarily to visual areas and moved along the temporal lobe with

time, consistent with past studies of size and position invariance in the ventral stream

[126, 155, 172, 80, 152]. However, MEG's spatial resolution was not high enough

to pick up differences in information between nearby visual regions. These results

demonstrate how the temporal resolution of MEG can be used to test and confirm

computational models of sensory processing in the brain.
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5.1.3 Actor- and viewpoint-invariant action representations

arise quickly and match a feedforward model of visual

cortex

In order to study how people recognize the actions of others across changes in actor

and viewpoint, we filmed a new, naturalistic, yet controlled dataset of different actors

performing different actions at different views. We found that action can be read

out of MEG data after only 200 ms (after only 6 frames of video), and this early

representation is invariant to both actor and view. We next encoded these insights into

a hierarchical model, based on an extension of the HMAX model in which filters and

pooling regions have both spatial and temporal components to respond to dynamic

stimuli. To this existing base model, we added complex cell pooling over different

viewpoints of the same action. To the best of our knowledge, this the first time a

video model has included pooling over such non-affine transformations. Based on the

MEG timing results, we added these new pooling operations to the same model layer

that pools over affine transformations, size and position.

Like the human MEG data, the model could also perform actor and view invariant

action recognition, providing a computational explanation of the MEG results. Using

both MEG and model data we saw that, in addition to decoding action invariant to

actor, we could also decode actor identity invariant to action. Finally, we investigated

the distinct roles of form and motion in action recognition. Humans can recognize ac-

tions in impoverished stimuli, in which either form or motion information is removed,

though with a small but significant drop in performance. These results suggest that

both form and motion information are important for invariant action recognition and

demonstrate the importance of examining natural video stimuli to understand action

recognition.

5.1.4 Common themes

This work focuses on invariant recognition in the brain. The timing results yielded by

MEG decoding confirm previous findings that object recognition occurs very quickly
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[138, 171], and yield new insights about the intermediate timing and computational

steps leading to object and action recognition in humans. Specifically for objects,

size and position invariance develops in stages (100-150ms) after initial low-level,

non-invariant recognition (60 ms), while for actions, invariant and non-invariant rep-

resentations occur at the same time (200ms). Interestingly, the same class of feedfor-

ward hierarchical models, can explain all of these timing results. Combined with the

recent empirical successes of these models [99, 101, 93, 164, 71] , which now claim to

exceed human performance on large-scale recognition tasks [71], and new analyses of

their computational properties [5, 6], the results in this thesis suggest that this model

class may be a viable solution to the problem of feedforward object recognition. A

wide range of visual problems outside the domain of object recognition, however,

remain to be solved.

5.2 Future directions

5.2.1 Moving towards more naturalistic vision experiments

Traditionally, both computer vision and visual neuroscience have focused on object

classification in static images. While this paradigm has led to some notable successes,

it deemphasizes both the wide array of tasks humans tackle with vision and the

dynamic nature of human visual input.

Humans are able to quickly infer rich concepts, beyond basic categorization, from

images and videos. Recently work has been done to address new vision tasks such

as image captioning in deep neural network systems [181, 92]. There still exist a

wide range of other visual tasks that have not been explored with these systems and

likely require new neural insights, such as the incorporation of top down information.

These visual tasks include fine-grain recognition [23, 40], tasks involving attention [30,

86, 91, 143], and of particular interest, visual social perception (e.g. understanding

the intentions and emotions of people from visual input) [4], which is still largely

understudied in both neuroscience and AL.
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In addition to considering new visual tasks, moving toward studies using natural

movie stimuli has many advantages. Natural videos contain rich visual information

that closely mimic humans' daily visual experience. Recent work has shown that

natural video stimuli lead to better data-driven parcellation of visual cortex across

subjects [25, 81]. In addition, while a great deal of social and high-level visual in-

formation can be inferred from images, movies contain rich social narratives that

provide information at many different levels, from action categories (e.g. walking

versus running invariant to actor) to higher level social dimensions (e.g. is an interac-

tion between two people friendly or hostile?). Understanding these aspects of visual

perception is an important next frontier for visual neuroscience and AL.

5.2.2 Combining temporal and spatial information in the hu-

man brain

The research in this thesis demonstrates the importance of temporal information in

constraining neural computations. Fully understanding the neural mechanisms and

network structures, however, will require both high resolution spatial and temporal

information. This work indeed raises several questions that should be addressed with

better spatial resolution to more fully understand the underlying mechanisms. For ex-

ample, our MEG data suggests that neural representations are highly dynamic, while

fMRI studies show clear spatial localization for object and action representations. Are

the neural dynamics due to activity in a single (or sparse group of) brain region(s),

or is the changing neural representation due to information moving to different brain

regions? High spatiotemporal resolution data is also important for disentangling the

roles of feedforward versus feedback processing in the brain.

MEG source localization results produced by standard algorithms and constrained

by subjects' anatomy were not enough to provide high resolution decoding in different

visual regions (Chapter 3, appendix). New source localization methods have improved

resolution, but are computationally expensive and difficult to implement [128, 100].

These methods are also notoriously difficult to evaluate as there is no ground truth.
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This is usually overcome with experiments on phantom sources and other simulations,

but there is no good way to evaluate them on real data.

Performing fMRI and/or physiology experiments using the same stimuli as MEG

experiments and combining results across imaging techniques provides a promising

way to probe the human brain with both high spatial and temporal resolution. For

example, recent high temporal resolution ECoG studies have shown the role of visual

feedback in recognizing occluded objects [169]. In addition, recent work [24] com-

paring MEG and fMRI using representational similarity analysis (RSA) [98] revealed

dynamics in object recognition were due both to movement along the ventral stream

and feedback to V1. Other recent work used the combination of fMRI, DTI and

MEG to reveal a new region and functional mechanism for attentional control [12].

Applying the combination of fMRI and MEG to problems beyond object recognition

(see section 5.2.1) has great promise for furthering our understanding of the human

brain.

5.3 Conclusion

The work in this thesis focused on the development of invariant object and action

recognition in the human brain. Using MEG decoding we could examine human visual

processing with high temporal resolution, making it possible to see how invariant

information evolves over time and break down the computational steps required to

go from low-level features to invariant representations for objects and actions. By

capturing the new insights from MEG decoding in computational models, we could

more concretely test theories inspired by this timing data.

We found that object recognition occurs very quickly in the human brain and that

size- and position-invariance develop in stages. In addition, that action recognition

also occurs on a similarly fast time scale and the very first representations that support

action decoding area already invariant to changes in actor and view. Finally, we

found that a single class of hierarchical feedforward models provides a computational

explanation for both the object and action recognition timing results. The methods
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and results in this thesis provide a basis for studying the timing and order of the neural

computations underlying a wide range of visual and cognitive tasks. In the future,

using MEG decoding data in conjunction with higher spatial resolution data on more

realistic tasks can further progress our understanding of human visual recognition.
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