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Modeling of the interaction of a volumetric metallic metamaterial structure
with a relativistic electron beam

Xueying Lu,* Michael A. Shapiro, and Richard J. Temkin
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(Received 24 May 2015; published 18 August 2015)

We present the design of a volumetric metamaterial (MTM) structure and its interaction with a relativistic
electron beam. This novel structure has promising applications in particle beam diagnostics, acceleration,
and microwave generation. The volumetric MTM has a cubic unit cell allowing structures of arbitrary size
to be configured as an array of identical cells. This structure allows the exploration of the properties of a
metamaterial structure without having to consider substrates or other supporting elements. The dispersion
characteristics of the unit cell are obtained using eigenmode simulations in the HFSS code and also using an
effective medium theory with spatial dispersion. Good agreement is obtained between these two
approaches. The lowest-order mode of the MTM structure is found to have a negative group velocity
in all directions of propagation. The frequency spectrum of the radiation from a relativistic electron beam
passing through the MTM structure is calculated analytically and also calculated with the CST code, with
very good agreement. The radiation pattern from the relativistic electron beam is found to be backward
Cherenkov radiation, which is a promising tool for particle diagnostics. Calculations are also presented
for the application of a MTM-based wakefield accelerator as a possible all-metal replacement for the
conventional dielectric wakefield structure. The proposed structure may also be useful for MTM-based
vacuum electron devices for microwave generation and amplification.
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I. INTRODUCTION

Metamaterials (MTMs) have been intensively studied in
the microwave frequency range in recent years. MTMs are
implemented as constitutive periodic structures with sub-
wavelength unit cells, and they have novel features like
negative refractive indices [1]. MTMs are promising to
provide improved performance over traditional devices in
the way that the unit cell design process allows more
controllability and flexibility of electromagnetic character-
istics, for example, dispersion [2,3]. Then we can build
devices with interesting features and better performance by
engineering the unit cell.
In the area of passive microwave devices, MTMs are

applied to cloaking [4], “perfect” lens [5,6], antenna design
[7], etc., and these MTMs are often based on 2D planar split
ring resonators (SRRs) [2]. Research on high power micro-
wave sources and particle accelerators can also benefit from
introducingMTMs, and there are some pioneering studies on
the interaction of an electron beam with MTMs [8–11]. The
challenge of applyingMTMs to active devices is that a design
with planar unit cells naturally has the electromagnetic fields

concentrated on the planar plates, so at the beam location,
which must be at a distance away from the plates, field
intensities are low. This makes it difficult to achieve a high
coupling impedance with planar unit cells. Our work is
new and different in the way that we are developing a real
volumetric metallic 3D MTM structure from a cubic unit
cell which can fill the full space automatically. Although
volumetric MTM designs based on dielectric materials have
been extensively studied, dielectric materials are less attrac-
tive for applications where electron beams propagate in
vacuum through the MTM structure, such as in vacuum
electron devices or accelerators.We can study the interaction
of an electron beam with the 3D metallic MTM directly
without a substrate supporting the MTM structure or other
supporting parts.
Characterization of MTMs has aroused a lot of interest.

Different methods have been developed to find the effective
dielectric and magnetic parameters, such as the scattering
parameter extraction method and the field averaging method
[12–15]. These parameters are often scalar functions depend-
ing only on frequency, i.e., εðωÞ and μðωÞ. However,
this model is not a good approximation outside the low-
frequency range, since multipoles besides dipoles become
important [16,17]. A parallel approach is to use a set of fields
of E, D, and B with D ¼ εE, B ¼ H, where ε is a tensor
and depends on the frequency and the wave vector,
ε ¼ εðω;kÞ. In this paper, we will use the latter approach.
Demetriadou and Pendry [18] realized the role of spatial
dispersion in longitudinal waves in 3D wires, though their
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goal was trying to minimize the dispersion. A successful
modeling of surface waves on the interface of a wire
array and vacuum using the spatial dispersion approach is
presented by Shapiro et al. [19], and a discussion on the
importance of spatial dispersion on polaritons with negative
group velocity has been carried out by Agranovič and
Gartstein [20].
Novel dispersion relations of the MTMs may give rise to

unusual radiated waves from the electron beams. In conven-
tional materials, when particles travel faster than the speed of
light in the medium, Cherenkov radiation (CR) occurs. It is
widely used in particle counters and position monitors [21].
In MTMs with negative group velocities, backward CR can
be observed as first suggested by Veselago [1], and planar
MTM structures aimed at generating backward radiation
were developed [22] first in 2002. Both theoretical and
experimentalwork [23–26] haveverified backwardCRusing
a phased antenna array to mimic a traveling current. The first
experiment with a real electron beam was performed by
Antipov et al. [9]. Awaveguide loaded with SRRs and awire
array was built, and the measured frequency response of the
incoming electron beam was in the negative-index band.
Vorobev and Tyukhtin [27] calculated the CR generated by
an electron bunch traveling perpendicular to a 2D wire array
and found that radiation appears with an arbitrary charge
velocity. The radiated field profile changes with different
bunch lengths; thus, their discovery indicates a possible
application of measuring beam bunch length and velocity
using CR in MTMs.
In Sec. II, we will present the design of a unit cell with 3D

negative group velocity. Section III presents the effective
medium theorywith spatial dispersion as an analyticalmodel.
Section IV presents the beam-wave interaction using the
effective medium theory. Section V discusses the radiation
pattern calculated using the CST code. Application of the
structure as a wakefield accelerating source is discussed in
Sec. VI, and conclusions are presented in Sec. VII.

II. UNIT CELL DESIGN

For the design of the metallic, volumetric MTM, we
chose the unit cell to be a cube. We further chose to have
an empty unit cell, with metallic capacitive and inductive
elements arranged on the faces of the cube. Each face of
the cube is identical to make the structure quasi-isotropic.
To allow transmission of an electron beam, each face has
a beam aperture in the center. To allow propagation of
electromagnetic waves, each face has a set of four coupling
slots, each about one-tenth of a wavelength, arranged
symmetrically around the beam aperture. The detailed
structure is shown in Fig. 1. The dimensions are chosen
to put the operating frequency at around 17 GHz.
An eigenmode solver needs to be used to study the

dispersion characteristics, and we chose the HFSS eigen-
mode solver to calculate the dispersion in the first Brillouin
zone, as shown in Fig. 2(a). In ðkx; ky; kzÞ space, the

FIG. 1. Unit cell design geometry. (a) Face view. The thickness
of each face is 0.26 mm. (b) 3D view. In later sections, we will
introduce the electron beam that goes through the center of the
beam holes of the cells lying on the beam line.

FIG. 2. Brillouin diagram of a unit cell. (a) Different regions in
the first Brillouin zone. (b) Γ − X region dispersion showing the
intersection with the light line.
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coordinates of the high symmetry points for a simple cubic
lattice are Γð0; 0; 0Þ, Xðπ=p; 0; 0Þ, Mðπ=p; π=p; 0Þ, and
Rðπ=p; π=p; π=pÞ, where p is the period of the unit cells.
We chose the specific parameters in Fig. 1 to make the

structure balanced; i.e., all the modes have the same cutoff
frequency at the Γ point. In this way, we can have
dispersion curves with a greater slope; otherwise, the slope
at the Γ point must be zero due to periodicity. Negative
group velocity of the proposed unit cell is an inherent
feature and is not critically dependent on a certain set of
geometry parameters. For example, if we vary the size of
the central square beam hole with the rest of the parameters
unchanged, the fundamental mode (mode 1 in Fig. 2) will
always have a negative group velocity in the Γ − X region.
In the Γ − X region, there are four modes, as in Fig. 2(b);

among them, mode 1 and mode 3 are longitudinal. We are
primarily interested in the longitudinal modes, which will
strongly couple to an electron beam. Mode 2 and mode 4
are transverse modes that do not couple to the electron
beam. Mode 4 is doubly degenerate with fields polarized in
the y and z direction, respectively. In the X-M and Γ −M
regions, when the symmetry of the y and z directions is
broken, mode 4 splits into two modes.
The electric field patterns of the longitudinal modes in

the Γ − X regions are shown in Fig. 3. In the eigenmode

simulation, there is no electron beam, but finally we will
put a relativistic beam into an array of the unit cells, where
the beam lies on the axial line of the beam holes of the
central-region unit cells, as denoted by the black arrows in
Figs. 3(a) and 3(b). With the electron beam traveling at near
the speed of light, the synchronized points of the beam
and the longitudinal modes are 16.7 and 18.8 GHz. These
are the points in Fig. 2(b) where the light line intersects
mode 1 and 3, respectively. We will compare these
frequencies calculated using the HFSS code with the
frequencies calculated using the effective medium theory
and the CST code later in this paper.
The quantitative axial electric fields at these synchron-

ized points are shown in Fig. 3(d). Mode 1 has a field in the
same direction within the same unit cell, while mode 3 has
the opposite direction.

III. EFFECTIVE MEDIUM THEORY WITH
SPATIAL DISPERSION

One goal of this study is to investigate the interaction
of an electron beam with the MTM medium. To get an
analytical solution, we need to replace the actual structure of
Fig. 1 with an effective medium. The effective medium
modelmust agreewell with the HFSSmodel for the dispersion
characteristics. The effective medium theory aims to
model subwavelength periodic structures with a continuous
medium. It is a method of geometry simplification under
the principle of keeping equivalent electromagnetic
characteristics.
We will use the set of fields of E, D, and B with spatial

dispersion. The tensor εijðω;kÞ includes both electric
and magnetic responses, since E and B are related by
∇ ×E ¼ −ð∂B=∂tÞ=c: The dependence of D on B can be
equivalently treated as a dependence of D on the spatial
derivative of E; i.e., a permittivity with spatial dispersion
takes good care of both fields. Thus, it does not lose
generality to set μijðωÞ ¼ δij [16].
In the simple case, permittivity and permeability depend

only on frequency, since we assume that the local electric
polarization at a point is decided only by the field at that
point. From the Fourier transform

Eiðω;kÞ ¼
1

ð2πÞ4
Z

dt
Z

drEiðr; tÞ exp½−iðk · r − ωtÞ�

ð1Þ

and the constitutive relation

Diðω;kÞ ¼ εijðω;kÞEjðω;kÞ; ð2Þ

we can see that, when the field is not strictly local, the
dependence of the field on r corresponds to the dependence
of permittivity on k in the frequency domain. The inclusion
of the spatial dispersion is also a natural requirement to

FIG. 3. Field patterns of the longitudinal eigenmodes in the
Γ − X region. The cutting plane is the middle plane going
through the center of the beam hole. Black arrows denote
possible beam paths for the purpose of later sections. Waves
propagate to the right. The fields are shown on a linear scale.
(a) Mode 1 (the negative index mode); y and z directions are
symmetric. (b) Mode 3 (the positive index mode). (c) Cutting
plane and future beam position. (d) Axial field patterns at the
synchronized points with a relativistic beam at the speed of light.
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study longitudinal waves, since otherwise the group veloc-
ity of the longitudinal waves goes to zero [16].
The general form of the dielectric tensor in optical

crystals with spatial dispersion [28] is written as

εijðω;kÞ ¼ εijðωÞ þ αijlmðωÞklkm; ð3Þ
which comes as a Taylor expansion with the correction
of the spatial terms, and the first nonzero terms are to
the second order of k. The zeroth-order term εijðωÞ is
substituted with the plasma permittivity

εpðωÞ ¼ 1 − ω2
p=ω2; ð4Þ

since a 3D wire array is shown to be plasmalike in the
gigahertz range [2]. ωp is evaluated as the cutoff angular
frequency (the corresponding frequency fp ¼ 17.7 GHz).
Note that, in this paper, all the equations are in Gaussian
units, and the Einstein summation notation is used.
We propose a trial solution of the permittivity tensor

εijðω;kÞ ¼
8<
:

εpðωÞ þ
α1k2i c

2þ
P

l≠i
α2k2l c

2

ω2−ω2
p

ðj ¼ iÞ;
2α3kikjc2

ω2−ω2
p

ðj ≠ iÞ;
ð5Þ

to use in the Maxwell equations in Gaussian units describ-
ing electromagnetic fields in a medium

∇ ·B ¼ 0;

∇ ·D ¼ 4πρ0;

∇ ×E ¼ − 1

c
∂B=∂t;

∇ ×B ¼ 1

c
∂D=∂tþ 4π

c
j0: ð6Þ

The pole we put in the αijlm terms is similar to that of the
quadrupole transition of an exciton between two states [28].
Near a dipole transition, we have

εðωÞ ¼ ε0 − Ω2
0

ω2 − ω2
0s
; ð7Þ

where ω0s ¼ ωs − ω0 is the frequency difference
between the two states and Ω2

0 ¼ const · j R ψ�
srψ0drj2,

where ψ represents the wave functions of the two
states. For a quadrupole mode, the Ω2

0 changes to
const · j R ψ�

srðk · rÞψ0drj2, so near the quadrupole line,
the permittivity has the form of

εðω;kÞ ¼ ε0 − const · k2

ω2 − ω2
0s
: ð8Þ

Then we decide the remaining parameters α1, α2, and α3
from fitting the dispersion curves calculated with the
following wave equation derived from Eq. (6) in the special
case of no free charge or current:

det

�
ω2

c2
εij − k2δij þ kikj

�
¼ 0: ð9Þ

Figure 4 shows the fitting results and the best fit of α1,
α2, and α3. In the Γ-X region, the modes of interest
(mode 1 and mode 3) are modeled well, and they are
nearly straight lines with slopes proportional to � ffiffiffiffiffiffiffiffi−α1p
with jα1j ≪ 1. For the dispersion in the Γ − X region of
mode 4, the assumption of treating the structure as a
homogeneous medium is not as good as for the lower
modes due to a smaller wavelength. However, modes 1
and 3 are important to the interaction of an electron beam
with the wave, so the quality of this fit, which is very
good, is important. The same number of modes and
similar changing patterns with frequency are not easily
achieved by establishing an analytical model without the
introduction of spatial dispersion. Spatial dispersion is not
a slight correction here but makes qualitative differences.
This can happen when a pole exists, since the dispersion
relation is modified most drastically in the vicinity of
the pole, as even a small k can change the permittivity
significantly, and additional roots of the dispersion equa-
tion may appear [28].

FIG. 4. Fitting results of the dispersion curves. HFSS results are in dotted lines, and the fitting curves are in solid lines. The optimized
parameters are α1 ¼ −0.0209, α2 ¼ −0.0209, and α3 ¼ 0.0156. (a) Γ − X. (b) Γ −M. (c) Γ − R. Modes 1, 2, 3, and 4 are denoted with
black, red, blue, and magenta, respectively. In the Γ −M region, mode 4 splits into two modes.
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IV. WAVE-BEAM INTERACTION USING THE
EFFECTIVE MEDIUM THEORY

Next, we study the interaction of the volumetric MTM
structure with a relativistic beam. Theoretically, we can
use the effective medium theory to predict the energy loss
of the beam due to radiation. Suppose a point charge moves
in the x direction at v ¼ vex into the effective homo-
geneous medium. The charge and current densities are
ρ0ðr; tÞ ¼ qδðr − vtÞ and j0ðr; tÞ ¼ qvδðr − vtÞex, respec-
tively. From the Maxwell equations as Eq. (6), the equation
for Eðω;kÞ is

Eiðω;kÞ ¼ i
4πω

c2
A−1
ij j0jðω;kÞ; ð10Þ

where A is a matrix whose element Aij is

Aij ¼ k2δij − kikj − ω2

c2
εij: ð11Þ

The current of the point charge in the frequency domain is

j0jðω;kÞ ¼
qvj
ð2πÞ4

Z
dt

Z
drδðr − vtÞ exp½−iðk · r − ωtÞ�

¼ qvj
ð2πÞ3 δðω − k · vÞ: ð12Þ

Note that only vx is nonzero, so

Exðω;kÞ ¼
iqωv
2π2c2

A−1
xx δðω − kxvÞ: ð13Þ

Then we inverse transform the k space back to the r space.
The frequency spectrum Exðω; rÞ on the beam trajectory
with y ¼ z ¼ 0 is

Exðω;rÞ
����
y¼z¼0

¼− qω
2π2c2

ZZ
dkydkzIm

�
exp

�
i
ωx
v

�
A−1
xx

�����
kx¼ω=v

: ð14Þ

The integrands become peaked when jA−1
xx j has a

resonance, and the peaks mean that electromagnetic waves
are excited by the moving charge [29]. We consider the loss
in the effective medium model by changing the denomi-
nators in the spatial dispersion terms from ω2 − ω2

p to
ω2 − ω2

p þ iγlω, where the iγlω term represents a small
Ohmic loss and γl ≪ ωp. We calculate Exðω; rÞjy¼z¼0

numerically and find two peaks at 16.6 and 19.1 GHz
when v is close to c. These frequencies agree well with the
frequencies calculated using HFSS, as shown in Table I
below. Since the energy loss of the charge in the medium
per unit path length is decided by W ¼ qðv ·EÞ=v at
r ¼ vt, these frequencies are also where the beam loses

energy most intensively to the radiated field. This energy
loss is caused by longitudinal modes (plasmons) only,
and there is no velocity threshold in this case unlike the
condition for normal CR.
To test the above result, we use the CST wakefield solver

to simulate fields radiated by a passing beam. The beam in
the wakefield solver is represented with a line current with a
longitudinally Gaussian shaped charge. The model is set up
with periodic boundaries on the side walls and 36 cells in
the beam propagating direction. So the actual structure is an
array of the unit cells infinite in the transverse directions
resembling a homogeneous medium.
The wake potentials generated by a bunch with charge q

at a distance of s behind it can be expressed as [30]

Wðy; z; sÞ ¼ 1

q

Z
∞

−∞

�
E

�
x; y; z; t ¼ sþ x

v

�

þ v
c
×B

�
x; y; z; t ¼ sþ x

v

��
dx; ð15Þ

and the longitudinal wake impedance is defined by

ZxðωÞ ¼
1

c

Z
∞

−∞
WxðsÞ expð−iωs=cÞds: ð16Þ

We can simulate the wake impedance with the CST code,
and Fig. 5 shows the simulated spectrum of the structure
with an infinite array of cells in the transverse direction.

FIG. 5. Longitudinal wake impedance spectrum. Peaks are
located at 16.6 and 18.7 GHz, corresponding to eigenmode 1 and
3, respectively.

TABLE I. Comparison of wave-beam interaction frequencies
(unit, GHz).

HFSS

eigenmode
solver

Effective
medium
theory

CST

wakefield
solver

Mode 1 16.7 16.6 16.6
Mode 3 18.8 19.1 18.7
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For this simulation, we have used a 1 pC charge bunch
traveling at the speed of light with a FWHM length of
2 mm. The peak interaction frequency points agree very
well with the results of the effective medium theory, as
shown in Table I. Thus, the effective medium model
successfully locates the interaction frequencies.

V. RADIATION PATTERN IN A VOLUMETRIC
ARRAY OF MTM UNIT CELLS

In reality, we need a finite-size structure, so the simu-
lation in CST is then performed by simulating the trans-
mission of a relativistic beam through an array of the unit
cells. The radiation pattern is naturally complicated by two
additional effects. First, the microstructure of the unit cells
prevents the whole structure from acting strictly as a
homogeneous medium, so, when the beam passes through
the inhomogeneous regions, transition radiation happens in
addition to the CR. Second, the structure is metallic, so it
will deform the radiated field by imposing boundary
conditions at metal walls.
We group the unit cells into an array as shown in

Fig. 6(a). Cell numbers in the x, y, and z directions are
10, 7, and 7, respectively. The beam travels through the
central line along the þx direction. Perfect absorbing

boundaries are imposed at a distance of 7 cells away from
the structure in the x, y, and z directions. This setup enables
us to study the radiation pattern in the bulk structure in an
unbounded state.
Figure 6(b) shows the pattern of radiated longitudinal

electric field Ex in the middle cutting plane (y ¼ 0 plane).
As a comparison, we show the radiation pattern in a volume
of the same shape but built with a dielectric of ε ¼ 1.5 in
Fig. 6(c). In the MTM case, electromagnetic energy goes
backward, until the waves exit the structure at the same end
where the beam enters. However, in the case of radiation
in the dielectric medium, as in Fig. 6(c), electromagnetic
energy travels forward, as is expected in conventional CR.
Since the unit cell has the feature of 3D negative group

velocity, we can observe backward radiation in directions
different from the coordinate axes. Figure 7(a) shows the
field on the cutting plane which is rotated 45° from the
y ¼ 0 plane around the beam axis. This plane and the y ¼ 0
plane are not symmetric geometrically, but a similar pattern
of backward radiation is observed. Figure 7(b) shows
the Ex pattern on a cutting plane perpendicular to the
x direction. The MTM structure itself is not isotropic, but
the waves grow as isotropic, nearly spherical wave fronts
when they enter the vacuum region. So, when the beam
goes through the volumetric structure, a cone is formed
behind it in the vacuum region where wave fronts are
spherical-like and propagate backward.

VI. WAKEFIELD ACCELERATION

When a bunch travels through the structure, wakefields
are generated by the CR mechanism, and this leads to the
possible application of wakefield acceleration. The scheme
of wakefield acceleration is that an intense electron drive
bunch excites wakefields which can be used to accelerate a
following witness bunch with a smaller charge [31], and the
system is generally a dielectric-lined waveguide [32–34].
The MTM structure can operate in a manner similar to
the dielectric wakefield acceleration regime but with only

FIG. 6. Radiation pattern with a relativistic beam. (a) Illustration
of the bulk structure. The beam passes through the line of
y ¼ z ¼ 0. (b) Longitudinal E field (Ex) on y ¼ 0middle cutting
plane for the MTM structure. The MTM region is enclosed in the
black rectangles. (c) The same result for the volume mode of a
dielectric with ε ¼ 1.5.

FIG. 7. The 3D properties. (a) Radiated Ex field on an oblique
cutting plane rotated 45° around the x axis starting from the y ¼ 0
plane. (b) Radiation pattern on the cutting plane of x ¼ const; i.e.,
the cutting plane is perpendicular to the longitudinal direction.
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metal. This has the potential advantage of producing a more
rugged structure and a structure that does not suffer from
dielectric breakdown effects.
To fit the structure in a waveguide, we modify the unit

cell from six-face cubic to two faces supported by four
rods, as shown in Fig. 8(a). 12 unit cells are aligned in a
single row inside a waveguide. The coupling slots lock the
frequency below the cutoff frequency of the waveguide.
The eigenmode simulation shows that the cutoff

frequency of the MTM structure shown in Fig. 8(a) is
17.5 GHz.
The electron beams consist of a drive bunch and a

witness bunch going through the central line in the þx
direction. The drive bunch is a Gaussian bunch of FWHM
length 2 mm carrying a charge of 40 nC, and the witness
bunch carries 1 pC and is 0.4 mm long. The spacing of
the witness bunch behind the drive bunch is optimized to
25 mm to achieve the maximum average accelerating
gradient. The drive bunch has an initial energy of
6 MeV, and the witness bunch 1 MeV.
Figure 8(b) shows the evolution of the two bunches in

phase space. The drive bunch keeps losing energy to
electromagnetic waves in the structure until it exits the
structure, and the witness bunch is accelerated from 1 to
3.1 MeV. This corresponds to an average accelerating
gradient of 21 MV=m on the witness bunch path.

VII. CONCLUSIONS

In this paper, we present the design of a metallic MTM
unit cell that can be used to fill all of space. The cell size
is scaled to work for 17 GHz and can be easily scaled to
other frequencies. Of all the eigenmodes of the unit cell, the
mode with negative group velocity is the lowest-order
mode and shows a longitudinal electric field pattern.
Theoretically, we have proved that a homogeneity approxi-
mation with spatial dispersion accurately describes the
dispersion characteristics. Spatial dispersion yields a strong
modification to the dispersion curves instead of a small
modification, as additional modes appear. When interacting
with relativistic electron beams, the MTM structure shows
a backward radiation pattern. The wakefield generated
by a drive bunch can be used to accelerate a following
witness bunch.
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