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Gas Transfer in Cellularized Collagen-Membrane
Gas Exchange Devices

Justin H. Lo, PhD,'"® Erik K. Bassett, MS,' Elliot J. N. Penson, BS,
David M. Hoganson, MD," and Joseph P. Vacanti, MD'?

Chronic lower respiratory disease is highly prevalent in the United States, and there remains a need for
alternatives to lung transplant for patients who progress to end-stage lung disease. Portable or implantable gas
oxygenators based on microfluidic technologies can address this need, provided they operate both efficiently
and biocompatibly. Incorporating biomimetic materials into such devices can help replicate native gas exchange
function and additionally support cellular components. In this work, we have developed microfluidic devices
that enable blood gas exchange across ultra-thin collagen membranes (as thin as 2 um). Endothelial, stromal,
and parenchymal cells readily adhere to these membranes, and long-term culture with cellular components
results in remodeling, reflected by reduced membrane thickness. Functionally, acellular collagen-membrane
lung devices can mediate effective gas exchange up to ~ 288 mL/min/m? of oxygen and ~ 685 mL/min/m” of
carbon dioxide, approaching the gas exchange efficiency noted in the native lung. Testing several configurations
of lung devices to explore various physical parameters of the device design, we concluded that thinner
membranes and longer gas exchange distances result in improved hemoglobin saturation and increases in pOs,.
However, in the design space tested, these effects are relatively small compared to the improvement in overall
oxygen and carbon dioxide transfer by increasing the blood flow rate. Finally, devices cultured with endothelial
and parenchymal cells achieved similar gas exchange rates compared with acellular devices. Biomimetic blood
oxygenator design opens the possibility of creating portable or implantable microfluidic devices that achieve
efficient gas transfer while also maintaining physiologic conditions.

Introduction neurological complications, and need for continuous mon-
itoring, ECMO is not viable outside of the hospital setting.*
Recently, the Hemolung and Novalung have successfully

CHRONIC LOWER RESPIRATORY diseases such as chronic
bridged patients to transplant, but still require monitoring

obstructive pulmonary disease afflict over 5% of the

U.S. population, leading to over 140,000 deaths annually.’
For patients who progress to end-stage lung disease, lung
transplantation remains the standard of care, yet 11% of
patients who enter the U.S. lung transplant list die before
transplantation, reflecting the dire shortage of organs.” Thus,
there is a need for portable or implantable devices that assist
with gas exchange in patients who are waiting for transplant,
whose transplants are failing, or for whom transplant is
contraindicated.

Existing gas-exchange support devices such as extra-
corporeal membrane oxygenation (ECMO) have been used
clinically as respiratory support for patients whose condi-
tions are refractory to mechanical ventilation.® However,
due to bleeding risk associated with anticoagulation, risk of

for thrombus formation.>® Furthermore, these technologies
are primarily useful in hypercapnic lung respiratory failure
rather than hypoxemic conditions or those requiring full
cardiopulmonary support.” Most of the complications as-
sociated with extracorporeal membrane ventilation are the
direct or indirect consequence of unphysiologic blood flow
in membrane cartridge and hollow fiber architectures,
wherein blood passes through a large chamber bordered or
traversed by bare or heparinized plastic air channels. En-
gineering lung assist devices with biomimetic materials,
cellular components, and physiologic blood flow profiles
can promote self-maintenance while reducing the risk of
coagulation, enabling the use of such devices in long-term
outpatient therapy.

'Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts.

’Harvard Medical School, Boston, Massachusetts.

3Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts.
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Broadly speaking, there are two approaches to creating
next-generation lung assist devices and artificial lungs. The
first strategy is to rationally design and fabricate networks
of vascular and respiratory channels, typically using gas-
permeable polymer materials such as polycarbonate or
polydimethylsiloxane (PDMS).””'® This strategy has the
advantages of gas exchange efficiency near that of the native
lung, affording greater control of physical parameters, and
in some cases not requiring any living components. However,
introduction of extensive foreign material or operation under
unsuitable hemodynamic flows and vessel geometries can sac-
rifice biocompatibility and promote life-threatening thrombosis.

The second general strategy is to establish or isolate
ECM-based environments and seed these with cells that self-
pattern and differentiate into mature lung structures.''~'*
Seeding of collagen and other extracellular matrix (ECM)-
inspired scaffolds has yielded epithelial and Type 1I
pneumocyte-like cells in alveolus-like configurations; how-
ever, these efforts have not to date been tested for gas ex-
change function.'? Decellularized rat lungs have been used
as natural ECM scaffolds, and when repopulated with epi-
thelial and endothelial cells, can be transplanted orthoto-
pically and maintain function for several hours.'*'* The
decellularized lung scaffold approach, more recently dem-
onstrated in nonhuman primates to promote reseeding by
mesenchymal stem cells,'” creates artificial lungs that are
grossly and histologically lung-like. Nevertheless, physical
constraints inherent from the scaffold limit both modularity
and the engineering tools available to ensure continuous
function and maintenance.

Acknowledging the strengths of each approach above, we
employed a hybrid construction in which a planned, fabri-
cated network is composed of materials amenable to sus-
taining cellular components. Specifically, we present a
prototypic biomimetic lung assist device based on gas ex-
change across an ultra-thin collagen membrane, with blood
flowing in microfabricated vascular networks developed
previously by our group.'® We have tested such devices in
acellular configurations and after population of the mem-
brane with parenchymal and endothelial cells. Endothelial
cells have been shown in the literature to reduce thrombo-
genicity of a synthetic gas exchange membrane,'” and we
believe that integrating these cells with a collagen mem-
brane and parenchymal cells further enables plasticity and
sustainability of the system. Since the collagen film func-
tions analogously to the basement membrane between
pneumocytes and endothelial cells in the physiologic set-
ting, such a device has potential to facilitate efficient gas
exchange while maintaining a biocompatible environment.

Materials and Methods
Overview of devices

Two types of microfluidic devices were designed and man-
ufactured in this work: preliminary work used single-channel
transwell devices (Supplementary Fig. S1; Supplementary Data
are available online at www.liebertpub.com/tea), and subse-
quent iterations used multi-channel collagen-membrane gas
exchange devices (all other figures). In both models, blood
flowing in vascular channels was separated from an upper air
chamber by a thin collagen membrane, but the techniques for
manufacture and gas exchange testing differ.

LO ET AL.

Manufacture and gas exchange testing
of single-channel transwell devices

A thin collagen membrane (45 um thick) was created by
air-drying a slurry of fibrillar bovine collagen. The collagen
membrane was dehydrothermally cross-linked, then steril-
ized with ethylene oxide. To create the single-channel
model, the collagen membrane was mounted in the place of
the standard membrane in a 24-well plate transwell.
Transwells with a polycarbonate membrane of 0.4 pm pore
size and 10 pum thickness were used as controls.

Human umbilical vein endothelial cells (HUVECs) were
seeded on the bottom of the collagen or polycarbonate
membranes of the transwells and Human Type II pneumo-
cytes (H441 cell line) were seeded on the top side (n=3 for
both collagen and control membranes). In controls, the
bottom of the collagen membrane was seeded with HU-
VECs or fibroblasts (NIH-3T3 cell line) (n=3 for both cell
types). Cell were cultured under standard conditions for 2
weeks.

Devices were assembled by affixing the transwell to the
PDMS (Sylgard 184; Dow Corning) layers, with the mem-
brane forming the top wall of the single 250 pm-deep vas-
cular channel and air filling the transwell chamber above the
membrane, as depicted in Supplementary Figure S1A.
Computational fluid dynamics analysis was performed using
COSMOSFloWorks™ (SolidWorks) to evaluate the device,
estimating pressures on the order of 1 mmHg in the air
chamber and 10 mmHg in the channel. The blood flow rate
of 0.0625 mL/min was selected to correspond to 1 dyn/cm?
shear stress based on the modeling.

Gas exchange testing of transwells was performed by
pumping anticoagulated sheep blood (1% heparin; Lampire
Biologics) with a syringe pump through the channel adja-
cent to the membrane of the transwell with oxygen flowing
into and out of the top of the transwell (100 mL/min). Blood
gas analysis was performed on the flowing blood before and
after flowing past the transwell using a blood gas analyzer
(Rapidlab 840; Chiron Diagnostics). n=3 per condition.

Manufacture of multi-channel gas exchange devices

Multi-channel gas exchange devices consisted of three
PDMS layers: a square-channel vascular layer, an air
chamber layer, and a lid (Fig. 1A). The vascular and air
chamber layers were designed in SolidWorks (SolidWorks),
and photolithography molds of these layers were produced
on 10-cm silicon wafers (Stanford Microfluidics Foundry)
and duplicated as polyurethane molds using Smooth-Cast
300 (Smooth-On). The vascular and air chamber layers were
cast using standard soft lithography techniques. Air chamber
layers were processed by using a scapel to introduce a
beveled edge to the air chamber proper to increase media-
holding capacity for cell culture without increasing the
fixed gas exchange interface distance. Lids were cast from a
10-cm tissue culture dish lid.

Each device was divided into four “‘quads,” each with an
independent blood input and output, operated separately and
treated as independent samples. Within each quad, a series
of 1:4, 1:4, and 1:6 channel branchings produced 96
100 x 100 pm square ““capillaries.”” The air chamber was ori-
ented orthogonally to the direction of the blood flow, inter-
facing with the capillaries below via the collagen membrane.
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FIG. 1. Overview of multi-channel
collagen-membrane gas exchange de-
vices. (A) Three-dimensional sche-
matic of a multi-channel collagen-
membrane device, showing the as-
sembly of the lower channel layer,
collagen membrane, and parenchymal/
air chamber layer. Blood flow is in-
dicated by the dark arrows; airflow is
indicated by the light arrows. Blown-
up detail shows orientation of the
collagen membrane and vascular
channels (channels not to scale).

(B) Overhead schematic of vascular
ke channels with overlaid collagen
membrane and air chamber to dem-
onstrate alignment (channels not to
scale). (C) Transmission electron mi-

a

Collagen Film Thickness (pm) O
[\ ]

=

croscopy (TEM) showing detail of
collagen membrane [C] in tissue-en-
gineered alveolus with A549 lung
carcinoma cell [P]. (D) Comparison
between thicknesses of collagen
membranes produced using different
collagen concentrations. **p <0.01.

1.0 mgimL 0.5 mg/mL
Collagen concentration

Collagen films separating the capillaries and air chamber
were produced using a modified protocol based on Vernon
et al.'® Rat collagen 1 (BD Biosciences) was diluted in
1 X Dulbecco’s modified Eagle’s medium (DMEM) satu-
rated with sodium bicarbonate, and pH was adjusted to 7.5
with NaOH. To spatially constrain the collagen membrane
over the designated gas exchange region (Fig. 1A, B), a
PDMS mask with a rectangular slit (20 or 13 mm wide for
the 10 and 3 mm air chambers, respectively) (Fig. 1B) was
overlaid atop the PDMS vascular layer, and the assembly
was treated with oxygen plasma for 5s at 100 W (Model
PX-250; March Plasma Systems). Following removal of the
mask, edges of the vascular layer bounding the channels on
either side were trimmed to prevent collagen spillover along
hydrophilic edges.

The collagen membrane was synthesized in situ over the
vascular layer by pipetting the collagen solution onto the
channel side of the device and allowing it to gel at 37°C.
The prior selective plasma treatment defined a fixed hy-
drophilic region on the vascular channels, allowing repro-
ducible dimensions of these membranes. Salts and dye were
extracted by submerging the device in distilled water, and
then the film was allowed to dessicate completely. During
this process, the membrane becomes taut across the chan-
nels, forming the fourth wall of a closed rectangular channel
rather than lining the bottom.

Finally, devices were assembled by bonding the air
chamber layer atop the vascular layer via oxygen plasma
activation for 10s at 100 W. Air inlets on either side of the
device, and four pairs of blood inlets and outlets, were

generated by boring channels with a tissue biopsy punch and
affixing silicone tubing with RTV silicone glue, with luer-
lock fittings to interface with syringes for cell seeding and
the gas exchange setup. All devices were sterilized by eth-
ylene oxide before use.

Cell culture on multi-channel gas exchange devices

HUVECs were cultured in EGM-2 media (Lonza) and
then seeded into vascular channels at 2-5x 10° cells/mL
(~200 pL per quad). The air chamber was filled with EGM-
2 media, and inverted devices were incubated in standard
tissue culture conditions for 1 h to promote attachment to the
collagen membrane.

A549 cells were introduced into the upper chamber of the
device at 1x 10° cells/mL in a total of ~ 10 mL DMEM with
10% fetal bovine serum, 100 U/mL penicillin, and 100 pg/
mL streptomycin, and the devices were subsequently incu-
bated for several days in the upright orientation until both
cell populations reached confluency. All media in the air
chamber was drained and replaced with ambient air before
gas exchange testing.

Gas exchange testing of multi-channel
collagen-membrane devices

Whole sheep’s blood was aliquoted into capped 60-mL
syringes and incubated at 37°C overnight to approximate gas
content of venous blood in accordance with the guidelines for
baseline blood parameters set forth in ISO 7199 for blood
oxygenator testing.'” Following incubation, the average
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baseline values were as follows: SpO, 70%; pCO, 48 mmHg
(6.4kPa); hemoglobin: 10.1 g/dL.

The experimental setup is depicted in Figure 2A. About
0.1 L/min of 100% oxygen was bubbled through a humidi-
fying column, then introduced into the air chamber, flow-
ing orthogonally over all vascular channels before exiting to
ambient air. The device was infused with blood using a
syringe pump (PHD 2000; Harvard Apparatus), with
the blood input flowing through gas-impermeable PVC
tubing. Because of the thickness of the PDMS walls
bounding the noncollagen sides of the channels, we calcu-
lated that the contribution of gas transmission through these
walls to the total gas exchange is negligible. Tubing and
devices were enclosed in an incubator to maintain the
temperature at 37°C (Hybaid HS9320; Fisher Scientific).
Baseline measurements were drawn from a three-way valve
immediately upstream of the device, while experimental
measurements were taken from a valve connected to the
output tubing, with no opportunity for further gas exchange
after the blood exited the vascular bed. Blood gases, pH,
hematocrit, and bicarbonate levels were measured immedi-
ately upon sample acquisition using a Stat Profile Critical
Care Xpress 12 (Nova Biomedical).

LO ET AL.

Transmission electron microscopy

Membranes were extracted from the devices and fixed in
2% glutaraldehyde. Imaging of cross sections was per-
formed by the PMB Microscopy Core at Massachusetts
General Hospital.

Immunofluorescence

Following 2-3 days in culture, cells were stained in situ
on the membranes using anti-CD31 antibody (clone TLD-
3A12; Millipore) at 10 pg/mL, phalloidin (Alexa Fluor 568
phalloidin; Invitrogen), and Hoechst.

Data analysis and statistical testing

Data were tabulated and analyzed in Excel (Microsoft
Corp.), and statistical analysis and plotting was performed in
GraphPad Prism (GraphPad Software, Inc.). For two-way
ANOVA analysis in Figures 2 and 3, Bonferroni post-tests
were conducted in two ways: first, comparing the four con-
figurations against each other within each flow rate (significant
differences are indicated in the figures, and all omitted rela-
tionships are nonsignificant), and second, comparing different

A Syringe pump B .i’-’-. C '%‘ *%k%k —
= — |
1501 T 100 - e
37 'C incubator  _ =
"""""""""""""""" " o *
[l ] I — ek 90-
/ : o ey Device ! £ = —
i |:“: ( il 141 ‘I I 3 -g-"]o" 39..
Humidifier: - i l e ;l..so_
mp: & S
: e ) T0 4
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O] Sample | 2
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N N
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FIG. 2. Gas exchange in acellular multi-channel collagen-membrane devices. (A) Schematic representation of the gas
exchange setup for testing both acellular and cellularized straight-channel devices. (B) Oxygenation as a function of flow
rate, membrane thickness, and channel length, as measured by increase in partial pressure of oxygen. (B-F), *p <0.05,
*p <0.01, ¥***¥p <0.001 by two-way ANOVA with Bonferroni post-test comparing configurations within each group (C)
Hemoglobin oxygen saturation (%) as a function of flow rate, membrane thickness, and channel length. (D) Oxygen transfer
per deciliter of blood. (E) Oxygen transfer per unit time. (F) Carbon dioxide clearance per unit time.
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flow rates against each other within each configuration (for
clarity, these significant differences are not indicated in the
figures, but are noted in the text).

Results

We set out to design blood gas exchange devices centered
on gas exchange across thin collagen membranes, hypoth-
esizing that such membranes would not only recapitulate
efficient gas exchange as seen in alveolar membranes, but
also serve as a malleable substrate for relevant cell popu-
lations. As a demonstration of the feasibility of integrating
cellularized collagen membranes into microfluidic devices
for blood gas exchange, we first designed a prototype using
a collagen membrane mounted on a transwell (Supplemen-
tary Fig. S1A). We seeded HUVECs and ‘‘parenchymal’
cells (H441 lung adenocarcinoma cell line) on opposite
sides of the membrane to mimic the sequence of cells found
in the native alveolar blood-air interface (Supplementary
Fig. SIB). To examine whether such adherent cells may
remodel the collagen substrate in the context of these de-
vices in vitro, we compared the thicknesses of membranes in
tissue-engineered alveoli when incubated with media alone
versus cultured with HUVECs and H441 cells. After 14
days, we measured a statistically significant 31% reduction
in collagen film thickness in the presence of cells (Supple-
mentary Fig. SI1C, left), determined by transmission electron
microscopy (TEM) (Supplementary Fig. S1C, right). To
establish the practical impact of the presence of cells and
change in film thickness, we affixed the tissue-engineered
transwells on a single PDMS microfluidic channel such that
the endothelial side directly formed the top of the channel and
the parenchymal layer was in direct contact with air in the
transwell chamber (Supplementary Fig. S1A). We then mea-
sured oxygen exchange by flowing sheep’s blood at 0.0625 mL/
min through the vascular channel and pure oxygen at 0.1 L/min
through the air chamber (Supplementary Fig. S1D). pO, in-
creases were comparable between the acellular collagen,
endothelial cells-on-collagen, and fibroblasts-on-collagen con-
trols, whereas seeding with both endothelial and ‘‘parenchy-
mal” cells led to a statistically significant improvement in
oxygenation. Together, these results established that thin col-
lagen films can function as gas exchange membranes and sup-
port bifacial cell cultures, which in turn interact with and
reconfigure the membrane.

Based on these initial insights, we designed and manu-
factured multi-channel collagen-membrane gas exchange
devices that would allow us to rigorously quantify the im-
pact of membrane thickness, gas exposure length, and flow
rate on gas exchange. The devices contained four indepen-
dent PDMS vascular beds (‘‘quads’’), each comprised of a
vascular tree branching into 96 parallel channels that in-
terface with a common air chamber via a large, contiguous
collagen membrane (Fig. 1A). The geometric layout of
channel branching and cross-sectional dimensions were
based on prior designs and modeling, in which vascular
networks with physiologic hemodynamics and efficient gas
transfer were tested in the context of lung assist devices that
employed thin, acellular silicone membranes.'® For our
new collagen-membrane devices, we used channels with
100 x 100 um square cross sections, since in previous studies,
larger channels (150 x 150 pm) were too deep to achieve full
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saturation during gas exchange, while shallower channels
were less efficient due to lower throughput capacity.'®

To explore the design space, we created device configu-
rations with different gas exposure lengths at the fluid-air
interface (3 mm vs. 10 mm, defined in Fig. 1B) and different
thicknesses of collagen membranes as governed by the
concentration of collagen in the collagen gel before dessi-
cation (1.0mg/mL vs. 0.5mg/mL). The gas exposure
lengths were calculated to allow for blood traversal times on
the order of 1s at flow rates of interest, roughly corre-
sponding to lung capillary gas exposure durations.”® Re-
cognizing that the magnitude of oxygen transfer in the
single-channel transwell prototype was fairly modest, and
hypothesizing that this result could be in part due to the
thickness of the collagen membrane, we aimed to synthesize
collagen membranes approximately an order of magnitude
thinner than in the transwells. As measured by TEM on
cross sections of several collagen membranes (Fig. 1C), film
thickness was proportional to the collagen concentration in
the cases tested, with 1.0 and 0.5 mg/mL gels yielding ~4
and ~2pm membranes, respectively (Fig. 1D). These se-
lected thicknesses were approximately informed by the
human alveolus, where the gas exchange membranes are
~0.4-2 um thick.?*?!

We tested the gas exchange capacity of these acellular
collagen-membrane devices using the experimental assembly
depicted in Figure 2A: whole blood with typical venous ox-
ygen and carbon dioxide content (average SpO, 70%, pCO,
48 mmHg) was pumped steadily into the devices’ channels at
flow rates of 0.0528, 0.1584, 0.3168, or 0.528 mL/min/quad
while humidified oxygen flowed through the air chamber at a
rate such that the oxygen concentration would not be mean-
ingfully affected by gas exchange. The blood flow rates were
determined based on approximate normal physiologic limits
of shear stress, with the highest flow rate corresponding to
50 dyn/cm?, a figure based on the range of shear stresses
experienced by endothelial cells in human arteries and far
below the shear limit of erythrocytes.”*** The flow rate to
shear stress correspondence and the number of quads tested
for each physical configuration at these blood flow rates are
recorded in Table 1. For each condition, we measured the
partial pressures of oxygen (pO,) and carbon dioxide (pCO,),
oxygen saturation (SpQ,), bicarbonate, total CO,, hemoglo-
bin concentration, and pH.

The 0.5mg/mL membrane/10 mm exposure length
quads showed significantly larger increases in oxygen
tension compared with the other three conditions in two of
the flow rates tested (p<0.001 by two-way ANOVA with
Bonferroni post-test comparing configurations within each
flow rate) (Fig. 2B). Additionally, all device configura-
tions trended toward greater increases in pO, with slower
flow rates.

Because the principal contributor to oxygen content in
blood is the level of hemoglobin oxygen saturation, rather
than freely dissolved oxygen, we also compared the con-
figurations in terms of the oxygen saturation of blood exiting
the device, drawn directly from gas-impermeable tubing at
the device’s outlets to preclude extraneous contact between
the blood and ambient air. At the most rapid flow rate,
saturation was lowest in the two thicker membrane condi-
tions and highest in the 0.5mg/mL membrane/10 mm
exposure length configuration, in keeping with intuition
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(Fig. 2C). Overall, regardless of membrane parameters,
complete oxygen saturation (99-100%) was observed at the
slowest flow rate while increases in flow rate led to dimin-
ishing saturation.

To integrate the hemoglobin-bound and dissolved oxygen
measurements, the total oxygen content (mL O,/dL blood)
was computed from the following formula:**

mL 02

0, content —1.34 ( ) x Heb (i) X SpO;

L
m X pOr(mmHg)
mmHg

+0.003

As anticipated, the oxygen content of the exiting blood
showed similar trends to the oxygen saturation (Fig. 2D).
The total oxygen transfer rate (mL/min) was then calculated
from these values and the blood flow rate as follows:

O, transfer rate = Flow rate X (output blood O, content

— baseline blood O, content)

CD31 F-actin

dedek 404
e

g

pL CO,/min

=
o
ry

0.0528 0.1584 0.3168 0.528
Flow Rate (mL/min)

0.0528 0.1584 0.3168 0.528
Flow Rate (mL/min)

0.5 mg/mL coll. 1 mg/mL coll.
10 mm channel 3 mm channel

FIG. 3. Cellularized multi-channel collagen-membrane
devices. (A) Immunocytochemical stain showing coculture
of endothelial cells and lung epithelial cells, partway
through the culturing process. Green, CD31; red, F-actin;
blue, nuclei. Scale bar: 50 um. (B) Oxygen transfer per unit
time in devices cultured with human umbilical vein endo-
thelial cells in the channels and A549 parenchymal cells
in the air chamber. For (B, C), *p<0.05, **p<0.01,
*##%p <0.001 by two-way ANOVA with Bonferroni post-test
comparing configurations within each group (C) Carbon
dioxide clearance per unit time in devices with cell cocul-
ture as in (B). Color images available online at www
Jiebertpub.com/tea
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TABLE 1. NUMBER OF QUADS TESTED AT EACH
SET OF PARAMETERS (BLOOD FLOW RATE,
COLLAGEN MEMBRANE CONCENTRATION,

AND GAS EXPOSURE LENGTH)

0.0528 0.158 0.317 0.528 Flow rate
(mL/min/quad)
5 15 30 50 Shear stress

(dyn/cm?)
1 mg/mL, 3mm 9 9 9 9
1 mg/mL, 10 mm 6 6 6 6
0.5 mg/mL, 3 mm 10 10 10 10
0.5 mg/mL, 11 11 10 9

10 mm

This metric, which quantified the functional efficiency of
the device, revealed the significant impact of increasing
blood throughput on the overall gas-exchange capacity of
the collagen-membrane lung devices (Fig 2E). The oxygen
transfer normalized to total membrane surface area, in-
cluding collagen spanning inter-channel walls, ranged from
33 to 46 mL/min/m? at the minimal flow rate of 0.0528 mL/
min to 220-288 mL/min/m” at the maximal flow rate of
0.528 mL/min. In addition to oxygen-related parameters, we
also measured the changes in partial pressure of carbon di-
oxide (pCO,), plasma bicarbonate, and total CO, in the
same samples. The carbon dioxide clearance per unit time
displayed the same trends as oxygenation but with higher
magnitude across-the-board, in accordance with the higher
rate of diffusion of carbon dioxide versus oxygen (Fig. 2F).
The carbon dioxide transfer ranged from 153 to 190 mL/
min/m? at the minimal flow rate of 0.0528 mL/min to 553—
685 mL/min/m” at the maximal flow rate of 0.528 mL/min.

While acellular collagen-membrane lung devices repre-
sent an important step toward biomimetic design, the in-
corporation of cellular components is an important step
toward future goals of both avoiding thrombogenicity and
maintaining the integrity of the collagen membrane in the
long term. Analogous to the single-channel transwell de-
vices, we cultured endothelial cells (HUVECs) and ‘‘pa-
renchymal” cells (A549) on opposite sides of the collagen
membrane, facing the vascular channels and air chamber,
respectively. We confirmed the presence of both cell types
via immunofluorescent staining for CD31 (endothelial cell
junctions) and F-actin (any cell cytoplasm) as shown in
Figure 3A, which depicts a partially-confluent cellularized
collagen membrane during the culture process; a confluent
parenchymal cell layer is shown in Supplementary Fig. S2A.
To ensure that cells would not be dislodged by the presence
of flow in the channels, we seeded endothelial cells in the
device channels as before; after they had adhered, we sub-
jected them to media flowing at 0.5 mL/min/quad for a pe-
riod of 3 h, confirming through immunofluorescence that the
endothelial layer remains intact on the collagen membrane
(Supplementary Fig. S2B).

We then performed gas exchange testing on two of the
original four configurations as cellular devices: 1 mg/mL
collagen with 3 mm channel length (n=5) and 0.5 mg/mL
collagen with 10mm channel length (n=3). The rates of
oxygen and carbon dioxide transfer in cellularized devices
(Fig. 3B, C) were comparable to those in acellular devices,
but notably, the oxygenation was not significantly different
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between the two fastest flow rates, and carbon dioxide re-
lease was not significantly different among the three highest
flow rates.

Discussion

Our results establish the feasibility of using ultra-thin
collagen membranes in gas exchange devices. The type I
collagen membranes that we tested were easily colonized by
endothelial and epithelial cells in a configuration mimicking
the native alveolus, demonstrated by the bifacial seeding of
representative cell populations in the tissue-engineered al-
veolus devices (Supplementary Fig. S1B). Moreover, these
membranes were extensively remodeled by adherent cells,
producing thinner membranes (Supplementary Fig. S1C). In
our multi-channel devices, the membranes were as thin as
2 pm, approaching the normal range of the human alveolar-
capillary barrier (~ 0.4-2 um). Furthermore, the generalized
method of producing such membranes could be easily tai-
lored to test varying compositions of ECM in the future to
support cell attachment and differentiation.

The key metric of performance for any artificial lung
device is gas exchange: blood oxygenation and carbon
dioxide clearance. At the highest flow rate, the acellular
multi-channel devices exhibited excellent oxygen exchange
efﬁciencg: up to 16.5pL Oy/min on a surface area of
57.5mm? per quad, or 288 mL/min/m?* of membrane. This
compares favorably against the previous generation of lung
devices from our lab, which achieved 34 mL/min/m2% and
approaches the native human lung, which transfers oxygen
at 21-65mL/min per mmHg of oxygen gradient®® over a
~70m? surface area, for an efficiency of ~217-672mL/
min/m? on pure oxygen. Because the output oxygen saturation—
and thus total oxygen transferred per deciliter of blood—
was only moderately decreased by the flow rate, the oxygen
transfer rate per unit time always increased with increasing
blood flow rates (Fig. 2E). Importantly, for these studies, we
capped flow rates at physiologic arterial shear stresses, but it is
likely that an endothelial cell layer would tolerate higher flow
rates that could correspond to further increases in oxygen
transfer.

Although the oxygen transfer in these devices was ex-
cellent, we observed scenarios in which the output blood
was not fully saturated and the pO, did not reach the ideal of
at least 100 mmHg, reflecting the net influence of channel
depth, membrane properties, and flow rate on the devices’
performance. In the acellular collagen-membrane devices,
we observed a general trend toward greater increases in
ApO, at slower flow rates, regardless of collagen membrane
thickness or residence time, ranging from ~20mmHg at
0.528 mL/min/quad to ~ 100 mmHg at 0.0528 mL/min/quad
(Fig. 2B). The configuration with the thinnest membrane
and longest gas exposure distance showed the greatest
magnitude of ApO, at all flow rates, with statistically sig-
nificant differences versus the other configurations at all but
the fastest blood flow rate. This result agrees with the hy-
pothesized impact of thinning the membrane or lengthening
the exchange tract and argues for the importance of working
with ultra-thin collagen membranes that approach the thin-
ness of the alveolar gas exchange barrier.

At the highest flow rates tested in our study, the blood
output reached oxygen saturations in the 80-95% range
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rather than full saturation (Fig. 2C), suggesting that there is
still room for device optimization. As with the ApO, data,
the effect was most pronounced with the thicker membrane
and shorter gas exposure distance conditions, but in all
configurations, the oxygen saturation at the 0.0528 mL/min
flow rate was statistically significantly better than the satu-
ration at the 0.528 mL/min flow rate (p <0.001 by two-way
ANOVA with Bonferroni post-test comparing across flow
rates).

One strategy for addressing incomplete saturation without
further thinning the membrane or lengthening the channel is
to reduce the channel size: We have previously shown that if
the channel size is decreased below 100 um, the oxygen
saturation improves at higher flow rates.'® As such, one
contributing factor to the incomplete hemoglobin saturation
at faster flow rates may be the laminar flow in these straight,
narrow, 1:1 aspect ratio channels, where minimal mixing
is preferable for reducing the risk of thrombus formation
but less amenable to facilitating gas exchange. The optimal
channel size is not yet understood but must balance (1)
achieving optimal hemoglobin saturation, (2) allowing am-
ple blood flow rate so that a device with practical oxygen-
ation capacity remains a reasonable size, and (3) minimizing
the risk of thrombus formation. Cellularization of the de-
vices, including the gas exchange membrane as shown in
this work but ideally encompassing all sides of the vessels,
may modulate the correspondence between channel size and
risk of thrombosis. Without endothelial cells, the smallest
channel size that corresponds to a minimal risk of device
thrombosis with therapeutic anticoagulation may be 100 pm
or even larger. Endothelialization of the devices would
provide the best natural barrier to thrombus formation and
may allow the channel size to decrease below 100 pm.
Native capillaries in the lung are less than 10 pm in diam-
eter, and although this is theoretically achievable, it may be
more reasonable to consider endothelialized microchannels
on the range of 25-50 um in diameter as feasible to achieve
without thrombosis, particularly because larger channels are
preferable for minimizing space occupied by scaffolding.

Despite these observations of incomplete saturation, the
data overall remain most consistent with the oxygenation
process being blood perfusion-limited rather than oxygen
diffusion-limited, similar to the situation in native lungs,
which are only diffusion-limited in the case of extreme
physical exertion or diseased states.”” While diffusion-lim-
ited devices would be expected to show approximately
constant oxygen transfer rates at all flow rates, with oxygen
transfer per unit volume of blood dropping off as flow rates
increase, the multi-channel collagen-membrane devices in-
stead showed increasing oxygen transfer rates (Fig. 2E) and
fairly steady oxygen transfer per unit volume (Fig. 2D) with
increasing flow rate. Indeed, over the flow rates tested, the
oxygen transfer rate (Fig. 2E) as a function of perfusion can
be closely approximated with linear regression through the
origin, with R? of 0.92-0.97 for all configurations. In the
future, greater oxygen transfer efficiency may be achieved
by further increasing flow rates, limited only by the shear
tolerance of endothelial cells.

In addition to blood oxygenation, carbon dioxide clearance
from blood is also centrally important for lung devices. The
trends in carbon dioxide transfer mirrored those in oxygen
transfer, with absolute volumes about twice as large (Fig. 2F).
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The carbon dioxide clearance is adequate to lower pCO, into
the normocapnic range, even at the highest flow rates (data
not shown). In keeping with the efficient O, gas transfer on a
per-area basis, the maximal CO, transfer achieved with the
collagen membrane devices was 685 mL/min/m* These
higher CO, transfer rates are similar to what we have ob-
served with silicone membranes in a microchannel-based
lung device® and are consistent with the native lung, which
also exhibits higher maximal CO, transfer rates.

The cellularized devices yielded similar magnitudes of oxy-
gen and carbon dioxide transfer per minute compared to the
acellular devices, peaking at around 10 pL/min O, and 20 pL/
min CO, (Fig. 3B, C). Interestingly, there were not significant
differences between the two highest blood flow rates for oxygen
transfer in either cellularized configuration, implying diffusion
limitation in this regime. The diffusion limitation may be related
to the membrane and associated cells, diffusion through the
entire depth of the channel, or likely a combination of both. This
finding may also reflect the limitations of our model cell lines, as
the inherent thickness of A549 cells compared to healthy pri-
mary pneumocytes may impede effective gas exchange as
compared to the bare membrane or a membrane lined with flat
epithelium. It is thus possible that use of more phenotypically
stable, differentiable cells such as neonatal lung epithelial cells
or iPS-derived alveolar epithelial cells may reconcile the cel-
lular device data with the acellular data.

The blood gas exchange results for cellularized devices
serve as a first step toward harnessing the potential of cel-
lularization to improve long-term durability of collagen
membranes and reduce thrombogenicity. Experiments re-
lating to these hypotheses (such as long-term perfusion
followed by imaging of thrombus deposition, platelet ad-
hesion studies, and staining to assess endothelial cell acti-
vation state) could not be tested in the current device design,
since the present membrane only comprises one of the four
walls of the square channels. As such, comparisons to ex-
isting technologies regarding durability and biocompatibil-
ity cannot be made at this time. However, alternative
methods of collagen patterning and deposition could pro-
duce channels wholly comprised of collagen, enabling fu-
ture blood biocompatibility studies; furthermore, long-term
durability may be tested with differentiated cells that would
not overgrow after reaching a confluent layer.

In summary, we have designed and tested collagen mem-
brane-based lung assist device prototypes that exhibit favor-
able oxygen and carbon dioxide exchange capacity. The
membrane readily supports adherent endothelial and paren-
chymal cells, which are able to remodel the membrane. We
envision that incorporation of biologically-inspired gas ex-
change interfaces, in conjunction with advancements in mi-
crofluidic device design, may ultimately yield efficient,
biocompatible lung devices that can supplement native lungs
in patients with chronic lung disease.
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