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Abstract

The growing availability of data is creating opportunities for making better decisions,
but in many circumstances it is yet unknown how to correctly leverage this data in
systematic and optimal ways. In this thesis, we investigate new modes of data-driven
decision making, enabled by novel connections we uncover between optimization and
statistics. We pursue fundamental theory, specific methodologies, and revealing appli-
cations that advance data analytics from a tool of understanding to a decision-making
engine.

In part I, we focus on the interface between predictive and prescriptive analytics.
In the first half, we combine ideas from machine learning and operations research
to prescribe optimal decisions given historical data and auxiliary, predictive obser-
vations. We develop theory on tractability, asymptotic optimality, and performance
metrics and apply our methods to leverage large-scale web data to drive a real-world
inventory-management system. In the second half, we study the problem of data-
driven pricing and show that a naive but common predictive approach leaves money
on the table whereas a theoretically-sound prescriptive approach we propose performs
well in practice, demonstrated by a novel statistical test applied to data from a loan
provider.

In part II, we focus on the interface between statistical hypothesis testing and op-
timization under uncertainty. In the first half, we propose a novel method for data-
driven stochastic optimization that combines finite-sample guarantees with large-
sample convergence by leveraging new theory linking distributionally-robust opti-
mization and statistical hypothesis testing. In the second half, we develop data-driven
uncertainty sets for robust optimization and demonstrate that, when data is available,
our sets outperform conventional sets when used in their place in existing applications
of robust optimization.

In part III, we focus on the interface between controlled experimentation and
modern optimization. In the first half, we propose an optimization-based approach
to constructing experimental groups with discrepancies in covariate data that are
orders-of-magnitude smaller than any randomization-based approach. In the second
half, we develop a unified theory of designs that balance covariate data and their opti-
mality. We show no notion of balance exists without structure on outcomes’ functional
form, whereas with structure expressed using normed spaces, various existing designs

3



emerge as optimal and new designs arise that prove successful in practice.

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Professor of Operations Research
Co-Director, Operations Research Center
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Chapter 1

Introduction: Data and Decisions,
Optimization and Statistics

The explosion in the availability and accessibility of machine-readable data in many
applications of operations research and management science (OR/MS) is creating new
and exciting opportunities for better decision making. This thesis explores how one
can seize these opportunities by artful combination of optimization and statistics.
The ambition of this thesis is to advance data analytics from a tool of understanding
to a decision-making engine.

OR/MS has traditionally focused on prescribing decisions, usually via optimiza-
tion and often under uncertainty about key quantities affecting objectives. Statistics,
from its foundation, has been a tool of understanding, focusing on describing and pre-
dicting via such procedures as estimation, learning, and testing. Whereas the decision
and its optimization has been the protagonist of OR/MS, data and its understanding
has been the protagonist of statistics. If we are interested in making data-driven
decisions, we must consider the combination of the two. This thesis combines ideas
form the two and considers thoughtfully the complete process from data collection
to decision making in order to come up with theory, methods, and applications of
data-driven decision making that are principled, systematic, and optimal yet also
succeed in practice. We do this by leveraging new interfaces we uncover between
optimization and statistics – interfaces that allow us to trace the process from the
statistical realm of data analysis to the operational realm of optimal decisions. We
identify three particular such points of contact where new connections enable new
modes of data-driven decision making.

1.1 The Interface Between Predictive and Prescrip-
tive Analytics

Part I of this thesis focuses on the interface of predictive and prescriptive analytics
and how to bridge the gap between the analysis of large-scale data and the making of
relevant decisions in operations contexts. With the explosive growth of data, it is no
wonder that machine learning (ML) and data mining have grown in importance in fa-
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cilitating descriptive analyses (e.g. clustering) and predictive analyses (e.g. regression
and classification) of such data leading to valuable insights including, for example,
predicting movie earnings (Asur and Huberman 2010) and book sales (Gruhl et al.
2005) based on social media chatter. But such quantities being predicted are often
of key interest in decision making. For example capacity allocation, facility location,
shipment planning, and inventory management are all relevant decision-making prob-
lems that concern the quantities predicted in the examples given. Unfortunately, the
powerful ML methods that have taken hold of data science (Hastie et al. 2001) do not
address these decision-making questions, which at the end of the day are of primary
interest to most analysts and managers. Applying these methods to make a predic-
tion and basing one’s decision solely on this prediction leads to woefully inadequate
performance.

This leads us to consider the problem of learning how to make a decision under
uncertainty and using predictive observations from large-scale historical data in Part
I’s Chapter 2. We combine ideas from ML and OR/MS to develop a framework
and specific solutions to this problem. Accounting for the full process from data to
decisions, we present theory that accounts for the statistical behavior of the decisions
we make and the tractability of computing these. We demonstrate the power of
this new approach in a real-world context by applying it to leverage large-scale web
data, including web search trends, to drive the inventory-management system of an
entertainment media distributor that includes a network of over 50,000 retailers.

In Part I’s Chapter 3, we consider the more intricate problem of making a decision
with an unknown effect on the objective and based on non-experimental data, focusing
on data-driven pricing in particular. A naive but common approach to data-driven
pricing involves constructing a predictive model by regressing demand on price and
optimizing revenues implied by predicted demand, but such a predictive model may
bear no relationship to the demand induced by prescribing a particular price and
such a pricing strategy can leave money on the table. Therefore, we develop a direct
prescriptive approach that considers the prescriptive effect that setting a price control
may have on demand. We present both non-parametric and parametric approaches
to prescriptive data-driven pricing. But at the end of day, the soundness of one’s
model is irrelevant insofar as revenues generated by a particular approach cannot
be distinguished from optimal to a statistically significant degree. For this reason,
extending recent work (Besbes et al. 2010), we develop a statistical test for revenue
optimality of a particular prescription. Applying this test to real pricing problem and
using data from a loan provider, we show, nonetheless, that predictive approaches
to data-driven pricing fail in practice. On the other hand, we find that parametric
approaches to data-driven pricing often suffice, but only when they take into account
the prescriptive nature of the problem.
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1.2 The Interface Between Hypothesis Testing and
Optimization Under Uncertainty

Part II of this thesis focuses on the interface of statistical hypothesis testing and
optimization under uncertainty. Decision-making in OR/MS is often framed as a
problem of optimizing a control where there is uncertainty in key quantities that
affect the optimization problem. There are a variety of paradigms for optimiza-
tion under uncertainty including stochastic optimization (Shapiro and Andrzej 2003,
Birge and Louveaux 2011) and robust optimization (Bertsimas and Sim 2004, Ben-
Tal et al. 2009). Traditionally, corresponding models of the uncertainty – such as
probability distributions or uncertainty sets – are derived from a priori assumptions
or, sometimes, some estimation from data but with little consideration of the ensuing
decision-making process. Statistical hypothesis testing is the process of assessing the
validity of hypothesis about unknown distributions based on data. Thus, it allows
us to assess our models. But it is not clear how to directly and correctly incorpo-
rate such a procedure into a decision-making process, what is the potential effect on
decisions made by such a process, and how to make the complete data-to-decision
process computationally tractable. These are the questions we address in this part of
the thesis.

In Part II’s Chapter 4, we propose a new approach to data-driven stochastic
optimization, which we term Robust SAA, where SAA stands for sample average
approximation. SAA is a popular approach to data-driven stochastic optimization
whereby unknown true distributions are replaced by empirical distributions, which
are their maximum-likelihood estimates. Because the true distributions in the nomi-
nal stochastic optimization problem are replaced with something else, the relationship
between the corresponding optimal decisions is not always clear, except when sample
sizes go to infinity where empirical distributions converge to true ones. Therefore,
under mild assumptions, SAA is both computationally tractable and enjoys strong
asymptotic performance guarantees, but similar guarantees do not typically hold in
finite samples. The method we propose, Robust SAA, makes a decision that optimizes
expected costs and revenues with respect to the worst-case distribution among those
that pass a statistical goodness-of-fit test against the observed data. Robust SAA
enjoys the tractability and favorable asymptotic behavior of SAA while also provid-
ing finite-sample performance guarantees for the decision it recommends. The key to
Robust SAA is a novel connection between statistical hypothesis testing, SAA, and
optimization that allows us to link properties of a data-driven optimization problem,
such as finite-sample and asymptotic performance with respect to an objective, to
statistical properties of an associated goodness-of-fit hypothesis test, such as statis-
tical significance and consistency. As a theoretical consequence, we can describe the
finite-sample and asymptotic performance of Robust SAA and some existing data-
driven optimization methodologies. As a practical consequence, this connection sheds
light on which data-driven formulations are likely to perform well in particular appli-
cations and enables us to leverage powerful applied statistical tools like bootstrapping
to improve their performance in practice.
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In Part II’s Chapter 5, we propose a new way to construct uncertainty sets for ro-
bust optimization based directly on data. Robust optimization is a popular approach
to optimization under uncertainty with a proven track record in practice where the
key idea is to define an uncertainty set of possible realizations of uncertain param-
eters and then optimize against worst-case realizations within this set (for a review
see Ben-Tal and Nemirovski 2002, Bertsimas et al. 2011b). The choice of uncertainty
set is crucial for making effective decisions with robust optimization – too small and
the decision may be too sensitive to unforeseen realizations of the parameters, too
large and it may be far too conservative, not carefully shaped and the optimization
problem may be computationally intractable to solve. Whereas there are a variety
of proposals for uncertainty sets that are theoretically motivated and experimentally
validated (Ben-Tal and Nemirovski 2000, Bertsimas and Sim 2004, Ben-Tal et al.
2009, Bandi and Bertsimas 2012), they all share a common paradigm of relying on
a priori assumptions without direct deference to data to motivate the set and prove
theoretical guarantees enjoyed by the sets. Building on the previous success of robust
optimization, the question we address in this chapter is how to transform robust opti-
mization into a data-driven methodology so to seize upon the opportunity for better
decision making offered by the wide availability of data in applications. Toward this
end, we propose a novel and general schema for designing uncertainty sets for robust
optimization from data by leveraging statistical hypothesis tests. The approach is
flexible and widely applicable, and robust optimization problems built from our new
sets are computationally tractable, both theoretically and practically. Furthermore,
optimal solutions to these problems enjoy a strong, finite-sample probabilistic guar-
antee. The approach can be used in the vast array of existing applications of robust
optimization and our numerical experiments confirm that, when data is available,
using data-driven uncertainty sets improves the performance of robust optimization
decisions.

1.3 The Interface Between Controlled Experimenta-
tion and Modern Optimization

Part III of this thesis focuses on the interface of integer optimization and the statistics
of controlled experiments. The sort of data often referred to as “Big Data” is powerful
because it is cheap and plentiful – it is often a proxy to more structured information
that is expensive or impossible to gather directly. But some information cannot be
gleaned by observation alone, like the effect of a new drug or intervention. These
must be gleaned through experiments. Field experiments have also recently grown
in popularity in empirical operations management as a complement to observational
studies. However, such experiments can often be prohibitively expensive and neces-
sarily small. But large-scale observational data can help here too. A multitude of
prognostic baseline covariates are today routinely recorded on each individual experi-
mental unit such as past click behavior for experiments on the efficacy of new web ads,
demographics for experiments on the efficacy of new social programs, or genetic and
other biological characteristics for experiments on the efficacy of new pharmaceutical
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drugs. The best use of such data, especially when high-dimensional, for improving
power and precision of experiments is not always clear and many methods leave room
for improvement and are not well motivated.

In Part III’s Chapter 6, we investigate the impact of integer optimization on this
statistical problem. Most approaches to assigning test subjects to experimental groups
involve a great deal of randomization – whether it be complete randomization, blocked
randomization, pair-matched randomization, or re-randomization. However, the goal
is always to come up with experimental groups that are well-matched so to make
comparison possible. With this objective in mind, we propose a new optimization-
based approach to designing experimental groups that directly minimizes the im-
balances in group means and variances of baseline covariates using mixed-integer
optimization. We demonstrate that imbalances, when fully minimized, are orders-of-
magnitude smaller than can ever be achieved by any randomization-based approach.
At the same time, both hidden covariates and moments of observed covariates that
are not directly incorporated into the optimization are no worse matched than under
any other method. A new bootstrap-based hypothesis test allows for valid statistical
inference with this new optimization-based approach and applying it in an example of
an oncological study shows that the approach offers large gains in power. Where every
subject can cost tens of thousands of dollars, optimal use of the data is important.

In Part III’s Chapter 7, we take a step back and consider a contemplative view of
the problem through the lens of optimization and functional analysis. Many designs,
including all aforementioned designs as well as our approach above, attempt to bal-
ance baseline covariates a priori by assigning subjects before applying treatments (as
compared to a regression adjustment after the fact). Each has an implicit metric for
balance that it is addressing and trying to reduce (perhaps optimally). But each such
balancing metric is different and it is not clear which one is correct. First, we estab-
lish a no-free-lunch theorem of causal inference that dictates that, without structural
information on the functional form of how outcomes are associated with baseline co-
variates, there cannot be any notion of balance and complete randomization, which
pays no attention to baseline covariates, is an optimal design from the point of view
of minimax variance. On the other hand, imposing structural constraints in the form
of normed vector spaces of functions gives rise to various balancing metrics as equal
to the objective of worst-case variance and hence to optimal designs that minimize
this objective. A mild restrictions such as Lipschitz continuity gives rise to pairwise
matching, which had no obvious relationship to post-treatment variance previously.
Taking a leaf from machine learning and restricting unknown functions in reproducing
kernel Hilbert spaces, which can be non-parametric and dense in continuous functions,
gives rise to new and powerful designs that can be achieved by solving integer op-
timization problems or their semidefinite relaxations. Theoretical results show that
these designs achieve linear convergence (inverse exponential) in the part of the vari-
ance that can potentially be reduced by a priori balance as the number of subjects
grows, whereas classical designs achieve only logarithmic rates (inverse polynomial).
In particular, this means that only modest sample sizes are needed in order to balance
high-dimensional prognostic covariates.

19



1.4 Organization and Conventions
For the sake of accessibility each chapter is made as self-contained as possible. Mathe-
matical notation and other conventions are established independently in each chapter
and may vary between chapters. For the sake of readability, some details such as
overly technical proofs are omitted in certain places where so noted, in which case
the omissions are included in the appendices.
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Chapter 2

From Predictive to Prescriptive
Analytics

In this chapter, we combine ideas from machine learning (ML) and operations re-
search and management science (OR/MS) in developing a framework, along with
specific methods, for using data to prescribe optimal decisions in OR/MS problems.
In a departure from other work on data-driven optimization and reflecting our prac-
tical experience with the data available in applications of OR/MS, we consider data
consisting, not only of observations of quantities with direct effect on costs/revenues,
such as demand or returns, but predominantly of observations of associated auxil-
iary quantities. The main problem of interest is a conditional stochastic optimiza-
tion problem, given imperfect observations, where the joint probability distributions
that specify the problem are unknown. We demonstrate that our proposed solu-
tion methods, which are inspired by ML methods such as local regression (LOESS),
classification and regression trees (CART), and random forests (RF), are generally
applicable to a wide range of decision problems. We prove that they are computation-
ally tractable and asymptotically optimal under mild conditions even when data is
not independent and identically distributed (iid) and even for censored observations.
As an analogue to the coefficient of determination 𝑅2, we develop a metric 𝑃 termed
the coefficient of prescriptiveness to measure the prescriptive content of data and the
efficacy of a policy from an operations perspective. To demonstrate the power of our
approach in a real-world setting we study an inventory management problem faced by
the distribution arm of an international media conglomerate, which ships an average
of 1 billion units per year. We leverage both internal data and public online data
harvested from IMDb, Rotten Tomatoes, and Google to prescribe operational deci-
sions that outperform baseline measures. Specifically, the data we collect, leveraged
by our methods, accounts for an 88% improvement as measured by our coefficient of
prescriptiveness.
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2.1 Introduction
In today’s data-rich world, many problems of operations research and management
science (OR/MS) can be characterized by three primitives:

a) Data
{︀
𝑦1, . . . , 𝑦𝑁

}︀
on uncertain quantities of interest 𝑌 ∈ 𝒴 ⊂ R𝑑𝑦 such as

simultaneous demands.

b) Auxiliary data
{︀
𝑥1, . . . , 𝑥𝑁

}︀
on associated covariates 𝑋 ∈ 𝒳 ⊂ R𝑑𝑥 such as

recent sale figures, volume of Google searches for a products or company, news
coverage, or user reviews, where 𝑥𝑖 is concurrently observed with 𝑦𝑖.

c) A decision 𝑧 constrained in 𝒵 ⊂ R𝑑𝑧 made after some observation 𝑋 = 𝑥 with
the objective of minimizing the uncertain costs 𝑐(𝑧;𝑌 ).

Traditionally, decision-making under uncertainty in OR/MS has largely focused
on the problem

𝑣stoch = min
𝑧∈𝒵

E [𝑐(𝑧;𝑌 )] , 𝑧stoch ∈ argmin
𝑧∈𝒵

E [𝑐(𝑧;𝑌 )] (2.1)

and its multi-period generalizations and addressed its solution under a priori assump-
tions about the distribution 𝜇𝑌 of 𝑌 (cf. Birge and Louveaux (2011)), or, at times,
in the presence of data {𝑦1, . . . , 𝑦𝑛} in the assumed form of independent and identi-
cally distributed (iid) observations drawn from 𝜇𝑌 (cf. Shapiro (2003), Shapiro and
Nemirovski (2005), Kleywegt et al. (2002a)). (We will discuss examples of (2.1) in
Section 2.1.1.) By and large, auxiliary data

{︀
𝑥1, . . . , 𝑥𝑁

}︀
has not been extensively

incorporated into OR/MS modeling, despite its growing influence in practice.
From its foundation, machine learning (ML), on the other hand, has largely fo-

cused on supervised learning, or the prediction of a quantity 𝑌 (usually univariate) as
a function of 𝑋, based on data

{︀
(𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁)

}︀
. By and large, ML does not

address optimal decision-making under uncertainty that is appropriate for OR/MS
problems.

At the same time, an explosion in the availability and accessibility of data and
advances in ML have enabled applications that predict, for example, consumer de-
mand for video games (𝑌 ) based on online web-search queries (𝑋) (Choi and Varian
(2012)) or box-office ticket sales (𝑌 ) based on Twitter chatter (𝑋) (Asur and Hu-
berman (2010)). There are many other applications of ML that proceed in a similar
manner: use large-scale auxiliary data to generate predictions of a quantity that is
of interest to OR/MS applications (Goel et al. (2010), Da et al. (2011), Gruhl et al.
(2005, 2004), Kallus (2014a)). However, it is not clear how to go from a good predic-
tion to a good decision. A good decision must take into account uncertainty wherever
present. For example, in the absence of auxiliary data, solving (2.1) based on data
{𝑦1, . . . , 𝑦𝑛} but using only the sample mean 𝑦 = 1

𝑁

∑︀𝑁
𝑖=1 𝑦

𝑖 ≈ E [𝑌 ] and ignoring all
other aspects of the data would generally lead to inadequate solutions to (2.1) and
an unacceptable waste of good data.

In this chapter, we combine ideas from ML and OR/MS in developing a framework,
along with specific methods, for using data to prescribe optimal decisions in OR/MS

24



problems that leverage auxiliary observations. Specifically, the problem of interest is

𝑣*(𝑥) = min
𝑧∈𝒵

E
[︀
𝑐(𝑧;𝑌 )

⃒⃒
𝑋 = 𝑥

]︀
, 𝑧*(𝑥) ∈ 𝒵*(𝑥) = argmin

𝑧∈𝒵
E
[︀
𝑐(𝑧;𝑌 )

⃒⃒
𝑋 = 𝑥

]︀
,

(2.2)
where the underlying distributions are unknown and only data 𝑆𝑁 is available, where

𝑆𝑁 =
{︀
(𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁)

}︀
.

The solution 𝑧*(𝑥) to (2.2) represents the full-information optimal decision, which,
via full knowledge of the unknown joint distribution 𝜇𝑋,𝑌 of (𝑋, 𝑌 ), leverages the
observation 𝑋 = 𝑥 to the fullest possible extent in minimizing costs. We use the term
predictive prescription for any function 𝑧(𝑥) that prescribes a decision in anticipation
of the future given the observation 𝑋 = 𝑥. Our task is to use 𝑆𝑁 to construct a data-
driven predictive prescription 𝑧𝑁(𝑥). Our aim is that its performance in practice,
E
[︀
𝑐(𝑧𝑁(𝑥);𝑌 )

⃒⃒
𝑋 = 𝑥

]︀
, is close to that of the full-information optimum, 𝑣*(𝑥).

Our key contributions include:

a) We propose various ways for constructing predictive prescriptions 𝑧𝑁(𝑥) The
focus of the chapter is predictive prescriptions that have the form

𝑧𝑁(𝑥) ∈ argmin
𝑧∈𝒵

𝑁∑︁
𝑖=1

𝑤𝑁,𝑖(𝑥)𝑐(𝑧; 𝑦
𝑖), (2.3)

where 𝑤𝑁,𝑖(𝑥) are weight functions derived from the data. We motivate specific
constructions inspired by a great variety of predictive ML methods, including
for example and random forests (RF; Breiman (2001)). We briefly summarize
a selection of these constructions that we find the most effective below.

b) We also consider a construction motivated by the traditional empirical risk
minimization (ERM) approach to ML. This construction has the form

𝑧𝑁(·) ∈ arg min
𝑧(·)∈ℱ

1

𝑁

𝑁∑︁
𝑖=1

𝑐(𝑧(𝑥𝑖); 𝑦𝑖), (2.4)

where ℱ is some class of functions. We extend the standard ML theory of
out-of-sample guarantees for ERM to the case of multivariate-valued decisions
encountered in OR/MS problems. We find, however, that in the specific context
of OR/MS problems, the construction (2.4) suffers from some limitations that
do not plague the predictive prescriptions derived from (2.3).

c) We show that that our proposals are computationally tractable under mild
conditions.

d) We study the asymptotics of our proposals under sampling assumptions more
general than iid. Under appropriate conditions and for certain predictive pre-
scriptions 𝑧𝑁(𝑥) we show that costs with respect to the true distributions con-
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verge to the full information optimum, i.e.,

lim
𝑁→∞

E
[︀
𝑐(𝑧𝑁(𝑥);𝑌 )

⃒⃒
𝑋 = 𝑥

]︀
= 𝑣*(𝑥),

and that the limit points of the decision itself are optimizers of the full infor-
mation problem (2.2), i.e.,

𝐿 ({𝑧𝑁(𝑥) : 𝑁 ∈ N}) ⊂ 𝒵*(𝑥),

both for almost everywhere 𝑥 and almost surely. We also extend our results to
the case of censored data (such as observing demand via sales).

e) We introduce a new metric 𝑃 , termed the coefficient of prescriptiveness, in order
to measure the efficacy of a predictive prescription and to assess the prescriptive
content of covariates 𝑋, that is, the extent to which observing 𝑋 is helpful in
reducing costs. An analogue to the coefficient of determination 𝑅2 of predictive
analytics, 𝑃 is a unitless quantity that is (eventually) bounded between 0 (not
prescriptive) and 1 (highly prescriptive).

f) We demonstrate in a real-world setting the power of our approach. We study an
inventory management problem faced by the distribution arm of an international
media conglomerate. This entity manages over 0.5 million unique items at some
50,000 retail locations around the world, with which it has vendor-managed
inventory (VMI) and scan-based trading (SBT) agreements. On average it
ships about 1 billion units a year. We leverage both internal company data
and, in the spirit of the aforementioned ML applications, large-scale public
data harvested from online sources, including IMDb, Rotten Tomatoes, and
Google Trends. These data combined, leveraged by our approach, lead to large
improvements in comparison to baseline measures, in particular accounting for
an 88% improvement toward the deterministic perfect-foresight counterpart.

Of our proposed constructions of predictive prescriptions 𝑧𝑁(𝑥), the ones that we
find to be generally the most broadly and practically effective are the following:

a) Motivated by 𝑘-nearest-neighbors regression (𝑘NN; Altman (1992)),

𝑧𝑘NN
𝑁 (𝑥) ∈ argmin

𝑧∈𝒵

∑︁
𝑖∈𝒩𝑘(𝑥)

𝑐(𝑧; 𝑦𝑖), (2.5)

where𝒩𝑘(𝑥) =
{︁
𝑖 = 1, . . . , 𝑁 :

∑︀𝑁
𝑗=1 I [||𝑥− 𝑥𝑖|| ≥ ||𝑥− 𝑥𝑗||] ≤ 𝑘

}︁
is the neigh-

borhood of the 𝑘 data points that are closest to 𝑥.

b) Motivated by local linear regression (LOESS; Cleveland and Devlin (1988)),

𝑧LOESS
𝑁 (𝑥) ∈ argmin

𝑧∈𝒵

𝑛∑︁
𝑖=1

𝑘𝑖(𝑥)

(︃
1−

𝑛∑︁
𝑗=1

𝑘𝑗(𝑥)(𝑥
𝑗 − 𝑥)𝑇Ξ(𝑥)−1(𝑥𝑖 − 𝑥)

)︃
𝑐(𝑧; 𝑦𝑖),

(2.6)
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Figure 2-1: An Example of a Regression Tree and the Implicit Binning Rule 𝑅(𝑥)

𝑥1 ≤ 5

𝑅1 = {𝑥 : 𝑥1 ≤ 5}
�̂�1 =

1
3
(𝑦1 + 𝑦4 + 𝑦5)

𝑥2 ≤ 1

𝑅2 = {𝑥 : 𝑥1 > 5, 𝑥2 ≤ 1}
�̂�2 =

1
3
(𝑦3 + 𝑦8 + 𝑦10)

𝑅3 = {𝑥 : 𝑥1 > 5, 𝑥2 > 1}
�̂�3 =

1
4
(𝑦2 + 𝑦6 + 𝑦7 + 𝑦9)

Implicit binning rule: 𝑅(𝑥) = (𝑗 s.t. 𝑥 ∈ 𝑅𝑗)

Note: The regression tree is trained on data {(𝑥1, 𝑦1), . . . , (𝑥10, 𝑦10)} and partitions
the 𝑋 data into regions defined by the leaves. The 𝑌 prediction �̂�(𝑥) is �̂�𝑗,
the average of 𝑌 data at the leaf in which 𝑋 = 𝑥 ends up. The implicit binning
rule is 𝑅(𝑥), which maps 𝑥 to the identity of the leaf in which it ends up.

where 𝑘𝑖(𝑥) =
(︁
1− (||𝑥𝑖 − 𝑥|| /ℎ𝑁(𝑥))

3
)︁3
I [||𝑥𝑖 − 𝑥|| ≤ ℎ𝑁(𝑥)] and the matrix

Ξ(𝑥) =
∑︀𝑛

𝑖=1 𝑘𝑖(𝑥)(𝑥
𝑖−𝑥)(𝑥𝑖−𝑥)𝑇 and ℎ𝑁(𝑥) > 0 is the distance to the 𝑘-nearest

point from 𝑥. Although this form may seem complicated, it corresponds to the
simple idea of approximating E

[︀
𝑐(𝑧;𝑌 )

⃒⃒
𝑋 = 𝑥

]︀
locally by a linear function in

𝑥, which we will discuss at greater length in Section 2.2.

c) Motivated by classification and regression trees (CART; Breiman et al. (1984)),

𝑧CART
𝑁 (𝑥) ∈ argmin

𝑧∈𝒵

∑︁
𝑖:𝑅(𝑥𝑖)=𝑅(𝑥)

𝑐(𝑧; 𝑦𝑖), (2.7)

where 𝑅(𝑥) is the binning rule implied by a regression tree trained on the data
𝑆𝑁 as shown in an example in Figure 2-1.

d) Motivated by random forests (RF; Breiman (2001)),

𝑧RF
𝑁 (𝑥) ∈ argmin

𝑧∈𝒵

𝑇∑︁
𝑡=1

1

| {𝑗 : 𝑅𝑡(𝑥𝑗) = 𝑅𝑡(𝑥)} |
∑︁

𝑖:𝑅𝑡(𝑥𝑖)=𝑅𝑡(𝑥)

𝑐(𝑧; 𝑦𝑖), (2.8)

where where 𝑅𝑡(𝑥) is the binning rule implied by the 𝑡th tree in a random forest
trained on the data 𝑆𝑁 .

Further detail and other constructions are given in Sections 2.2 and 2.6.
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In this chapter, we focus on the single-period problem (2.2), in which uncertain
quantities are realized at one point in the problem. Such problems include, for exam-
ple, two-stage decision problems where one set of decisions is made before uncertain
quantities are realized and another set of decisions, known as the recourse, after. We
study the more general and more intricate multi-period extensions to this problem,
where uncertain quantities are realized at several points and in between subsequent
decisions, in the multi-period extension to the present chapter, Bertsimas and Kallus
(2015a).

2.1.1 Two Illustrative Examples

In this section, we illustrate various possible approaches to data-driven decision mak-
ing and the value of auxiliary data in two examples. We illustrate this with synthetic
data but, in Section 2.5, we study a real-world problem and use real-world data.

We first consider the mean-conditional-value-at-risk portfolio allocation problem.
Here, our decision is how we would split our budget among each of 𝑑𝑦 securities of
which our portfolio may consist. The uncertain quantities of interest are 𝑌 ∈ R𝑑𝑦 ,
the returns of each of the securities, and the decisions are 𝑧 ∈ R𝑑𝑦 , the allocation
of the budget to each security. We are interested in maximizing the mean return
while minimizing the conditional value at risk at level 𝜖 (CVaR𝜖) of losses (negative
return), which is the conditional expectation above the 1− 𝜖 quantile. Following the
reformulation of CVaR𝜖 due to Rockafellar and Uryasev (2000) and using an exchange
rate 𝜆 between CVaR𝜖 and mean return, we can write this problem using an extra
decision variable 𝛽 ∈ R, the following cost function for a realization 𝑦 of returns

𝑐((𝑧, 𝛽); 𝑦) = 𝛽 +
1

𝜖
max

{︀
−𝑧𝑇𝑦 − 𝛽, 0

}︀
− 𝜆𝑧𝑇𝑦,

and the feasible set

𝒵 =

{︃
(𝑧, 𝛽) ∈ R𝑑𝑦×1 : 𝛽 ∈ R, 𝑧 ≥ 0,

𝑑𝑦∑︁
𝑖=1

𝑧𝑖 = 1

}︃
.

The second example we consider is a two-stage shipment planning problem. Here
we have a network of 𝑑𝑧 warehouses that we use in order to satisfy the demand for
a product at 𝑑𝑦 locations. We consider two stages of the problem. In the first stage,
some time in advance, we choose amounts 𝑧𝑖 ≥ 0 of units of product to produce and
store at each warehouse 𝑖, at a cost of 𝑝1 > 0 per unit produced. In the second stage,
demand 𝑌 ∈ R𝑑𝑦 realizes at the locations and we must ship units to satisfy it. We
can ship from warehouse 𝑖 to location 𝑗 at a cost of 𝑐𝑖𝑗 per unit shipped (recourse
variable 𝑠𝑖𝑗 ≥ 0) and we have the option of using last-minute production at a cost of
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𝑝2 > 𝑝1 per unit (recourse variable 𝑡𝑖). The overall problem has the cost function

𝑐(𝑧; 𝑦) = 𝑝1

𝑑𝑧∑︁
𝑖=1

𝑧𝑖 + min

(︃
𝑝2

𝑑𝑧∑︁
𝑖=1

𝑡𝑖 +
𝑑𝑧∑︁
𝑖=1

𝑑𝑦∑︁
𝑗=1

𝑐𝑖𝑗𝑠𝑖𝑗

)︃
s.t. 𝑡𝑖 ≥ 0 ∀𝑖

𝑠𝑖𝑗 ≥ 0 ∀𝑖, 𝑗
𝑑𝑧∑︁
𝑖=1

𝑠𝑖𝑗 ≥ 𝑦𝑗 ∀𝑗

𝑑𝑦∑︁
𝑗=1

𝑠𝑖𝑗 ≤ 𝑧𝑖 + 𝑡𝑖 ∀𝑖

and the feasible set
𝒵 =

{︀
𝑧 ∈ R𝑑𝑧 : 𝑧 ≥ 0

}︀
.

The key in each problem is that we do not know 𝑌 or its distribution. We consider
the situation where we only have data 𝑆𝑁 = ((𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁)) consisting of
observations of 𝑌 along with concurrent observations of some auxiliary quantities 𝑋
that may be associated with the future value of 𝑌 . For example, in the portfolio
allocation problem, 𝑋 may include past security returns, behavior of underlying se-
curities, analyst ratings, or volume of Google searches for a company together with
keywords like “merger.” In the shipment planning problem, 𝑋 may include, for exam-
ple, past product sale figures at each of the different retail locations, weather forecasts
at the locations, or volume of Google searches for a product to measure consumer
attention.

Let us consider two possible extant data-driven approaches to leveraging such
data for making a decision. One approach is the sample average approximation of
stochastic optimization (SAA, for short). SAA only concerns itself with the marginal
distribution of 𝑌 , thus ignoring data on 𝑋, and solves the following data-driven
optimization problem

𝑧SAA
𝑁 ∈ argmin

𝑧∈𝒵

1

𝑁

𝑁∑︁
𝑖=1

𝑐(𝑧; 𝑦𝑖). (2.9)

The objective approximates E [𝑐(𝑧;𝑌 )].
Machine learning, on the other hand, leverages the data on 𝑋 as it tries to predict

𝑌 given observations 𝑋 = 𝑥. Consider for example a random forest trained on the
data 𝑆𝑁 . It provides a point prediction �̂�𝑁(𝑥) for the value of 𝑌 when 𝑋 = 𝑥.
Given this prediction, one possibility is to consider the approximation of the random
variable 𝑌 by our best-guess value �̂�𝑁(𝑥) and solve the corresponding optimization
problem,

𝑧point-pred
𝑁 ∈ argmin

𝑧∈𝒵
𝑐(𝑧; �̂�𝑁(𝑥)). (2.10)
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Figure 2-2: Comparison of Out-of-Sample Performance of Various Prescriptions
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(b) Two-stage shipment planning

Note: Out-of-sample performance is averaged over data samples and new observations
𝑥 with respect to true distributions. Lower is better. The horizontal and
vertical are on log scales.

The objective approximates 𝑐
(︀
𝑧;E

[︀
𝑌
⃒⃒
𝑋 = 𝑥

]︀)︀
. We call (2.10) a point-prediction-

driven decision.
If we knew the full joint distribution of 𝑌 and 𝑋, then the optimal decision having

observed 𝑋 = 𝑥 is given by (2.2). Let us compare SAA and the point-prediction-
driven decision (using a random forest) to this optimal decision in the two decision
problems presented. Let us also consider our proposals (2.5)-(2.8) and others that
will be introduced in Section 2.2.

We consider a particular instance of the mean-CVaR portfolio allocation problem
with 𝑑𝑦 = 12 securities, where we observe some predictive market factors 𝑋 before
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Figure 2-3: The Dependence of Performance on the Dimension 𝑑𝑥 in the Two-Stage
Shipment Planning Example
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Note: 𝑁 = 16384.

making our investment. We also consider a particular instance of the two-stage ship-
ment planning problem with 𝑑𝑧 = 5 warehouses and 𝑑𝑦 = 12 locations, where we
observe some features predictive of demand. In both cases we consider 𝑑𝑥 = 3 and
data 𝑆𝑁 that, instead of iid, is sampled from a multidimensional evolving process in
order to simulate real-world data collection. We give the particular parameters of
the problems in the supplementary Section A.4. In Figure 2-2, we report the average
performance of the various solutions with respect to the true distributions.

The full-information optimum clearly does the best with respect to the true dis-
tributions, as expected. The SAA and point-prediction-driven decisions have perfor-
mances that quickly converge to suboptimal values. The former because it does not
use observations on 𝑋 and the latter because it does not take into account the remain-
ing uncertainty after observing 𝑋 = 𝑥.1 In comparison, we find that our proposals
converge upon the full-information optimum given sufficient data. In Section 2.4.2,
we study the general asymptotics of our proposals and prove that the convergence
observed here empirically is generally guaranteed under only mild conditions.

Inspecting the figures further, it seems that ignoring 𝑋 and using only the data on
𝑌 , as SAA does, is appropriate when there is very little data; in both examples, SAA
outperforms other data-driven approaches for 𝑁 smaller than ∼64. Past that point,
our constructions of predictive prescriptions, in particular (2.5)-(2.8), leverage the
auxiliary data effectively and achieve better, and eventually optimal, performance.
The predictive prescription motivated by RF is notable in particular for performing
no worse than SAA in the small 𝑁 regime, and better in the large 𝑁 regime.

In both examples, the dimension 𝑑𝑥 of the observations 𝑥 was relatively small at

1Note that the uncertainty of the point prediction in estimating the conditional expectation,
gleaned e.g. via the bootstrap, is the wrong uncertainty to take into account, in particular because
it shrinks to zero as 𝑁 →∞.
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𝑑𝑥 = 3. In many practical problems, this dimension may well be bigger, potentially
inhibiting performance. E.g., in our real-world application in Section 2.5, we have
𝑑𝑥 = 91. To study the effect of the dimension of 𝑥 on the performance of our propos-
als, we consider polluting 𝑥 with additional dimensions of uninformative components
distributed as independent normals. The results, shown in Figure 2-3, show that
while some of the predictive prescriptions show deteriorating performance with grow-
ing dimension 𝑑𝑥, the predictive prescriptions based on CART and RF are largely
unaffected, seemingly able to detect the 3-dimensional subset of features that truly
matter.

These examples serve as an illustration of the problems and data we tackle, ex-
isting approaches, and the gaps filled by our approach. In Section 2.5, we study an
application of our approach to real-world problem and real – not synthetic – data.

2.1.2 Relevant Literature

Stochastic optimization as in (2.1) has long been the focus of decision making un-
der uncertainty in OR/MS problems (cf. Birge and Louveaux (2011)) as has its
multi-period generalization known commonly as dynamic programming (cf. Bert-
sekas (1995)). The solution of stochastic optimization problems as in (2.1) in the
presence of data {𝑦1, . . . , 𝑦𝑁} on the quantity of interest is a topic of active re-
search. The traditional approach is the sample average approximation (SAA) where
the true distribution is replaced by the empirical one (cf. Shapiro (2003), Shapiro and
Nemirovski (2005), Kleywegt et al. (2002a)). Other approaches include stochastic ap-
proximation (cf. Robbins and Monro (1951), Nemirovski et al. (2009)), robust SAA
(cf. Bertsimas et al. (2014b)), and data-driven mean-variance distributionally-robust
optimization (cf. Delage and Ye (2010), Calafiore and El Ghaoui (2006)). A notable
alternative approach to decision making under uncertainty in OR/MS problems is
robust optimization (cf. Ben-Tal et al. (2009), Bertsimas et al. (2011b)) and its data-
driven variants (cf. Bertsimas et al. (2013), Calafiore and Campi (2005)). There is
also a vast literature on the tradeoff between the collection of data and optimization
as informed by data collected so far (cf. Robbins (1952), Lai and Robbins (1985),
Besbes and Zeevi (2009)). In all of these methods for data-driven decision making
under uncertainty, the focus is on data in the assumed form of iid observations of the
parameter of interest 𝑌 . On the other hand, ML has attached great importance to
the problem of supervised learning wherein the conditional expectation (regression)
or mode (classification) of target quantities 𝑌 given auxiliary observations 𝑋 = 𝑥 is
of interest (cf. Hastie et al. (2001), Mohri et al. (2012)).

Statistical decision theory is generally concerned with the optimal selection of
statistical estimators (cf. Berger (1985), Lehmann and Casella (1998)). Following the
early work of Wald (1949), a loss function such as sum of squared errors or of absolute
deviations is specified and the corresponding admissibility, minimax-optimality, or
Bayes-optimality are of main interest. Statistical decision theory and ML intersect
most profoundly in the realm of regression via empirical risk minimization (ERM),
where a regression model is selected on the criterion of minimizing empirical average
of loss. A range of ML methods arise from ERM applied to certain function classes
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and extensive theory on function-class complexity has been developed to analyze these
(cf. Bartlett and Mendelson (2003), Vapnik (2000, 1992)). Such ML methods include
ordinary linear regression, ridge regression, the LASSO of Tibshirani (1996), quantile
regression, and ℓ1-regularized quantile regression of Belloni and Chernozhukov (2011).

In certain OR/MS decision problems, one can employ ERM to select a decision
policy, conceiving of the loss as costs. Indeed, the loss function used in quantile re-
gression is exactly equal to the cost function of the newsvendor problem of inventory
management. Rudin and Vahn (2014) consider this loss function and the selection
of a univariate-valued linear function with coefficients restricted in ℓ1-norm in order
to solve a newsvendor problem with auxiliary data, resulting in a method similar to
Belloni and Chernozhukov (2011). Kao et al. (2009) study finding a convex combi-
nation of two ERM solutions, the least-cost decision and the least-squares predictor,
which they find to be useful when costs are quadratic. In more general OR/MS
problems where decisions are constrained, we show in Section 2.6 that ERM is not
applicable. Even when it is, a linear decision rule may be inappropriate as we show by
example. For the limited problems where ERM is applicable, we generalize the stan-
dard function-class complexity theory and out-of-sample guarantees to multivariate
decision rules since most OR/MS problems involve multivariate decisions.

Instead of ERM, we are motivated more by a strain of non-parametric ML methods
based on local learning, where predictions are made based on the mean or mode
of past observations that are in some way similar to the one at hand. The most
basic such method is 𝑘NN (cf. Altman (1992)), which define the prediction as a
locally constant function depending on which 𝑘 data points lie closest. A related
method is Nadaraya-Watson kernel regression (KR) (cf. Nadaraya (1964), Watson
(1964)), which is notable for being highly amenable to theoretical analysis but sees
less use in practice. KR weighting for solving conditional stochastic optimization
problems as in (2.2) has been considered in Hanasusanto and Kuhn (2013), Hannah
et al. (2010) but these have not considered the more general connection to a great
variety of ML methods used in practice and neither have they considered asymptotic
optimality rigorously. A more widely used local learning regression method than
KR is local regression (Cameron and Trivedi (2005) pg. 311) and in particular the
LOESS method of Cleveland and Devlin (1988). Even more widely used are recursive
partitioning methods, most often in the form of trees and most notably CART of
Breiman et al. (1984). Ensembles of trees, most notably RF of Breiman (2001),
are known to be very flexible and have competitive performance in a great range of
prediction problems. The former averages locally over a partition designed based on
the data (the leaves of a tree) and the latter combines many such averages. While
there are many tree-based methods and ensemble methods, we focus on CART and
RF because of their popularity and effectiveness in practice.

2.2 From Data to Predictive Prescriptions

Recall that we are interested in the conditional-stochastic optimization problem (2.2)
of minimizing uncertain costs 𝑐(𝑧;𝑌 ) after observing 𝑋 = 𝑥. The key difficulty
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is that the true joint distribution 𝜇𝑋,𝑌 , which specifies problem (2.2), is unknown
and only data 𝑆𝑁 is available. One approach may be to approximate 𝜇𝑋,𝑌 by the
empirical distribution �̂�𝑁 over the data 𝑆𝑁 where each datapoint (𝑥𝑖, 𝑦𝑖) is assigned
mass 1/𝑁 . This, however, will in general fail unless 𝑋 has small and finite support;
otherwise, either 𝑋 = 𝑥 has not been observed and the conditional expectation is
undefined with respect to �̂�𝑁 or it has been observed, 𝑋 = 𝑥 = 𝑥𝑖 for some 𝑖, and the
conditional distribution is a degenerate distribution with a single atom at 𝑦𝑖 without
any uncertainty. Therefore, we require some way to generalize the data to reasonably
estimate the conditional expected costs for any 𝑥. In some ways this is similar to, but
more intricate than, the prediction problem where E[𝑌 |𝑋 = 𝑥] is estimated from data
for any possible 𝑥 ∈ 𝒳 . We are therefore motivated to consider predictive methods
and their adaptation to our cause.

In the next subsections we propose a selection of constructions of predictive pre-
scriptions 𝑧𝑁(𝑥), each motivated by a local-learning predictive methodology. All the
constructions in this section will take the common form of defining some data-driven
weights

𝑤𝑁,𝑖(𝑥) : the weight associated with 𝑦𝑖 when observing 𝑋 = 𝑥, (2.11)

and optimizing the decision 𝑧𝑁 against a re-weighting of the data, as in (2.3):

𝑧local
𝑁 (𝑥) ∈ argmin

𝑧∈𝒵

𝑁∑︁
𝑖=1

𝑤𝑁,𝑖(𝑥)𝑐(𝑧; 𝑦
𝑖).

In some cases the weights are nonnegative and can be understood to correspond to
an estimated conditional distribution of 𝑌 given 𝑋 = 𝑥. But, in other cases, some of
the weights may be negative and this interpretation breaks down.

2.2.1 𝑘NN

Motivated by 𝑘-nearest-neighbor regression we propose

𝑤𝑘NN
𝑁,𝑖 (𝑥) =

{︃
1/𝑘, if 𝑥𝑖 is a 𝑘NN of 𝑥,

0, otherwise,
(2.12)

giving rise to the predictive prescription (2.5). Ties among equidistant data points are
broken either randomly or by a lower-index-first rule. Finding the 𝑘NNs of 𝑥 without
pre-computation can clearly be done in 𝑂(𝑁𝑑) time. Data-structures that speed up
the process at query time at the cost of pre-computation have been developed (cf.
Bentley (1975)) and there are also approximate schemes that can significantly speed
up queries (c.f. Arya et al. (1998)).

A variation of nearest neighbor regression is the radius-weighted 𝑘-nearest neigh-
bors where observations in the neighborhood are weighted by a decreasing function
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𝑓 in their distance:

𝑤radius-𝑘NN
𝑁,𝑖 (𝑥) =

�̃�𝑁,𝑖(𝑥)∑︀𝑁
𝑗=1 �̃�𝑁,𝑗(𝑥)

, �̃�𝑁,𝑖(𝑥) =

{︃
𝑓(||𝑥𝑖 − 𝑥||), if 𝑥𝑖 is a 𝑘NN of 𝑥,

0, otherwise.

2.2.2 Kernel Methods

The Nadaraya-Watson kernel regression (KR; cf. Nadaraya (1964), Watson (1964))
estimates 𝑚(𝑥) = E[𝑌 |𝑋 = 𝑥] by

�̂�𝑁(𝑥) =

∑︀𝑁
𝑖=1 𝑦

𝑖𝐾 ((𝑥𝑖 − 𝑥)/ℎ𝑁)∑︀𝑁
𝑖=1𝐾 ((𝑥𝑖 − 𝑥)/ℎ𝑁)

,

where 𝐾 : R𝑑 → R, known as the kernel, satisfies
∫︀
𝐾 < ∞ (and often unitary

invariance) and ℎ𝑁 > 0, known as the bandwidth. For nonnegative kernels, KR is
the result of the conditional distribution estimate that arises from the Parzen-window
density estimates (cf. Parzen (1962)) of 𝜇𝑋,𝑌 and 𝜇𝑋 (i.e., their ratio). In particular,
using the same conditional distribution estimate, the following weights lead to a
predictive prescription as in (2.3):

𝑤KR
𝑁,𝑖(𝑥) =

𝐾 ((𝑥𝑖 − 𝑥)/ℎ𝑁)∑︀𝑁
𝑗=1𝐾 ((𝑥𝑗 − 𝑥)/ℎ𝑁)

. (2.13)

Some common choices of nonnegative kernels are:

a) Naïve: 𝐾(𝑥) = I [||𝑥|| ≤ 1].

b) Epanechnikov: 𝐾(𝑥) = (1− ||𝑥||2)I [||𝑥|| ≤ 1].

c) Tri-cubic: 𝐾(𝑥) =
(︀
1− ||𝑥||3

)︀3 I [||𝑥|| ≤ 1].

d) Gaussian: 𝐾(𝑥) = exp
(︀
− ||𝑥||2 /2

)︀
.

(2.14)
Note that the naïve kernel with bandwidth ℎ𝑁 corresponds directly to uniformly
weighting all neighbors of 𝑥 that are within a radius ℎ𝑁 . A comparison of different
kernels is shown in Figure 2-4.

It is these weights (2.13) that are used in Hanasusanto and Kuhn (2013), Han-
nah et al. (2010) (without formally considering asymptotic optimality of 𝑧𝑁(𝑥)). A
problem with KR is that it can be very biased in high dimensions, especially at the
boundaries of the data (estimates will tend toward the outliers at the boundaries).
While KR is particularly amenable to theoretical analysis due to its simplicity, it is
not widely used in practice. We will next consider local regression, which is a related,
more widely used approach. Before we proceed we first introduce a recursive modi-
fication to (2.13) that is motivated by an alternative kernel regressor introduced by
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Figure 2-4: Comparison of the Different Kernels
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Devroye and Wagner (1980):

𝑤recursive-KR
𝑁,𝑖 (𝑥) =

𝐾 ((𝑥𝑖 − 𝑥)/ℎ𝑖)∑︀𝑁
𝑗=1𝐾 ((𝑥𝑗 − 𝑥)/ℎ𝑗)

, (2.15)

where now the bandwidths ℎ𝑖 are selected per-data-point and independent of 𝑁 . The
benefits of (2.15) include the simplicity of an update when accumulating additional
data since all previous weights remain unchanged as well as smaller variance under
certain conditions (cf. Roussas (1992)). Moreover, from a theoretical point of view,
much weaker conditions are necessary to ensure good asymptotic behavior of (2.15)
compared to (2.13), as we will see in the next section.

2.2.3 Local Linear Methods

An alternative interpretation of KR predictions is they solves the locally-weighted
least squares problem for a constant predictor:

�̂�𝑁(𝑥) = argmin
𝛽0

𝑁∑︁
𝑖=1

𝑘𝑖(𝑥)
(︀
𝑦𝑖 − 𝛽0

)︀2
.

One can instead consider a predictive method that solves a similar locally-weighted
least squares problem for a linear predictor:

�̂�𝑁(𝑥) = argmin
𝛽0

min
𝛽1

𝑁∑︁
𝑖=1

𝑘𝑖(𝑥)
(︀
𝑦𝑖 − 𝛽0 − 𝛽𝑇1 (𝑥𝑖 − 𝑥)

)︀2
.

In prediction, local linear methods are known to be preferable over KR (cf. Fan
(1993)). Combined with a particular choice of 𝑘𝑖(𝑥), this results in the linear ver-
sion of the LOESS variant of local regression developed in Cleveland and Devlin
(1988). If, instead, we use this idea to locally approximate the conditional costs
E
[︀
𝑐(𝑧;𝑌 )

⃒⃒
𝑋 = 𝑥

]︀
by a linear function we will arrive at a functional estimate and a
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predictive prescription as in (2.3) with the weights

𝑤LOESS
𝑁,𝑖 (𝑥) =

�̃�𝑁,𝑖(𝑥)∑︀𝑁
𝑗=1 �̃�𝑁,𝑗(𝑥)

, (2.16)

�̃�𝑁,𝑖(𝑥) = 𝑘𝑖(𝑥)

(︃
1−

𝑛∑︁
𝑗=1

𝑘𝑗(𝑥)(𝑥
𝑗 − 𝑥)𝑇Ξ(𝑥)−1(𝑥𝑖 − 𝑥)

)︃
,

where Ξ(𝑥) =
∑︀𝑛

𝑖=1 𝑘𝑖(𝑥)(𝑥
𝑖 − 𝑥)(𝑥𝑖 − 𝑥)𝑇 and 𝑘𝑖(𝑥) = 𝐾 ((𝑥𝑖 − 𝑥)/ℎ𝑁(𝑥)). In the

LOESS method, 𝐾 is the tri-cubic kernel and ℎ𝑁(𝑥) is not fixed, as it is in (2.13),
but chosen to vary with 𝑥 so that at each query point 𝑥 the same number of data
points taken into consideration; in particular, ℎ𝑁(𝑥) is chosen to be the distance to
𝑥’s 𝑘-nearest neighbor where 𝑘, in turn, is fixed. These choices lead to the form of
𝑧LOESS
𝑁 (𝑥) presented in Section 2.1.

2.2.4 Trees

Tree-based methods recursively split the sample 𝑆𝑁 into regions in 𝒳 so to gain re-
duction in “impurity” of the response variable 𝑌 within each region. The most well
known tree-based predictive method is CART developed in Breiman et al. (1984).
There are different definitions of “impurity,” such as Gini or entropy for classifica-
tion and variance reduction for regression, and different heuristics to choose the best
split, different combinations resulting in different algorithms. Multivariate impurity
measures are usually the component-wise average of univariate impurities. Splits are
usually restricted to axis-aligned half-spaces. Such splits combined with the Gini
impurity for classification and variance reduction for regression results in the origi-
nal CART algorithm of Breiman et al. (1984). Once a tree is constructed, the value
of E[𝑌 |𝑋 = 𝑥] (or, the most likely class) is then estimated by the average (or, the
mode) of 𝑦𝑖’s associated with the 𝑥𝑖’s that reside in the same region as 𝑥. The recur-
sive splitting is most often represented as a tree with each non-leaf node representing
an intermediate region in the algorithm (see Figure 2-1). With axis-aligned splits, the
tree can be represented as subsequent inquiries about whether a particular component
of the vector 𝑥 is larger or smaller than a value. For a thorough review of tree-based
methods and their computation see §9.2 of Hastie et al. (2001).

Regardless of the particular method chosen, the final partition can generally be
represented as a binning rule identifying points in 𝒳 with the disjoint regions, ℛ :
𝒳 → {1, . . . , 𝑟}. The partition is then the disjoint union ℛ−1(1) ⊔ · · · ⊔ ℛ−1(𝑟) = 𝒳 .
The tree regression and classification estimates correspond directly to taking averages
or modes over the uniform distribution of the data points residing in the region 𝑅(𝑥).

For our prescription problem, we propose to use the binning rule to construct
weights as follows for a predictive prescription of the form (2.3):

𝑤CART
𝑁,𝑖 (𝑥) =

I [ℛ(𝑥) = ℛ(𝑥𝑖)]
| {𝑗 : 𝑅(𝑥𝑗) = 𝑅(𝑥)} |

. (2.17)
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Notice that the weights (2.17) are piecewise constant over the partitions and there-
fore the recommended optimal decision 𝑧𝑁(𝑥) is also piecewise constant. Therefore,
solving 𝑟 optimization problems after the recursive partitioning process, the resulting
predictive prescription can be fully compiled into a decision tree, with the decisions
that are truly decisions. This also retains CART’s lauded interpretability. Apart
from being interpretable, tree-based methods are also known to be useful in learning
complex interactions and to perform well with large datasets.2

2.2.5 Ensembles

A random forest, developed in Breiman (2001), is an ensemble of trees each trained on
a random subset of components of𝑋 and a random subsample of the data. This makes
them more uncorrelated and therefore their average have lower variance. Random
forests are one of the most flexible tools of ML and is extensively used in predictive
applications. For a thorough review of random forests and their computation see §15
of Hastie et al. (2001).

After training such a random forest of trees, we can extract the partition rules ℛ𝑡

𝑡 = 1, . . . , 𝑇 , one for each tree in the forest. We propose to use these to construct the
following weights as follows for a predictive prescription of the form (2.3):

𝑤RF
𝑁,𝑖(𝑥) =

1

𝑇

𝑇∑︁
𝑡=1

I [ℛ𝑡(𝑥) = ℛ𝑡(𝑥𝑖)]

| {𝑗 : 𝑅𝑡(𝑥𝑗) = 𝑅𝑡(𝑥)} |
. (2.18)

There are also other tree-ensembles methods. RF essentially combines the ideas from
bagged (bootstrap-aggregated) forests (cf. Breiman (1996)) and random-subspace
forests (cf. Ho (1998)). Other forest ensembles include extremely randomized trees
developed in Geurts et al. (2006). The weights extracted from alternative tree en-
sembles would have the same form as (2.18).

In practice, RF is known as a flexible prediction algorithm that can perform
competitively in almost any problem instance (cf. Breiman et al. (2001)). For our
prescription problem, in Section 2.1.1 we saw that our predictive prescription based
on RF, given in eq. (2.8), performed well overall in two different problems, for a range
of sample sizes, and for a range of dimensions 𝑑𝑥. Based on this evidence of flexible
performance, we choose our predictive prescription based on RF for our real-world
application, which we study in Section 2.5.

2A more direct application of tree methods to the prescription problem would have us consider
the impurities being minimized in each split to be equal to the mean cost 𝑐(𝑧; 𝑦) of taking the best
constant decision 𝑧 in each side of the split. However, since we must consider splitting on each
variable and at each data point to find the best split (cf. pg. 307 of Hastie et al. (2001)), this can
be overly computationally burdensome for all but the simplest problems that admit a closed form
solution such as least sum of squares or the newsvendor problem.
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2.3 Metrics of Prescriptiveness

In this section, we develop a relative, unitless measure of the efficacy of a predictive
prescription. An absolute measure of efficacy is marginal expected costs,

𝑅(𝑧𝑁) = E
[︀
E
[︀
𝑐 (𝑧𝑁(𝑋);𝑌 )

⃒⃒
𝑋
]︀]︀

= E [𝑐 (𝑧𝑁(𝑋);𝑌 )] .

Given a validation data set 𝑆𝑁𝑣 =
(︀
(�̃�1, 𝑦1), · · · , (�̃�𝑁𝑣 , 𝑦𝑁𝑣)

)︀
, we can estimate 𝑅(𝑧𝑁)

as the sample average:

�̂�𝑁𝑣(𝑧𝑁) =
1

𝑁𝑣

𝑁𝑣∑︁
𝑖=1

𝑐
(︀
𝑧𝑁(�̃�

𝑖); 𝑦𝑖
)︀
.

If 𝑆𝑁𝑣 = 𝑆𝑁 then this an in-sample estimate, which biases in favor of overfitting, and
if 𝑆𝑁𝑣 is disjoint, then this is an out-of-sample estimate that provides an unbiased
estimate of 𝑅(𝑧𝑁).

While an absolute measure allows one to compare two predictive prescriptions for
the same problem and data, a relative measure can quantify the overall prescriptive
content of the data and the efficacy of a prescription on a universal scale. For example,
in predictive analytics, the coefficient of determination 𝑅2 – rather than the absolute
root-mean-squared error – is a unitless quantity used to quantify the overall quality
of a prediction and the predictive content of data 𝑋. 𝑅2 measures the fraction of
variance of 𝑌 reduced, or “explained,” by the prediction based on 𝑋. Another way
of interpreting 𝑅2 is as the fraction of the way that 𝑋 and a particular predictive
model take us from a data-poor prediction (the sample average) to a perfect-foresight
prediction that knows 𝑌 in advance.

We define an analogous quantity for the predictive prescription problem, which
we term the coefficient of prescriptiveness. It involves three quantities. First,

�̂�𝑁𝑣 (𝑧𝑁(𝑥)) =
1

𝑁𝑣

𝑁𝑣∑︁
𝑖=1

𝑐
(︀
𝑧𝑁(�̃�

𝑖); 𝑦𝑖
)︀

is the estimated expected costs due to our predictive prescription. Second,

�̂�*
𝑁𝑣

=
1

𝑁𝑣

𝑁𝑣∑︁
𝑖=1

min
𝑧∈𝒵

𝑐
(︀
𝑧; 𝑦𝑖

)︀
is the estimated expected costs in the deterministic perfect-foresight counterpart prob-
lem, in which one has foreknowledge of 𝑌 without any uncertainty (note the difference
to the full-information optimum, which does have uncertainty). Third,

�̂�𝑁𝑣

(︀
𝑧SAA
𝑁

)︀
=

1

𝑁𝑣

𝑁𝑣∑︁
𝑖=1

𝑐
(︀
𝑧SAA
𝑁 ; 𝑦𝑖

)︀
where 𝑧SAA

𝑁 ∈ argmin
𝑧∈𝒵

1

𝑁

𝑁∑︁
𝑖=1

𝑐
(︀
𝑧; 𝑦𝑖

)︀
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Figure 2-5: The Coefficient of Prescriptiveness 𝑃
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(b) Two-stage shipment planning

Note: The examples follow Section 2.1.1. Here 𝑃 is measured out of sample. The
black horizontal line denotes the theoretical limit.

is the estimated expected costs of a data-driven prescription that is data poor, based
only on 𝑌 data. This is the SAA solution to the prescription problem, which serves as
the analogue to the sample average as a data-poor solution to the prediction problem.
Using these three quantities, we define the coefficient of prescriptiveness 𝑃 as follows:

𝑃 = 1−
�̂�𝑁𝑣 (𝑧𝑁(𝑥))− �̂�*

𝑁𝑣

�̂�𝑁𝑣 (𝑧
SAA
𝑁 )− �̂�*

𝑁𝑣

(2.19)
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When 𝑆𝑁𝑣 = 𝑆𝑁 (in-sample) we can write

𝑃 = 1−

1

𝑁

𝑁∑︁
𝑖=1

𝑐
(︀
𝑧𝑁(𝑥

𝑖); 𝑦𝑖
)︀
− 1

𝑁

𝑁∑︁
𝑖=1

min
𝑧∈𝒵

𝑐
(︀
𝑧; 𝑦𝑖

)︀
min
𝑧∈𝒵

1

𝑁

𝑁∑︁
𝑖=1

𝑐
(︀
𝑧; 𝑦𝑖

)︀
− 1

𝑁

𝑁∑︁
𝑖=1

min
𝑧∈𝒵

𝑐
(︀
𝑧; 𝑦𝑖

)︀ .

The coefficient of prescriptiveness 𝑃 is a unitless quantity bounded above by 1. A
low 𝑃 denotes that 𝑋 provides little useful information for the purpose of prescribing
an optimal decision in the particular problem at hand or that 𝑧𝑁(𝑥) is ineffective in
leveraging the information in 𝑋. A high 𝑃 denotes that taking 𝑋 into consideration
has a significant impact on reducing costs and that 𝑧𝑁 is effective in leveraging 𝑋 for
this purpose.

Let us consider the coefficient of prescriptiveness in the two examples from Section
2.1.1. For each of our predictive prescriptions and for each 𝑁 , we measure the out
of sample 𝑃 on a validation set of size 𝑁𝑣 = 200 and plot the results in Figure 2-
5. Notice that even when we converge to the full-information optimum, 𝑃 does not
approach 1 as 𝑁 grows. Instead we see that for the same methods that converged
to the full-information optimum in Figure 2-2, we have a 𝑃 that approaches 0.13 in
the portfolio allocation example and 0.46 in the shipment planning example. This
number represents the extent of the potential that 𝑋 has to reduce costs in this
particular problem. It is the fraction of the way that knowledge of 𝑋, leveraged
correctly, takes us from making a decision under full uncertainty about the value of
𝑌 to making a decision in a completely deterministic setting. As is the case with 𝑅2,
what magnitude of 𝑃 denotes a successful application depends on the context. In our
real-world application in Section 2.5, we find an out-of-sample 𝑃 of 0.88.

2.4 Properties of Local Predictive Prescriptions

In this section, we study two important properties of local predictive prescriptions:
computational tractability and asymptotic optimality. All proofs are given in the
E-companion.

2.4.1 Tractability

In Section 2.2, we considered a variety of predictive prescriptions 𝑧𝑁(𝑥) that are com-
puted by solving the optimization problem (2.3). An important question is then when
is this optimization problem computationally tractable to solve. As an optimization
problem, problem (2.3) differs from the problem solved by the standard SAA approach
(2.9) only in the weights given to different observations. Therefore, it is similar in its
computational complexity and we can defer to computational studies of SAA such
as Shapiro and Nemirovski (2005) to study the complexity of solving problem (2.3).
For completeness, we develop sufficient conditions for problem (2.3) to be solvable in
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polynomial time.

Theorem 2.1. Fix 𝑥 and weights 𝑤𝑁,𝑖(𝑥) ≥ 0. Suppose 𝒵 is a closed convex set and
let a separation oracle for it be given. Suppose also that 𝑐(𝑧; 𝑦) is convex in 𝑧 for
every fixed 𝑦 and let oracles be given for evaluation and subgradient in 𝑧. Then for
any 𝑥 we can find an 𝜖-optimal solution to (2.3) in time and oracle calls polynomial
in 𝑁0, 𝑑, log(1/𝜖) where 𝑁0 =

∑︀𝑁
𝑖=1 I [𝑤𝑁,𝑖(𝑥) > 0] ≤ 𝑁 is the effective sample size.

Note that all of the weights presented in Section 2.2 have been necessarily all
nonnegative with the exception of local regression (2.16). As the spans ℎ𝑁(𝑥) shrink
and the number of data points increases, these weights will always become nonnega-
tive. However, for a fixed problem the weights 𝑤LOESS

𝑁,𝑖 (𝑥) may be negative for some
𝑖 and 𝑥, in which case the optimization problem (2.3) may not be polynomially solv-
able. In particular, in the case of the portfolio example presented in Section 2.1.1, if
some weights are negative, we formulate the corresponding optimization problem as
a mixed integer-linear optimization problem.

2.4.2 Asymptotic Optimality

In Section 2.1.1, we saw that our predictive prescriptions 𝑧𝑁(𝑥) converged to the full-
information optimum as the sample size 𝑁 grew. Next, we show that this anecdotal
evidence is supported by mathematics and that such convergence is guarantees under
only mild conditions. We define asymptotic optimality as the desirable asymptotic
behavior for 𝑧𝑁(𝑥).

Definition 2.2. We say that 𝑧𝑁(𝑥) is asymptotically optimal if, with probability 1,
we have that for 𝜇𝑋-almost-everywhere 𝑥 ∈ 𝒳 , as 𝑁 →∞

lim
𝑁→∞

E
[︀
𝑐(𝑧𝑁(𝑥);𝑌 )

⃒⃒
𝑋 = 𝑥

]︀
= 𝑣*(𝑥),

𝐿 ({𝑧𝑁(𝑥) : 𝑁 ∈ N}) ⊂ 𝒵*(𝑥),

where 𝐿(𝐴) denotes the limit points of 𝐴.

Asymptotic optimality depends on our choice of 𝑧𝑁(𝑥), the structure of the de-
cision problem (cost function and feasible set), and on how we accumulate our data
𝑆𝑁 . The traditional assumption on data collection is that it constitutes an iid process.
This is a strong assumption and is often only a modeling approximation. The veloc-
ity and variety of modern data collection often means that historical observations do
not generally constitute an iid sample in any real-world application. We are there-
fore motivated to consider an alternative model for data collection, that of mixing
processes. These encompass such processes as ARMA, GARCH, and Markov chains,
which can correspond to sampling from evolving systems like prices in a market, daily
product demands, or the volume of Google searches on a topic. While many of our
results extend to such settings, we present only the iid case in the main text to avoid
cumbersome exposition and defer these extensions to the supplemental Section A.1.2.
For the rest of the section let us assume that 𝑆𝑁 is generated by iid sampling.
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As mentioned, asymptotic optimality also depends on the structure of the decision
problem. Therefore, we will also require the following conditions.

Assumption 2.3 (Existence). The full-information problem (2.2) is well defined:
E [|𝑐(𝑧;𝑌 )|] <∞ for every 𝑧 ∈ 𝒵 and 𝒵*(𝑥) ̸= ∅ for almost every 𝑥.

Assumption 2.4 (Continuity). 𝑐(𝑧; 𝑦) is equicontinuous in 𝑧: for any 𝑧 ∈ 𝒵 and
𝜖 > 0 there exists 𝛿 > 0 such that |𝑐(𝑧; 𝑦)− 𝑐(𝑧′; 𝑦)| ≤ 𝜖 for all 𝑧′ with ||𝑧 − 𝑧′|| ≤ 𝛿
and 𝑦 ∈ 𝒴 .

Assumption 2.5 (Regularity). 𝒵 is closed and nonempty and in addition either

1. 𝒵 is bounded,

2. 𝒵 is convex and 𝑐(𝑧; 𝑦) is convex in 𝑧 for every 𝑦 ∈ 𝒴 , or

3. lim inf ||𝑧||→∞ inf𝑦∈𝒴 𝑐(𝑧; 𝑦) > −∞ and for every 𝑥 ∈ 𝒳 , there exists 𝐷𝑥 ⊂ 𝒴 such
that lim||𝑧||→∞ 𝑐(𝑧; 𝑦)→∞ uniformly over 𝑦 ∈ 𝐷𝑥 and P

(︀
𝑦 ∈ 𝐷𝑥

⃒⃒
𝑋 = 𝑥

)︀
> 0.

Under these conditions, we have the following sufficient conditions for asymptotic
optimality.

Theorem 2.6 (𝑘NN). Suppose Assumptions 2.3, 2.4, and 2.5 hold. Let 𝑤𝑁,𝑖(𝑥) be
as in (2.12) with 𝑘 = min

{︀
⌈𝐶𝑁 𝛿⌉, 𝑁 − 1

}︀
for some 𝐶 > 0, 0 < 𝛿 < 1. Let 𝑧𝑁(𝑥) be

as in (2.3). Then 𝑧𝑁(𝑥) is asymptotically optimal.

Theorem 2.7 (Kernel Methods). Suppose Assumptions 2.3, 2.4, and 2.5 hold and
that E [|𝑐(𝑧;𝑌 )|max {log |𝑐(𝑧;𝑌 )| , 0}] < ∞ for each 𝑧. Let 𝑤𝑁,𝑖(𝑥) be as in (2.13)
with 𝐾 being any of the kernels in (2.14) and ℎ𝑁 = 𝐶𝑁−𝛿 for 𝐶 > 0, 0 < 𝛿 < 1/𝑑𝑥.
Let 𝑧𝑁(𝑥) be as in (2.3). Then 𝑧𝑁(𝑥) is asymptotically optimal.

Theorem 2.8 (Recursive Kernel Methods). Suppose Assumptions 2.3, 2.4, and 2.5
hold. Let 𝑤𝑁,𝑖(𝑥) be as in (2.15) with 𝐾 being the naïve kernel and ℎ𝑖 = 𝐶𝑖−𝛿 for
some 𝐶 > 0, 0 < 𝛿 < 1/(2𝑑𝑥). Let 𝑧𝑁(𝑥) be as in (2.3). Then 𝑧𝑁(𝑥) is asymptotically
optimal.

Theorem 2.9 (Local Linear Methods). Suppose Assumptions 2.3, 2.4, and 2.5 hold,
that 𝜇𝑋 is absolutely continuous and has density bounded away from 0 and ∞ on the
support of 𝑋, and that costs are bounded over 𝑦 for each 𝑧 (i.e., |𝑐(𝑧; 𝑦)| ≤ 𝑔(𝑧)). Let
𝑤𝑁,𝑖(𝑥) be as in (2.16) with 𝐾 being any of the kernels in (2.14) and with ℎ𝑁 = 𝐶𝑁−𝛿

for some 𝐶 > 0, 0 < 𝛿 < 1/𝑑𝑥. Let 𝑧𝑁(𝑥) be as in (2.3). Then 𝑧𝑁(𝑥) is asymptotically
optimal.

Although we do not have firm theoretical results on the asymptotic optimality of
the predictive prescriptions based on CART (eq. (2.7)) and RF (eq. (2.8)), we have
observed them to converge empirically in Section 2.1.1.
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2.5 A Real-World Application

In this section, we apply our approach to a real-world problem faced by the distribu-
tion arm of an international media conglomerate (the vendor) and demonstrate that
our approach, combined with extensive data collection, leads to significant advan-
tages. The vendor has asked us to keep its identity confidential as well as data on
sale figures and specific retail locations. Some figures are therefore shown on relative
scales.

2.5.1 Problem Statement

The vendor sells over 0.5 million entertainment media titles on CD, DVD, and BluRay
at over 50,000 retailers across the US and Europe. On average they ship 1 billion units
in a year. The retailers range from electronic home goods stores to supermarkets, gas
stations, and convenience stores. These have vendor-managed inventory (VMI) and
scan-based trading (SBT) agreements with the vendor. VMI means that the inventory
is managed by the vendor, including replenishment (which they perform weekly) and
planogramming. SBT means that the vendor owns all inventory until sold to the
consumer. Only at the point of sale does the retailer buy the unit from the vendor
and sell it to the consumer. This means that retailers have no cost of capital in
holding the vendor’s inventory.

The cost of a unit of entertainment media consists mainly of the cost of produc-
tion of the content. Media-manufacturing and delivery costs are secondary in effect.
Therefore, the primary objective of the vendor is simply to sell as many units as
possible and the main limiting factor is inventory capacity at the retail locations.
For example, at many of these locations, shelf space for the vendor’s entertainment
media is limited to an aisle endcap display and no back-of-the-store storage is avail-
able. Thus, the main loss incurred in over-stocking a particular product lies in the
loss of potential sales of another product that sold out but could have sold more. In
studying this problem, we will restrict our attention to the replenishment and sale of
video media only and to retailers in Europe.

Apart from the limited shelf space the other main reason for the difficulty of the
problem is the particularly high uncertainty inherent in the initial demand for new
releases. Whereas items that have been sold for at least one period have a somewhat
predictable decay in demand, determining where demand for a new release will start
is a much less trivial task. At the same time, new releases present the greatest
opportunity for high demand and many sales.

We now formulate the full-information problem. Let 𝑟 = 1, . . . , 𝑅 index the lo-
cations, 𝑡 = 1, . . . , 𝑇 index the replenishment periods, and 𝑗 = 1, . . . , 𝑑 index the
products. Denote by 𝑧𝑗 the order quantity decision for product 𝑗, by 𝑌𝑗 the uncer-
tain demand for product 𝑗, and by 𝐾𝑟 the overall inventory capacity at location 𝑟.
Considering only the main effects on revenues and costs as discussed in the previ-
ous paragraph, the problem decomposes on a per-replenishment-period, per-location
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basis. We therefore wish to solve, for each 𝑡 and 𝑟, the following problem:

𝑣*(𝑥𝑡𝑟) = max E

[︃
𝑑∑︁
𝑗=1

min {𝑌𝑗, 𝑧𝑗}

⃒⃒⃒⃒
⃒𝑋 = 𝑥𝑡𝑟

]︃
=

𝑑∑︁
𝑗=1

E
[︀
min {𝑌𝑗, 𝑧𝑗}

⃒⃒
𝑋𝑗 = 𝑥𝑡𝑟

]︀
(2.20)

s.t.
𝑑∑︁
𝑗=1

𝑧𝑗 ≤ 𝐾𝑟

𝑧𝑗 ≥ 0 ∀𝑗 = 1, . . . , 𝑑,

where 𝑥𝑡𝑟 denotes auxiliary data available at the beginning of period 𝑡 in the (𝑡, 𝑟)th

problem.
Note that had there been no capacity constraint in problem (2.20) and a per-unit

ordering cost were added, the problem would decompose into 𝑑 separate newsvendor
problems, the solution to each being exactly a quantile regression on the regressors
𝑥𝑡𝑟. As it is, the problem is coupled, but, fixing 𝑥𝑡𝑟, the capacity constraint can be
replaced with an equivalent per-unit ordering cost 𝜆 via Lagrangian duality and the
optimal solution is attained by setting each 𝑧𝑗 to the 𝜆th conditional quantile of 𝑌𝑗.
However, the reduction to quantile regression does not hold since the dual optimal
value of 𝜆 depends simultaneously on all of the conditional distributions of 𝑌𝑗 for
𝑗 = 1, . . . , 𝑑.

2.5.2 Applying Predictive Prescriptions to Censored Data

In applying our approach to problem (2.20), we face the issue that we have data on
sales, not demand. That is, our data on the quantity of interest 𝑌 is right-censored.
In this section, we develop a modification of our approach to correct for this. The
results in this section apply generally.

Suppose that instead of data {𝑦1, . . . , 𝑦𝑁} on 𝑌 , we have data {𝑢1, . . . , 𝑢𝑁} on
𝑈 = min {𝑌, 𝑉 } where 𝑉 is an observable random threshold, data on which we
summarize via 𝛿 = I [𝑈 < 𝑉 ]. For example, in our application, 𝑉 is the on-hand
inventory level at the beginning of the period. Overall, our data consists of 𝑆𝑁 ={︀
(𝑥1, 𝑢1, 𝛿1), . . . , (𝑥𝑁 , 𝑢𝑁 , 𝛿𝑁)

}︀
.

In order to correct for the fact that our observations are in fact censored, we
develop a conditional variant of the Kaplan-Meier method (cf. Kaplan and Meier
(1958), Huh et al. (2011)) to transform our weights appropriately. Let (𝑖) denote the
ordering 𝑢(1) ≤ · · · ≤ 𝑢(𝑁). Given the weights 𝑤𝑁,𝑖(𝑥) generated based on the naïve
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assumption that 𝑦𝑖 = 𝑢𝑖, we transform these into the weights

𝑤KM
𝑁,(𝑖)(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(︃
𝑤𝑁,(𝑖)(𝑥)∑︀𝑁
ℓ=𝑖𝑤𝑁,(ℓ)(𝑥)

)︃ ∏︁
𝑘≤𝑖−1 : 𝛿(𝑘)=1

(︃∑︀𝑁
ℓ=𝑘+1𝑤𝑁,(ℓ)(𝑥)∑︀𝑁
ℓ=𝑘 𝑤𝑁,(ℓ)(𝑥)

)︃
, if 𝛿(𝑖) = 1,

0, if 𝛿(𝑖) = 0.

(2.21)

We next show that the transformation (2.21) preserves asymptotic optimality
under certain conditions. The proof is in the E-companion.

Theorem 2.10. Suppose that 𝑌 and 𝑉 are conditionally independent given 𝑋, that
𝑌 and 𝑉 share no atoms, that for every 𝑥 ∈ 𝒳 the upper support of 𝑉 given 𝑋 = 𝑥
is greater than the upper support of 𝑌 given 𝑋 = 𝑥, and that costs are bounded over
𝑦 for each 𝑧 (i.e., |𝑐(𝑧; 𝑦)| ≤ 𝑔(𝑧)). Let 𝑤𝑁,𝑖(𝑥) be as in (2.12), (2.13), (2.15), or
(2.16) and suppose the corresponding assumptions of Theorem 2.6, 2.7, 2.8, or 2.9
apply. Let 𝑧𝑁(𝑥) be as in (2.3) but using the transformed weights (2.21). Then 𝑧𝑁(𝑥)
is asymptotically optimal.

The assumption that 𝑌 and 𝑉 share no atoms (which holds in particular if either is
continuous) provides that 𝛿 𝑎.𝑠.

= I [𝑌 ≤ 𝑉 ] so that the event of censorship is observable.
In applying this to problem (2.20), the assumption that 𝑌 and 𝑉 are conditionally
independent given 𝑋 will hold if 𝑋 captures at least all of the information that past
stocking decisions, which are made before 𝑌 is realized, may have been based on. The
assumption on bounded costs applies to problem (2.20) because the cost (negative of
the objective) is bounded in [−𝐾𝑟, 0].

2.5.3 Data

In this section, we describe the data collected. To get at the best data-driven predic-
tive prescription, we combine both internal company data and public data harvested
from online sources. The predictive power of such public data has been extensively
documented in the literature (cf. Asur and Huberman (2010), Choi and Varian (2012),
Goel et al. (2010), Da et al. (2011), Gruhl et al. (2005, 2004), Kallus (2014a)). Here
we study its prescriptive power.

Internal Data.

The internal company data consists of 4 years of sale and inventory records across the
network of retailers, information about each of the locations, and information about
each of the items.

We aggregate the sales data by week (the replenishment period of interest) for each
feasible combination of location and item. As discussed above, these sales-per-week
data constitute a right-censored observation of weekly demand, where censorship
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Figure 2-6: Percentage of All Sales in the German State of Berlin by Title
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Note: Each line corresponds to one of 13 selected titles and starts from the point of
release of the title to HE sales.

occurs when an item is sold out. We developed the transformed weights (2.21) to
tackle this issue exactly. Figure 2-6 shows the sales life cycle of a selection of titles in
terms of their marketshare when they are released to home entertainment (HE) sales
and onwards. Since new releases can attract up to almost 10% of sales in their first
week of release, they pose a great sales opportunity, but at the same time significant
demand uncertainty.

Information about retail locations includes to which chain a location belongs and
the address of the location. To parse the address and obtain a precise position of
the location, including country and subdivision, we used the Google Geocoding API
(Application Programming Interface).3

Information about items include the medium (e.g. DVD or BluRay) and an item
“title.” The title is a short descriptor composed by a local marketing team in charge
of distribution and sales in a particular region and may often include information
beyond the title of the underlying content. For example, a hypothetical film titled
The Film sold in France may be given the item title “THE FILM DVD + LIVRET -
EDITION FR”, implying that the product is a French edition of the film, sold on a
DVD, and accompanied by a booklet (livret), whereas the same film sold in Germany
on BluRay may be given the item title “FILM, THE (2012) - BR SINGLE”, indicating
it is sold on a single BluRay disc.

Public Data: Item Metadata, Box Office, and Reviews.

We sought to collect additional data to characterize the items and how desirable they
may be to consumers. For this we turned to the Internet Movie Database (IMDb;

3See https://developers.google.com/maps/documentation/geocoding for details.
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Figure 2-7: Screen Shots from IMDb and Rotten Tomatoes

(a) IMDb (b) Rotten Tomatoes

Note: The screen shots are of the details for 2012 Bond movie Skyfall. Meta-data
reported includes release date, user rating, number of user rating votes, plot
summary, first-billed actors, MPAA rating, and aggregate reviews.

Figure 2-8: IMDB and RT Data and Sales
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Note: In the scatter plots, horizontal axes are various data from IMDb and RT and the
vertical axes are total European sales during first week of HE release (rescaled
to anonymize). The corresponding coefficients of correlation are reported as 𝜌.

www.imdb.com) and Rotten Tomatoes (RT; www.rottentomatoes.com). IMDb is an
online database of information on films and TV series. RT is a website that aggregates
professional reviews from newspapers and online media, along with user ratings, of
films and TV series. Example screen shots from IMDb and RT showing details about
the 2012 movie Skyfall are shown in Figure 2-7.

In order to harvest information from these sources on the items being sold by the
vendor, we first had to disambiguate the item entities and extract original content
titles from the item titles. Having done so, we extract the following information from
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IMDb:

1. type (film, TV, other/unknown);

2. US original release date of content (e.g. in theaters);

3. average IMDb user rating (0-10);

4. number of IMDb users voting on rating;

5. number of awards (e.g. Oscars for films, Emmys for TV) won and number
nominated for;

6. the main actors (i.e., first-billed);

7. plot summary (30-50 words);

8. genre(s) (of 26; can be multiple); and

9. MPAA rating (e.g. PG-13, NC-17) if applicable.

And the following information from RT:

10. professional reviewers’ aggregate score;

11. RT user aggregate rating;

12. number of RT users voting on rating; and

13. if item is a film, then American box office gross when shown in theaters.

In Figure 2-8, we provide scatter plots of some of these attributes against sale
figures in the first week of HE release. Notice that the number of users voting on
the rating of a title is much more indicative of HE sales than the quality of a title as
reported in the aggregate score of these votes.

Public Data: Search Engine Attention.

In the above, we saw that box office gross is reasonably informative about future
HE sale figures. The box office gross we are able to access, however, is for the
American market and is also missing for various European titles. We therefore would
like additional data to quantify the attention being given to different titles and to
understand the local nature of such attention. For this we turned to Google Trends
(GT; www.google.com/trends).4 GT provides data on the volume of Google searches
for a given search term by time and geographic location. An example screen shot from
GT is seen in Figure 2-9. GT does not provide absolute search volume figures, only
volume time series given in terms relative to itself or to another series and in whole-
number precision between 0 and 100. Therefore, to compare different such series, we

4While GT is available publicly online, access to massive-scale querying and week-level trends
data is not public. See acknowledgements.
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Figure 2-9: Screen Shot from Google Trends

Note: The screen shot displays a comparison of searches for “Skyfall” (red) and “@”
(blue) in all of Germany.

establish as a baseline the search volume for the query “@”, which works well because
it has a fairly constant volume across the regions of Europe and because its search
volume is neither too high (else the volume for another query would be drowned
out by it and reported as 0) nor too low (else the volume for another query would
overwhelm it and have it be reported as 0, in which case it would be useless as a
reference point).

For each title, we measure the relative Google search volume for the search term
equal to the original content title in each week from 2011 to 2014 (inclusive) over the
whole world, in each European country, and in each country subdivision (states in
Germany, cantons in Switzerland, autonomous communities in Spain, etc.). In each
such region, after normalizing against the volume of our baseline query, the measure-
ment can be interpreted as the fraction of Google searches for the title in a given
week out of all searches in the region, measured on an arbitrary but (approximately)
common scale between regions.

In Figure 2-10, we compare this search engine attention to sales figures in Germany
for two unnamed films.5 Comparing panel (a) and (b), we first notice that the overall
scale of sales correlates with the overall scale of local search engine attention at the
time of theatrical release, whereas the global search engine attention is less meaningful
(note vertical axis scales, which are common between the two figures). Looking closer
at differences between regions in panel (b), we see that, while showing in cinemas,
unnamed film 2 garnered more search engine attention in North Rhine-Westphalia
(NW) than in Baden-Württemberg (BW) and, correspondingly, HE sales in NW in
the first weeks after HE release were greater than in BW. In panel (a), unnamed film
1 garnered similar search engine attention in both NW and BW and similar HE sales
as well. In panel (b), we see that the search engine attention to unnamed film 2 in
NW accelerated in advance of the HE release, which was particularly successful in
NW. In panel (a), we see that a slight bump in search engine attention 3 months into

5These films must remain unnamed because a simple search can reveal their European distributor
and hence the vendor who prefers their identity be kept confidential.
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Figure 2-10: Search Engine Attention and Sales
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(a) Unnamed film 1
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(b) Unnamed film 2

Note: Solid lines show weekly search engine attention for the films in the world and in
two populous German states. Dashed lines show weekly HE sales for the same
films in the same states. Search engine attention and sales are both shown
relative to corresponding overall totals in the respective region. The scales are
arbitrary but common between regions and the two plots.
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HE sales corresponded to a slight bump in sales. These observations suggest that
local search engine attention both at the time of local theatrical release and in recent
weeks may be indicative of future sales volumes.

2.5.4 Constructing Auxiliary Features and a Random Forest
Prediction

For each instance (𝑡, 𝑟) of problem (2.20) and for each item 𝑖 we construct a vector
of numeric predictive features 𝑥𝑡𝑟𝑖 that consist of backward cumulative sums of the
sale volume of the item 𝑖 at location 𝑟 over the past 3 weeks (as available; e.g., none
for new releases), backward cumulative sums of the total sale volume at location 𝑟
over the past 3 weeks, the overall mean sale volume at location 𝑟 over the past 1
year, the number of weeks since the original release data of the content (e.g., for a
new release this is the length of time between the premier in theaters to release on
DVD), an indicator vector for the country of the location 𝑟, an indicator vector for
the identity of chain to which the location 𝑟 belongs, the total search engine attention
to the title 𝑖 over the first two weeks of local theatrical release globally, in the country,
and in the country-subdivision of the location 𝑟, backward cumulative sums of search
engine attention to the title 𝑖 over the past 3 weeks globally, in the country, and in
the country-subdivision of the location 𝑟, and features capturing item information
harvested from IMDb and RT as described below.

For some information harvested from IMDb and RT, the corresponding numeric
feature is straightforward (e.g. number of awards). For other pieces of information,
some distillation is necessary. For genre, we create an indicator vector. For MPAA
rating, we create a single ordinal (from 1 for G to 5 for NC-17). For plot, we measure
the cosine-similarity between plots,

similarity(𝑃1, 𝑃2) =
𝑝𝑇1 𝑝2

||𝑝1|| ||𝑝2||
,

where 𝑝𝑘𝑖 denotes the number of times word 𝑖 appears in plot text 𝑃𝑘 and 𝑖 indexes
the collection of unique words appearing in plots 𝑃1, 𝑃2 ignoring common words like
“the”. We use this as a distance measure to hierarchically cluster the plots using
Ward’s method (cf. Ward (1963)). This captures common themes in titles. We
construct 12 clusters based solely on historical data and, for new data, include a
feature vector of median cosine similarity to each of the clusters. For actors, we
create a graph with titles as nodes and with edges between titles that share actors,
weighted by the number of actors shared. We use the method of Blondel et al. (2008)
to find communities of titles and create an actor-counter vector for memberships in the
10 largest communities (see Figure 2-11). This approach is motivated by the existence
of such actor groups as the “Rat Pack” (Humphery Bogart and friends), “Brat Pack”
(Molly Ringwald and friends), and “Frat Pack” (Owen Wilson and friends) that often
co-star in titles with a similar theme, style, and target audience.

We end up with 𝑑𝑥 = 91 numeric predictive features. Having summarized these
numerically, we train a RF of 500 trees to predict sales. In training the RF, we
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Figure 2-11: The Graph of Actors

Note: Actors are connected via common movies where both are first-billed. Col-
ored nodes correspond to the 10 largest communities of actors. Colored edges
correspond to intra-community edges.

normalize each the sales in each instance by the training-set average sales in the
corresponding location; we de-normalize after predicting. To capture the decay in
demand from time of release in stores, we train a separate RFs for sale volume on the
𝑘th week on the shelf for 𝑘 = 1, . . . , 35 and another RF for the “steady state” weekly
sale volume after 35 weeks.

For 𝑘 = 1, we are predicting the demand for a new release, the uncertainty of
which, as discussed in Section 2.5.1, constitutes one of the greatest difficulties of
the problem to the company. In terms of predictive quality, when measuring out-
of-sample performance we obtain an 𝑅2 = 0.67 for predicting sale volume for new
releases. The 25 most important features in this prediction are given in Figure 2-12.
In Figure 2-13, we show the 𝑅2 obtained also for predictions at later times in the
product life cycle, compared to the performance of a baseline heuristic that always
predicts for next week the demand of last week.

Considering the uncertainty associated with new releases, we feel that this is a
positive result, but at the same time what truly matters is the performance of the
prescription in the problem. We discuss this next.
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Figure 2-12: The 25 Top Variables in Predictive Importance
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Note: Predictive importance is measured as the average over forest trees of the change
in mean-squared error of the tree (shown here as percentage of total variance)
when the value of the variables is randomly permuted among the out-of-bag
training data.

Figure 2-13: Out-of-Sample 𝑅2 for Predicting Demand at Different Stages of Product
Life

1 2 5 10 20

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Week number on sale

R
2 RF Prediction

Same-as-Last-Week
Prediction

2.5.5 Applying Our Predictive Prescriptions to the Problem

In the last section we discussed how we construct RFs to predict sales, but our problem
of interest is to prescribe order quantities. To solve our problem (2.20), we use the
trees in the forests we trained to construct weights 𝑤𝑁,𝑖(𝑥) exactly as in (2.18), then
we transform these as in (2.21), and finally we prescribe data-driven order quantities
𝑧𝑁(𝑥) as in (2.8). Thus, we use our data to go from an observation 𝑋 = 𝑥 of our
varied auxiliary data directly to a replenishment decision on order quantities.

We would like to test how well our prescription does out-of-sample and as an
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Figure 2-14: The Performance of Our Prescription Over Time
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(d) The Hague, Netherlands, 𝑃 = 0.86

Note: The vertical axis is shown in terms of the location’s capacity, 𝐾𝑟.

Figure 2-15: The Distribution of Coefficients of Prescriptiveness 𝑃 over Retail Loca-
tions
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actual live policy. To do this we consider what we would have done over the 150
weeks from December 19, 2011 to November 9, 2014 (inclusive). At each week, we
consider only data from time prior to that week, train our RFs on this data, and apply
our prescription to the current week. Then we observe what had actually materialized
and score our performance.

There is one issue with this approach to scoring: our historical data only consists
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of sales, not demand. While we corrected for the adverse effect of demand censorship
on our prescriptions using the transformation (2.21), we are still left with censored
demand when scoring performance as described above. In order to have a reasonable
measure of how good our method is, we therefore consider the problem (2.20) with
capacities 𝐾𝑟 that are a quarter of their nominal values. In this way, demand cen-
sorship hardly ever becomes an issue in the scoring of performance. To be clear, this
correction is necessary just for a counterfactual scoring of performance; not in prac-
tice. The transformation (2.21) already corrects for prescriptions trained on censored
observations of the quantity 𝑌 that affects true costs.

We compare the performance of our method with two other quantities. One is the
performance of the perfect-forecast policy, which knows future demand exactly (no
distributions). Another is the performance of a data-driven policy without access to
the auxiliary data (i.e., SAA). Because the decay of demand over the lifetime of a
product is significant, to make it a fair comparison we let this policy depend on the
distributions of product demand based on how long its been on the market. That is,
it is based on 𝑇 separate datasets where each consists of the demands for a product
after 𝑡 weeks on the market (again, considering only past data). Due to this handicap
we term it SAA++ henceforth.

The ratio of the difference between our performance and that of the prescient
policy and the difference between the performance of SAA++ and that of the prescient
policy is the coefficient of prescriptiveness 𝑃 . When measured out-of-sample over the
150-week period as these policies make live decisions, we get 𝑃 = 0.88. Said another
way, in terms of our objective (sales volumes), our data 𝑋 and our prescription 𝑧𝑁(𝑥)
gets us 88% of the way from the best data-poor decision to the impossible perfect-
foresight decision. This is averaged over just under 20,000 locations. In Figure 2-14,
we plot the performance over time at four specific locations, the city of which is noted.
In Figure 2-15, we plot the overall distribution of coefficients of prescriptiveness 𝑃
over all retail locations in Europe.

2.6 Alternative Approaches

In the beginning of Section 2.2, we noted that the empirical distribution is insufficient
for approximating the full-information problem (2.2). The solution was to consider lo-
cal neighborhoods in approximating conditional expected costs; these were computed
separately for each 𝑥. Another approach would be to develop an explicit decision rule
and impose structure on it. In this section, we consider an approach to constructing
a predictive prescription by selecting from a family of linear functions restricted in
some norm,

ℱ =
{︀
𝑧(𝑥) = 𝑊𝑥 : 𝑊 ∈ R𝑑𝑧×𝑑𝑥 , ||𝑊 || ≤ 𝑅

}︀
, (2.22)

so to minimize the empirical marginal expected costs as in (2.4),

𝑧𝑁(·) ∈ arg min
𝑧(·)∈ℱ

1

𝑁

𝑁∑︁
𝑖=1

𝑐(𝑧(𝑥𝑖); 𝑦𝑖).
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The linear decision rule can be generalized by transforming 𝑋 to include nonlinear
terms.

We consider two examples of a norm on the matrix of linear coefficients, 𝑊 . One
is the row-wise 𝑝, 𝑝′-norm:

||𝑊 || =
⃒⃒⃒⃒⃒⃒(︁
𝛾1 ||𝑊1||𝑝 , . . . , 𝛾𝑑 ||𝑊𝑑||𝑝

)︁⃒⃒⃒⃒⃒⃒
𝑝′
.

Another is the Schatten 𝑝-norm:

||𝑊 || =
⃒⃒⃒⃒(︀
𝜏1, . . . , 𝜏min{𝑑𝑧 ,𝑑𝑥}

)︀⃒⃒⃒⃒
𝑝

where 𝜏𝑖 are 𝑊 ’s singular values.

For example, the Schatten 1-norm is the matrix nuclear norm. In either case, the
restriction on the norm is equivalent to an appropriately-weighted regularization term
incorporated into the objectives of (2.4).

Problem (2.4) corresponds to the traditional framework of empirical risk mini-
mization in statistical learning with a general loss function. There is no great nov-
elty in this formulation except for the potential multivariateness of 𝑌 and 𝑧. For
𝑑𝑧 = 𝑑𝑦 = 1, 𝒵 = R, and 𝑐(𝑧; 𝑦) = (𝑧 − 𝑦)2, problem (2.4) corresponds to least-
squares regression. For 𝑑𝑧 = 𝑑𝑦 = 1, 𝒵 = R, and 𝑐(𝑧; 𝑦) = (𝑦 − 𝑧)(𝜏 − I [𝑦 − 𝑧 < 0]),
problem (2.4) corresponds to quantile regression, which estimates the conditional 𝜏 -
quantile as a function of 𝑥. Rearranging terms, 𝑐(𝑧; 𝑦) = (𝑦 − 𝑧)(𝜏 − I [𝑦 − 𝑧 < 0]) =
max {(1− 𝜏)(𝑧 − 𝑦), 𝜏(𝑦 − 𝑧)} is the same as the newsvendor cost function where 𝜏 is
the service level requirement. Rudin and Vahn (2014) consider this cost function and
the selection of a linear decision rule with regularization on ℓ1-norm in order to solve
a newsvendor problem with auxiliary data. Quantile regression (cf. Koenker (2005))
and ℓ1-regularized quantile regression (cf. Belloni and Chernozhukov (2011)) are
standard techniques in regression analysis. Because most OR/MS problems involve
multivariate uncertainty and decisions, in this section we generalize the approach and
its associated theoretical guarantees to such multivariate problems (𝑑𝑦 ≥ 1, 𝑑𝑧 ≥ 1).

Before continuing, we note a few limitations of any approach based on (2.4). For
general problems, there is no reason to expect that optimal solutions will have a
linear structure (whereas certain distributional assumptions lead to such conclusions
in least-squares and quantile regression analyses). In particular, unlike the predictive
prescriptions studied in Section 2.2, the approach based on (2.4) does not enjoy the
same universal guarantees of asymptotic optimality. Instead, we will only have out-
of-sample guarantees that depend on our class ℱ of decision rules.

Another limitation is the difficulty in restricting the decisions to a constrained
feasible set 𝒵 ≠ R𝑑𝑧 . Consider, for example, the portfolio allocation problem from
Section 2.1.1, where we must have

∑︀𝑑𝑥
𝑖=1 𝑧𝑖 = 1. One approach to applying (2.4)

to this problem might be to set 𝑐(𝑧; 𝑦) = ∞ for 𝑧 /∈ 𝒵 (or, equivalently, constrain
𝑧(𝑥𝑖) ∈ 𝒵 ∀𝑖). However, not only will this not guarantee that 𝑧(𝑥) ∈ 𝒵 for 𝑥
outside the dataset, but we would also run into a problem of infeasibility as we would
have 𝑁 linear equality constraints on 𝑑𝑧 × 𝑑𝑥 linear coefficients (a constraint such as∑︀𝑑𝑥

𝑖=1 𝑧𝑖 ≤ 1 that does not reduce the affine dimension will still lead to an undesirably
flat linear decision rule as 𝑁 grows). Another approach may be to compose ℱ with a
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Figure 2-16: Performance of ERM Prescriptions in the Shipment Planning Example.
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projection onto 𝒵, but this will generally lead to a non-convex optimization problem
that is intractable to solve. Therefore, the approach is limited in its applicability to
OR/MS problems.

In a few limited cases, we may be able to sensibly extend the cost function syn-
thetically outside the feasible region while maintaining convexity. For example, in
the shipment planning example of Section 2.1.1, we may allow negative order quan-
tities 𝑧 and extend the first-stage costs to depend only on the positive part of 𝑧, i.e.
𝑝1
∑︀𝑑𝑧

𝑖=1 max{𝑧𝑖, 0} (but leave the second-stage costs as they are for convexity). Now,
if after training 𝑧𝑁(·), we transform any resulting decision by only taking the positive
part of each order quantity, we end up with a feasible decision rule whose costs are no
worse than the synthetic costs of the original rule. If we follow this approach and ap-
ply (2.4), either without restrictions on norms or with a diminishing Frobenius norm
penalty on coefficients, we end up with results as shown in Figure 2-16. The results
suggest that, while we are able to apply the approach to the problem, restricting to
linear decision rules is inefficient in this particular problem.

In the rest of this section we consider the application of the approach (2.4) to
problems where 𝑦 and 𝑧 are multivariate and 𝑐(𝑧; 𝑦) is general, but only treat uncon-
strained decisions 𝒵 = R𝑑𝑧 .

2.6.1 Tractability

We first develop sufficient conditions for the problem (2.4) to be optimized in poly-
nomial time. The proof is in the E-companion.

Theorem 2.11. Suppose that 𝑐(𝑧; 𝑦) is convex in 𝑧 for every fixed 𝑦 and let oracles
be given for evaluation and subgradient in 𝑧. Then for any fixed 𝑥 we can find an
𝜖-optimal solution to (2.4) in time and oracle calls polynomial in 𝑛, 𝑑, log(1/𝜖) for ℱ
as in (2.22).
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2.6.2 Out-of-Sample Guarantees

Next, we characterize the out-of-sample guarantees of a predictive prescription de-
rived from (2.4). All proofs are in the E-companion. In the traditional framework
of empirical risk minimization in statistical learning such guarantees are often de-
rived using Rademacher complexity but these only apply to univariate problems (c.f.
Bartlett and Mendelson (2003)). Because most OR/MS problems are multivariate,
we generalize this theory appropriately. We begin by generalizing the definition of
Rademacher complexity to multivariate-valued functions.

Definition 2.12. Given a sample 𝑆𝑁 = {𝑠1, . . . , 𝑠𝑁}, The empirical multivariate
Rademacher complexity of a class of functions ℱ taking values in R𝑑 is defined as

̂︀R𝑁(ℱ ;𝑆𝑁) = E

[︃
2

𝑁
sup
𝑔∈ℱ

𝑛∑︁
𝑖=1

𝑑∑︁
𝑘=1

𝜎𝑖𝑘𝑔𝑘(𝑠𝑖)
⃒⃒⃒
𝑠1, . . . , 𝑠𝑛

]︃

where 𝜎𝑖𝑘 are independently equiprobably +1,−1. The marginal multivariate Rade-
macher complexity is defined as

R𝑁(ℱ) = E
[︁̂︀R𝑛(ℱ ;𝑆𝑁)

]︁
over the sampling distribution of 𝑆𝑁 .

Note that given only data 𝑆𝑁 , the quantity ̂︀R𝑁(ℱ ;𝑆𝑁) is observable. Note
also that when 𝑑 = 1 the above definition coincides with the common definition
of Rademacher complexity.

The theorem below relates the multivariate Rademacher complexity of ℱ to out-
of-sample guarantees on the performance of the corresponding predictive prescription
𝑧𝑁(𝑥) from (2.4). A generalization of the following to mixing processes is given in the
supplemental Section A.2. We denote by 𝑆𝑥𝑁 =

{︀
𝑥1, . . . , 𝑥𝑁

}︀
the restriction of our

sample to data on 𝑋.

Theorem 2.13. Suppose 𝑐(𝑧; 𝑦) is bounded and equi-Lipschitz in 𝑧:

sup
𝑧∈𝒵, 𝑦∈𝒴

𝑐(𝑧; 𝑦) ≤ 𝑐,

sup
𝑧 ̸=𝑧′∈𝒵, 𝑦∈𝒴

𝑐(𝑧; 𝑦)− 𝑐(𝑧′; 𝑦)
||𝑧𝑘 − 𝑧′𝑘||∞

≤ 𝐿 <∞.

Then, for any 𝛿 > 0, we have that with probability 1− 𝛿,

E [𝑐(𝑧(𝑋);𝑌 )] ≤ 1

𝑁

𝑁∑︁
𝑖=1

𝑐(𝑧(𝑥𝑖); 𝑦𝑖) + 𝑐
√︀
log(1/𝛿′)/2𝑁 + 𝐿R𝑁(ℱ) ∀𝑧 ∈ ℱ , (2.23)
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and that, again, with probability 1− 𝛿,

E [𝑐(𝑧(𝑋);𝑌 )] ≤ 1

𝑁

𝑁∑︁
𝑖=1

𝑐(𝑧(𝑥𝑖); 𝑦𝑖) + 3𝑐
√︀
log(2/𝛿′′)/2𝑁 + 𝐿̂︀R𝑁(ℱ ;𝑆𝑥𝑁) ∀𝑧 ∈ ℱ .

(2.24)

In particular, these hold for 𝑧 = 𝑧𝑁(·) ∈ ℱ .

Equations (2.23) and (2.24) provide a bound on the out-of-sample performance
of any predictive prescription 𝑧(·) ∈ ℱ . The bound is exactly what we minimize in
problem (2.4) because the extra terms do not depend on 𝑧(·). That is, we minimize
the empirical risk, which, with additional confidence terms, bounds the true out-of-
sample costs of the resulting predictive prescription 𝑧𝑁(·).

These confidence terms involve the multivariate Rademacher complexity of our
class ℱ of decision rules. In the next lemmas, we compute appropriate bounds on the
complexity of our examples of classes ℱ . The theory, however, applies beyond linear
rules.

Lemma 2.14. Consider ℱ as in (2.22) with row-wise 𝑝, 𝑝′ norm for 𝑝 ∈ [2,∞) and
𝑝′ ∈ [1,∞]. Let 𝑞 be the conjugate exponent of 𝑝 (1/𝑝 + 1/𝑞 = 1) and suppose that
||𝑥||𝑞 ≤𝑀 for all 𝑥 ∈ 𝒳 . Then

R𝑁(ℱ) ≤ 2𝑀𝑅

√︂
𝑝− 1

𝑁

𝑑𝑧∑︁
𝑘=1

1

𝛾𝑘
.

Lemma 2.15. Consider ℱ as in (2.22) with Schatten 𝑝-norm. Then

̂︀R𝑁(ℱ ;𝑆𝑥𝑁) ≤ 2𝑅𝑑𝑟𝑧

√︂
1

𝑁

√︁̂︀E𝑆𝑥
𝑁
||𝑋||22

R𝑁(ℱ) ≤ 2𝑅𝑑𝑟𝑧

√︂
1

𝑁

√︁
E ||𝑋||22,

where 𝑟 = max {1− 1/𝑝, 1/2} and ̂︀E𝑆𝑥
𝑁

denotes empirical average over the sample
𝑆𝑥𝑁 .

The above results indicate that the confidence terms in equations (2.23) and (2.24)
shrink to 0 as 𝑁 → ∞ even if we slowly relax norm restrictions. Hence, we can
approach the optimal out-of-sample performance over the class ℱ without restrictions
on norms.

2.7 Conclusions
In this chapter, we combined ideas from ML and OR/MS in developing a framework,
along with specific methods, for using data to prescribe optimal decisions in OR/MS
problems that leverage auxiliary observations. We motivate our methods based on

60



existing predictive methodology from ML, but, in the OR/MS tradition, focus on the
making of a decision and on the effect on costs, revenues, and risk. Our approach is

a) generally applicable,

b) tractable,

c) asymptotically optimal,

d) and leads to substantive and measurable improvements in a real-world context.

We feel that the above qualities, together with the growing availability of data and
in particular auxiliary data in OR/MS applications, afford our proposed approach a
potential for substantial impact in the practice of OR/MS.
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Chapter 3

Prediction vs Prescription in
Data-Driven Pricing

Pricing in revenue management is based on one’s understanding of consumers’ re-
sponse to price changes. This, in turn, is often based on analytics of historical
price-demand data. We discuss the distinction between predictive and prescriptive
approaches to data-driven pricing. Through examples both synthetic and real, we
show that a naive but common predictive approach can leave money on the table
whereas a prescriptive approach is theoretically sound and performs well in practice.
Extending recent work, we develop a statistical hypothesis test for revenue optimal-
ity of a particular pricing approach that works with observational data. Applying
this test to data from an automotive loan provider, we demonstrate that predictive
approaches clearly miss the mark in practical applications, looking only to actual
revenues generated at the end of the day rather than model soundness. On the other
hand, parametric approaches to pricing often suffice, but only when they take into
full account the prescriptive nature of the problem.

3.1 Introduction

Pricing is one of the most fundamental instruments for revenue management. Hence,
effective pricing hinges on the manager’s understanding of consumers’ response to
price changes (Phillips 2005). In pricing applications, this response is estimated from
observations of past sale attempts. This can be done through repeated experiments
(as in Bertsimas and Perakis (2006), Besbes and Zeevi (2009), Harrison et al. (2012)),
but in many real-world applications this is done based on analytics of a corpus of
historical observational data (examples include Besbes et al. (2010), Cohen et al.
(2014), Johnson et al. (2014)) – for lack of a better term, we call this data-driven
pricing. Since prices are usually set at least somewhat strategically, an important
concern, which we have found is not fully and consciously addressed in data-driven
pricing theory and applications, is the distinction between prediction and prescription.
In prediction, the analyst is an external observer that simply wants to predict as best
as possible an outcome (such as demand) based on partial observations (such as price).
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In prescription, on the other hand, the analyst is a manager that seeks herself to set a
control (such as price) in order to optimize an objective (such as maximum revenue)
that depends on a response to the control (such as demand). Ignoring the fact that
such a response in the latter is distinct from a predicted outcome in the former can
lead to suboptimal revenues if price is optimized on the basis predicted demand.

In this chapter, we explore this problem through the lens of a fundamental building
block of data-driven pricing: the choice of a single price for a single product in a single
sale attempt based on historical observations of the outcomes of past sale attempts.
The implications of the work extend to more complicated multi-product and inventory
constrained problem as well as more sophisticated customized schemes.

We consider pricing based on data that is observational, i.e. it is not the result
of controlled experiments on consumers’ response to prices but rather consists of
observations of prices chosen historically and associated demand. This is by far the
most common situation in every practical pricing application. Observed prices are
usually set strategically, in consideration and anticipation of future demand, rather
than randomly as in an experiment. The distinction between a predicted outcome
and the causal effect of a control on an outcome is common (Spirtes 2010) even in
econometric supply-demand-price analyses (Phillips et al. 2012, Berry et al. 1995,
Bijmolt et al. 2005).

Here, however, we explore the ramifications of the dichotomy specifically for a pre-
scriptive problem such as price optimization, where continuous controls are optimized
for maximum effect. Therefore, we review specific examples of data-driven pricing
and explore how this issue can substantively affect revenues negatively. Taking a step
back, we study in generality the theoretical issue of identifiability of optimal prices
from historical data – when is there no hope and under what conditions there is. We
provide solutions to the pricing problem based on observational data by drawing on
the literatures of nonparametric estimation and causal inference. Specifically, we pro-
vide a nonparametric method for price optimization with guarantees of asymptotic
optimality, but, since large amounts of data may be necessary before these asymp-
totic kick in, we also provide a parametric method based on a generalization of the
propensity score to continuous interventions. Recognizing that in a prescriptive prob-
lem fitting a complete price model is not the objective – optimizing revenue is – we
develop a hypothesis test for asymptotic revenue optimality of a given pricing strategy
based on observational data, extending recent work (Besbes et al. 2010). In fact, we
apply this new test to study a real-world auto-loan dataset studied in Besbes et al.
(2010) and show that both the parametric and nonparametric pricing strategies used
therein lead to revenues that are statistically distinguishable as suboptimal, whereas
our new parametric pricing strategy yields revenues that cannot be distinguished from
optimal.

The purpose of this chapter is first and foremost to highlight a common issue with
data-driven pricing applications that can have negative ramifications in real practice
and to provide a framework in which to understand the limits and capacities of the
data available. We provide pricing strategies apt for observational data and extend
revenue-optimality testing methodologies tailored for prescriptive problems to the
new setting of observational data. We provide both synthetic and real examples.
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3.2 The Problem

Let us first describe precisely the basic pricing problem we consider without data –
that is, in terms of hypothetical primitives that are in practice unknown. Consider
choosing a unit price 𝑝 ∈ 𝒫 ⊂ R+ at which to offer a product in one sale event (e.g. the
price for a supermarket good for the week or the price offered at one point to one online
customer). Let the per-unit revenue netted when selling at price 𝑝 be 𝑟(𝑝) = 𝑝 − 𝑐
where 𝑐 is the per-unit production or procurement cost. Let us denote by the random
variable 𝐷(𝑝) ≥ 0 the potential stochastic demand that the product offered at price
𝑝 would garner. This demand can be nonnegative continuous, nonnegative integral,
or binary. A sale event is an instance of the stochastic process {𝐷(𝑝) : 𝑝 ∈ 𝒫}
since it encapsulates all the relevant (but unknown) information about a particular
opportunity for sale. A sale event may or may not also have some other identifying or
idiosyncratic information. We call the function E [𝐷(𝑝)] the price response function
(PRF). The hypothetical price optimization problem we would then like to solve, had
we full information on the unknown PRF, can be expressed as follows:

𝑝* ∈ argmax
𝑝∈𝒫
{𝑅(𝑝) := 𝑟(𝑝)E [𝐷(𝑝)]} . (3.1)

Now we consider the corresponding data-driven pricing problem. Instead of having
full knowledge of the PRF, we have observations from past 𝑛 sale events. For each of
the past sale events, 𝑖 = 1, . . . , 𝑛, we know the price offered 𝑃𝑖 ∈ 𝒫 and the demand
seen 𝐷𝑖 = 𝐷𝑖(𝑃𝑖). We may also have some additional information about each event.
The standing assumptions is that past prices and sale events are independently and
identically drawn (iid) from some stationary joint distribution, a generic draw from
which we will denote without subscripts (e.g. 𝑃 , 𝐷). Note that historical price 𝑃
is a random variable and hence conditional expectations can be defined, which is in
contrast to the full-information setting where 𝑝 is a control variable. The problem
of interest is to set a data-driven pricing strategy 𝑝𝑛 so to achieve high revenue as
measured by 𝑅(𝑝), the (unknown) revenue objective of (3.1).

In contrast, some work has focused on data-driven pricing strategies that attempt
to solve a different problem than (3.1) that in our notation can be expressed as follows:

𝑝 ∈ argmax
𝑝∈𝒫

{︁
�̃�(𝑝) := 𝑟(𝑝)E

[︀
𝐷
⃒⃒
𝑃 = 𝑝

]︀}︁
. (3.2)

Such data-driven strategies, which we term predictive approaches, estimate the con-
ditional expectation of demand given price E

[︀
𝐷
⃒⃒
𝑃 = 𝑝

]︀
, i.e. the best prediction for

what demand is in a random instance of (𝑃,𝐷) where 𝑃 is reveled, and plug in the
estimate into (3.2).

The questions we wish to address are: what is the differences between (3.1) and
(3.2), when can we even solve (3.1), how can we solve it when we can, and how we
know if all of this actually matters in practice.

65



3.3 Prediction, Causation, and Prescription
Let us delineate three different problems that may be associated with price data. In
the prediction problem, we draw some price-demand pair where price is known but
demand is not and we want to have the best guess for this hidden value of demand.

The Prediction Problem in Pricing: For a sale event and price
drawn from a stationary distribution with demand hidden, predict the
hidden value of demand with least error.

With perfect knowledge of distributions and if error is defined as squared difference,
the optimal solution to this problem is the conditional expectation E

[︀
𝐷
⃒⃒
𝑃 = 𝑝

]︀
.

With only data, we would solve this problem by fitting a linear, other parametric,
or non-parametric regression. For example, the non-parametric Nadaraya-Watson
kernel regression used in Besbes et al. (2010) as an estimator for the true price-
response function is a universally consistent estimator of the conditional expectation
under very mild conditions.

Prediction provides a best guess for a missing value given the value of a related
observation, but it does not give us the effect of intervening and setting this value at
a particular level. In causal estimation in the context of pricing, we are interested in
the value of demand if we were to intervene and set the price at a particular level.

The Causal Estimation Problem in Pricing: For a sale event drawn
from a stationary distribution and for a fixed price, predict with least
error the value of demand were the price to be set as given.

With perfect knowledge of distributions and if error is defined as squared differ-
ence, the optimal solution to this problem is the expectation E [𝐷(𝑝)]. Describing
the potential demand as 𝐷(𝑝) is in fact the Neyman-Rubin potential outcome no-
tation (cf. Sekhon (2008)). The Neyman-Rubin framework is generally applied to
binary interventions (control vs treatment), but here the “interventions” are prices
that are potentially continuous. This distinction between the problems of prediction
and causal estimation is common (cf. Spirtes (2010)).

In price optimization, however, we are not directly interested in either prediction
or causal estimation. Instead, our primary interest is in netting as high revenues as
possible. Thus, the problem of interest is to prescribe a price to achieve this objective.

The Prescription Problem in Pricing: For a sale event drawn from
a stationary distribution, set the price so to maximize the expected total
revenues that would be netted at this price.

With perfect knowledge of distributions, the optimal solution to this problem is as in
(3.1). Note that the solution 𝑝* is determined by the solution E [𝐷(𝑝)] to the causal

66



estimation problem via optimization. Where the problems differ is in their objective
and hence in how we evaluate a data-driven solution to either. In causal estimation,
as in prediction, model accuracy is of primary interest. In prescription, however, it
is revenue netted that is of primary interest. Thus, if a particular pricing strategy
produces revenues that cannot be statistically distinguished from optimal revenues
then we are content with it, even if a demand model that underlies this strategy
can be distinguished as invalid. This is similar to the distinction made in Besbes
et al. (2010) but here, in the context of observational data, we are concerned with
prescribing prices that optimize the revenue we net when we set the price to 𝑝, and
not with identifying the price at which the conditional expectation of revenues �̃�(𝑝)
is highest. However, if such a pricing strategy 𝑝 were to achieve revenues that are
statistically indistinguishable from optimal then we would be content – we develop a
statistical test for such a scenario.

Examples

To put the notions described above in context, let us consider some examples, both
synthetic and real.

The following synthetic example shows that, in general, revenues generated by
a predictive approach can be far lower than revenues generated by a prescriptive
approach.

Example 3.1 (Artificial Continuous Example). Suppose the unit procurement price
is 𝑐 = 50 and that we are interested in setting a price 𝑝 in 𝒫 = [50, 300]. Suppose the
demand process is such that

𝐷(𝑝) = 15 (300− 𝑝)+ + 1500𝑝𝑋𝑒−(𝑝−50)𝑋/10 + 𝜖(𝑝),

where 𝑋 ∼ Exp(1) is an exponentially distributed random disturbance and 𝜖(𝑝) is
a Gaussian process with kernel Cov (𝜖(𝑝), 𝜖(𝑝′)) = 𝜎2I [𝑝 = 𝑝′]. Suppose, moreover,
that historically prices have been set as 𝑃 = 50 + 10𝑌/𝑋 where 𝑌 ∼ Exp(1) is an
exponentially distributed random disturbance.

Let us first consider the problem of demand modeling. The answer to the predic-
tive problem is

E
[︀
𝐷
⃒⃒
𝑃 = 𝑝

]︀
= 15 (300− 𝑝)+ +

3750𝑝

𝑝− 50
,

whereas the answer to the causal estimation problem is

E [𝐷(𝑝)] = 15(300− 𝑝)+ +
150000𝑝

(𝑝− 40)2
.

We plot these two in Figure 3-1(a).
Now consider the prescription problem for the optimal price. The true profit

function, 𝑅(𝑝) = (𝑝 − 𝑐)E [𝐷(𝑝)], is optimized at 𝑝* = 167.72. On the other hand,
a predictive approach would suggest that we optimize �̃�(𝑝) = (𝑝 − 𝑐)E

[︀
𝐷
⃒⃒
𝑃 = 𝑝

]︀
,

leading to the price 𝑝 = 300. This may seem very far from 𝑝*, but the correct metric
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Figure 3-1: Prediction vs Prescription in Example 3.1
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Note: Solid lines show the true demand and revenue curves and dashed lines show the
spurious ones that would arise from an invalid predictive analysis, which would
lead to a 60% loss in revenues compared to the true, prescriptive optimum.

for evaluating a pricing strategy in the prescription problem is via the objective of
revenues. It is that the revenue under 𝑝 is 60% less than the revenue under 𝑝* that
suggests that 𝑝 is not a good pricing strategy. We plot 𝑅, �̃�, 𝑝*, and 𝑝 in Figure
3-1(b).

Example 3.2 (Auto Loan Rate Optimization). In Besbes et al. (2010), the authors
study the problem of prescribing interest rates for automobile loans based on histori-
cal, observational data. The on-line auto lending data, provided by Columbia Univer-
sity Center for Pricing and Revenue Management (2012), consists of past sale events
where a customer fills out a loan application, if approved an interest rate is quoted
(price), and the customer either accepts or rejects the loan (binary demand). The
authors apply a predictive approach and estimate E [𝐷|𝑃 = 𝑝] using either Nadaraya-
Watson kernel regression or logistic regression. The authors study the differences –
and how to test for them – between pricing strategies generated by optimizing based
on either regression since one is model-dependent (logistic regression) and the other
is not (kernel regression). Both approaches, however, address the prediction problem
and start by estimating E [𝐷|𝑃 = 𝑝].

We will return to this example twice more to discuss further the relationship to
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a prescription problem and then to conduct an empirical study of the distinction
between prediction and prescription and whether it has any practical relevance to
loss of revenue.

Example 3.3 (Other Examples from the Literature). In Cohen et al. (2014), the
authors study a data-driven multi-period dynamic pricing problem for supermarket
goods based on historical, observational data. “To predict demand as a function of
prices”, the authors “estimate a log-log demand model” and report that “estimated
demand models are accurate in the sense of having low forecast error,” where recent
prices and week index are included as explanatory variables besides the price to be
set.

In Johnson et al. (2014), the authors study a data-driven pricing problem for on-
line sales of apparel based on historical, observational data. Using tree regression, the
authors “formulate a price optimization model to maximize revenue from first expo-
sure styles, using demand predictions from the regression trees as inputs” and write
the objective of this price optimization problem in terms of conditional expectations
“E
[︀
𝐷𝑖𝑗𝑘

⃒⃒
𝑝𝑗, 𝑘

]︀
,” a shorthand they use for conditional expectation of demand given

price, product and other sale event features, and the price of competing styles. They
report that “a key requirement for our pricing decision support tool is the ability to
accurately predict demand.”

We will return to these examples to discuss further the relationship to a pre-
scription problem and the relevance of the specific additional explanatory variables
included.

3.4 Identifiability

In the last section we saw that the prescription problem (3.1) is distinct from (3.2).
Next we ask the question of when can we even solve the problem (3.1) based on data.
We show that without further assumptions the solution is not identifiable. Let us
begin with an example.

Example 3.4 (Consulting for the MIT Coop). Nathan and Dimitris are hired by
the MIT Coop to help determine an optimal sale price for the classic MIT hoodie,
which the MIT Coop procures at a unit price of $19 (so 𝑟(𝑝) = 𝑝 − 19). The MIT
Coop is debating between a retail price of $20 and a retail price of $28. In any given
week in the past, the MIT Coop has offered the hoodie at either of the two prices and
observed either no units sold, one thousand units sold, or two thousand units sold.
The Coop has a great deal of historical data.

Nathan and Dimitris collate the data into a table that shows the frequency of each
price-demand combination over history:
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Joint Distribution of Historical Price and Demand

Price

Demand (thousands) $20 $28

0 0 8/28
1 8/18 1/18
2 1/18 0

Due to the abundance of data, Nathan and Dimitris are confident that this is a faithful
representation of the joint distribution of (𝑃,𝐷).

Dimitris regresses demand on price by computing a weighted average in each of
the above columns and finds that

E
[︀
𝐷
⃒⃒
𝑃 = 𝑝

]︀
=

{︂
10/9 𝑝 = 20
1/9 𝑝 = 28

.

Taking a predictive approach, Dimitris seeks a model wherein the PRF is equal to
the conditional expectation. He arrives at this model: and concludes that 𝑝* = 20 is
the optimal price. Looking back, Dimitris comes up with a model to explain the data
and his PRF:

Dimitris’s Demand Model

𝑃 = 20 𝑃 = 28

𝐷(28) = 0 𝐷(28) = 1 𝐷(28) = 0 𝐷(28) = 1

𝐷(20) = 1 32/81 4/81 32/81 4/81
𝐷(20) = 2 4/81 1/162 4/81 1/162

Dimitris confirms that his model agrees completely with the observed data and with
E [𝐷(𝑝)] = E

[︀
𝐷
⃒⃒
𝑃 = 𝑝

]︀
. Dimitris computes

𝑅(𝑝) = 𝑟(𝑝)E [𝐷(𝑝)] =

{︂
10/9 𝑝 = 20
1 𝑝 = 28

, (3.3)

and concludes that 𝑝* = 20 is the optimal price.
Nathan, working from home that day and unaware of Dimitris’s progress, has

independently come up with another model in order to explain the data:
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Nathan’s Demand Model

𝑃 = 20 𝑃 = 28

𝐷(28) = 0 𝐷(28) = 1 𝐷(28) = 0 𝐷(28) = 1

𝐷(20) = 1 40/99 4/99 4/9 2/45
𝐷(20) = 2 0 1/18 0 1/90

Nathan, too, is able to confirm that his model completely agrees with the observed
data. Under this model, Nathan calculates

E [𝐷(𝑝)] =

{︂
16/15 𝑝 = 20
5/33 𝑝 = 28

, 𝑅(𝑝) = 𝑟(𝑝)E [𝐷(𝑝)] =

{︂
16/15 𝑝 = 20
15/11 𝑝 = 28

,

(3.4)
and concludes, differently from Dimitris, that 𝑝* = 28 is in fact the optimal price.

Nathan and Dimitris had both come up with demand models that fully concur
with the observed data but recommended different prices as optimal. Both models
support the data fully. Both models give rise to the same conditional expectation
(regression) function,

E
[︀
𝐷
⃒⃒
𝑃 = 𝑝

]︀
=

{︂
10/9 𝑝 = 20
1/9 𝑝 = 28

,

which, in particular, agrees with the price response function E [𝐷(𝑝)] under Dimitris’s
model, but not under Nathan’s model. Both models, as well as the data, fully agree
with a homoskendastic linear model,

𝐷 =
65

18
− 1

8
𝑃 + 𝜖, 𝜖 =

{︂
−1/9 with prob. 8/9
8/9 with prob. 1/9

, 𝜖 ⊥⊥ 𝑃.

Therefore, there cannot be an issue of a demand-functional model misspecification.
Moreover, the regressor 𝑃 is independent of the error 𝜖.

Nonetheless, the two models recommended different optimal prices.

3.4.1 Non-Identifiability

The issue we encountered above is one of identifiability.

Definition 3.5. Let ℱ = {𝐹𝜃 : 𝜃 ∈ Θ} be a model for the distribution of the observed
data. We say that 𝜑 : Θ→ Φ is identifiable if for any 𝐹𝜃1 , 𝐹𝜃2 ∈ ℱ such that 𝐹𝜃1 = 𝐹𝜃2 ,
we have 𝜑(𝜃1) = 𝜑(𝜃2).

In the above, neither Θ nor Φ need have any topology or algebraic structure, that
is, the model need not be parametric. Note that if any 𝜑 is not identifiable then any
finer quantity, such as 𝜃 itself, is not identifiable.

Letting Θ denote the joint distribution of price 𝑃 and demand process 𝐷(𝑝) and
letting 𝜑 map this to the optimal price (or, set thereof if many), we have that Example
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3.4 above provides a proof by example of the following result:

Corollary 3.6. The optimal price 𝑝* is not identifiable on the basis of observations
of (𝑃,𝐷).

In fact, we proved this as a corollary of the stronger result (i.e., smaller Θ):

Theorem 3.7. The optimal price 𝑝* is not identifiable on the basis of observations
of (𝑃,𝐷) even under the Gauss-Markov assumptions:

i. Linearity: there is a random variable 𝜖 such that 𝐷 = 𝛽0 + 𝛽1𝑃 + 𝜖.

ii. Exogeneity of independent variables: E
[︀
𝜖
⃒⃒
𝑃
]︀
= 0.

iii. Homoskendasticity: Var
(︀
𝜖
⃒⃒
𝑃
)︀
= Var (𝜖) is constant.

iv. No collinearity: 𝑃 is not constant.

In Example 3.4, exogeneity and homoskendasticity are a consequence of E [𝜖] = 0
and 𝜖 ⊥⊥ 𝑃 . Exogeneity implies Cov(𝜖, 𝑃 ) = 0. Note that whenever the optimal
price is not identifiable, the price response function E [𝐷(𝑝)], a finer quantity, is not
identifiable either.

3.4.2 Conditions for Identifiability

In Corollary 3.6 we saw that observations of (𝑃,𝐷) are not in general sufficient to
identify an optimal price. Therefore, we need something more. Let us now consider
also auxiliary observations 𝑋 of some characteristics of the historical sale events, e.g.
characteristics of the online customer, whether a product was featured in a promo-
tional flyer, seasonality. Our data is now {(𝑃1, 𝑋1, 𝐷1) , . . . , (𝑃𝑛, 𝑋𝑛, 𝐷𝑛)}. Even
with this data, for the moment, we still restrict ourselves to the problem of choosing
a single price for the whole population of sale events; we consider the customized
extension in Section 3.7.1.

In Section 3.3 we saw that one of the important distinctions between prediction
and prescription is that in the former price 𝑃 is random variable whereas in the latter
price 𝑝 is a control. The covariates 𝑋 could help go from prediction to prescription if
they allow us to factor out the association of the random variable 𝑃 with the particular
sale event and its demand process 𝐷(𝑝), which are the only relevant things in the
prescription problem. A sufficient condition is that 𝑋 accounts for the association
between 𝐷(𝑝) and 𝑃 :

Assumption 3.8 (Weak Ignorability). For all 𝑝 ∈ 𝒫 , we have

𝐷(𝑝) ⊥⊥ 𝑃
⃒⃒
𝑋

Under this condition, which we discuss below, we have identifiability.

Theorem 3.9. Under weak ignorability, the optimal price 𝑝* is identifiable on the
basis of observations of (𝑃,𝑋,𝐷).
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Proof. Under ignorability, using iterated expectations, we have

E [𝐷(𝑝)] = E
[︀
E
[︀
𝐷(𝑝)

⃒⃒
𝑋
]︀]︀

= E
[︀
E
[︀
𝐷(𝑝)

⃒⃒
𝑃 = 𝑝,𝑋

]︀]︀
= E

[︀
E
[︀
𝐷(𝑃 )

⃒⃒
𝑃 = 𝑝,𝑋

]︀]︀
= E

[︀
E
[︀
𝐷
⃒⃒
𝑃 = 𝑝,𝑋

]︀]︀
.

The last expectation is expressed solely in terms of the joint distribution of (𝑃,𝑋,𝐷),
which gives the identifiability of the price response function E [𝐷(𝑝)] and hence the
revenue function 𝑅(𝑝). The optimal price is given by optimizing 𝑅(𝑝), completing
the proof.

Note the last expectation is not an iterated expectation because it is not condi-
tioned on 𝑃 = 𝑝. In words, it says to take the conditional expectation of 𝐷 given
𝑋 = 𝑥, 𝑃 = 𝑝 and to average it over all 𝑥 using the marginal distribution of 𝑋 (and
not the conditional distribution given 𝑃 = 𝑝).

Discussion

In words, the weak ignorability condition says that, historically, 𝑋 accounts for all the
sale-event-specific features that influenced managerial price-setting. Managers usually
set prices strategically rather than at random. Thus, if prices are set in (partial)
anticipation of demand, then prices and demand are confounded. If 𝑋 accounts
for the information based upon which the price was selected then weak ignorability
is nonetheless satisfied. Because of this, this sort of condition is sometimes termed
selection on observables (this is, however, imprecise because weak ignorability does not
imply that price is a function of observables). Note that the conditional independence
in weak ignorability is of historical price and potential demand at a price 𝑝, not
historically observed demand. The term weak means that the independence holds
separately for each price 𝑝.

If the manager chooses prices without regard to any specific sale event then weak
ignorability holds with a null 𝑋 variable (formally, 𝜎(𝑋) = {Ω, ∅}). In particular,
this is the case in dynamic demand learning and pricing as in Bertsimas and Perakis
(2006), Besbes and Zeevi (2009), Harrison et al. (2012) because each sale event is
assumed independent and nothing about a present sale event is considered when
setting the price. This is the experimental setting. Unfortunately, it rarely holds in
practice for historical data.

If there is not sufficient recorded information in 𝑋 to merit the weak ignorabil-
ity assumption, it is said that there is residual endogeneity. In this case, Theorem
3.9 fails, but there may be other conditions that enable identification such as the
availability of instrumental variables (see Bijmolt et al. (2005) for a discussion of en-
dogeneity in demand-price-response estimation). Here we focus on data that arises
from historical pricing by managers whose behavior is well understood or even doc-
umented and hence what informed pricing decisions is known and observable to the
same managing entity.

Let us consider weak ignorability and its ramifications in some specific examples.
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Example 3.10 (Consulting for the MIT Coop). Consider again the hypothetical case
of Example 3.4. Recall, Dimitris and Nathan both came up with models for demand
that completely agreed with the data but gave rise to different optimal prices. Thus,
we concluded that the data observed could not possibly identify the right optimal
price. What would allow us to identify the right, unique model is weak ignorability
as per Theorem 3.9.

Suppose weak ignorability holds with 𝑋 being a null variable, i.e. without any
extra information. This condition then eliminates Nathan’s model – it no longer
agrees with both the data and this condition. On the other hand, Dimitris’s model
remains valid – in fact it turns out to be the unique model that agrees with both the
data and this condition. Hence, under this condition, 𝑝* = 20 is the correct optimal
price.

But for weak ignorability to hold with 𝑋 being a null variable we would have
needed experimental data, where prices are set at random for the sake of experiment.
This is almost never the case in real, historical datasets.

Suppose instead that we recorded additional information about each sale event:
whether a man dressed as Tim the Beaver was outside the Coop to promote MIT
apparel (𝑋 = 1) or not (𝑋 = 0). On average, Tim the Beaver was promoting the
store 2 days out of the month (P (𝑋 = 1) = 2/30). Suppose tallying the historic
observations led to the following summary of the data.

Joint Distribution of Historical Price, Demand, and Tim-the-Beaver Campaigns

𝑋 = 0 𝑋 = 1

Demand (k) 𝑃 = 20 𝑃 = 28 𝑃 = 20 𝑃 = 28

0 0 4/9 0 0
1 4/9 2/45 0 1/90
2 0 0 1/18 0

If prices are chosen independently of whether Tim is campaigning, the previous sce-
nario still holds and Dimitris’s model is the uniquely correct one. If, however, to
complement Tim the Beaver’s promotion and to better capitalize on the opportunity
to attract purchases, prices were more often cut to $20 when Tim was campaigning
outside, then we are no longer in the experimental setting. In fact, if we assume
weak ignorability holds with 𝑋 being whether Tim is campaigning then it turns out
that Dimitris’s model is ruled out and Nathan’s model is the unique model that ac-
commodates both this condition and the data observed, in which case 𝑝* = 28 is the
correct optimal price. In fact, Nathan’s model can be written as follows. If Tim is
not campaigning then 𝐷(20) = 1, 𝐷(28) = 0 with probability 10/11 and otherwise 0,
and 𝑃 = 20 with probability 10/21 and otherwise 28, each independently. If Tim is
campaigning then 𝐷(20) = 2, 𝐷(28) = 1, and 𝑃 = 20 with probability 5/6 and other-
wise 28, each independently. In this hypothetical example, we are seeking a universal
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price, to be set a priori without regard to Tim, but the price can also be customized
according to Tim’s presence (as was done historically); we consider customization in
Section 3.7.1.

Example 3.11 (Auto Loan Rate Optimization). Consider again the case of Example
3.2. There is a great amount of information about each loan applicant and the
associated sale event, including the FICO credit score of the applicant, the length of
the term over which the loan is to be repaid, the dollar amount of the loan, whether
the car to be purchased is new, used, or refinanced, competitors’ rate, prime rate,
and who referred the applicant.

The dataset description (Columbia University Center for Pricing and Revenue
Management 2012) says that approval and rate is based on “credit information and
other criteria.” Such criteria would almost certainly also be associated with the
potential likelihood of the consumer to accept a loan offer at any one particular rate.
Therefore, weak ignorability does not hold with null 𝑋 – the data is not experimental.
If the rate is chosen solely based on FICO score then weak ignorability would hold
with𝑋 being the FICO score. It is said, however, that “other criteria” are used too. If,
nonetheless, the data represents all the information that is provided by the applicant
and hence all the information that the on-line lender could potentially based its price
on then weak ignorability would hold with 𝑋 consisting of this data too.

In Besbes et al. (2010), the authors consider setting a single price for eight cus-
tomer segments each defined by a range of FICO scores, range of term lengths,
and season when they applied. Paraphrased, their approach to pricing is to es-
timate E

[︀
𝐷
⃒⃒
𝑃 = 𝑝, 𝑌 = 𝑖

]︀
(= P

(︀
𝐷 = 1

⃒⃒
𝑃 = 𝑝, 𝑌 = 𝑖

)︀
because demand is binary)

within each segment either parametrically or non-parametrically, where 𝑌 = 𝑠(𝑋) ∈
{1, . . . , 8} denotes membership in the population segments based on some compo-
nents of 𝑋, and prescribing the segment-wide price that maximizes this estimated
conditional expectation times per-unit revenue. How E

[︀
𝐷
⃒⃒
𝑃 = 𝑝, 𝑌 = 𝑖

]︀
relates to

E
[︀
𝐷(𝑝)

⃒⃒
𝑌 = 𝑖

]︀
, and hence how this estimated objective relates to the true objective

of the pricing problem, depends upon weak ignorability. The authors assume that
data points (𝐷𝑖, 𝑃𝑖) are iid (Assumption 1 therein) but, while this , this does not
mean any sort of independence within each data point such as weak ignorability.

Since 𝑌 = 𝑠(𝑋) is coarser than 𝑋, weak ignorability with respect to 𝑋 does
not generally imply the same with respect to the coarser 𝑌 . In particular, since,
besides coarsening, 𝑌 also removes price-driving covariates such as loan amount,
weak ignorability with respect to 𝑌 is not a reasonable assumption suggesting that
even the non-parametric model the authors consider need not converge to the true
PRF. Conditional expectations given 𝑋 can be estimated based on partitioning into
segments, but these must be data-driven and shrinking with sample size, not fixed a
priori by 𝑠(𝑋) and must not remove whole dimensions.

It is important, nonetheless, to keep in mind that all of this is completely moot
if, at the end of the day, revenues generated by any particular pricing scheme are
indistinguishable from optimal. Using a statistical test we develop in Section 3.6, we
test whether this is the case – or whether a finer analysis leads to greater revenue –
when we next return to this example.
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Example 3.12 (Other Examples from the Literature). Recall the case of Cohen et al.
(2014), where the authors study a data-driven multi-period dynamic pricing problem
for supermarket goods. The authors use a regression of demand on present and
recent prices based on historical, observational data in order to formulate a revenue
objective. For this regression to inform prescription, we would need weak ignorability
with 𝑋 being past prices. It is unlikely that this holds. The pricing problem in Cohen
et al. (2014) is billed as promotion optimization. Indeed, price promotions usually
go hand-in-hand with promotions in other aspects of the product mix (known as the
four P’s: price, product, promotion, and place). For example, promoting a product in
the weekly ad flyer is usually coincident with price-cutting promotions. The same for
promoting an item by placing it the end of aisles and many other types of promotions.
These most certainly have a strong effect on potential demand, were price set at any
one particular price. Since these non-price promotions would historically also have a
statistical association with price in observational data means that weak ignorability
does not hold. The same questions arise in the case of Johnson et al. (2014) – does
the regression have a causal meaning and, hence, does the optimization problem have
a prescriptive meaning.1

Again, all this would be moot if revenues generated could not be statistically
distinguished from optimal as it would not be clear that another approach could
potentially be better. The tools we develop in Section 3.6 allow for such a scenario
to be tested.

3.5 Solutions to the Prescriptive Problem

In the last section, we saw that weak ignorability enables identification, that is, the
data-driven pricing problem is hypothetically solvable. Now we turn to solutions. In
this section, assuming weak ignorability, we propose specific data-driven solutions to
the prescriptive problem.

3.5.1 A Non-Parametric Solution

We begin with a non-parametric solution that is non-model-dependent in that it will
converge to optimal pricing regardless of the true underlying model, given sufficient
data and some mild assumptions. Henceforth, we assume that 𝑋 is a vector of
covariates taking values in R𝑘.

1In Johnson et al. (2014), the authors write, “we calculated the correlation between our error term,
𝑑𝑖 − 𝑑𝑖, and all of the features in our regression as one test to identify if there were any systematic
biases from potentially unobserved factors or endogeneity.” This, however, cannot possibly test for
endogeneity because errors in the “short” regression (that with only the observed covariates) would
always be orthogonal to the regressors by the very definition of the error term. The endogeneity
that concerns causality is when errors in the “long” regression (an assumed model that represents
a hypothetical causal relationship and so-called because it includes additional, hidden covariates)
are not orthogonal to regressors in the “short” regression. Generally, instruments are needed to test
endogeneity.
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The proof of Theorem 3.9 says that under weak ignorability, the PRF is E [𝐷(𝑝)] =
E
[︀
E
[︀
𝐷
⃒⃒
𝑃 = 𝑝,𝑋

]︀]︀
. Thus, to estimate the revenue function, one approach may be

to estimate the regression function E
[︀
𝑟(𝑃 )𝐷

⃒⃒
𝑃 = 𝑝,𝑋 = 𝑥

]︀
and then average its

values over an estimate for the marginal distribution of 𝑋. This yields an estimate
of the revenue function 𝑅(𝑝), which can then be optimized. Nadaraya-Watson kernel
regression (Nadaraya 1964, Watson 1964) can be used to estimate the regression
function non-parametrically. The estimate, based on a kernel function𝐾 : R1+𝑘 → R+

and bandwidth ℎ𝑛, is

𝑅𝑛(𝑝, 𝑥) =

∑︀𝑛
𝑖=1𝐾

(︁
𝑝−𝑃𝑖

ℎ𝑛
, 𝑥−𝑋𝑖

ℎ𝑛

)︁
𝑟(𝑃𝑖)𝐷𝑖∑︀𝑛

𝑖=1𝐾
(︁
𝑝−𝑃𝑖

ℎ𝑛
, 𝑥−𝑋𝑖

ℎ𝑛

)︁ , (3.5)

where 𝐾
(︁
𝑝−𝑃𝑖

ℎ𝑛
, 𝑥−𝑋𝑖

ℎ𝑛

)︁
= 𝐾

(︁
𝑝−𝑃𝑖

ℎ𝑛
, 𝑥1−𝑋𝑖1

ℎ𝑛
, . . . , 𝑥𝑘−𝑋𝑖𝑘

ℎ𝑛

)︁
. A kernel function mimics a

continuous distribution centered at the data points, the width of which is determined
by the bandwidth. Indeed, such a regression estimator arises as the conditional expec-
tation with respect to the Parzen window density estimator for the joint distribution
of (𝑃,𝑋, 𝑟(𝑃 )𝐷) and that of (𝑃,𝑋), where the Parzen window density estimator is in
essence a smoothed histogram with continuous distributions instead of Dirac deltas
(Parzen 1962). There are a variety of kernels used in practice (Hardle 1990). Our
requirements for a kernel function and bandwidth are as follows:

Assumption 3.13 (Kernel Conditions).

i. 0 <
∫︀
R1+𝑘 𝐾 <∞.

ii. 𝐾 is zero outside a bounded set.

iii. 𝐾 is twice Lipschitz-continuously differentiable.

iv. 𝐾 has order at least 𝑠 ∈ N, that is,
∫︀
𝐾(𝑢)𝑢𝛼𝑑𝑢 = 0 ∀𝛼 ∈ N1+𝑘 : |𝛼| < 𝑠.

v. 𝐾 is symmetric in its first argument.

vi. ℎ𝑛 → 0 and 𝑛ℎ2𝑠+3
𝑛 → 0.

vii. 𝑛ℎ𝑘+5
𝑛 / log(𝑛)→∞ and 𝑛ℎ2𝑘+1

𝑛 / log(𝑛)2 →∞.

A non-parametric estimate of the marginal distribution of 𝑋 is the empirical
distribution, which places unit mass at each of the observations 𝑋𝑖. Combining
these estimates as detailed above, we arrive at the following estimate for the revenue
function

𝑅𝑛(𝑝) =
1

𝑛

𝑛∑︁
𝑖=1

𝑅𝑛(𝑝,𝑋𝑖) =
1

𝑛

𝑛∑︁
𝑖=1

∑︀𝑛
𝑗=1𝐾

(︁
𝑝−𝑃𝑗

ℎ𝑛
,
𝑋𝑖−𝑋𝑗

ℎ𝑛

)︁
𝑟(𝑃𝑗)𝐷𝑗∑︀𝑛

𝑖=1𝐾
(︁
𝑝−𝑃𝑖

ℎ𝑛
,
𝑋𝑖−𝑋𝑗

ℎ𝑛

)︁ , (3.6)
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which leads to the following non-parametric data-driven price prescription

𝑝𝑛 ∈ argmax
𝑝∈𝒫

𝑅𝑛(𝑝). (3.7)

The question that arises is how does 𝑝𝑛 behave asymptotically. In particular,
does this pricing strategy converge to optimality, both the price itself and its revenue
performance. Since the estimates are non-parametric, the expectation is that this
can occur under model-free assumptions. Next we show that this is indeed the case.
First, we require additional assumptions.

Assumption 3.14 (Optimal Price Conditions).

i. 𝒫 is compact.

ii. 𝑝* uniquely maximizes 𝑅(𝑝) on 𝒫 .

iii. 𝑝* lies in the interior of 𝒫 .

iv. 𝑅(𝑝) is twice continuously differentiable and 𝑅′′(𝑝*) < 0.

Assumption 3.15 (Distributional Conditions).

i. 𝑋 and 𝑃 are continuously distributed with joint density 𝑓𝑃,𝑋(𝑝, 𝑥) and 𝑋
has marginal density 𝑓𝑋(𝑥) that is bounded and continuously differentiable.

ii. (𝑋,𝑃 ) have compact support, on which 𝑓𝑃,𝑋 is bounded away from zero.

iii. E [𝐷4] <∞ and E
[︀
𝐷4
⃒⃒
𝑃 = 𝑝,𝑋 = 𝑥

]︀
is bounded.

iv. E
[︀
𝐷2
⃒⃒
𝑃 = 𝑝,𝑋 = 𝑥

]︀
is continuously differentiable.

v. E
[︀
𝐷
⃒⃒
𝑃 = 𝑝,𝑋 = 𝑥

]︀
and 𝑓𝑃,𝑋(𝑝, 𝑥) are 𝑠+1 times continuously differentiable

with bounded derivatives.

vi. There exists 𝜖 > 0 such that∫︁
sup
|𝜉|≤𝜖

(︀
1 + 𝑟(𝑝* + 𝜉)4E

[︀
𝐷4
⃒⃒
𝑃 = 𝑝* + 𝜉,𝑋 = 𝑥

]︀)︀
𝑓𝑃,𝑋(𝑝

* + 𝜉, 𝑥)𝑑𝑥 <∞.

Under these conditions, we can show the following asymptotic optimality and
rates.

Theorem 3.16. Under Assumptions 3.8, 3.13, 3.14, and 3.15, we have that√︀
𝑛ℎ𝑛(𝑅(𝑝)−𝑅𝑛(𝑝))

𝑑−→ 𝒩 (0, 𝜂𝑝) ∀𝑝 ∈ 𝒫 ,√︀
𝑛ℎ3𝑛(𝑝

* − 𝑝𝑛)
𝑑−→ 𝒩

(︂
0,

𝜂′

𝑅′′(𝑝*)2

)︂
(︀
𝑛ℎ3𝑛

)︀
(𝑅(𝑝*)−𝑅(𝑝𝑛))

𝑑−→ −𝜂′

2𝑅′′(𝑝*)
𝜒2
1,
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and, if also 𝑛ℎ2𝑠+1
𝑛 → 0, then√︀

𝑛ℎ𝑛(𝑅(𝑝
*)−𝑅𝑛(𝑝𝑛))

𝑑−→ 𝒩 (0, 𝜂) ,

where 𝒩 (0, 𝜎2) denotes a centered normal distribution with variance 𝜎2, 𝜒2
1 denotes

a chi-squared distribution with 1 degree of freedom, and 𝜂, 𝜂′, 𝜂𝑝 are constants defined
as follows

𝜂 = 𝑟(𝑝*)2 E

[︃
Var

(︀
𝐷
⃒⃒
𝑃 = 𝑝*, 𝑋

)︀
𝑓𝑃 |𝑋(𝑝*|𝑋)

]︃∫︁
�̃�(𝑝)2𝑑𝑝,

𝜂′ = 𝑟(𝑝*)2 E

[︃
Var

(︀
𝐷
⃒⃒
𝑃 = 𝑝*, 𝑋

)︀
𝑓𝑃 |𝑋(𝑝*|𝑋)

]︃∫︁
�̃� ′(𝑝)2𝑑𝑝,

𝜂𝑝 = 𝑟(𝑝*)2 E

[︃
Var

(︀
𝐷
⃒⃒
𝑃 = 𝑝,𝑋

)︀
𝑓𝑃 |𝑋(𝑝|𝑋)

]︃∫︁
�̃�(𝑝)2𝑑𝑝,

where �̃�(𝑝) =
∫︀
𝐾(𝑝, 𝑥)𝑑𝑥 and 𝑓𝑃 |𝑋(𝑝|𝑥) = 𝑓𝑃,𝑋(𝑝, 𝑥)/𝑓𝑋(𝑥) is the conditional dis-

tribution.

Proof. See appendix.

The main take away from this theorem is that under regularity conditions, but
without model specification, the non-parametric pricing strategy has revenues that
converge to optimal as 1/𝑛. Note that Assumption 3.13 implies that 𝑠 ≥ 𝑘 when 𝑘 ≥ 3
and 𝑠 ≥ 𝑘 + 1 when 𝑘 ≤ 2. This means that a so-called bias-reducing kernel (order
greater than 2) is necessary when 𝑘 ≥ 2 in order to faithfully satisfy the assumptions
of Theorem 3.16. Such kernels must have a negative part and are not probability
densities.

3.5.2 A Parametric Solution

In the preceding section we developed a non-parametric pricing strategy that con-
verged to optimal without requiring any model to be specified. Non-parametric ap-
proaches, however, can sometimes be unwieldy because they may be slow to converge
and their shapelessness makes them uninterpretable. In fact, there is a growing body
of work (Besbes et al. 2010, Besbes and Zeevi 2015) arguing that parametric models
are often sufficient for prescriptive problems, where the model may need only fit well
near the optimum. In particular, what matters is not model fit but objective perfor-
mance. In this section we develop a particular parametric pricing strategy using a
generalization of the propensity score.

The propensity score is a common matching metric used in the comparison of
binary treatments in observational data (Rosenbaum and Rubin 1983). In particu-
lar, the conventional propensity score of a study subject is equal to the conditional
probability of receiving the treatment of interest given the subject’s covariates 𝑋.
If treatments are continuous, the generalized propensity score (Robins et al. 2000,
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Hirano and Imbens 2004, Imai and Van Dyk 2004) of a unit is defined as the con-
ditional density of the unit receiving whatever treatment it did receive given the
subject’s covariates.

In our problem, the generalized propensity score is 𝑄 = 𝜑(𝑝, 𝑥) where 𝜑(𝑝, 𝑥) =
𝑓𝑃 |𝑋(𝑝|𝑥), that is, one takes the conditional density 𝑓𝑃 |𝑋(𝑝|𝑥), which is non-random,
and plugs in as values the random variables 𝑃 and 𝑋. The key property of the
generalized propensity score is that it is sufficient as a control for identifying the
PRF. The following is an adaption of a common result.

Theorem 3.17. Suppose weak ignorability holds. Then the PRF satisfies

E [𝐷(𝑝)] = E [𝑑(𝑝, 𝜑(𝑝,𝑋))] , where 𝑑(𝑝, 𝑞) = E
[︀
𝐷
⃒⃒
𝑃 = 𝑝,𝑄 = 𝑞

]︀
Proof. See appendix.

The take away from this theorem is that the generalized propensity score allows
for dimensionality reduction – it is sufficient to control just for this single univari-
ate quantity rather than all of 𝑋. In the binary treatment case, the conventional
propensity score is the coarsest such control (Rosenbaum and Rubin 1983). The lim-
itation, of course, of using the generalized propensity score is that neither 𝜑(𝑝, 𝑥) nor
the scores themselves are known. Before considering estimation, let us consider an
artificial example to get a handle on generalized propensity scores and the uses of
Theorem 3.17.

Example 3.18 (Artificial Continuous Example). Recall the setup from Example 3.1:
𝑐 = 50, 𝒫 = [50, 300],

𝐷(𝑝) = 15 (300− 𝑝)+ + 1500𝑝𝑋𝑒−(𝑝−50)𝑋/10 + 𝜖(𝑝),

where 𝑋 ∼ Exp(1) is an exponentially distributed random disturbance and 𝜖(𝑝) is a
Gaussian process with kernel Cov (𝜖(𝑝), 𝜖(𝑝′)) = 𝜎2I [𝑝 = 𝑝′], and 𝑃 = 50 + 10𝑌/𝑋
where 𝑌 ∼ Exp(1) is an exponentially distributed random disturbance. Recall that
the PRF in this case is

E [𝐷(𝑝)] = 15(300− 𝑝)+ +
150000𝑝

(𝑝− 40)2
.

First, note that weak ignorability holds with respect to 𝑋. Since 𝑃 = 50+10𝑌/𝑋,
we have that

𝜑(𝑝, 𝑥) =
𝑥

10
𝑒−(𝑝−50)𝑥/10.

Hence the generalized propensity score is

𝑄 =
𝑋

10
𝑒−(𝑃−50)𝑋/10 =

𝑋

10
𝑒−𝑌 .

This means that we can write 𝐷 = 𝐷(𝑃 ) as

𝐷 = 15 (300− 𝑃 )+ + 15000𝑃𝑄+ 𝜖(𝑃 )
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and hence

𝑑(𝑝, 𝑞) = E [𝐷|𝑃 = 𝑝,𝑄 = 𝑞] = 15 (300− 𝑝)+ + 15000𝑝𝑞.

Since
E [𝜑(𝑝,𝑋)] = E

[︂
𝑋

10
𝑒−(𝑝−50)𝑋/10

]︂
=

10

(𝑝− 40)2
,

we conclude that

E [𝑑(𝑝, 𝜑(𝑝,𝑋))] = 15 (300− 𝑝)+ + 15000𝑝E [𝜑(𝑝,𝑋)]

= 15(300− 𝑝)+ +
150000𝑝

(𝑝− 40)2
,

which indeed agrees with the PRF E [𝐷(𝑝)].

Theorem 3.17 motivates the following procedure: estimate a conditional probabil-
ity model to fit 𝜑(𝑝, 𝑥), impute generalized propensity scores �̂�𝑖 = 𝜑(𝑃𝑖, 𝑋𝑖), regress
demand on price and imputed scores, average this regression over 𝜑(𝑝,𝑋𝑖), and pre-
scribe the price 𝑝 that maximizes per-unit revenue times this estimate of the PRF.
Specifically, the following parametric approach can be followed:

1. Regress 𝑃 on𝑋 by fitting a generalized linear model (GLM) in order to estimate
𝜑(𝑝, 𝑥). For example, one can fit a simple linear regression(︀

𝑃
⃒⃒
𝑋 = 𝑥

)︀
∼ 𝒩

(︀
𝛽0 + 𝛽𝑇𝑥, 𝜎2

)︀
,

estimating 𝛽𝑛 and �̂�𝑛 by ordinary least squares, and then estimate 𝜑(𝑝, 𝑥) by

𝜑𝑛(𝑝, 𝑥) =
1√︀
2𝑅�̂�2

𝑛

𝑒
− (𝑝−𝛽𝑛0−𝛽𝑇𝑛 𝑥)2

2�̂�2
𝑛 .

Alternatively, we can fit a GLM with any overdispersed exponential family, i.e.,
choose 𝛽𝑛, 𝜏𝑛 by maximum likelihood given the model

𝑓𝑃 |𝑋(𝑝|𝑥; 𝛽, 𝜏) = ℎ(𝑝, 𝜏) exp

(︂
𝑏(𝛽0 + 𝛽𝑇𝑥)𝑇 (𝑝)− 𝐴(𝛽0 + 𝛽𝑇𝑥)

𝑑(𝜏)

)︂
.

The above means that, given 𝑋, 𝑃 is a member of an overdispersed exponential
family with canonical parameter 𝛽0 + 𝛽𝑇𝑥 and dispersion parameter 𝜏 . See
McCullagh et al. (1989) for more detail on GLMs. Fitting the GLM provides
us with a more general estimate for 𝜑(𝑝, 𝑥):

𝜑𝑛(𝑝, 𝑥) = 𝑓𝑃 |𝑋(𝑝|𝑥; 𝛽𝑛, 𝜏𝑛).

2. Use 𝜑𝑛(𝑝, 𝑥) to impute generalized propensity scores, setting �̂�𝑖 = 𝜑𝑛(𝑃𝑖, 𝑋𝑖).

3. Regress 𝐷 on 𝑃 and �̂� using a flexible parametric regression to estimate 𝑑(𝑝, 𝑞),
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e.g.
𝐷 = 𝑏(𝛼0 + 𝛼1𝑝+ 𝛼2𝑞 + 𝛼3𝑞

2 + 𝜖)

via some link function 𝑏. Depending on the particular case, it may be appro-
priate to regress log(𝐷) on log(𝑃 ) and �̂� instead (log-log model). Call 𝑑𝑛(𝑝, 𝑞)
our estimate of 𝑑(𝑝, 𝑞).

4. Use 𝜑𝑛(𝑝, 𝑥) and 𝑑𝑛(𝑝, 𝑞) to estimate the PRF,

𝑑𝑛(𝑝) =
1

𝑛

𝑛∑︁
𝑖=1

𝑑𝑛(𝑝, 𝜑𝑛(𝑝,𝑋𝑖)),

and prescribe the price that optimizes estimated revenues,

𝑝𝑛 ∈ argmax
𝑝∈𝒫

𝑟(𝑝)𝑑𝑛(𝑝).

The above procedure provides a flexible parametric framework for data-driven pricing
with observational data. When we apply it to examples both real and synthetic in
Section 3.6.3 we find that it performs well and produces revenue that is statistically
indistinguishable from optimal.

3.5.3 A Semi-Parametric Solution

We can also use the generalized propensity score to correct the naïve application
of kernel regression as in Besbes et al. (2010) to observational data. If scores are
estimated parametrically and the PRF is estimated non-parametrically as delineated
below and then optimized, we arrive at a semi-parametric solution.

We begin by showing the following relationship.

Theorem 3.19. Under weak ignorability,

E [𝐷(𝑝)] =
E
[︀
𝐷/𝑄

⃒⃒
𝑃 = 𝑝

]︀
E
[︀
1/𝑄

⃒⃒
𝑃 = 𝑝

]︀
Proof. Consider any random variable 𝑌 . Note that

E
[︀
𝑌
⃒⃒
𝑃 = 𝑝,𝑋 = 𝑥

]︀
= E

[︀
𝑌 I [𝑃 = 𝑝]

⃒⃒
𝑋 = 𝑥

]︀
/𝑓𝑃 |𝑋(𝑝|𝑥)

= E
[︂
𝑌 I [𝑃 = 𝑝]

𝜑(𝑝, 𝑥)

⃒⃒
𝑋 = 𝑥

]︂
= E

[︂
𝑌 I [𝑃 = 𝑝]

𝑄

⃒⃒
𝑋 = 𝑥

]︂
.
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Therefore, considering 𝑌 = 𝐷,

E [𝐷(𝑝)] = E
[︀
E
[︀
𝐷(𝑝)

⃒⃒
𝑋
]︀]︀

= E
[︀
E
[︀
𝐷
⃒⃒
𝑃 = 𝑝,𝑋

]︀]︀
= E

[︂
E
[︂
𝐷I [𝑃 = 𝑝]

𝑄

⃒⃒
𝑋

]︂]︂
= E

[︂
𝐷I [𝑃 = 𝑝]

𝑄

]︂
= E

[︀
𝐷/𝑄

⃒⃒
𝑃 = 𝑝

]︀
𝑓𝑃 (𝑝).

Similarly, considering 𝑌 = 1, we have

1 = E [E [1|𝑋,𝑃 ]] = E
[︀
E
[︀
I [𝑃 = 𝑝] /𝑄

⃒⃒
𝑋
]︀]︀

= E [I [𝑃 = 𝑝] /𝑄] = E
[︀
1/𝑄

⃒⃒
𝑃 = 𝑝

]︀
𝑓𝑃 (𝑝).

Dividing and canceling P (𝑃 = 𝑝) yields the result.

If we knew 𝑄, the kernel estimator for E
[︀
𝐷/𝑄

⃒⃒
𝑃 = 𝑝

]︀
would be∑︀𝑛

𝑖=1𝑄𝑖
−1𝐾

(︁
𝑝−𝑃𝑖

ℎ𝑛

)︁
𝐷∑︀𝑛

𝑖=1𝐾
(︁
𝑝−𝑃𝑖

ℎ𝑛

)︁
and the kernel estimator for E

[︀
1/𝑄

⃒⃒
𝑃 = 𝑝

]︀
would be∑︀𝑛

𝑖=1𝑄𝑖
−1𝐾

(︁
𝑝−𝑃𝑖

ℎ𝑛

)︁
∑︀𝑛

𝑖=1𝐾
(︁
𝑝−𝑃𝑖

ℎ𝑛

)︁ .

Taking their ratios and imputing parametrically estimated scores �̂�𝑖, Theorem 3.19
suggests the following semi-parametric estimator for the PRF:

𝑑𝑛(𝑝) =

∑︀𝑛
𝑖=1 �̂�

−1
𝑖 𝐾

(︁
𝑝−𝑃𝑖

ℎ𝑛

)︁
𝐷∑︀𝑛

𝑖=1 �̂�
−1
𝑖 𝐾

(︁
𝑝−𝑃𝑖

ℎ𝑛

)︁ .

Compared to the kernel estimator used in Besbes et al. (2010), here the kernel weights
are corrected by an inverse-score weighting. This eliminates the bias due to the
observational nature of the data (under weak ignorability). The similar structure
makes clear some connections. In particular, in the experimental setting 𝑄 is constant
and then in that case would cancel out in the above, leaving us with the simple kernel
estimator.

We do not explore the semi-parametric approach further because, in agreement
with previous findings, we find in Section 3.6.3 that a parametric approach is sufficient
(where the fully non-parametric approach is used as a benchmark for testing). The
above also suggests an alternative fully non-parametric approach where the scores �̂�𝑖

are estimated non-parametrically also using kernel regression, but there is no clear
benefit to such a two-step approach over the direct non-parametric approach explored
in the earlier section.
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3.6 A Test for Revenue Optimality
In the previous sections we considered various data-driven pricing strategies for obser-
vational data. All of these proceeded by estimating the PRF and optimizing resulting
estimated revenue. Similarly, in their own context, each of Besbes et al. (2010), Cohen
et al. (2014), Johnson et al. (2014) first estimated demand then optimized price. It
may be argued that it is important that estimated revenues faithfully represent true
revenues, but in fact this point is moot insofar as actual revenues generated by the
resulting pricing strategy are satisfactory. This is the key point made by Besbes et al.
(2010) where the authors develop a hypothesis test to inspect revenue optimality in-
stead of predictive model fit. In the perspective presented herein, this test does not
apply to observational data because it relies on a naïve kernel estimate of conditional
expectation of revenues in order to estimate the true revenue function, but this may
in general bear no relationship to the conditional expectation being estimated. The
purpose of this section is to build on their work in developing an analogous test for
the observational setting under the assumption of weak ignorability.

The standard hypothesis to be tested when verifying model fit is whether one’s
estimation of the PRF is consistent with the true PRF, that is, equal at all prices 𝑝.
This is not necessarily of direct interest in a prescriptive problem such as data-driven
pricing. Instead, the concern is whether the given pricing strategy is misguided in
that it approaches suboptimal revenues. The null hypothesis is that it does not.

Consider some data-driven pricing strategy 𝑝𝑛. Let 𝑝 be the price that this strat-
egy, given infinite data, will eventually arrive at. We leave this somewhat vague to
make the test flexible, only requiring the following condition in defining what 𝑝means.

Assumption 3.20 (Convergent Pricing Strategy). 𝑝𝑛−𝑝 = 𝑂𝑝(1/
√
𝑛) for some fixed

𝑝 ∈ 𝒫 .2

For example, consider the strategy that fits a naïve kernel regression to estimate
conditional expectation of revenues and optimizes it, without regard to causality.
Such a strategy, given infinite data, will eventually arrive at the price 𝑝 that optimizes
the true conditional expectation of revenues. In particular, it is true that 𝑝𝑛 − 𝑝 =
𝑂𝑝(1/

√
𝑛) (Ziegler 2002). A similar condition is true of the strategy that uses a

parametric maximum-likelihood regression (Besbes et al. 2010).
The hypothesis we would like to test is

𝐻0 : 𝑅(𝑝
*) = 𝑅(𝑝)

against the alternative
𝐻1 : 𝑅(𝑝

*) > 𝑅(𝑝).

That is, we would like to test whether the nominal price that our pricing strategy
would be prescribing is generating optimal revenues. The difference between the
hypothesis we consider and the one considered by Besbes et al. (2010) is in the
definition of 𝑅(𝑝) (i.e. E [𝑟(𝑝)𝐷(𝑝)] vs. 𝑟(𝑝)E

[︀
𝐷
⃒⃒
𝑃 = 𝑝

]︀
).

2The notation 𝑌𝑛 = 𝑂𝑝(𝑎𝑛) means that for any 𝜖 > 0 there is 𝑀 > 0 such that P (|𝑌𝑛/𝑎𝑛| > 𝑀) <
𝜖 eventually. In particular, if 𝑌𝑛/𝑎𝑛 converges in distribution then 𝑌𝑛 = 𝑂𝑝(𝑎𝑛).
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A hypothesis test is a procedure that either rejects 𝐻0 in favor of 𝐻1 or claims
that there is insufficient evidence to reject 𝐻0. The test should only falsely reject 𝐻0

at a bounded rate, known as significance. A consistent hypothesis test will eventually
reject 𝐻0 whenever it is false (i.e., given sufficient data). Thus, a consistent test
must balance caution in rejecting 𝐻0 when it might actually be true and audacity in
rejecting it when the evidence supports it or risk letting the false hypothesis slide.
Since a hypothesis test is based on data and should not reject 𝐻0 without significant
evidence in the data, a test for our hypothesis can be interpreted as only rejecting
a pricing strategy if it generates revenues that are distinguishable from optimal to a
statistically significant degree. If revenues are not statistically distinguishable from
optimal, a pricing strategy should not be rejected (but this does not mean 𝐻0 is true).

3.6.1 Test Statistic and Large Sample Theory

The impediment to verifying our hypothesis is that 𝑅(𝑝), 𝑝*, and 𝑝 are all unknown;
were they known, we would compute 𝜌 = 𝑅(𝑝*)−𝑅(𝑝) and compare it to 0. Therefore,
we must come up with an observable test statistic as a proxy to 𝜌. We do this by
replacing the unknowns by our consistent estimates for them. We replace 𝑅(𝑝) and
𝑝* by our non-parametric estimates 𝑅(𝑝) as in (3.6) and 𝑝 as in (3.7) and we replace
𝑝 by 𝑝𝑛. The resulting test statistic is

𝜌𝑛 = 𝑅𝑛(𝑝𝑛)−𝑅𝑛(𝑝𝑛).

If 𝜌𝑛 is small, we have reason to believe that 𝜌 = 0, whereas if 𝜌𝑛 is large, we would
believe that 𝜌 > 0. The question is where to draw the line.

Theorem 3.21. Suppose Assumptions 3.8, 3.13, 3.14, 3.15, and 3.20 hold. Let
Γ = −𝜂′

2𝑅′′(𝑝*)
with 𝜂′ defined as in Theorem 3.16. Then,

i. under 𝐻0, (𝑛ℎ3𝑛) 𝜌𝑛
𝑑−→ Γ𝜒2

1, and

ii. under 𝐻1, (𝑛ℎ3𝑛) 𝜌𝑛
𝑑−→∞.

Proof. See appendix.

Theorem 3.21 says that if we only reject 𝐻0 when 𝜌𝑛 > 𝑛−1ℎ−3
𝑛 Γ𝐹−1

𝜒2
1
(1−𝛼) (where

𝐹−1
𝜒2
1

is the chi-squared quantile function), then when 𝐻0 is true we would only falsely
reject 𝐻0 a 1 − 𝛼 fraction of the time (asymptotically). On the other hand, if 𝐻0 is
false, then we would eventually reject it using such a procedure. The problem is that
Γ is unknown meaning that this exact procedure cannot be implemented in practice.

3.6.2 A Hypothesis Test

One way to implement a hypothesis is to estimate Γ and replace the estimate into
the results of Theorem 3.21. In particular, given any estimate Γ̂𝑛 that converges in
probability to Γ, we would have as an immediate consequence of Theorem 3.21 that
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(𝑛ℎ3𝑛) Γ̂
−1
𝑛 𝜌𝑛 converges in distribution to 𝜒2

1 under 𝐻0 and to∞ under 𝐻1. This would
give an implementable test. Non-parametric estimators for Γ, however, would tend
to be convoluted and unwieldy, involving partial means of estimators of conditional
variance and density as well as fragile estimates of second derivatives of partial means.

Instead, we consider an alternative approach that estimates Γ via the bootstrap
(Efron and Tibshirani 1993). The proof of Theorem 3.21 shows that the term that
dominates the behavior of 𝜌𝑛 under 𝐻0 is 𝐴𝑛 = 𝑅𝑛(𝑝𝑛)−𝑅𝑛(𝑝

*) and that, in partic-
ular, (𝑛ℎ3𝑛)𝐴𝑛

𝑑−→ Γ𝜒2
1. To estimate Γ we can estimate the mean of 𝐴𝑛. Following

Besbes et al. (2010), we use the bootstrap to do this. The fact that 𝜌𝑛 is asymp-
totically pivotal (the asymptotic distribution is independent of 𝑝) suggests that a
bootstrap procedure could be particularly powerful (Horowitz 2001).

The bootstrap procedure proceeds as follows. Compute 𝑝𝑛 as in (3.7) based on
the data 𝒮𝑛. Fix 𝐵 large. For 𝑏 = 1, . . . , 𝐵, do:

1. Draw 𝑛 samples with replacement from 𝒮𝑛 to form the resampled dataset 𝒮(𝑏)
𝑛 .

2. Compute 𝑅(𝑏)

𝑛 and 𝑝(𝑏)𝑛 as in (3.6)-(3.7) based on the data 𝒮(𝑏)
𝑛 .

3. Set 𝐴(𝑏)
𝑛 = 𝑅

(𝑏)

𝑛 (𝑝(𝑏)𝑛 )−𝑅(𝑏)

𝑛 (𝑝𝑛).

Let Γ̂𝑛 = 𝑛ℎ3𝑛
𝐵

∑︀𝑛
𝑖=1𝐴

(𝑏)
𝑛 . Reject 𝐻0 if 𝜌𝑛 > 𝑛−1ℎ−3

𝑛 Γ̂𝑛𝐹
−1
𝜒2
1
(1− 𝛼).

This bootstrap procedure is more attractive than convoluted kernel estimates of Γ
because it is less dependent on parameters and it deals more directly with the finite-
sample distribution of 𝜌𝑛. We use this bootstrap test in our numerical experiments
in the next section.

3.6.3 Examples

In this section we use our test to study the distinction between prediction and pre-
scription in both synthetic and real examples and whether it has any operational
consequence. We consistently find that ignoring the distinction in cases with ob-
servational data can significantly hurt revenues. On the other hand, we find that a
parametric approach is sufficient for good performance as long as it takes into account
this distinction.

Example 3.22 (Artificial Continuous Example). Consider again the setup from Ex-
ample 3.1 and consider recording 𝑛 observations from (𝑃,𝑋,𝐷). We compare four
different pricing strategies: prescriptive non-parametric, prescriptive parametric, pre-
dictive non-parametric, and predictive parametric. The prescriptive non-parametric

strategy is 𝑝𝑛 as in (3.7) using a second order Gaussian kernel 𝐾(𝑢) = 𝑒
− ||𝑢||22

2ℎ2𝑛 and
ℎ𝑛 = (𝑛 log(𝑛))−1/7, which satisfy Assumption 3.13 with 𝑠 = 2, 𝑘 = 1. Note that
Assumptions 3.14 and 3.15 are also satisfied by construction. For the prescriptive
parametric strategy, we follow our procedure from Section 3.5.2 using a conditional
gamma model for the GLM in step 1 and a quadratic regression in step 3. For the
predictive non-parametric strategy, we apply a naïve kernel regression of 𝐷 on 𝑃
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Figure 3-2: Comparing Predictive and Prescriptive Data-Driven Pricing Strategies
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(using the same kernel and bandwidth) and optimize the estimated conditional ex-
pectation of revenues. Finally, for the predictive parametric strategy, we perform a
linear regression of 𝐷 on 𝑃 and optimize the estimated conditional expectation of
revenues.

First, we consider the revenue performance of each of these strategies. We plot
the corresponding out-of-sample revenues, 𝑅(𝑝𝑛), along with optimal revenue 𝑅(𝑝*),
in Figure 3-2(a). The example shows that a predictive approach, whether parametric
or not, can potentially leave much on the table in terms of revenues. In contrast
to the predictive approach, the prescriptive non-parametric approach converges to
optimum, in agreement with Theorem 3.16. On the other hand, the prescriptive
parametric approach offers better out-of-sample performance for small samples.

Next, we apply our hypothesis test for revenue optimality. We plot the frequencies
of rejecting a pricing strategy as significantly suboptimal at a significance of 0.1
in Figure 3-2(b). We see that with sufficient data, the test can distinguish those
pricing strategies that generate suboptimal revenues (i.e. solely predictive strategies)
from those that cannot be distinguished from optimal for all prescriptive intents and
purposes. In particular, it takes about a thousand data points before the test has the
desired significance of 0.1 (i.e. 𝑝* is rejected no more than 10% of the time).
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Example 3.23 (Auto Loan Rate Optimization). Consider again the case of Example
3.2. In Besbes et al. (2010), the authors consider whether a parametric model suffices
for the problem of fixed pricing within various customer segments of loan applicants.
The segments are defined in terms of three factors:

1. FICO score: (690, 715] (range 1) or (715, 740] (range 2),

2. Loan term in months: ≤ 36 (class 1), (36, 48] (class 2), (48, 60] (class 3), or
> 60 (class 4).

3. Season: first half of data (half 1) or second half (half 2).

Customers with FICO scores outside of (690, 740] are not considered (see ibid. for
reasoning). Term classes 2 and 4 are not considered either, but we consider these here.
The authors use a per-unit revenue function 𝑟(𝑝) = 𝑟 − 2%. As in Example 3.11, let
us use 𝑌 ∈ {1, . . . , 16} to denote membership in a segment. Within each segment,
the authors approach is to estimate (either parametrically or non-parametrically) the
conditional expectation of demand given price (same as conditional probability since
demand is binary) and to optimize per-unit revenue times this conditional expecta-
tion. Using a test that compares the parametric and non-parametric approaches, they
conclude that a parametric model suffices.

We consider the very same problem again here, paying closer attention to the
observational nature of the data. In Example 3.11 we argued that even within each
segment, the data cannot be treated as experimental (i.e. satisfying weak ignorability
with respect to segment alone) and therefore that purely predictive approaches will
not produce the true PRF. We noted, however, that this is moot if, in the end of the
day, revenues generated by such approaches cannot be distinguished from optimal. We
now use our hypothesis test to determine whether this is the case. We also apply the
test to our parametric prescriptive approach from Section 3.5.2 to determine whether
a parametric approach suffices to achieve revenues that cannot be distinguished from
optimal. For the predictive approaches, we use the same methods as used in Besbes
et al. (2010): kernel regression with the Gaussian kernel (non-parametric) and logistic
regression (parametric). For our parametric prescriptive approach we fit a log-normal
model for price via linear regression on 𝑋 as our GLM for price, i.e.,(︀

log(𝑃 )
⃒⃒
𝑋 = 𝑥

)︀
∼ 𝒩

(︀
𝛽0 + 𝛽𝑇1 𝑥, 𝜎

)︀
,

and we fit a logistic regression for demand that is linear in price and quadratic in
generalized propensity score, i.e.,

P
(︀
𝐷 = 1

⃒⃒
𝑃 = 𝑝, 𝑄 = 𝑞

)︀
=

1

1 + 𝑒−𝛼0−𝛼1𝑝−𝛼2𝑞−𝛼3𝑞2
.

We let 𝑋 consist of FICO score, the loan amount, the loan term, whether the car
is new or used, whether the loan refinancing, and if so what was the previous rate
(otherwise 0). In our experience, each of these covariates has direct impact on the
interest rate quoted to applicants – and each can arguably impact the decision of the
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applicant to accept any one rate. At the same time, this summarizes all relevant data
provided and thus encapsulates all customer-specific information that could have gone
into a rate quote decision. Therefore, we conclude that weak ignorability reasonably
holds with respect to 𝑋, while it is likely to fail with respect to any subset of 𝑋.

We run the test within each of the 16 customer segments and report the resulting
𝑝-values in Table 3.1. The results overwhelmingly support the case that a predictive
approach is insufficient and leaves revenue on the table – the data clearly distinguishes
the revenues generated by these approaches from optimal in all but 3 segments (non-
parametric) or 6 segments (parametric). Our prescriptive parametric approach, on
the other hand, passes the test in all but 3 segments (in each of which, the other
approaches also failed the test). We note that in the same segments in which the
analysis in Besbes et al. (2010) suggested that logistic regression on 𝑃 is sufficient to
estimate the PRF for pricing purposes, our findings show that it is in fact insufficient
if one is concerned with optimizing revenues in a prescriptive setting. On the other
hand, a parametric approach that address the observational nature of the data and
the prescriptive nature of the problem seems to suffice for pricing in most cases,
generating revenues that the data cannot be outright distinguish from optimal. In
practice, it is known that parametric models, even if misspecified, can be helpful in
extracting useful models from smaller datasets. Our findings confirm this and agree
with the conclusions of Besbes et al. (2010) but not entirely with the methods.

3.7 Extensions

We explored the predictive-prescriptive dichotomy through a particular, simple pric-
ing problem and presented one treatment of the issue. The ideas, however, extend
and relate to a wider range of operational problems and statistical techniques. We
discuss these extensions in this section.

3.7.1 Customized Pricing

Up to now, we have considered the problem of assigning a single price based on data,
but in this data prices were potentially set based partially on observed covariates.
The sole customization considered was of the form of discrete binning and splitting
of the data. The single-pricing problem offered the clearest parallel to existing work
and, as a building block of price revenue optimization, provided a framework in which
to study the distinction between prediction and prescription.

In this section we briefly expand our scope to the problem of customized pricing,
where each price can be dependent on customer characteristics. In the full-information
case, the problem is the same as the single-price problem and simply involves adjust-
ing one’s definition of the relevant population. In the data-driven case, however,
the difference is that data from heterogeneous customers must be used to estimate
the PRF for a particular customer either because customer characteristics are de-
fined using continuous quantities or because there are many segments. The standing
assumption will still be, as before, weak ignorability with respect to 𝑋.
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Let us consider the fully customized pricing problem where price should be cus-
tomized on the basis of the full set of covariates 𝑋. That is, we are interested in
the problem of choosing a unit price 𝑝(𝑥) ∈ 𝒫 ⊂ R+ for each customer characteristic
𝑥. The hypothetical price optimization problem we would then like to solve can be
expressed as follows:

𝑝*(𝑥) ∈ argmax
𝑝∈𝒫

{︀
𝑅(𝑝, 𝑦) := 𝑟(𝑝)E

[︀
𝐷(𝑝)

⃒⃒
𝑋 = 𝑥

]︀}︀
. (3.8)

Assuming customers arrive from some stationary distribution, our expected revenue
generated from a measurable pricing strategy 𝑝(𝑥) is

𝑅(𝑝(·)) = E [𝑟(𝑝(𝑋))𝐷(𝑝(𝑋))] .

Note that we have
𝑅(𝑝*(·)) = E

[︂
max
𝑝∈𝒫

𝑟(𝑝)E
[︀
𝐷(𝑝)

⃒⃒
𝑋
]︀]︂
.

One approach to customized pricing is to estimate the customized PRF, i.e.
E
[︀
𝐷(𝑝)

⃒⃒
𝑋 = 𝑥

]︀
, and optimize customized pricing with respect to it. To estimate

the customized PRF, we can rely on weak ignorability. The proof of Theorem 3.9
argued that under weak ignorability, E

[︀
𝐷(𝑝)

⃒⃒
𝑋 = 𝑥

]︀
= E

[︀
𝐷
⃒⃒
𝑃 = 𝑝, 𝑋 = 𝑥

]︀
so that

the customized PRF is given by regressing 𝐷 on 𝑃 and 𝑋. Since we customize the
price based on 𝑋 we do not average over it as we have before. (If customization were
done on the basis of a subset 𝑌 = 𝑠(𝑋) of the features, we would need to average over
the conditional distribution of 𝑋 given 𝑌 , which would require additional estimation.)

Non-parametric approach.

As before, we can use Nadaraya-Watson kernel regression to come up with a consistent
non-parametric estimate for E

[︀
𝑟(𝑃 )𝐷

⃒⃒
𝑃 = 𝑝,𝑋 = 𝑥

]︀
. This is exactly what we did

in deriving 𝑅𝑛(𝑝, 𝑥) in eq. (3.5) in Section 3.5.1, which leads to the following non-
parametric data-driven customized price prescription

𝑝𝑛(𝑥) ∈ argmax
𝑝∈𝒫

𝑅𝑛(𝑝, 𝑥). (3.9)

Estimating the marginal distribution of 𝑋 by the empirical distribution, a corre-
sponding non-parametric estimate of the expected revenue generated from a pricing
strategy 𝑝(·) is

𝑅𝑛(𝑝(·)) =
1

𝑛

𝑛∑︁
𝑖=1

𝑅𝑛(𝑝(𝑋𝑖), 𝑋𝑖). (3.10)

A hypothesis test.

As before, it can be argued that for pricing purposes, the fit of a customized demand
model is irrelevant insofar as the model leads to revenues that cannot be discerned
from optimal. We can develop a hypothesis test akin to that of Section 3.6, which
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asses whether this is the case in the customized pricing case.
Let us consider any customized pricing scheme 𝑝𝑛(·) and let 𝑝(·) be its large-sample

equivalent. That is, let us assume the following.

Assumption 3.24 (Convergent Customized Pricing Strategy). For some fixed 𝑝(·),

sup
𝑥
|𝑝𝑛(𝑥)− 𝑝(𝑥)| = 𝑂𝑝(1/

√
𝑛).

We are interested in testing the hypotheses

𝐻0 : 𝑅(𝑝
*(·)) = 𝑅(𝑝(·)),

𝐻1 : 𝑅(𝑝
*(·)) > 𝑅(𝑝(·)).

Again, the impediment to testing this is that 𝑅(𝑝(·)), 𝑝*(·), and 𝑝(·) are all unknown;
were they known, we could compute 𝜅 = 𝑅(𝑝*(·)) − 𝑅(𝑝(·)) and compare it to 0.
A test statistic that proxies 𝜅 that uses our non-parametric estimates from the last
section is

𝜅𝑛 = 𝑅𝑛(𝑝𝑛(·))−𝑅𝑛(𝑝𝑛(·)) =
1

𝑛

𝑛∑︁
𝑖=1

(︀
𝑅𝑛(𝑝𝑛(𝑋𝑖), 𝑋𝑖)−𝑅𝑛(𝑝𝑛(𝑋𝑖), 𝑋𝑖)

)︀
.

As before, it can be shown that under appropriate conditions, our statistic diverges
under 𝐻1 and converges in distribution under 𝐻0, with

𝐴𝑛 =
1

𝑛

𝑛∑︁
𝑖=1

(︀
𝑅𝑛(𝑝𝑛(𝑋𝑖), 𝑋𝑖)−𝑅𝑛(𝑝

*(𝑋𝑖), 𝑋𝑖)
)︀

being the dominating term. Therefore, an approximate rejection threshold for 𝜅𝑛 can
be gleaned from the bootstrap estimates

𝐴(𝑏)
𝑛 =

1

𝑛

𝑛∑︁
𝑖=1

(︁
𝑅

(𝑏)

𝑛 (𝑝(𝑏)𝑛 (𝑋𝑖), 𝑋𝑖)−𝑅
(𝑏)

𝑛 (𝑝𝑛(𝑋𝑖), 𝑋𝑖)
)︁
.

The details are beyond the scope of this chapter.

3.7.2 Related Problems

The distinction between prediction and prescription extends to other data-driven
prescriptive problems that leverage observational data. Within pricing, this includes
data-driven multi-product or inventory-constrained pricing (Oren et al. 1984, Gal-
lego and Van Ryzin 1994, Elmaghraby and Keskinocak 2003). More generally, the
distinction is relevant whenever the effect of the decision being optimized on the ob-
jective is unknown and needs to be estimated from experimental data, including, e.g.,
newsvendor models where on-hand inventory affect demand (Lee et al. 2012). The
same concepts, such as the central role of weak ignorability, extend to these problems.

92



Problems where the effect of the decision on the objective is known a priori are un-
affected by this distinction. Consider, for example, the classic stochastic optimization
problem,

min
𝑧∈𝒵

E [𝑐(𝑧;𝑌 )] ,

with decision 𝑧 and random disturbance 𝑌 . Here, knowledge of the cost structure
𝑐(𝑧; 𝑦) encapsulates the decision’s effect on the objective and, in a data-driven case,
all that needs to be estimated from the data is the distribution of 𝑌 – e.g. via
the sample average approximation (Kleywegt et al. 2002b) or robust sample average
approximation (Bertsimas et al. 2014b). The same is true of the more intricate
conditional stochastic optimization problem studied in (Bertsimas and Kallus 2015b),

min
𝑧∈𝒵

E
[︀
𝑐(𝑧;𝑌 )

⃒⃒
𝑋 = 𝑥

]︀
,

where 𝑋 represents predictive observations. The cost function gives the prescriptive
effect of the decision 𝑧 and is assumed known. The effect of the predictive features
𝑋 are to be estimated, but because they are not being optimized but only observed,
their causal effect is not of interest. This breaks down if the assumption of a known
cost function breaks down – then the prescriptive effect of, instead of prediction based
on, a decision needs to be estimated.

3.7.3 Related Statistical Methods

The Neyman-Rubin potential outcome framework is not the only framework used to
describe causal relationships, although it is largely the most popular in statistics. We
find that potential outcome notation fits well with the problem we explore here and
also matches with familiar notation already used in other work in operations research,
such as Lee et al. (2012), where the notation 𝐺(𝑞, ·) is used for the distribution of
demand when the initial on-hand inventory is set to 𝑞.

Other notable frameworks for causality include structural equation models (SEM;
cf. Goldberger (1972)), popular in econometrics, and Pearl’s framework of causal
Bayesian networks and do-calculus (cf. Pearl (2000)), popular in epidemiology. The
SEM framework may well be applied to the problem but we choose not to use it
because of its need for a priori models, the common restriction to linear relationships,
incompatible notation, and the less clear question of model-free identifiability, which
here drives our pricing solution and the nonparametric test for revenue optimality.

Pearl’s framework in some senses encompasses both potential outcomes and SEM.
Its dependence on directed acyclic graph (DAG) models to describe a priori causal
relationships, however, makes it potentially too unwieldy for application to the prob-
lem herein and its notation and extensive nomenclature too complex for a succinct
presentation. In effect, a causal DAG, correctly specified, can specify the correct
subset of the covariates 𝑋 that should be included in order to achieve weak ignor-
ability. The standard practice in applications of the Neyman-Rubin framework is
generally to condition on all observed covariates 𝑋 that are potentially relevant (cf.
Rubin (2009)), but one can come up with contrived scenarios where the inclusion of a
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covariate in such conditioning can (asymptotically) bias causal estimates (cf. Shrier
(2009), Pearl (2009)). Because these scenarios are usually restricted to self-selection
via hidden factors, rather than selection by a manager based on available data, the
relevance of such concerns to the problems explored herein is limited.

3.8 Conclusions
We studied the distinction between prediction and prescription in the context of
data-driven pricing and showed that a naive but common predictive approach leaves
money on the table whereas a theoretically-sound prescriptive approaches performs
well in practice. We demonstrated this using a novel statistical test applied to data
from an automotive loan provider. Our results indicated that in many circumstances
parametric approaches suffice, but only when they take into account the prescriptive
nature of the problem. We highlight the predictive-prescriptive dichotomy using the
lens of a simple pricing problem, but the ideas extend to many other operational
decision-making problems where the effect of a control is unknown and our decision-
making process is informed by observational data.
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Part II

The Interface Between Hypothesis
Testing and Optimization Under

Uncertainty
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Chapter 4

Robust SAA

Sample average approximation (SAA) is a widely popular approach to data-driven
decision-making under uncertainty. Under mild assumptions, SAA is both tractable
and enjoys strong asymptotic performance guarantees. Similar guarantees, however,
do not typically hold in finite samples. In this chapter, we propose a modification of
SAA, which we term Robust SAA, which retains SAA’s tractability and asymptotic
properties and, additionally, enjoys strong finite-sample performance guarantees. The
key to our method is linking SAA, distributionally robust optimization, and hypothe-
sis testing of goodness-of-fit. Beyond Robust SAA, this connection provides a unified
perspective enabling us to characterize the finite sample and asymptotic guarantees
of various other data-driven procedures that are based upon distributionally robust
optimization. We present examples from inventory management and portfolio alloca-
tion, and demonstrate numerically that our approach outperforms other data-driven
approaches in these applications.

4.1 Introduction

In this chapter, we treat the stochastic optimization problem

𝑧stoch = min
𝑥∈𝑋

E𝐹 [𝑐(𝑥; 𝜉)], (4.1)

where 𝑐(𝑥, 𝜉) is a given cost function depending on a random vector 𝜉 following
distribution 𝐹 and a decision variable 𝑥 ∈ 𝑋 ⊆ R𝑛. This is a widely used modeling
paradigm in operations research, encompassing a number of applications Shapiro and
Andrzej (2003), Birge and Louveaux (2011).

In real-world applications, however, the distribution 𝐹 is unknown. Rather, we
are given data 𝜉1, . . . , 𝜉𝑁 , which are typically assumed to be drawn IID from 𝐹 . The
most common approach in these settings is the sample average approximation (SAA).
SAA approximates the true, unknown distribution 𝐹 by the empirical distribution 𝐹𝑁 ,
which places 1/𝑁 mass at each of the data points. In particular, the SAA approach
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approximates (4.1) by the problem

𝑧SAA = min
𝑥∈𝑋

1

𝑁

𝑁∑︁
𝑗=1

𝑐(𝑥, 𝜉𝑗). (4.2)

Variants of the SAA approach in this and other contexts are ubiquitous throughout
operations research, often used tacitly without necessarily being referred to by this
name.

Under mild conditions on the cost function 𝑐(𝑥; 𝜉) and the sampling process, SAA
enjoys two important properties:

Asymptotic Convergence: As the number of data points 𝑁 →∞, both the opti-
mal value 𝑧SAA of (4.2) and an optimal solution 𝑥SAA converge to the optimal
value 𝑧stoch of (4.1) and an optimal solution 𝑥stoch almost surely (e.g. Kleywegt
et al. (2002a), King and Wets (1991)).

Tractability: Finding the optimal value of and an optimal solution to (4.2) is com-
putationally tractable (e.g. Birge and Louveaux (2011)).

In our opinion, these two features – asymptotic convergence and tractability – underly
SAA’s practical success in data-driven settings. Similar performance guarantees, how-
ever, do not hold for SAA for finite 𝑁 , except in certain special cases (e.g. Kleywegt
et al. (2002a), Levi et al. (2012)).

In this chapter, we propose a novel approach to (4.1) in data-driven settings which
we term Robust SAA. Robust SAA inherits SAA’s favorable asymptotic convergence
and tractability. Unlike SAA, however, Robust SAA enjoys a strong finite sample
performance guarantee for a wide class of optimization problems. The key idea of
Robust SAA is to approximate (4.1) by a particular data-driven, distributionally
robust optimization problem using ideas from statistical hypothesis testing.

More specifically, a distributionally robust optimization (DRO) problem is

𝑧 = min
𝑥∈𝑋
𝒞(𝑥,ℱ), (4.3)

where 𝒞(𝑥,ℱ) = sup
𝐹0∈ℱ

E𝐹0 [𝑐(𝑥; 𝜉)], (4.4)

where ℱ is a set of potential distributions for 𝜉. We call such a set a distributional
uncertainty set or DUS in what follows. Initial research (see literature review be-
low) focused on DUSs ℱ specified by fixing the first few moments of a distribution
or other structural features, but did not explicitly consider the data-driven setting.
Recently, the authors of Calafiore and El Ghaoui (2006), Delage and Ye (2010) took
an important step forward proposing data-driven DRO formulations in which the
DUS ℱ is a function of the data, i.e., ℱ = ℱ(𝜉1, . . . , 𝜉𝑁), and showing that (4.3)
remains tractable. Loosely speaking, their DUSs consist of distributions whose first
few moments are close to the sample moments of the data. The authors show how
to tailor these DUS so that for any 0 ≤ 𝛼 ≤ 1, the probability (with respect to data
sample) that the true (unknown) distribution 𝐹 ∈ ℱ(𝜉1, . . . , 𝜉𝑁) is at least 1 − 𝛼.
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Consequently, solutions to (4.3) based on these DUSs enjoy a distinct, finite-sample
guarantee:

Finite-Sample Performance Guarantee: With probability at least 1 − 𝛼 with
respect to the data sampling process, for any optimal solution 𝑥 to (4.3), 𝑧 ≥
E𝐹 [𝑐(𝑥, 𝜉)], where the expectation is taken with respect to the true, unknown
distribution 𝐹 .

In contrast to SAA, however, the methods of Calafiore and El Ghaoui (2006), Delage
and Ye (2010) do not generally enjoy asymptotic convergence. (We make this claim
precise Section 4.4.3).

Our approach, Robust SAA, is a particular type of data-driven DRO. Unlike exist-
ing approaches, however, our DUSs are not defined in terms of the sample moments of
the data, but rather are specified as the confidence region of a goodness-of-fit (GoF)
hypothesis test. Intuitively, our DUSs consist of all distributions which are “small"
perturbations of the empirical distribution – hence motivating the name Robust SAA
– where the precise notion of “small" is determined by the choice of GoF test. Dif-
ferent GoF tests yields different DUSs with different computational and statistical
properties.

We prove that like other data-driven DRO proposals, Robust SAA also satisfies
a finite-sample performance guarantee. Moreover, we prove that for a wide-range
of cost functions 𝑐(𝑥; 𝜉), Robust SAA can be reformulated as a single-level convex
optimization problem suitable for off-the-shelf solvers and is tractable theoretically
and practically. Unlike other data-driven DRO proposals, however – and this is key –
we prove that Robust SAA also satisfies an asymptotic convergence property similar
to SAA. In other words, Robust SAA combines the strengths of both the classical
SAA and data-driven DRO. Computational experiments in inventory management
and portfolio allocation confirm that these properties translate into higher quality
solutions for these applications in both small and large sample contexts.

In addition to proposing Robust SAA as an approach to addressing (4.1) in data-
driven settings, we highlight a connection between GoF hypothesis testing and data-
driven DRO more generally. Specifically, we show that any DUS that enjoys a finite-
sample performance guarantee, including the methods of Calafiore and El Ghaoui
(2006), Delage and Ye (2010), can be recast as the confidence region of some sta-
tistical a hypothesis test. Thus, hypothesis testing provides a unified viewpoint.
Adopting this viewpoint, we characterize the finite-sample and asymptotic perfor-
mance of DROs in terms of certain statistical properties of the underlying hypothesis
test, namely significance and consistency. This characterization highlights an im-
portant, new connection between statistics and data-driven DRO. From a practical
perspective, our results allow us to describe which DUSs are best suited to certain
applications, providing important modeling guidance to practitioners. Moreover, this
connection motivates the use of well-established statistical procedures like bootstrap-
ping in the DRO context. Numerical experimentation confirms that these procedures
can significantly improve upon existing algorithms and techniques.

To summarize our contributions:
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1. We propose a new approach to optimization in data-driven settings, termed Ro-
bust SAA, which enjoys both finite sample and asymptotic performance guar-
antees for a wide-class of problems.

2. We develop new connections between SAA, DRO and statistical hypothesis
testing. In particular, we characterize the finite-sample and asymptotic per-
formance of data-driven DROs in terms of certain statistical properties of a
corresponding hypothesis test, namely its significance and consistency.

3. Leveraging the above characterization, we shed new light on the finite sam-
ple and asymptotic performance of existing DRO methods and Robust SAA.
In particular, we provide practical guidelines on designing appropriate DRO
formulations for specific applications.

4. We prove that Robust SAA yields tractable optimization problems that are solv-
able in polynomial time for a wide class of cost functions. Moreover, for many
cases of interest, including two-stage convex optimization with linear recourse,
Robust SAA leads a single-level convex optimization formulations that can be
solved using off-the-shelf software for linear or second-order optimization.

5. Through numerical experiments in inventory management and portfolio alloca-
tion, we illustrate that Robust SAA leads to better performance guarantees than
existing data-driven DRO approaches and has performance similar to classical
SAA in the large-sample regime.

6. Finally, we show how Robust SAA can be used to obtain approximations to the
“price of data" – the price one would be willing to pay in a data-driven setting
for additional data.

The remainder of this chapter is structured as follows. We next provide a brief
literature review and describe the model setup. In Section 4.2, we illustrate the
fundamental connection between DRO and the confidence regions of GoF tests and
explicitly describe Robust SAA. Section 4.3 connects the significance of the hypothesis
test to the finite-sample performance of a DRO. Section 4.4 connects the consistency
of the hypothesis test to the asymptotic performance of the DRO. Section 4.5 proves
that for the tests we consider, Robust SAA leads to a tractable optimization problem
for many choices of cost function. Finally, Section 4.7 presents an empirical study and
Section 4.8 concludes. All proofs except that for Theorem 4.3 are in the appendix.

4.1.1 Literature Review

DRO was first proposed by the author in Scarf (1958), where ℱ is taken to be the set of
distributions with a given mean and covariance in a specific inventory context. DRO
has since received much attention in the literature, with many authors focusing on
DUSs ℱ defined by fixing the first few moments of the distribution Birge and Wets
(1986), Prékopa (1995), Popescu (2007), Bertsimas and Popescu (2005), although
some also consider other structural information such as unimodality Dupačová (1987).
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In Wiesemann et al. (2013), the authors characterized the computational tractability
of (4.3) for a wide range of DUSs ℱ by connecting tractability to the geometry of ℱ .

As mentioned, in Delage and Ye (2010), Calafiore and El Ghaoui (2006), the
authors extended DRO to the data-driven setting. In Calafiore and El Ghaoui (2006),
the authors studied chance constraints, but their results can easily be cast in the
DRO setting. Both papers focus on tractability and the finite-sample guarantee of
the resulting formulation. Neither considers asymptotic performance. In Jiang and
Guan (2013), the authors also propose a data-driven approach to chance constraints,
but do not discuss either finite sample guarantees or asymptotic convergence. Using
our hypothesis testing viewpoint, we are able to complement these existing works
and establish a unified set of conditions under which the above methods will enjoy a
finite-sample guarantee and/or be asymptotically convergent.

Recently, several other authors have considered hypothesis testing in certain, spe-
cific optimization contexts. In Bertsimas et al. (2013), the authors show how hypoth-
esis tests can be used to construct uncertainty sets for robust, linear optimization
problems, and establish a finite-sample guarantee that is similar in spirit to our own.
They do not, however, consider asymptotic performance. In Ben-Tal et al. (2013),
the authors consider robust optimization problems described by phi-divergences over
uncertain, discrete probability distributions with finite support and provides tractable
reformulations of these constraints. The authors mention that these divergences are
related to GoF tests for discrete distributions, but do not explicitly explore asymp-
totic convergence of their approach to the full-information optimum or the case of
continuous distributions. Similarly, in Klabjan et al. (2013), the authors study a
stochastic lot-sizing problem under discrete distributional uncertainty described by
Pearson’s 𝜒2 GoF test and develop a dynamic programming approach to this partic-
ular problem. The authors establish conditions for asymptotic convergence for this
problem but do not discuss finite sample guarantees.

By contrast, we provide a systematic study of GoF testing and data-driven DRO.
By connecting these problems with the existing statistics literature, we provide a uni-
fied treatment of both discrete and continuous distributions, finite-sample guarantees,
and asymptotic convergence. Moreover, our results apply in a general optimization
context for a large variety of cost functions. We consider this viewpoint to both unify
and extend these previous results.

4.1.2 Setup

In the remainder, we denote the support of 𝜉 by Ξ. We assume Ξ ⊆ R𝑑 is closed,
and denote by 𝒫(Ξ) the set of (Borel) probability distributions over Ξ. For any
probability distribution 𝐹0 ∈ 𝒫(Ξ), 𝐹0(𝐴) denotes the probability of the event 𝜉 ∈ 𝐴.
To streamline the notation when 𝑑 = 1, we let 𝐹0(𝑡) = 𝐹0((−∞, 𝑡]). When 𝑑 > 1
we also denote by 𝐹0,𝑖 the univariate marginal distribution of the 𝑖th component, i.e.,
𝐹0,𝑖(𝐴) = 𝐹0 ({𝜉 : 𝜉𝑖 ∈ 𝐴}). We assume that 𝑋 ⊆ R𝑑𝑥 is closed and that for any
𝑥 ∈ 𝑋, E𝐹 [𝑐(𝑥; 𝜉)] < ∞ with respect to the true distribution, i.e., the objective
function of the full-information stochastic problem (4.1) is well-defined.

When Ξ is unbounded, (4.3) may not admit an optimal solution. (We will see non-
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pathological examples of this behavior in Section 4.3.2.) To be completely formal in
what follows, we first establish sufficient conditions for the existence of an optimal
solution. First, recall the definition of equicontinuity:

Definition 4.1. A set of functions ℋ = {ℎ : R𝑚1 → R𝑚2} is equicontinuous if for any
given 𝑥 ∈ R𝑚1 and 𝜖 > 0 there exists 𝛿 > 0 such that for all ℎ ∈ ℋ, ‖ℎ(𝑥)−ℎ(𝑥′)‖ < 𝜖
for any 𝑥′ with ‖𝑥− 𝑥′‖ < 𝛿.

In words, equicontinuity generalizes the usual definition of continuity of a function
to continuity of a set of functions.

Our sufficient conditions constitute an analogue of the classical Weierstrass The-
orem for deterministic optimization (see, e.g., Bertsekas (1999), pg. 669):

Theorem 4.2. Suppose there exists 𝑥0 ∈ 𝑋 such that 𝒞 (𝑥0;ℱ) <∞ and that 𝑐 (𝑥; 𝜉)
is equicontinuous in 𝑥 over all 𝜉 ∈ Ξ. If either 𝑋 is compact or lim

||𝑥||→∞
𝑐(𝑥; 𝜉) = ∞

for any 𝜉, then the optimal value 𝑧 of (4.3) is finite and is achieved at some 𝑥 ∈ 𝑋.

4.2 Goodness-of-Fit Testing and Robust SAA
In this section, we provide a brief review of GoF testing as it relates to Robust SAA.
For a more complete treatment, including the wider range of testing cases possible,
we refer the reader to D’Agostino and Stephens (1986), Thas (2009).

Given IID data 𝜉1, . . . , 𝜉𝑁 and a distribution 𝐹0, a GoF test considers the hypoth-
esis

𝐻0 : The data 𝜉1, . . . , 𝜉𝑁 were drawn from 𝐹0 (4.5)

and rejects it if there is sufficient evidence against it, otherwise making no particular
conclusion. A test is said to be of significance level 𝛼 if the probability of incorrectly
rejecting 𝐻0 is at most 𝛼.

A typical test specifies a statistic

𝑆𝑁 = 𝑆𝑁(𝐹0, 𝜉
1, . . . , 𝜉𝑁)

that depends on the data 𝜉1, . . . , 𝜉𝑁 and hypothesis 𝐹0 and also specifies a threshold
𝑄𝑆𝑁

(𝛼) that depends only on 𝛼. The test rejects 𝐻0 if 𝑆𝑁 > 𝑄𝑆𝑁
(𝛼).

The threshold 𝑄𝑆𝑁
(𝛼) is usually the (1 − 𝛼)th quantile of the distribution of

𝑆𝑁 under the assumption that the data have the distribution 𝐹0. For some tests,
𝑄𝑆𝑁

(𝛼) can be computed (or bounded) in closed-form. More generally, 𝑄𝑆𝑁
(𝛼) can

be approximated numerically using techniques like the bootstrap, in particular when
it may depend on 𝐹0 (see Efron and Tibshirani (1993)). Implementations of bootstrap
procedures for computing thresholds 𝑄𝑆𝑁

(𝛼) are available in many popular software
packages, e.g., the function one.boot in the [R] package simpleboot.

One example is the Kolmogorov-Smirnov (KS) test for univariate distributions.
The KS test uses the statistic

𝐷𝑁 = max
𝑖=1,...,𝑁

{︂
max

{︂
𝑖

𝑁
− 𝐹0(𝜉

(𝑖)), 𝐹0(𝜉
(𝑖))− 𝑖− 1

𝑁

}︂}︂
.

102



Figure 4-1: The Confidence Region of the Kolmogorov-Smirnov Test
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Note: The significance in this example is 20%. The dashed curve is the true cu-
mulative distribution function, that of a standard normal. The solid curve
is the empirical cumulative distribution function having observed 100 draws
from the true distribution. The confidence region contains all distributions
with cumulative distribution functions that take values inside the grey region.

Tables for 𝑄𝐷𝑁
(𝛼) are widely available (see e.g. D’Agostino and Stephens (1986),

Stephens (1970)).
The set of all distributions 𝐹0 that pass a test is called the confidence region of

the test and is denoted by

ℱ𝛼𝑆𝑁
(𝜉1, . . . , 𝜉𝑁) =

{︀
𝐹0 ∈ 𝒫(Ξ) : 𝑆𝑁(𝐹0, 𝜉

1, . . . , 𝜉𝑁) ≤ 𝑄𝑆𝑁
(𝛼)
}︀
. (4.6)

As an example, Figure 4-1 illustrates the confidence region of the KS test. Observe
that by construction, the confidence region of a test with significance level 𝛼 is a DUS
which contains the true, unknown distribution 𝐹 with probability at least 1− 𝛼.

4.2.1 The Robust SAA Approach

Given data 𝜉1, . . . , 𝜉𝑁 , the Robust SAA approach involves the following steps:

1. Choose a significance level 0 < 𝛼 < 1 and goodness-of-fit test at level 𝛼
independently of the data.

2. Let ℱ = ℱ𝑁(𝜉1, . . . , 𝜉𝑁) be the confidence region of the test.

3. Solve
𝑧 = argmin

𝑥∈𝑋
sup

𝐹0∈ℱ𝑁 (𝜉1,...,𝜉𝑁 )

E𝐹0 [𝑐(𝑥; 𝜉)]

and let 𝑥 be an optimal solution.
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Section 4.5 illustrates how to solve the optimization problem in the last step for
various choices of goodness-of-fit test and classes of cost functions.

4.2.2 Connections to Existing Methods

As observed in Section 4.2, we can use a GoF test at significance level 𝛼 to construct
a DUS that contains the true distribution 𝐹 with probability at least 1 − 𝛼 via its
confidence region. It is possible to do the reverse as well. Given a data-driven DUS
ℱ𝑁(𝜉1, . . . , 𝜉𝑁) that contains the true distribution with probability at least 1−𝛼 with
respect to the sampling distribution, we can construct a GoF test with significance
level 𝛼 that rejects the hypothesis (4.5) whenever 𝐹0 /∈ ℱ𝑁(𝜉1, . . . , 𝜉𝑁). This is often
termed the duality between hypothesis tests and confidence regions (see for example
§9.3 of Rice (2007)).

This reverse construction can be applied to existing data-driven DUSs in the liter-
ature such as Delage and Ye (2010), Calafiore and El Ghaoui (2006) to construct their
corresponding hypothesis tests. In this way, hypothesis testing provides a common
ground on which to understand and compare the methods.

In particular, the hypothesis tests corresponding to the DUSs of Delage and Ye
(2010), Calafiore and El Ghaoui (2006) test only the first moments of the true distri-
bution (cf. Section 4.4.3). By contrast, we will for the most part focus on tests (and
corresponding confidence regions) that test the entire distribution, not just the first
two moments. This feature is key to achieving both finite-sample and asymptotic
guarantees.

4.3 Finite-Sample Performance Guarantees

We first study the implication of a test’s significance on the finite-sample performance
of Robust SAA. Let us define the following random variables expressible as functions
of the data 𝜉1, . . . , 𝜉𝑁 :

The DRO solution: 𝑥 ∈ argmin
𝑥∈𝑋

sup
𝐹0∈ℱ𝑁 (𝜉1,...,𝜉𝑁 )

E𝐹0 [𝑐(𝑥; 𝜉)] .

The DRO value: 𝑧 = min
𝑥∈𝑋

sup
𝐹0∈ℱ𝑁 (𝜉1,...,𝜉𝑁 )

E𝐹0 [𝑐(𝑥; 𝜉)] .

The true cost of the DRO solution: 𝑧 = E𝐹
[︀
𝑐(𝑥; 𝜉)|𝜉1, . . . , 𝜉𝑁

]︀
.

The following is an immediate consequence of significance.

Theorem 4.3. If ℱ𝑁(𝜉1, . . . , 𝜉𝑁) is the confidence region of a valid GoF test at
significance 𝛼, then, with respect to the data sampling process,

P (𝑧 ≥ 𝑧) ≥ 1− 𝛼.

Proof. Suppose 𝐹 ∈ ℱ𝑁 . Then sup𝐹0∈ℱ𝑁
E𝐹0 [𝑐(𝑥; 𝜉)] ≥ E𝐹 [𝑐(𝑥; 𝜉)] for any 𝑥 ∈ 𝑋.
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Therefore, we have 𝑧 ≥ 𝑧. In terms of probabilities, this implication yields,

P (𝑧 ≥ 𝑧) ≥ P (𝐹 ∈ ℱ𝑁) ≥ 1− 𝛼.𝑖𝑛𝑒𝑞

This makes explicit the connection between the statistical property of significance
of a test with the objective performance of the corresponding Robust SAA decision
in the full-information stochastic optimization problem.

Next we review the particular GoF tests we will employ.

4.3.1 Tests for Distributions with Known Discrete Support

When 𝜉 has known finite support Ξ = {𝜉1, . . . , 𝜉𝑛} there are two popular tests of
GoF: Pearson’s 𝜒2 test and the G-test (see D’Agostino and Stephens (1986)). Let
𝑝(𝑗) = 𝐹 ({𝜉𝑗}), 𝑝0(𝑗) = 𝐹0({𝜉𝑗}), and 𝑝𝑁(𝑗) = 1

𝑁

∑︀𝑁
𝑖=1 I

[︁
𝜉𝑖 = 𝜉𝑗

]︁
be the true,

hypothetical, and empirical probabilities of observing 𝜉𝑗, respectively.
Pearson’s 𝜒2 test uses the statistic

𝑋𝑁 =

(︃
𝑛∑︁
𝑗=1

(𝑝0(𝑗)− 𝑝𝑁(𝑗))2

𝑝0(𝑗)

)︃1/2

,

whereas the G-test uses the statistic

𝐺𝑁 =

(︃
2

𝑁∑︁
𝑗=1

𝑝𝑁(𝑗) log

(︂
𝑝𝑁(𝑗)

𝑝0(𝑗)

)︂)︃1/2

.

The confidence regions of these take the form of (4.6) for 𝑆𝑁 being either 𝑋𝑁 or
𝐺𝑁 . An illustration of these (𝑛 = 3, 𝑁 = 50) is given in Figure 4-2. Intuitively, these
can be seen as being generalized balls around the empirical distribution 𝑝𝑁 . The
metric is given by the statistic 𝑆𝑁 and the radius diminishes as 𝑄𝑆𝑁

(𝛼) = 𝑂(𝑁−1/2)
(see D’Agostino and Stephens (1986)).

4.3.2 Tests for Univariate Distributions

Suppose 𝜉 is a univariate continuous random variable that is known to have lower
support greater than 𝜉 and upper support less than 𝜉. These bounds could possibly
be infinite. The most commonly used GoF tests in this setting are the Kolmogorov-
Smirnov (KS) test, the Kuiper test, the Cramér-von Mises (CvM) test, the Watson
test, and the Anderson-Darling (AD) test. The KS (𝐷𝑁), the Kuiper (𝑉𝑁), the CvM
(𝑊𝑁), the Watson (𝑈𝑁), and the AD (𝐴𝑁) tests use the statistics (see D’Agostino
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Figure 4-2: Distributional Uncertainty Sets for the Discrete Case
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Note: The distributional uncertainty sets are visualized projected onto the first two
components. The example has with 𝑛 = 3, 𝛼 = 0.8, 𝑁 = 50, 𝑝 = (0.5, 0.3, 0.2).
The dot denotes the true frequencies 𝑝 and the triangle the observed fractions
𝑝50.

and Stephens (1986))

𝐷𝑁 = max
𝑖=1,...,𝑁

{︂
max

{︂
𝑖

𝑁
− 𝐹0(𝜉

(𝑖)), 𝐹0(𝜉
(𝑖))− 𝑖− 1

𝑁

}︂}︂
,

𝑉𝑁 = max
1≤𝑖≤𝑁

(︂
𝐹0(𝜉

(𝑖))− 𝑖− 1

𝑁

)︂
+ max

1≤𝑖≤𝑁

(︂
𝑖

𝑁
− 𝐹0(𝜉

(𝑖))

)︂
,

𝑊𝑁 =

(︃
1

12𝑁2
+

1

𝑁

𝑁∑︁
𝑖=1

(︂
2𝑖− 1

2𝑁
− 𝐹0(𝜉

(𝑖))

)︂2
)︃1/2

, (4.7)

𝑈𝑁 =

⎛⎝𝑊 2
𝑁 −

(︃
1

𝑁

𝑁∑︁
𝑖=1

𝐹0(𝜉
(𝑖))− 1

2

)︃2
⎞⎠1/2

,

𝐴𝑁 =

(︃
−1−

𝑁∑︁
𝑖=1

2𝑖− 1

𝑁2

(︁
log𝐹0(𝜉

(𝑖)) + log(1− 𝐹0(𝜉
(𝑁+1−𝑖)))

)︁)︃1/2

.

We let 𝑆𝑁 ∈ {𝐷𝑁 ,𝑊𝑁 , 𝐴𝑁 , 𝑉𝑁 , 𝑈𝑁} be any one of the above statistics and 𝑄𝑆𝑁
(𝛼) the

corresponding threshold. Tables for 𝑄𝑆𝑁
(𝛼) are widely available (see D’Agostino and

Stephens (1986), Stephens (1970)). Moreover, 𝑄𝑆𝑁
(𝛼) can be computed by simulation

as the (1− 𝛼)th percentile of the distribution of 𝑆𝑁 when 𝐹0(𝜉
𝑖) in (4.7) are replaced

by IID uniform random variables on [0, 1].
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The confidence regions of these tests take the form of (4.6). Recall Figure 4-
1 illustrated ℱ𝛼𝐷𝑁

. As in the discrete case, ℱ𝛼𝑆𝑁
can also be seen as a generalized

ball around the empirical distribution 𝐹𝑁 . Again, the radius diminish as 𝑄𝑆𝑁
(𝛼) =

𝑂(𝑁−1/2) (see D’Agostino and Stephens (1986)).
When 𝜉 and 𝜉 are finite, we take ℱ𝛼𝑆𝑁

to be our DUS corresponding to these tests.
When either 𝜉 or 𝜉 is infinite, however, 𝑧 in (4.3) may also be infinite as seen in the
following proposition.

Proposition 4.4. Fix 𝑥, 𝛼, and 𝑆𝑁 ∈ {𝐷𝑁 ,𝑊𝑁 , 𝐴𝑁 , 𝑉𝑁 , 𝑈𝑁}. If 𝑐(𝑥; 𝜉) is continu-
ous but unbounded on Ξ then 𝒞(𝑥;ℱ𝛼𝑆𝑁

) =∞ almost surely.

The conditions of Proposition 4.4 are typical in many applications. For example,
in Wang et al. (2009), the authors briefly propose a data-driven DRO formulation of
the newsvendor problem that is equivalent to our Robust SAA formulation using the
KS test. Using Proposition 4.4, however, one can show that if the uncertain demand
is supported on the positive real-line, the optimal value of this formulation is infinite.
We will return to the data-driven newsvendor in Example 4.28 below.

Consequently, when either 𝜉 or 𝜉 is infinite, we will employ an alternative, non-
standard, GoF test in Robust SAA. The confidence region of our proposed test will
satisfy the conditions of Theorem 4.2, and, therefore, (4.3) will attain a finite, optimal
solution.

Our proposed test combines one of the above GoF tests with a second test for a
generalized moment of the distribution. Specifically, fix any function 𝜑 : Ξ → R+

such that E𝐹 [𝜑(𝜉)] < ∞ and |𝑐(𝑥0, 𝜉)| = 𝑂(𝜑(𝜉)) for some 𝑥0 ∈ 𝑋. For a fixed 𝜇0,
consider the null hypothesis

𝐻 ′
0 : E𝐹 [𝜑(𝜉)] = 𝜇0. (4.8)

There are many possible hypothesis tests for (4.8). Any of these tests can be used
as the second test in our proposal. For concreteness, we focus on a test with rejects
(4.8) if

𝑀𝑁 =

⃒⃒⃒⃒
⃒𝜇0 −

1

𝑁

𝑁∑︁
𝑖=1

𝜑(𝜉𝑖)

⃒⃒⃒⃒
⃒ > 𝑄𝑀𝑁

(𝛼). (4.9)

As mentioned in Section 4.2, the threshold 𝑄𝑀𝑁
(𝛼) can be computed via the boot-

strap. In our numerical experiments in Section 4.7.1 we approximate 𝑄𝑀𝑁
(𝛼) as

�̂�𝑁𝑄𝑇𝑁−1
(𝛼/2)/

√
𝑁 where 𝑄𝑇𝑁−1

(𝛼/2) is the (1− 𝛼/2)tℎ quantile of the Student-T
distribution with 𝑁 − 1 degrees of freedom and �̂�2

𝑁 is the sample variance of 𝜑(𝜉).
This is a widely used approximation in statistics which is known to perform well in
similar applications Rice (2007).

Given 0 < 𝛼1, 𝛼2 < 1, combining 𝑆𝑁 and (4.9), we propose the following GoF test:

Reject 𝐹0 if either 𝑆𝑁 > 𝑄𝑆𝑁
(𝛼1) or

⃒⃒⃒⃒
⃒E𝐹0 [𝜑(𝜉)]−

1

𝑁

𝑁∑︁
𝑖=1

𝜑(𝜉𝑖)

⃒⃒⃒⃒
⃒ > 𝑄𝑀𝑁

(𝛼2).
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By the union bound, the probability of incorrectly rejecting 𝐹0 is at most

P(𝑆𝑁 > 𝑄𝑆𝑁
(𝛼1)) + P

(︃⃒⃒⃒⃒
⃒E𝐹0 [𝜑(𝜉)]−

1

𝑁

𝑁∑︁
𝑖=1

𝜑(𝜉𝑖)

⃒⃒⃒⃒
⃒ > 𝑄𝑀𝑁

(𝛼2)

)︃
≤ 𝛼1 + 𝛼2.

Thus, our proposed test has significance level 𝛼1 + 𝛼2.
The confidence region of the above test is given by the intersection of the confi-

dence region of our original goodness-of-fit test and the confidence region of our test
for (4.8):

ℱ𝛼1,𝛼2

𝑆𝑁 ,𝑀𝑁
= ℱ𝛼1

𝑆𝑁
∩ ℱ𝛼2

𝑀𝑁

=

{︃
𝐹0 ∈ 𝒫(Ξ) : 𝑆𝑁 ≤ 𝑄𝑆𝑁

(𝛼1),

⃒⃒⃒⃒
⃒E𝐹0 [𝜑(𝜉)]−

1

𝑁

𝑁∑︁
𝑖=1

𝜑(𝜉𝑖)

⃒⃒⃒⃒
⃒ ≤ 𝑄𝑀𝑁

(𝛼2)

}︃
.

(4.10)

Observe that since |𝑐(𝑥0; 𝜉)| = 𝑂(𝜑(𝜉)), i.e., ∃𝜈, 𝜂 such that |𝑐(𝑥0; 𝜉)| ≤ 𝜈 + 𝜂𝜑(𝜉), we
have

𝒞(𝑥0;ℱ𝛼1,𝛼2

𝑆𝑁 ,𝑀𝑁
) = sup

𝐹0∈ℱ
𝛼1,𝛼2
𝑆𝑁 ,𝑀𝑁

E𝐹0 [𝑐(𝑥0; 𝜉)] ≤ 𝜈 + 𝜂 sup
𝐹0∈ℱ

𝛼1,𝛼2
𝑆𝑁 ,𝑀𝑁

E𝐹0 [𝜑(𝜉)]

≤ 𝜈 +
𝜂

𝑁

𝑁∑︁
𝑖=1

𝜑(𝜉𝑖) + 𝜂𝑄𝑀𝑁
(𝛼2) <∞,

so that unlike ℱ𝛼𝑆𝑁
, our new confidence region ℱ𝛼1,𝛼2

𝑆𝑁 ,𝑀𝑁
does indeed satisfy the condi-

tions of Theorem 4.2, even if 𝜉 or 𝜉 are infinite.

4.3.3 Tests for Multivariate Distributions

In this section, we propose two different tests for the case 𝑑 ≥ 2. The first is a
standard test based on testing marginal distributions. The second is a new test we
propose that tests the full joint distribution.

Testing Marginal Distributions

Let 𝛼1, . . . , 𝛼𝑑 > 0 be given such that 𝛼 = 𝛼1 + · · · + 𝛼𝑑 < 1. Consider the test for
the hypothesis 𝐹 = 𝐹0 that proceeds by testing the hypotheses 𝐹𝑖 = 𝐹0,𝑖 for each
𝑖 = 1, . . . , 𝑑 by applying a test from the previous two sections at significance level
𝛼𝑖 to the sample 𝜉1𝑖 , . . . , 𝜉𝑁𝑖 and rejecting 𝐹0 if any of these fail. The corresponding
confidence region is

ℱ𝛼marginals =
{︀
𝐹0 ∈ 𝒫(Ξ) : 𝐹0,𝑖 ∈ ℱ𝛼𝑖

𝑖

(︀
𝜉1𝑖 , . . . , 𝜉

𝑁
𝑖

)︀
∀𝑖 = 1, . . . , 𝑑

}︀
,
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where ℱ𝛼𝑖
𝑖 denotes the confidence region corresponding to the test applied on the 𝑖th

component. By the union bound we have

P
(︀
𝐹 /∈ ℱ𝛼marginals

)︀
≤

𝑑∑︁
𝑖=1

P (𝐹𝑖 /∈ ℱ𝛼𝑖
𝑖 ) ≤

𝑑∑︁
𝑖=1

𝛼𝑖 = 𝛼,

so the test has significance 𝛼.

Testing Linear-Convex Ordering

In this section, we first provide some background on the linear-convex ordering (LCX)
of random vectors first proposed in Scarsini (1998), and then use LCX to motivate
a new GoF test for multivariate distributions. To the best of our knowledge, we are
the first to propose GoF tests based on LCX.

Given two multivariate distributions 𝐺 and 𝐺′, we write

𝐺 ⪯LCX 𝐺
′ ⇐⇒ E𝐺[𝜑(𝑎𝑇 𝜉)] ≤ E𝐺′ [𝜑(𝑎𝑇 𝜉)] ∀ 𝑎 ∈ R𝑑 and convex functions 𝜑

(4.11)
⇐⇒ E𝐺[max{𝑎𝑇 𝜉 − 𝑏, 0}] ≤ E𝐺′ [max{𝑎𝑇 𝜉 − 𝑏, 0}] ∀ |𝑎1|+ . . .+ |𝑎𝑑|+ |𝑏| ≤ 1,

(4.12)

where the second equivalence follows from Theorem. 3.A.1 of Shaked and Shanthiku-
mar (2007).

Our interest in LCX stems from the following result from Scarsini (1998). Assum-
ing E𝐺[‖𝜉‖22] <∞,

E𝐺[‖𝜉‖22] ≥ E𝐺′ [‖𝜉‖22] and 𝐺 ⪯LCX 𝐺
′ =⇒ 𝐺 = 𝐺′. (4.13)

Equation (4.13) motivates our GoF test. Intuitively, the key idea of our test is that
if 𝐹 ̸= 𝐹0, i.e., we should reject 𝐹0, then by (4.13) either E𝐹0 [‖𝜉‖22] < E𝐹 [‖𝜉‖22] or
𝐹0 ̸⪯L𝐶𝑋 𝐹 . Thus, we can create a GoF test by testing for each of these cases
separately.

More precisely, for a fixed 𝜇0, first consider the hypothesis

𝐻 ′
0 : E𝐹 [‖𝜉‖22] = 𝜇0. (4.14)

As in Section 4.3.2, there are many possible tests for (4.14). For concreteness, we
focus on a one-tailed test which rejects (4.14) if 𝑅𝑁 = 1

𝑁

∑︀𝑁
𝑖=1 ‖𝜉𝑖‖22 − 𝜇0 > 𝑄𝑅𝑁

(𝛼).
where 𝑄𝑅𝑁

(𝛼) is a threshold which can be computed by bootstrapping.
Next, define the statistic

𝐶𝑁(𝐹0) = sup
|𝑎1|+···+|𝑎𝑑|+|𝑏|≤1

(︃
E𝐹0 [max{𝑎𝑇 𝜉 − 𝑏, 0}]− 1

𝑁

𝑁∑︁
𝑖=1

[max{𝑎𝑇 𝜉𝑖 − 𝑏, 0}]

)︃
.

From (4.12), 𝐶𝑁(𝐹0) ≤ 0 ⇐⇒ 𝐹0 ⪯L𝐶𝑋 𝐹𝑁 . (Recall that 𝐹𝑁 denotes the empirical
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distribution.)
Finally, combining these pieces and given 0 < 𝛼1, 𝛼2 < 1, our LCX-based GoF

test is

Reject 𝐹0 if either 𝐶𝑁(𝐹0) > 𝑄𝐶𝑁
(𝛼1) or E𝐹0 [‖𝜉‖22] <

1

𝑁

𝑁∑︁
𝑖=1

‖𝜉‖22 −𝑄𝑅𝑁
(𝛼2).

(4.15)
The threshold 𝑄𝐶𝑁

(𝛼1) can be computed by bootstrapping or exactly bounded ex-
plicitly. See Section C.1 in the appendix for further discussion. In our numerical
experiments in Section 4.7.3, we use bootstrapped thresholds.

From a union bound we have that the LCX-based GoF test (4.15) has significance
level 𝛼1 + 𝛼2. The confidence region of the LCX-based GoF test is

ℱ𝛼1,𝛼2

𝐶𝑁 ,𝑅𝑁
=

{︃
𝐹0 ∈ 𝒫(Ξ) : 𝐶𝑁(𝐹0) ≤ 𝑄𝐶𝑁

(𝛼1), E𝐹0 [‖𝜉‖22] ≥
1

𝑁

𝑁∑︁
𝑖=1

‖𝜉2‖22 −𝑄𝑅𝑁
(𝛼2)

}︃
.

(4.16)

4.4 Convergence
Had we known the true distribution 𝐹 we would solve problem (4.1). As we gather
more data, we know more and more about 𝐹 . Therefore, it is clearly desirable that
our decisions converge to the optimal solutions of (4.1).

In this section, we study the relationship between the GoF test underlying an
application of Robust SAA and convergence properties of the Robust SAA optimal
values 𝑧 and solutions 𝑥. Recall from Section 4.2.2 that since many existing DRO
formulations can be recast as confidence regions of hypothesis tests, our analysis will
simultaneously also allow us to study the convergence properties of these methods as
well.

The convergence conditions we seek are

i. Convergence of objective function:

𝒞(𝑥;ℱ𝑁)→ E𝐹 [𝑐(𝑥; 𝜉)] (4.17)
uniformly over any compact subset of 𝑋,

ii. Convergence of optimal values:

min
𝑥∈𝑋
𝒞(𝑥;ℱ𝑁)→ min

𝑥∈𝑋
E𝐹 [𝑐(𝑥; 𝜉)], (4.18)

iii. Convergence of optimal solutions:

Every sequence 𝑥𝑁 ∈ argmin
𝑥∈𝑋
𝒞(𝑥;ℱ𝑁) has at least one limit (4.19)

point, and all of its limit points are in argmin
𝑥∈𝑋

E𝐹 [𝑐(𝑥; 𝜉)],
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all holding almost surely (a.s.). The key to these will be a restricted form of statistical
consistency that we term uniform consistency.

4.4.1 Uniform Consistency and Convergence of Optimal Solu-
tions

In statistics, consistency of a test (see Def. 4.5 below) is a well-studied property that
a GoF test may exhibit. In this section, we define a new property of GoF tests that
we call uniform consistency. Uniform consistency is a strictly stronger property than
consistency, in the sense that every uniformly consistent test is consistent, but some
consistent tests are not uniformly consistent. More importantly, we will prove that
uniform consistency of the underlying GoF test tightly characterizes when conditions
(4.17)-(4.19) hold. In particular, we show that when 𝑋 and Ξ are bounded, uniform
consistency of the underlying test implies conditions (4.17)-(4.19) for any cost function
𝑐(𝑥, 𝜉) which is equicontinuous in 𝑥, and if the test is not uniformly consistent, then
there exist cost functions (equicontinuous in 𝑥) for which conditions (4.17)-(4.19)
do not hold. When 𝑋 or Ξ are unbounded, the same conclusions hold for all cost
functions which are equicontinuous in 𝑥 and satisfy an additional, mild, regularity
condition. (See Theorem 4.12 for a precise statement.) In other words, we can
characterize the convergence of Robust SAA and other data-driven, DRO formulations
by studying if their underlying GoF test is uniformly consistent. In our opinion,
these results highlight a new, fundamental connection between statistics and data-
driven optimization. We will use this result to assess the strength of various DRO
formulations for certain applications in what follows.

First, we recall the definition of consistency of a GoF test (cf. entry for consistent
test in Dodge (2006)):

Definition 4.5. A GoF test is consistent if, for every 𝐹0 ̸= 𝐹 , the probability of
rejecting 𝐹0 approaches 1 as 𝑁 →∞.

Observe

Proposition 4.6. If a test is consistent, then any 𝐹0 ̸= 𝐹 is a.s. rejected infinitely
often (i.o.) as 𝑁 →∞.

Proof. P(𝐹0 rejected i.o.) = P
(︂
lim sup
𝑁→∞

{𝐹0 /∈ ℱ𝑁}
)︂
≥ lim sup

𝑁→∞
P (𝐹0 /∈ ℱ𝑁) =

1,

where the first inequality follows from Fatou’s Lemma, and the second since the test
is consistent.

Consistency describes the test’s behavior with respect to a single, fixed distribution
𝐹0. In particular, the conclusion of Proposition 4.6 holds only when we consider
the same, fixed distribution 𝐹0 for each 𝑁 . We would like to extend consistency
to describe the test’s behavior with respect to many alternatives 𝐹0 simultaneously.
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Motivated by an alternate definition of local uniform convergence,1 we define uniform
consistency by requiring that a condition similar to the conclusion of Proposition 4.6
hold for almost every sequence of distributions:

Definition 4.7. A GoF test is uniformly consistent if, a.s., every sequence 𝐹𝑁 that
does not converge weakly to 𝐹 is rejected i.o.

The requirement that 𝐹𝑁 does not converge weakly to 𝐹 parallels the requirement
that 𝐹0 ̸= 𝐹 .

Uniform consistency is a strictly stronger requirement than consistency.

Proposition 4.8. If a test is uniformly consistent, then it is consistent. Moreover,
there exist tests which are consistent, but not uniformly consistent.

Uniform consistency is the key property for the convergence of Robust SAA. Be-
sides uniform consistency, convergence will be contingent on three assumptions.

Assumption 4.9. 𝑐(𝑥; 𝜉) is equicontinuous in 𝑥 over all 𝜉 ∈ Ξ.

Assumption 4.10. 𝑋 is closed and either

a. 𝑋 is bounded or

b. lim
||𝑥||→∞

𝑐(𝑥; 𝜉) = ∞ uniformly over 𝜉 in some 𝐷 ⊆ Ξ with 𝐹 (𝐷) > 0 and

lim inf
||𝑥||→∞

inf
𝜉 /∈𝐷

𝑐(𝑥; 𝜉) > −∞.

Assumption 4.11. Either

a. Ξ is bounded or

b. ∃𝜑 : Ξ → R+ such that sup
𝐹0∈ℱ𝑁

⃒⃒⃒⃒
⃒𝐸𝐹0𝜑(𝜉)−

1

𝑁

𝑁∑︁
𝑖=1

𝜑(𝜉𝑖)

⃒⃒⃒⃒
⃒ → 0 almost surely and

𝑐(𝑥; 𝜉) = 𝑂(𝜑(𝜉)) for each 𝑥 ∈ 𝑋.

Assumptions 4.9 and 4.10 are only slightly stronger than those required for the
existence of an optimal solution in Theorem 4.2. The second portion of Assumption
4.10b is trivially satisfied by cost functions which are bounded from below. Finally,
observe that in the case that Ξ is unbounded, our proposed DUS in (4.10) satisfies
Assumption 4.11b by construction.

Under these assumptions, the following theorem provides a tight characterization
of convergence.

Theorem 4.12. Assumptions 4.9, 4.10, and 4.11 imply conditions (4.17)-(4.19) hold
a.s. if and only if ℱ𝑁 is the confidence region of a uniformly consistent test.

1Recall: A sequence of functions 𝑔𝑛 : R𝑚1 ↦→ R𝑚2 converges locally uniformly to a continuous
function 𝑔 : R𝑚1 ↦→ R𝑚2 if and only if for any convergent sequence 𝑥𝑛 → 𝑥 we have that 𝑔𝑛(𝑥𝑛)→
𝑔(𝑥).
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Thus, in one direction, we can guarantee convergence (i.e., conditions (4.17)-(4.19)
hold a.s.) if Assumptions 4.9, 4.10, and 4.11 are satisfied and we use a uniformly
consistent test in applying Robust SAA. In the other direction, if the test is not
uniformly consistent, there will exist instances satisfying Assumptions 4.9, 4.10, and
4.11 for which convergence fails.

Some of the GoF tests in Section 4.3 are not consistent, and therefore, cannot be
uniformly consistent. By Theorem 4.12, DROs built from these tests cannot exhibit
asymptotic convergence for all cost functions. One might argue, then, that that these
DRO formulations should be avoided in modeling and applications in favor of DROs
based on uniformly consistent tests.

In most applications, however, we are not concerned with asymptotic convergence
for all cost functions, but rather only for the given cost function 𝑐(𝑥, 𝜉). It may
happen a DRO may exhibit asymptotic convergence for this particular cost function,
even when its DUS is given by the confidence region of an inconsistent test. (We will
see an example of this behavior with the multi-item newsvendor problem in Section
4.7.2.)

To better understand when this convergence may occur despite the fact that the
test is not consistent, we introduce a more relaxed form of uniform consistency.

Definition 4.13. Given 𝑐(𝑥; 𝜉), we say that 𝐹𝑁 𝑐-converges to 𝐹 if E𝐹𝑁
[𝑐(𝑥; 𝜉)] →

E𝐹 [𝑐(𝑥; 𝜉)] for all 𝑥 ∈ 𝑋.

Definition 4.14. A test is 𝑐-consistent if, a.s., every sequence 𝐹𝑁 that does not
𝑐-converge to 𝐹 is rejected i.o.

This notion may potentially be weaker than consistency, but is sufficient for con-
vergence for a given instance as shown below.

Theorem 4.15. Suppose Assumptions 4.9 and 4.11 hold and that ℱ𝑁 always contains
the empirical distribution. If ℱ𝑁 is the confidence region of a 𝑐-consistent test, then
conditions (4.17)-(4.19) hold a.s.

In the next sections we will explore the consistency of the various tests introduced
in Section 4.3. We summarize our results in Table 4.1.

4.4.2 Tests for Distributions with Discrete or Univariate Sup-
port

All of the classical tests we considered in Section 4.3 are uniformly consistent.

Theorem 4.16. The 𝜒2 and G-tests are uniformly consistent.

Theorem 4.17. The KS, Kuiper, CvM, Watson, and AD tests are uniformly consis-
tent.
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4.4.3 Tests for Multivariate Distributions

Testing Marginal Distributions

We first claim that the test of marginals is not consistent. Indeed, consider a multi-
variate distribution 𝐹0 ̸= 𝐹 which has the same marginal distributions, but a different
joint distribution. By construction, the probability of rejecting 𝐹0 is at most 𝛼 for all
𝑁 , and hence does not converge to 1. Since the test of marginals is not consistent, it
cannot be uniformly consistent.

We next show that the test is, however, 𝑐-consistent whenever the cost is separable
over the components of 𝜉.

Proposition 4.18. Suppose 𝑐(𝑥; 𝜉) is separable over the components of 𝜉, that is, can
be written as

𝑐(𝑥; 𝜉) =
𝑑∑︁
𝑖=1

𝑐𝑖(𝑥; 𝜉𝑖), (4.20)

and Assumptions 4.9, 4.10, and 4.11 hold for each 𝑐𝑖(𝑥; 𝜉𝑖). Then, the test of marginals
is 𝑐-consistent if each univariate test is uniformly consistent.

That is to say, if the cost can be separated as in (4.20), applying the tests from
Section 4.3.2 to the marginals is sufficient to guarantee convergence.

It is important to note that some cost functions may only be separable after a
transformation of the data, potentially into a space of different dimension. If that is
the case, we may transform 𝜉 and apply the tests to the transformed components in
order to achieve convergence.

Tests Implied by DUSs of Delage and Ye (2010), Calafiore and El Ghaoui
(2006)

The DUS of Delage and Ye (2010) has the form

ℱ𝛼DY,𝑁 =

{︂
𝐹0 ∈ 𝒫(Ξ) :

(E𝐹0 [𝜉]− �̂�𝑁)
𝑇 Σ̂−1

𝑁 (E𝐹0 [𝜉]− �̂�𝑁) ≤ 𝛾1,𝑁(𝛼),

𝛾3,𝑁(𝛼)Σ̂𝑁 ⪯ E𝐹0 [(𝜉 − �̂�𝑁) (𝜉 − �̂�𝑁)
𝑇 ] ⪯ 𝛾2,𝑁(𝛼)Σ̂𝑁

}︂
(4.21)

where �̂�𝑁 =
1

𝑁

𝑁∑︁
𝑖=1

𝜉𝑖, Σ̂𝑁 =
1

𝑁

𝑁∑︁
𝑖=1

(︀
𝜉𝑖 − �̂�𝑁

)︀ (︀
𝜉𝑖 − �̂�𝑁

)︀𝑇
. (4.22)

The thresholds 𝛾1,𝑁(𝛼), 𝛾2,𝑁(𝛼) 𝛾3,𝑁(𝛼) are developed therein (for Ξ bounded) so as
to guarantee a significance of 𝛼 (in our GoF interpretation) and, in particular, have
the property that

0 ≤ 𝛾1,𝑁(𝛼)→ 0, 1 ≤ 𝛾2,𝑁(𝛼)→ 1, 1 ≥ 𝛾3,𝑁(𝛼)→ 1. (4.23)
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The DUS of Calafiore and El Ghaoui (2006) has the form

ℱ𝛼CEG,𝑁 =

{︃
𝐹0 ∈ 𝒫(Ξ) :

||E𝐹0 [𝜉]− �̂�𝑁 ||2 ≤ 𝛾1,𝑁(𝛼),⃒⃒⃒⃒⃒⃒
E𝐹0

[︁
(𝜉 − E𝐹0 [𝜉]) (𝜉 − E𝐹0 [𝜉])

𝑇
]︁
− Σ̂𝑁

⃒⃒⃒⃒⃒⃒
F
≤ 𝛾2,𝑁(𝛼)

}︃
.

The thresholds 𝛾1,𝑁(𝛼), 𝛾2,𝑁(𝛼) are developed in Shawe-Taylor and Cristianini (2003)
(for Ξ bounded) so as to guarantee a significance of 𝛼 and with the property that

0 ≤ 𝛾1,𝑁(𝛼)→ 0, 0 ≤ 𝛾2,𝑁(𝛼)→ 0. (4.24)

The GoF tests implied by these DUSs consider only the first two moments of a
distribution (mean and covariance). Therefore, the probability of rejecting a multi-
variate distribution different from the true one but with the same mean and covariance
is by construction never more than 𝛼, instead of converging to 1. That is, these tests
are not consistent and therefore they are not uniformly consistent. We next pro-
vide conditions on the cost function that guarantee that the tests are nonetheless
𝑐-consistent.

Proposition 4.19. Suppose 𝑐(𝑥; 𝜉) can be written as

𝑐(𝑥; 𝜉) = 𝑐0(𝑥) +
𝑑∑︁
𝑖=1

𝑐𝑖(𝑥)𝜉𝑖 +
𝑑∑︁
𝑖=1

𝑖∑︁
𝑗=1

𝑐𝑖𝑗(𝑥)𝜉𝑖𝜉𝑗 (4.25)

and that E𝐹 [𝜉𝑖𝜉𝑗] exists. Then, the tests with confidence regions given by ℱ𝛼DY,𝑁 or
ℱ𝛼CEG,𝑁 are 𝑐-consistent.

Note that because we may transform the data to include components for each
pairwise multiplication, the conditions on the cost function in Proposition 4.19 are
stronger than those in Proposition 4.18. In particular, in one dimension, separability
is trivially always true whereas the decomposition (4.25) is clearly not.

Testing Linear-Convex Ordering

The previous two multivariate GoF tests were neither consistent, nor uniformly con-
sistent. By contrast,

Proposition 4.20. The LCX-based test is consistent.

Proposition 4.21. Suppose Ξ is bounded. Then the LCX-based test is uniformly
consistent.

It is an open question whether the LCX-based test is uniformly consistent – in
addition to being consistent – for unbounded Ξ. We conjecture that it is. Moreover, in
our numerical experiments involving the LCX test, we have observed convergence of
the Robust SAA solutions to the full-information optimum even when Ξ is unbounded.
(See Section 4.7.3 for an example.)
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4.5 Tractability
In this section, we characterize conditions under which problem (4.3) is theoretically
tractable, i.e., can be solved with a polynomial-time algorithm. Additionally, we are
interested in cases where (4.3) is practically tractable, i.e., can be solved using off-
the-shelf linear or second-order cone optimization solvers. In the case of one problem
– the newsvendor problem – we show that Robust SAA using the KS test admits a
closed-form solution.

4.5.1 Tests for Distributions with Known Discrete Support

We begin this section with a reformulation of (4.3) as a single-level optimization
problem for ℱ𝛼𝑋𝑁

and ℱ𝛼𝐺𝑁
, from which tractability results will follow. The confidence

regions of the discrete GoF tests we consider are a special case of those considered in
Ben-Tal et al. (2013). As direct corollaries of the results therein we have the following:

Theorem 4.22. Under the assumptions of Theorem 4.2, we have

𝒞
(︀
𝑥;ℱ𝛼𝑋𝑁

)︀
= min

𝑟,𝑠,𝑡,𝑐
𝑟 +

(︀
(𝑄𝑋𝑁

(𝛼))2 + 2
)︀
𝑠− 2

𝑛∑︁
𝑗=1

𝑝𝑁(𝑗)𝑡𝑗

s.t. 𝑟 ∈ R, 𝑠 ∈ R+, 𝑡 ∈ R𝑛, 𝑐 ∈ R𝑛

𝑠+ 𝑟 ≥ 𝑐𝑗 ∀𝑗 = 1, . . . , 𝑛

(2𝑠− 𝑐𝑗 − 𝑟, 2𝑡𝑗, 𝑐𝑗 − 𝑟) ∈ 𝐶3
𝑆𝑂𝐶 ∀𝑗 = 1, . . . , 𝑛

𝑐𝑗 ≥ 𝑐
(︁
𝑥; 𝜉𝑗

)︁
∀𝑗 = 1, . . . , 𝑛

𝒞
(︀
𝑥;ℱ𝛼𝐺𝑁

)︀
= min

𝑟,𝑠,𝑡,𝑐
𝑟 +

(︂
1

2
(𝑄𝐺𝑁

(𝛼))2 − 1

)︂
𝑠−

𝑛∑︁
𝑗=1

𝑝𝑁(𝑗)𝑡𝑗

s.t. 𝑟 ∈ R, 𝑠 ∈ R+, 𝑡 ∈ R𝑛, 𝑐 ∈ R𝑛

(𝑡𝑗, 𝑠, 𝑟 − 𝑐𝑗) ∈ 𝐶XC ∀𝑗 = 1, . . . , 𝑛 (4.26)

𝑐𝑗 ≥ 𝑐
(︁
𝑥; 𝜉𝑗

)︁
∀𝑗 = 1, . . . , 𝑛

where 𝐶3
SOC =

{︁
(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥 ≥

√︀
𝑦2 + 𝑧2

}︁
is the three-dimensional second-order

cone and 𝐶XC = {(𝑥, 𝑦, 𝑧) : 𝑦𝑒𝑥/𝑦 ≤ 𝑧, 𝑦 > 0} is the exponential cone.

The DRO problem (4.3) is min𝑥∈𝑋 𝒞 (𝑥;ℱ). Therefore, for ℱ𝛼𝑋𝑁
and ℱ𝛼𝐺𝑁

, (4.3) can
formulated as a single-level optimization problem by augmenting the corresponding
minimization problem above with the control variable 𝑥 ∈ 𝑋. Note that apart from
the constraints 𝑥 ∈ 𝑋 and

𝑐𝑗 ≥ 𝑐
(︁
𝑥; 𝜉𝑗

)︁
, (4.27)

the rest of the constraints, as seen in the problems in Theorem 4.22, are convex. The
following result characterizes in general when solving these problems is tractable in a
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theoretical sense.

Theorem 4.23. Suppose that 𝑋 ⊆ R𝑑𝑥 is a closed convex set for which a weak
separation oracle is given and that

𝑐
(︁
𝑥; 𝜉𝑗

)︁
= max

𝑘=1,...,𝐾𝑗

𝑐𝑗𝑘(𝑥)

where each 𝑐𝑗𝑘(𝑥) is a convex function in 𝑥 for which evaluation and subgradient
oracles are given. Then, under the assumptions of Theorem 4.2, we can find an 𝜖-
optimal solution to (4.3) in the discrete case for 𝑆𝑁 = 𝑋𝑁 , 𝐺𝑁 in time and oracle
calls polynomial in 𝑛, 𝑑𝑥, 𝐾1, . . . , 𝐾𝑛, log (1/𝜖).

For some problems the constraints 𝑥 ∈ 𝑋 and (4.27) can also be conically for-
mulated as the Example 4.24 below shows. In such a case, the DRO can be solved
directly as a conic optimization problem. Optimization over the exponential cone
– a non-symmetric cone — although theoretically tractable, is numerically challeng-
ing. Fortunately, the particular exponential cone constraints (4.26) can be recast as
second-order cone constraints, albeit with constraint complexity growing in both 𝑛
and 𝑁 (see Lobo et al. (1998)).

Example 4.24. Two-stage problem with linear recourse and a non-increasing, piece-
wise-linear convex disutility. Consider the following problem

𝑐(𝑥; 𝜉𝑗) = max
𝑘=1,...,𝐾

(𝛾𝑘𝑅𝑗(𝑥) + 𝛽𝑘) , 𝛾𝑘 ≤ 0 (4.28)

where 𝑅𝑗(𝑥) = min
𝑦∈R𝑑𝑦

+

𝑓𝑇𝑗 𝑦

s.t. 𝐴𝑗𝑥+𝐵𝑗𝑦 = 𝑏𝑗

𝑋 = {𝑥 ≥ 0 : 𝐻𝑥 = ℎ}.

This problem was studied in a non-data-driven DRO settings in Žáčková (1966),
Dupačová (1987), Bertsimas et al. (2010). To formulate (4.3), we may introduce
variables 𝑦 ∈ R𝑛×𝑑𝑦+ and replace (4.27) with

𝑐𝑗 ≥ 𝛾𝑘
(︀
𝑐𝑇𝑥+ 𝑓𝑇𝑗 𝑦𝑗

)︀
+ 𝛽𝑘 ∀𝑗 = 1, . . . , 𝑛, ∀𝑘 = 1, . . . , 𝐾,

𝐴𝑗𝑥+𝐵𝑗𝑦𝑗 = 𝑏𝑗 ∀𝑗 = 1, . . . , 𝑛.

The resulting problem is then a second-order cone optimization problem for ℱ𝛼𝑋𝑁
and

ℱ𝛼𝐺𝑁
.

4.5.2 Tests for Univariate Distributions

We now consider the case where 𝜉 is a general univariate random variable. We
proceed by reformulating (4.3) as a single-level optimization problem by leveraging
semi-infinite conic duality. This leads to corresponding tractability results. In the
following we will use the notation 𝜉(0) = 𝜉 and 𝜉(𝑁+1) = 𝜉.
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The first observation is that the constraint 𝑆𝑁 (𝜁1, . . . , 𝜁𝑁) ≤ 𝑄𝑆𝑁
(𝛼) is convex in

𝜁𝑖 = 𝐹0(𝜉
(𝑖)) and representable using canonical cones. By a canonical cone, we mean

any cartesian product of the cones R𝑘, {0}, R𝑘+ (positive orthant), 𝐶𝑘
SOC (second-order

cone), and semidefinite cone. Optimization over canonical cones is tractable both
theoretically and practically using state-of-the-art interior point algorithms Ben-Tal
and Nemirovski (2001).

Theorem 4.25. For each of 𝑆𝑁 ∈ {𝐷𝑁 , 𝑉𝑁 ,𝑊𝑁 , 𝑈𝑁 , 𝐴𝑁}

𝑆𝑁 (𝜁1, . . . , 𝜁𝑁) ≤ 𝑄𝑆𝑁
(𝛼) ⇐⇒ 𝐴𝑆𝑁

𝜁 − 𝑏𝑆𝑁 ,𝛼 ∈ 𝐾𝑆𝑁

for convex cones 𝐾𝑆𝑁
, matrices 𝐴𝑆𝑁

, and vectors 𝑏𝑆𝑁 ,𝛼 as follows:

𝐾𝐷𝑁
= R2𝑁

+ , 𝑏𝐷𝑁 ,𝛼 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
𝑁
−𝑄𝐷𝑁

(𝛼)
...

𝑁
𝑁
−𝑄𝐷𝑁

(𝛼)
− 0
𝑁
−𝑄𝐷𝑁

(𝛼)
...

−𝑁−1
𝑁
−𝑄𝐷𝑁

(𝛼)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐴𝐷𝑁

=

⎛⎜⎜⎜⎝ [𝐼𝑁 ]

[−𝐼𝑁 ]

⎞⎟⎟⎟⎠ ,

𝐾𝑉𝑁 =
{︁
(𝑥, 𝑦) ∈ R2𝑁 : min

𝑖
𝑥𝑖 +min

𝑖
𝑦𝑖 ≥ 0

}︁
, 𝑏𝑉𝑁 ,𝛼 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
𝑁
−𝑄𝑉𝑁 (𝛼)/2

...
𝑁
𝑁
−𝑄𝑉𝑁 (𝛼)/2

− 0
𝑁
−𝑄𝑉𝑁 (𝛼)/2

...
−𝑁−1

𝑁
−𝑄𝑉𝑁 (𝛼)/2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

𝐴𝑉𝑁 =

⎛⎜⎜⎜⎝ [𝐼𝑁 ]

[−𝐼𝑁 ]

⎞⎟⎟⎟⎠ ,

𝐾𝑊𝑁
= 𝐶𝑁+1

SOC , 𝑏𝑊𝑁 ,𝛼 =

⎛⎜⎜⎜⎜⎜⎜⎝

√︁
𝑁 (𝑄𝑊𝑁

(𝛼))2 − 1
2𝑁

1
2𝑁
3
2𝑁...

2𝑁−1
2𝑁

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝐴𝑊𝑁
=

⎛⎜⎝ 0 · · · 0

[𝐼𝑁 ]

⎞⎟⎠ ,

𝐾𝑈𝑁
= 𝐶𝑁+2

SOC , 𝑏𝑈𝑁 ,𝛼 =

⎛⎜⎜⎜⎜⎜⎝
−1
2
+
(︀
𝑁
24
− 𝑁

2
(𝑄𝑈𝑁

(𝛼))2
)︀

−1
2
−
(︀
𝑁
24
− 𝑁

2
(𝑄𝑈𝑁

(𝛼))2
)︀

0
...
0

⎞⎟⎟⎟⎟⎟⎠ ,
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𝐴𝑈𝑁
=

⎛⎜⎜⎜⎝
1−𝑁
2𝑁

3−𝑁
2𝑁

. . . 𝑁−1
2𝑁

𝑁−1
2𝑁

𝑁−3
2𝑁

. . . 1−𝑁
2𝑁

[𝐼𝑁 − 1
𝑁
𝐸𝑁 ]

⎞⎟⎟⎟⎠ ,

𝐾𝐴𝑁
=

{︃
(𝑧, 𝑥, 𝑦) ∈ R× R2𝑁

+ : |𝑧| ≤
𝑁∏︁
𝑖=1

(𝑥𝑖𝑦𝑖)
2𝑖−1

2𝑁2

}︃
, 𝑏𝐴𝑁 ,𝛼 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒−(𝑄𝐴𝑁
(𝛼))

2
−1

0
...
0
−1
...
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

𝐴𝐴𝑁
=

⎛⎜⎜⎜⎜⎝
0 · · · 0

[𝐼𝑁 ]

[−𝐼𝑁 ]

⎞⎟⎟⎟⎟⎠ ,

where 𝐼𝑁 is the 𝑁 × 𝑁 identity matrix, 𝐼𝑁 is the skew identity matrix ([𝐼𝑁 ]𝑖𝑗 =
I [𝑖 = 𝑁 − 𝑗]), and 𝐸𝑁 is the 𝑁 ×𝑁 matrix of all ones.

Note that the cones 𝐾𝐷𝑁
, 𝐾𝑊𝑁

, 𝐾𝑈𝑁
are canonical cones. The other cones can

be expressed using canonical cones. The cone 𝐾𝑉𝑁 is an orthogonal projection of an
affine slice of R2𝑛+2×R3

+. The cone 𝐾𝐴𝑁
is an orthogonal projection of an affine slice

of the product of 2⌈log2(2𝑁
2)⌉+1−2 = 𝑂(𝑁2) three-dimensional second-order cones (see

Lobo et al. (1998)). Therefore, the constraint 𝐴𝑆𝑁
𝜁 − 𝑏𝑆𝑁 ,𝛼 ∈ 𝐾𝑆𝑁

can be expressed
using canonical cones in each case.

Problem (4.3) is a two-level optimization problem. To formulate it as a single-
level problem, we dualize the inner problem, 𝒞(𝑥;ℱ). For a cone 𝐾 ⊆ R𝑘, we use the
notation 𝐾* to denote the dual cone 𝐾* = {𝑦 ∈ R𝑘 : 𝑦𝑇 𝑧 ≥ 0∀𝑧 ∈ 𝐾}. The following
is a direct consequence of Proposition 3.4 of Shapiro (2001).2

Theorem 4.26. Let 𝑆𝑁 ∈ {𝐷𝑁 ,𝑊𝑁 , 𝐴𝑁 , 𝑉𝑁 , 𝑈𝑁}. Under the assumptions of Theo-

2The only nuance is that Proposition 3.4 of Shapiro (2001) requires a generalized Slater point.
We use the empirical distribution function, 𝐹𝑁 , as the generalized Slater point in the space of
distributions.
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rem 4.2,

𝒞
(︀
𝑥;ℱ𝛼𝑆𝑁

)︀
= min

𝑟,𝑐
𝑏𝑇𝑆𝑁 ,𝛼

𝑟 + 𝑐𝑁+1

s. t − 𝑟 ∈ 𝐾*
𝑆𝑁
, 𝑐 ∈ R𝑁+1(︀

𝐴𝑇𝑆𝑁
𝑟
)︀
𝑖
= 𝑐𝑖 − 𝑐𝑖+1 ∀𝑖 = 1, . . . , 𝑁

𝑐𝑖 ≥ sup
𝜉∈(𝜉(𝑖−1),𝜉(𝑖)]

𝑐(𝑥; 𝜉) ∀𝑖 = 1, . . . , 𝑁 + 1

(4.29)

𝒞
(︀
𝑥;ℱ𝛼1,𝛼2

𝑆𝑁 ,𝑀𝑁

)︀
= min

𝑟,𝑡,𝑠,𝑐
𝑏𝑇𝑆𝑁 ,𝛼1

𝑟 + 𝑐𝑁+1 +
(︀
�̂�+𝑄𝛼2

𝑀𝑁

)︀
𝑡−
(︀
�̂�−𝑄𝛼2

𝑀𝑁

)︀
𝑠

s. t − 𝑟 ∈ 𝐾*
𝑆𝑁
, 𝑡 ≥ 0, 𝑠 ≥ 0, 𝑐 ∈ R𝑁+1(︀

𝐴𝑇𝑆𝑁
𝑟
)︀
𝑖
= 𝑐𝑖 − 𝑐𝑖+1 ∀𝑖 = 1, . . . , 𝑁

𝑐𝑖 ≥ sup
𝜉∈(𝜉(𝑖−1),𝜉(𝑖)]

(𝑐(𝑥; 𝜉)− (𝑡− 𝑠)𝜑(𝜉)) ∀𝑖 = 1, . . . , 𝑁 + 1.

(4.30)

Note that the cones 𝐾𝐷𝑁
, 𝐾𝑊𝑁

, 𝐾𝑈𝑁
are self-dual (𝐾* = 𝐾) and therefore the

dual cones remain canonical cones. For 𝐾𝑉𝑁 and 𝐾𝐴𝑁
, the dual cones are

𝐾*
𝑉𝑁

=

{︃
(𝑥, 𝑦) ∈ R2𝑁

+ :
𝑁∑︁
𝑖=1

𝑥𝑖 =
𝑁∑︁
𝑖=1

𝑦𝑖

}︃

𝐾*
𝐴𝑁

= {(𝑧, 𝑥, 𝑦) : (𝑧/𝛾, 𝑥, 𝑦) ∈ 𝐾𝐴𝑁
} where 𝛾 =

𝑑∏︁
𝑖=1

(︂
2𝑖− 1

2𝑁2

)︂ 2𝑖−1

𝑁2

,

and therefore they remain expressible using canonical cones.
Note that in the case of ℱ𝛼𝑆𝑁

, the worst-case distribution has discrete support on no
more than 𝑁 +1 points. This is because shifting probability mass inside the interval
(𝜉(𝑖−1), 𝜉(𝑖)] does not change any 𝐹0(𝜉

(𝑖)). In the worst-case, all mass in the interval
(if any) will be placed on the point in the interval with the largest cost (including the
left endpoint in the limit).

The DRO problem (4.3) is min𝑥∈𝑋 𝒞 (𝑥;ℱ). Therefore, for ℱ𝛼𝑆𝑁
and ℱ𝛼1,𝛼2

𝑆𝑁 ,𝑀𝑁
, (4.3)

can formulated as a single-level optimization problem by augmenting the correspond-
ing minimization problem above with the control variable 𝑥 ∈ 𝑋. We next give
general conditions that ensure the theoretical tractability of the problem.

Theorem 4.27. Suppose that 𝑋 ⊆ R𝑑𝑥 is a closed convex set for which a weak
separation oracle is given and that

𝑐 (𝑥; 𝜉) = max
𝑘=1,...,𝐾

𝑐𝑘(𝑥, 𝜉) (4.31)

where each 𝑐𝑘(𝑥; 𝜉) is convex in 𝑥 for each 𝜉 and continuous in 𝜉 for each 𝑥 and for
which an oracle is given for the subgradient in 𝑥. If ℱ = ℱ𝛼𝑆𝑁

, suppose also that an
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oracle is given for maximizing 𝑐𝑘(𝑥; 𝜉) over 𝜉 in any closed (possibly infinite) interval
for fixed 𝑥. If ℱ = ℱ𝛼1,𝛼2

𝑆𝑁 ,𝑀𝑁
, suppose also that an oracle is given for maximizing

𝑐𝑘(𝑥; 𝜉) + 𝜂𝜑(𝜉) over 𝜉 in a closed interval for fixed 𝑥 and 𝜂 ∈ R. Then, under the
assumptions of Theorem 4.2, we can find an 𝜖-optimal solution to (4.3) in time and
oracle calls polynomial in 𝑁, 𝑑𝑥, 𝐾, log(1/𝜖) for ℱ = ℱ𝛼𝑆𝑁

or ℱ = ℱ𝛼1,𝛼2

𝑆𝑁 ,𝑀𝑁
.

As in the discrete case, when the constraints 𝑥 ∈ 𝑋 and (4.29) (or, (4.30)) can be
conically formulated, Theorem 4.26 provides an explicit single-level conic optimization
formulation of the problem (4.3). In Examples 4.28, 4.30, and 4.31 below, we consider
specific problems for which this is the case and study this formulation.

Example 4.28. The newsvendor problem. In the newsvendor problem, one orders
in advance 𝑥 ≥ 0 units of a product to satisfy an unknown future demand for 𝜉 ≥ 0
units. Unmet demand is penalized by 𝑏 > 0, representing either backlogging costs or
lost profit. Left over units are penalized by ℎ > 0, representing either holding costs
or recycling costs. The cost function is therefore 𝑐(𝑥; 𝜉) = max {𝑏(𝜉 − 𝑥), ℎ(𝑥− 𝜉)},
the lower support of 𝜉 is 𝜉 ≥ 0, and the space of controls is 𝑋 = R+. In this case the
constraints (4.29) for bounded-support case become

𝑐𝑖 ≥ 𝑏(𝜉(𝑖) − 𝑥), 𝑐𝑖 ≥ ℎ(𝑥− 𝜉(𝑖−1)) ∀𝑖 = 1, . . . , 𝑁 + 1

and 𝑥 ∈ 𝑋 becomes 𝑥 ∈ R+. In the unbounded case, we may use 𝜑(𝜉) = |𝜉| in the
construction of (4.10). Because 𝜉 ≥ 0, we have 𝜑(𝜉) = 𝜉. The constraints (4.30) then
become

𝑐𝑖 ≥ 𝑏(𝜉(𝑖) − 𝑥)− (𝑡− 𝑠)𝜉(𝑖), 𝑐𝑖 ≥ ℎ(𝑥− 𝜉(𝑖−1))− (𝑡− 𝑠)𝜉(𝑖−1) ∀𝑖 = 1, . . . , 𝑁 + 1

where the (𝑁 + 1)th left constraint is equivalent to 𝑏 ≤ 𝑡 − 𝑠 because 𝜉(𝑁+1) = ∞.
Substituting these constraints in this way the DRO (4.3) becomes a conic optimization
problem.

In the specific case of bounded support and ℱ = ℱ𝛼𝐷𝑁
this reformulation yields a

linear optimization problem, which admits a closed-form solution given next.

Proposition 4.29. Suppose that Ξ = [𝜉, 𝜉] is compact, and 𝑁 is large enough so
that 𝑄𝐷𝑁

(𝛼) < min{𝑏,ℎ}
𝑏+ℎ

. Then, the the DRO (4.3) for the newsvendor problem with
ℱ = ℱ𝛼𝐷𝑁

admits the closed-form solution:

𝑥 = (1− 𝜃)𝜉(𝑖lo) + 𝜃𝜉(𝑖hi)

𝑧 =
1

𝑁

∑︁
1≤𝑖≤𝑖lo∨𝑖hi≤𝑖≤𝑁

𝑐
(︀
𝑥; 𝜉(𝑖)

)︀
+𝑄𝐷𝑁

(𝛼)𝑐
(︀
𝑥; 𝜉
)︀
+𝑄𝐷𝑁

(𝛼)𝑐
(︀
𝑥; 𝜉
)︀

−
(︂
⌈𝑁 (𝜃 −𝑄𝐷𝑁

(𝛼))⌉
𝑁

− (𝜃 −𝑄𝐷𝑁
(𝛼))

)︂
𝑐
(︀
𝑥; 𝜉(𝑖lo)

)︀
−
(︂
(𝜃 +𝑄𝐷𝑁

(𝛼))− ⌊𝑁 (𝜃 +𝑄𝐷𝑁
(𝛼))⌋

𝑁

)︂
𝑐
(︀
𝑥; 𝜉(𝑖hi)

)︀
where 𝜃 = 𝑏/(𝑏+ ℎ), 𝑖lo = ⌈𝑁(𝜃 −𝑄𝐷𝑁

(𝛼))⌉, and 𝑖hi = ⌊𝑁(𝜃 +𝑄𝐷𝑁
(𝛼)) + 1⌋.
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Importantly, this means that solving the Robust SAA newsvendor problem is no
more difficult than solving the SAA newsvendor problem.

Example 4.30. Max of bilinear functions. More generally, we may consider cost
functions of the form (4.31) with bilinear parts 𝑐𝑘(𝑥; 𝜉) = 𝑝𝑘0 + 𝑝𝑇𝑘1𝑥 + 𝑝𝑘2𝜉 + 𝜉𝑝𝑇𝑘3𝑥.
In this case, (4.29) is equivalent to

𝑐𝑖 ≥ 𝑝𝑘0 + 𝑝𝑇𝑘1𝑥+ 𝑝𝑘2𝜉
(𝑖−1) + 𝜉(𝑖−1)𝑝𝑇𝑘3𝑥, ∀𝑖 = 1, . . . , 𝑁, ∀𝑘 = 1, . . . , 𝐾 (4.32)

𝑐𝑖 ≥ 𝑝𝑘0 + 𝑝𝑇𝑘1𝑥+ 𝑝𝑘2𝜉
(𝑖) + 𝜉(𝑖)𝑝𝑇𝑘3𝑥, ∀𝑖 = 1, . . . , 𝑁, ∀𝑘 = 1, . . . , 𝐾. (4.33)

If the cost is fully linear, 𝑝3𝑘 = 0 (as in the case of the newsvendor example), then
(4.29) can be written in one linear inequality:

𝑐𝑖 ≥ 𝑝𝑘0 + 𝑝𝑇𝑘1𝑥+max
{︀
𝑝𝑘2𝜉

(𝑖−1), 𝑝𝑘2𝜉
(𝑖)
}︀
∀𝑖 = 1, . . . , 𝑁, ∀𝑘 = 1, . . . , 𝐾. (4.34)

For ℱ = ℱ𝛼1,𝛼2

𝑆𝑁 ,𝑀𝑁
we may use 𝜑(𝜉) = |𝜉| and simply add

⃒⃒
𝜉(𝑖−1)

⃒⃒
and

⃒⃒
𝜉(𝑖)
⃒⃒

to the
left-hand sides of (4.32) and (4.33), respectively, or to the corresponding branches of
the max in (4.34).

Example 4.31. Two-stage problem. Consider a two-stage problem similar to the one
studied in Example 4.24:

𝑐(𝑥; 𝜉) = max
𝑘=1,...,𝐾

(𝛾𝑘𝑅(𝑥; 𝜉) + 𝛽𝑘) , 𝛾𝑘 ≤ 0 (4.35)

where 𝑅(𝑥; 𝜉) = min
𝑦∈R𝑑𝑦

+

(𝑓 + 𝑔𝜉)𝑇𝑦

s.t. 𝐴𝑥+𝐵𝑦 = 𝑏+ 𝑝𝜉

𝑋 = {𝑥 ≥ 0 : 𝐻𝑥 = ℎ}.

When only the right-hand-side vector is uncertain (𝑔 = 0), the recourse 𝑅(𝑥; 𝜉) is
convex in 𝜉 so that the supremum in (4.29) is taken at one of the endpoints and we
may use a similar construction as in Example 4.30.

When only the cost vector is uncertain (𝑝 = 0), the recourse 𝑅(𝑥; 𝜉) is concave in
𝜉. By linear optimization duality we may reformulate (4.29) by introducing variables
𝑅 ∈ R𝑁+1, 𝑦 ∈ R𝑑𝑦×(𝑁+1)

+ , 𝜂 ∈ R𝑁+1
+ , 𝜃 ∈ R𝑁+1

+ and constraints

𝑐𝑖 ≥ 𝛾𝑘𝑐
𝑇𝑥+ 𝛾𝑘𝑅𝑖 + 𝛽𝑘 ∀𝑖 = 1, . . . , 𝑁 + 1, ∀𝑖 = 𝑘, . . . , 𝐾

𝜂𝑖 − 𝜃𝑖 = 𝑓𝑇𝑦𝑖, 𝐴𝑥+𝐵𝑦𝑖 ≤ 𝑏 ∀𝑖 = 1, . . . , 𝑁 + 1

𝑅𝑖 ≥ 𝑔𝑇𝑦𝑖 + 𝜉(𝑖)𝜂𝑖 − 𝜉(𝑖−1)𝜃𝑖 ∀𝑖 = 1, . . . , 𝑁 + 1.
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4.5.3 Tests for Multivariate Distributions

Testing Marginal Distributions

Recall that when 𝑐(𝑥; 𝜉) is separable over the components of 𝜉, i.e.,

𝑐(𝑥; 𝜉) =
𝑑∑︁
𝑖=1

𝑐𝑖(𝑥; 𝜉𝑖),

Robust SAA converges for the test of marginals (cf. Section 4.4.3). We next show
that Robust SAA is also tractable in this case. When ℱ = ℱ𝛼marginals and costs are
separable, (4.3) can be written as

min
𝑥∈𝑋

sup
𝐹0∈ℱ

E𝐹0 [𝑐(𝑥; 𝜉)] = min
𝑥∈𝑋

𝑑∑︁
𝑖=1

sup
𝐹0,𝑖∈ℱ

𝛼𝑖
𝑖

E𝐹0,𝑖
[𝑐𝑖(𝑥; 𝜉𝑖)].

Applying Theorems 4.22 and 4.26 separately to these 𝑑 subproblems yields a single-
level optimization problem. This problem is theoretically tractable when each sub-
problem satisfies the corresponding conditions in Theorems 4.23 and 4.27. Similarly,
when each subproblem is of one of the forms treated in Examples 4.24, 4.28, 4.30, and
4.31, (4.3) can be formulated as a linear or second-order cone optimization problem.

Testing Linear-Convex Ordering

Next, we consider the case of the test based on LCX. For this section we restrict our
attention to cost functions of the form

𝑐(𝑥; 𝜉) = max
𝑘=1,...,𝐾

{︀
𝑝𝑘0 + 𝑝𝑇𝑘1𝑥+ 𝑝𝑇𝑘2𝜉 + 𝑥𝑇𝑃𝑘𝜉

}︀
. (4.36)

The following result provides a semi-infinite linear optimization reformulation of (4.3)
and a polynomial-time separation algorithm.

Theorem 4.32. Suppose that we can express 𝑐(𝑥; 𝜉) as in (4.36). Suppose moreover
that 𝑋 =

{︀
𝑥 ∈ R𝑑𝑥 : 𝑥 ≥ 0, 𝐻𝑥 = ℎ

}︀
with ℎ ∈ R𝑑′ and that Ξ = R𝑑. Under the

assumptions of Theorem 4.2, the optimal value of (4.3) for ℱ = ℱ𝛼1,𝛼2

𝐶𝑁 ,𝑅𝑁
is given by
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the semi-infinite linear optimization problem

max
𝑟,𝑠,𝑡

𝐾∑︁
𝑘=1

(𝑝𝑘0𝑟𝑘 + 𝑝𝑘2𝑠𝑘) + ℎ𝑇 𝑡

s.t. 𝑟 ∈ R𝑘+, 𝑠 ∈ R𝑘×𝑑, 𝑡 ∈ R𝑑
′

𝐾∑︁
𝑘=1

max{𝑎𝑇 𝑠𝑘 − 𝑏𝑟𝑘, 0} ≤ 𝑄𝐶𝑁
(𝛼1) +

1

𝑁

𝑁∑︁
𝑖=1

max{𝑎𝑇 𝜉𝑖 − 𝑏, 0} ∀ ||𝑎||1 + |𝑏| ≤ 1

(4.37)
𝐾∑︁
𝑘=1

𝑟𝑘 = 1

𝐻𝑇 𝑡−
𝐾∑︁
𝑘=1

(𝑟𝑘𝑝𝑘1 − 𝑃𝑘𝑧𝑘) ≤ 0, (4.38)

and the optimal solution 𝑥 is given by the dual variable associated with constraint
(4.38).

To separate over the constraint (4.37) at a given 𝑠′, 𝑟′ we may solve the linear
optimization problems

𝑣𝛾 = max
||𝑎||1+|𝑏|≤1

(︃
𝐾∑︁
𝑘=1

𝛾𝑘
(︀
𝑎𝑇 𝑠′𝑘 − 𝑏𝑟′𝑘

)︀
− 1

𝑁

𝑁∑︁
𝑖=1

max{𝑎𝑇 𝜉𝑖 − 𝑏, 0}

)︃

for each 𝛾 ∈ {0, 1}𝑘∖{(0, . . . , 0)}. If 𝑣𝛾 ≤ 0 for every 𝛾, the constraint is satisfied.
Otherwise, for 𝛾 such that 𝑣𝛾 > 0 and 𝑎, 𝑏 being the corresponding optimizers, the
following is a separating hyperplane,

𝐾∑︁
𝑘=1

𝛾𝑘
(︀
𝑎𝑇 𝑠𝑘 − 𝑏𝑟𝑘

)︀
≤ 𝑄𝐶𝑁

(𝛼1) +
1

𝑁

𝑁∑︁
𝑖=1

max{𝑎𝑇 𝜉𝑖 − 𝑏, 0}.

Notice that the solution above does not explicitly involve 𝛼2 – the significance of
the test for E

[︀
||𝜉||22

]︀
. This a consequence of the structure of the cost function (4.36)

and the unbounded support Ξ = R𝑑. The implication is that we may let 𝛼2 → 0,
increasing the probability of the finite-sample guarantee without affecting the solution
𝑥 or the bound 𝑧. This is the approach we take in the empirical study in Section
4.7.3.

Example 4.33. Portfolio allocation. There are 𝑑 securities with unknown future
returns 𝜉𝑖 and we must divide our budget into fractions 𝑥𝑖 invested in security 𝑖 with∑︀

𝑖 𝑥𝑖 = 1. The return on a unit budget is 𝑥𝑇 𝜉. There are two common cost functions
used in this problem.

One is the negative utility of unit-budget returns for a piecewise-linear concave
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nondecreasing utility function. That is, given parameters 𝛽𝑘, 𝛾𝑘 such that 𝛾𝑘 ≤ 0,

𝑐(𝑥; 𝜉) = −𝑢(𝑥𝑇 𝜉) = max
𝑘=1,...,𝐾

(︀
𝛾𝑘𝑥

𝑇 𝜉 + 𝛽𝑘
)︀
, (4.39)

which fits into the framework of (4.36) using 𝑝𝑘0 = 𝛽𝑘, 𝑝𝑘1 = 0, 𝑝𝑘2 = 0, 𝑃𝑘 = 𝛾𝑘𝐼𝑑.
A more popular choice in practice is the conditional value at risk of negative

returns. The CVaR at level 𝜖 of a random loss 𝐿 with quantile function 𝐹−1
𝐿 is the

expectation above the (1− 𝜖)-quantile:

CVaR𝜖 (𝐿) = E
[︀
𝐿
⃒⃒
𝐿 ≥ 𝐹−1

𝐿 (1− 𝜖)
]︀
= inf

𝛽∈R
E
[︂
𝛽 +

1

𝜖
max{𝐿− 𝛽, 0}

]︂
,

where the latter equivalent definition is due to Rockafellar and Uryasev (2000). We
can formulate the min CVaR problem using (4.36) by augmenting the decision vector
as (𝛽+, 𝛽−, 𝑥) and setting 𝐻 = (0, 0, 1, . . . , 1), ℎ = 1, 𝐾 = 2, and

𝑝1,0 = 0, 𝑝1,2 = 0, 𝑃1 = 0, 𝑝2,0 = 0, 𝑝2,2 = 0,

𝑝1,1 =

⎛⎜⎜⎜⎜⎝
1
−1
0...
0

⎞⎟⎟⎟⎟⎠ , 𝑝2,1 =

⎛⎜⎜⎜⎜⎝
1− 1/𝜖
−1 + 1/𝜖

0...
0

⎞⎟⎟⎟⎟⎠ , 𝑃2 =

⎛⎜⎜⎜⎝
0 · · · 0
0 · · · 0

[−𝐼𝑑/𝜖]

⎞⎟⎟⎟⎠ .

Notice that since 𝐾 = 2, separating over the constraint (4.37) requires solving only
three linear optimization problems.

4.6 Estimating the Price of Data

Our framework allows one to compute the price one would be willing to pay for
further data gathering. Given the present dataset, we define the price of data (PoD)
as follows:

PoD = 𝑧
(︀
𝜉1, . . . , 𝜉𝑁

)︀
− E

[︁
𝑧
(︀
𝜉1, . . . , 𝜉𝑁 , 𝜉𝑁+1

)︀ ⃒⃒⃒
𝜉1, . . . , 𝜉𝑁

]︁
. (4.40)

PoD is equal to the expected marginal benefit of one additional data point in reducing
our bound on costs.

One way to estimate the above quantity is via resampling:

PoD ≈ 𝑧
(︀
𝜉1, . . . , 𝜉𝑁

)︀
− 1

𝑁

𝑁∑︁
𝑖=1

𝑧
(︀
𝜉1, . . . , 𝜉𝑁 , 𝜉𝑖

)︀
. (4.41)

The resampled average can also be, in turn, estimated by an average over a smaller
random subsample from the data. This approach is illustrated numerically in Section
4.7.3.
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In the case of the newsvendor problem using the KS test, the closed form solution
yields a simpler approximation. Observe that in Proposition 4.29, small changes to
the data change 𝑥 very little and the costs for 𝜉 near 𝑥 (in particular, between 𝑖lo and
𝑖hi) are small compared to costs far away from 𝑥. Thus, we suggest the approximation

PoD ≈
(︀
𝑄𝐷𝑁

(𝛼)−𝑄𝐷𝑁+1
(𝛼)
)︀ (︀
𝑐
(︀
𝑥; 𝜉
)︀
+ 𝑐
(︀
𝑥; 𝜉
)︀)︀
. (4.42)

This approximation is illustrated numerically in section 4.7.1.
We can write a more explicit approximation using the asymptotic approximation

of 𝑄𝐷𝑁
(𝛼) (see Thas (2009)) and 1/

√
𝑁 − 1/

√
𝑁 + 1 ≈ 1/(2𝑁3/2) for large 𝑁 :

PoD ≈ 𝑞𝛼
2𝑁3/2

(︀
𝑐
(︀
𝑥; 𝜉
)︀
+ 𝑐
(︀
𝑥; 𝜉
)︀)︀

where 𝑞𝛼 =

⎧⎨⎩
1.36, 𝛼 = 0.05,
1.22, 𝛼 = 0.1,
1.07, 𝛼 = 0.2.

4.7 Empirical Study

We now turn to an empirical study of Robust SAA as applied to specific problems
in inventory and portfolio management. The cost functions are all specific cases of
the examples studied in Section 4.5. Recall that in these examples the resulting
formulations were all linear and second-order cone optimization problems.

4.7.1 Single-Item Newsvendor

We begin with an application to the classic newsvendor problem with continuous
demand distribution, as studied in Example 4.28. We will consider both bounded and
unbounded distributions. In the latter case we employ the Student’s T-test to ensure
a finite solution. We implement (4.3) in closed form for the KS test with bounded
support using Proposition 4.29, using IPOPT 3.11 Wächter and Biegler (2006) for
the AD test, and using GUROBI 5.5 Gurobi Optimization Inc. (2013) otherwise.

We consider a 95% service-level requirement (𝑏 = 19, ℎ = 1) and each of the
following distributions, truncated above at 250 units in the bounded case:

Figure 4-3: The PDFs of Demand Distributions for the Newsvendor Problem
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1. Normal distribution with mean 100 and standard deviation 50, truncated to be
nonnegative.

2. Right-skewed Gumbel distribution with location 70 and scale 30/𝛾 (the Euler
constant), truncated to be nonnegative.

3. Mixture model of 40% normal with mean 40 and standard deviation 25 and
60% right-skewed Gumbel with location 125 and scale 15/𝛾, truncated to be
nonnegative.

We plot their PDFs in Figure 4-3. In the bounded case we use a significance level of
20% (i.e., 80% confidence). In the unbounded case we use a significance level of 15%
for the GoF test and 5% for the Student’s T-test (yielding total significance of 20%).

In Figure 4-4 we consider the bounded normal distribution and compare the val-
ues of the full-information problem (4.1), SAA estimates (4.2), Robust SAA bounds
𝑧 using the KS test, the data-driven DRO bound of Delage and Ye (2010), and the
non-data-driven DRO bound of Scarf (1958). We note that the SAA estimates con-
verge to the true optimum, but very often underestimate the true costs of SAA’s
recommended control (e.g. 65% of time for 𝑁 = 100), which is necessarily above
the full-information optimum. These estimates are biased (the mean is below the
full-information optimum) and have the peculiar property that the estimated costs
grow with 𝑁 , contradicting the value of data collection.

The data-driven guarantees of Delage and Ye (2010) do not converge to the full
information optimum. Instead, they converge upon the bound of Scarf (1958), in
which one restricts mean and variance to their exact true values and letting all else
vary. These data-driven bounds, however, decrease with 𝑁 , consistent with true costs
improving as more data is gathered. Interpreting the DUS of Delage and Ye (2010) as
a hypothesis test, we also attempt to apply the bootstrap to estimate valid thresholds
𝛾1,𝑁(𝛼), 𝛾2,𝑁(𝛼) 𝛾3,𝑁(𝛼) (see (4.21)). The result is plotted in the same figure. We note
that the bound is much smaller, but still non-convergent.

Our proposed method provides an order quantity, cost guarantee, and true costs
that converges to the full information optimum control and value. In this particular
case, computation of the bound and order quantity is done in closed form. The value
of the bounds decrease with 𝑁 , in agreement with the value of data collection, and
their convergence is consistent with the notion that we discover 𝐹 as we get more
data. The magnitude of the effect of data collection on the bounds is what we termed
the Price of Data, or PoD, in Section 4.6. In Figure 4-5, we compare the true PoD
(4.40) and the approximation we developed (4.42). Notice the fit is quite tight.

In Figure 4-6, we consider the behavior of Robust SAA for a wider range of distri-
butions and tests. First and foremost, the numerical results confirm the guarantees
and convergence as 𝑁 → ∞ irrespective of what is the true, unknown distribution
𝐹 . Different tests also seem to yield mostly comparable results, with the AD test
providing slightly better results when 𝑁 is at least 100. With small 𝑁 , the Kuiper
and Watson tests seem to perform the best. These observations should not, however,
be taken as general conclusions about the relative performance of these tests for gen-
eral problems. The conservatism of the guarantees depends both on the structure
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Figure 4-4: Convergence of Robust SAA guarantees and SAA estimates compared
with the data-driven DRO of Delage and Ye (2010) and non-data-driven DRO of
Scarf (1958)
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of the cost function as well as the true, unknown distribution and how we test it.
For practical purposes, if the convergence rates are comparable as they are here, we
recommend to choose the test that yields the simplest optimization problem, which
in this case is the KS test.

Figure 4-5: The Price of Data in the Newsvendor Problem
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Note: The average of true PoD is shown in solid black and the distribution-agnostic
approximation (4.42) is shown in dashed grey. Both axes are on a log scale.
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Figure 4-6: Probabilistic Guarantees of Robust SAA for the Singled-Item Newsvendor
Problem
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Note: Significance is set to 20%. Panel (a) displays the guarantees given by various
tests for the bounded normal distribution as the sample size grows. The vertical
lines in (a) denote the span from the 20th to the 80th percentile with respect
to sampling. Panel (b) displays the guarantees given by the Kolmogorov-
Smirnov test for various distributions. Dashed lines in (a) and (b) denote
the full-information optimum. Panel (c) displays the distribution of true costs
(light grey) and guarantees (dark grey) for the Kolmogorov-Smirnov test with
𝑁 = 300 samples from the bounded normal distribution.

4.7.2 Multi-Item Newsvendor

We now consider the multi-item newsvendor problem, which is a special case of a
separable cost function as considered in Section 4.5.3. Recall that in the multi-item

Figure 4-7: The Probabilistic Guarantees of Robust SAA for the Multi-Item Newsven-
dor Problem
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Figure 4-8: The PDFs of Security Returns Distributions for the Portfolio Allocation
Problem
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newsvendor we have 𝑋 = {𝑥 ∈ R𝑑+ :
∑︀𝑑

𝑖=1 𝑥𝑖 ≤ 𝑥} for some capacity
∑︀

𝑖 𝑥𝑖 ≤ 𝑥 and

𝑐(𝑥; 𝜉) =
𝑑∑︁
𝑖=1

𝑐𝑖(𝑥𝑖; 𝜉𝑖),

where each 𝑐𝑖 takes the form of a newsvendor cost function with its own parameters
𝑏𝑖, ℎ𝑖.

We consider the case of three items, each having demand distributed as one of the
three bounded distributions considered in the single-item case, with the parameters
𝑥 = 250, 𝑟1 = 15, 𝑟2 = 10, 𝑟3 = 5, 𝑐1 = 6, 𝑐2 = 4, 𝑐3 = 2, 𝑏1 = 3, 𝑏2 = 2, 𝑏3 = 1.
In our application of Robust SAA we employ the test based on marginals where, for
different choices of univariate test, we use the same GoF test for each marginal, each
at significance of 6.67% (total signifiance 20%).

We present the results in Figure 4-7. Again, we plot both the mean and 20th

and 80th percentiles of probabilistic guarantees as the size of the sample grows and
compare these to the full-information optimum. As predicted by the theory, we
observe convergence of guarantees even though testing marginals is not generally a
uniformly consistent test.

4.7.3 Portfolio Allocation

We now consider the minimum-CVaR portfolio allocation problem as studied in Ex-
ample 4.33. We minimize the 10%-level CVaR of negative returns of a portfolio of
𝑑 = 10 securities. The random returns are supported on the unbounded domain R10

and given by the factor model

𝜉𝑖 =
𝑖

11
𝜏 +

11− 𝑖
11

𝜁𝑖 𝑖 = 1, . . . , 10

where 𝜏 is a common market factor following a normal distribution with mean 2.5%
and standard deviation 3% and 𝜁𝑖’s are independent idiosyncratic contributions all
following a negative Pareto distribution with upper support 3.7%, mean 2.5%, and
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standard deviation 3.8% (i.e. 𝜁𝑖 ∼ 0.05−Pareto(0.013, 2.05)). All securities have the
same average return. Lower indexed securities are more volatile but are also more
diversified. We plot the PDFs of the returns of a few of the securities in Figure 4-8.

For samples drawn from this distribution, we consider data-driven solutions by
the SAA, the DRO of Delage and Ye (2010), and our method using the test for LCX.
We use the bootstrap to compute 𝑄𝐶𝑁

(𝛼) (see Section C.1). Since the constants
𝛾1,𝑁(𝛼), 𝛾2,𝑁(𝛼) 𝛾3,𝑁(𝛼) (see (4.21)) for the DRO of Delage and Ye (2010) are only
developed therein for the case of known bounded support and in order to offer a fair
comparison, we also bootstrap these thresholds. We implement the DRO (4.3) using
GUROBI 5.5 Gurobi Optimization Inc. (2013).

We present the results in Figure 4-9. As can be seen the SAA underestimates the
risk of its recommended portfolios. The method of Delage and Ye (2010) provides
valid bounds but they do not appear to converge and are also highly variable. In com-
parison, our method using the LCX test provides apparently convergent guarantees
and its guarantees are tightly concentrated.

In Figure 4-10 we compare the true price of data (4.40) for the LCX-based DRO
bound and the resampling based approximation of it (4.41).

Figure 4-9: Robust SAA Guarantees for the Portfolio Allocation Problem Compared
to Other Data-Driven Approachs
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Figure 4-10: The Price of Data in Portfolio Allocation
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Note: The average of true PoD is shown in solid black and the resampling-based
approximation (4.41) is shown in dashed grey. The vertical axis is on a log
scale.

4.8 Conclusions
In this chapter, we proposed a novel, tractable approach to data-driven optimization
called robust sample average approximation (Robust SAA). Robust SAA enjoys the
tractability and finite-sample performance guarantees of many existing data-driven
methods, but, unlike those methods, additionally exhibits asymptotic behavior similar
to traditional sample average approximation (SAA). The key to the approach is a
novel connection between SAA, DRO, and statistical hypothesis testing.

In particular, we were able to link properties of a data-driven optimization prob-
lem, i.e., its finite sample and asymptotic performance, to statistical properties of an
associated goodness-of-fit hypothesis test, i.e., its significance and consistency. As a
theoretical consequence, this connection allow us to describe the finite sample and
asymptotic performance of both Robust SAA and other data-driven DRO formula-
tions. As a practical consequence, our hypothesis testing perspective first, sheds light
on which data-driven DRO formulations are likely to perform well in particular ap-
plications and second, enables us to use powerful, numerical tools like bootstrapping
to improve their performance. Numerical experiments in inventory management and
portfolio allocation confirm that our new method Robust SAA is tractable and can
outperform existing data-driven methods in these applications.
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Chapter 5

Data-Driven Robust Optimization

The last decade witnessed an explosion in the availability of data for operations
research applications. Motivated by this growing availability, we propose a novel
schema for utilizing data to design uncertainty sets for robust optimization using
statistical hypothesis tests. The approach is flexible and widely applicable, and robust
optimization problems built from our new sets are computationally tractable, both
theoretically and practically. Furthermore, optimal solutions to these problems enjoy
a strong, finite-sample probabilistic guarantee. We describe concrete procedures for
choosing an appropriate set for a given application and applying our approach to
multiple uncertain constraints. Computational evidence in portfolio management
and queuing confirm that our data-driven sets significantly outperform traditional
robust optimization techniques whenever data is available.

5.1 Introduction

Robust optimization is a popular approach to optimization under uncertainty. The
key idea is to define an uncertainty set of possible realizations of the uncertain parame-
ters and then optimize against worst-case realizations within this set. Computational
experience suggests that with well-chosen sets, robust models yield tractable opti-
mization problems whose solutions perform as well or better than other approaches.
With poorly chosen sets, however, robust models may be overly-conservative or com-
putationally intractable. Choosing a good set is crucial. Fortunately, there are several
theoretically motivated and experimentally validated proposals for constructing good
uncertainty sets (Ben-Tal and Nemirovski 2000, Bertsimas and Sim 2004, Ben-Tal
et al. 2009, Bandi and Bertsimas 2012). These proposals share a common paradigm;
they combine a priori reasoning with mild assumptions on the uncertainty to motivate
the construction of the set.

On the other hand, the last decade witnessed an explosion in the availability of
data. Massive amounts of data are now routinely collected in many industries. Retail-
ers archive terabytes of transaction data. Suppliers track order patterns across their
supply chains. Energy markets can access global weather data, historical demand
profiles, and, in some cases, real-time power consumption information. These data
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have motivated a shift in thinking – away from a priori reasoning and assumptions
and towards a new data-centered paradigm. A natural question, then, is how should
robust optimization techniques be tailored to this new paradigm?

In this chapter, we propose a general schema for designing uncertainty sets for
robust optimization from data. We consider uncertain constraints of the form
𝑓(ũ,x) ≤ 0 where x ∈ R𝑘 is the optimization variable, and ũ ∈ R𝑑 is an uncertain
parameter. We model this constraint by choosing a set 𝒰 and forming the corre-
sponding robust constraint

𝑓(u,x) ≤ 0 ∀u ∈ 𝒰 . (5.1)

We assume throughout that 𝑓(u,x) is concave in u for any x.
In many applications, robust formulations decompose into a series constraints of

the form (5.1) through an appropriate transformation of variables, including uncertain
linear optimization and multistage adaptive optimization (see, e.g., Ben-Tal et al.
(2009)). In this sense, (5.1) is a fundamental building block for more complex robust
optimization models.

Many approaches (Bertsimas and Sim 2004, Ben-Tal et al. 2009, Chen et al. 2010)
to constructing uncertainty sets for (5.1) assume ũ is a random variable whose dis-
tribution P* is not known except for some assumed structural features. For example,
they may assume that P* has independent components, while its marginal distribu-
tions are not known. Given 𝜖 > 0, these approaches seek sets 𝒰𝜖 that satisfy two key
properties:

(P1) The robust constraint (5.1) is computationally tractable.

(P2) The set 𝒰𝜖 implies a probabilistic guarantee for P* at level 𝜖, that is, for any
x* ∈ R𝑘 and for every function 𝑓(u,x) concave in u for all x, we have the
implication:

If 𝑓(u,x*) ≤ 0 ∀u ∈ 𝒰𝜖, then P*(𝑓(ũ,x*) ≤ 0) ≥ 1− 𝜖. (5.2)

(P2) ensures that a feasible solution to the robust constraint will also be feasible
with probability 1 − 𝜖 with respect to P*, despite not knowing P* exactly. Existing
proposals achieve (P2) by leveraging the a priori structural features of P*. Some
of these approaches, e.g., (Bertsimas and Sim 2004), only consider the special case
when 𝑓(u,x) is bi-affine, but one can generalize them to (5.2) using techniques from
Ben-Tal et al. (2012) (see also Sec. 5.2.1).

Like previous proposals, we also assume ũ is a random variable whose distribution
P* is not known exactly, and seek sets 𝒰𝜖 that satisfy these properties. Unlike previous
proposals – and this is critical – we assume that we have data 𝒮 = {û1, . . . , û𝑁} drawn
i.i.d. according to P*. By combining these data with the a priori structural features of
P*, we can design new sets that imply similar probabilistic guarantees, but which are
much smaller with respect to subset containment than their traditional counterparts.
Consequently, robust models built from our new sets yield less conservative solutions
than traditional counterparts, while retaining their robustness properties.
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The key to our schema is using the confidence region of a statistical hypothesis
test to quantify what we learn about P* from the data. Specifically, our construc-
tions depend on three ingredients: the a priori assumptions on P*, the data, and a
hypothesis test. By pairing different a priori assumptions and tests, we obtain dis-
tinct data-driven uncertainty sets, each with its own geometric shape, computational
properties, and modeling power. These sets can capture a variety of features of P*,
including skewness, heavy-tails and correlations.

In principle, there is a multitude of possible pairings of a priori assumptions and
tests. We focus on pairings we believe are most relevant to applied robust modeling.
Specifically, we consider a priori assumptions that are common in practice and tests
that lead to tractable uncertainty sets. Our list is non-exhaustive; there may exist
other pairings that yield effective sets. Specifically, we consider situations where:

• P* has known, finite discrete support (Sec. 5.4).

• P* may have continuous support, and the components of ũ are independent
(Sec. 5.5).

• P* may have continuous support, but data are drawn from its marginal distri-
butions asynchronously (Sec. 5.6). This situation models the case of missing
values.

• P* may have continuous support, and data are drawn from its joint distribution
(Sec. 5.7). This is the general case.

Table 5.1 summarizes the a priori structural assumptions, hypothesis tests, and re-
sulting uncertainty sets that we propose. Each set is convex and admits a tractable,
explicit description; see the referenced equations.

For each of our sets, we provide an explicit, equivalent reformulation of (5.1). The
complexity of optimizing over this reformulation depends both on the function 𝑓(u,x)
and the set 𝒰 . For each of our sets, we show that this reformulation is polynomial
time tractable for a large class of functions 𝑓 including bi-affine functions, separa-
ble functions, conic-quadratic representable functions and certain sums of uncertain
exponential functions. By exploiting special structure in some of our sets, we can
provide specialized routines for directly separating over (5.1) for bi-affine 𝑓 . In these
cases, the column “Separation" in Table 5.1 roughly describes these routines. Uti-
lizing this separation routine within a cutting-plane method may offer performance
superior to reformulation based-approaches (Bertsimas et al. (2014a), Mutapcic and
Boyd (2009)).

We are not the first to consider using hypothesis tests in data-driven optimization.
Recently, Ben-Tal et al. (2013) proposed a class of data-driven uncertainty sets based
on phi-divergences. (Phi divergences are closely related to some types of hypothesis
tests.) They focus on the case where the uncertain parameter is a probability distri-
bution with known, finite, discrete support. By contrast, we design uncertainty sets
for general uncertain parameters with potentially continuous support such as future
product demand, service times, and asset returns. Many existing robust optimization
applications utilize similar general uncertain parameters. Consequently, retrofitting
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these applications with our new data-driven sets to yield data-driven variants is per-
haps more straightforward than using sets for uncertain probabilities. From a method-
ological perspective, treating general uncertain parameters requires combining ideas
from a variety of hypothesis tests (not just those based on phi-divergences of discrete
distributions) with techniques from convex analysis and risk theory. (See Sec. 5.3.)

Other authors have also considered more specialized applications of hypothesis
testing in data-driven optimization. Klabjan et al. (2013) proposes a distribution-
ally robust dynamic program based on Pearson’s 𝜒2-test for a particular inventory
problem. Goldfarb and Iyengar (2003) calibrate an uncertainty set for the mean and
covariance of a distribution using linear regression and the 𝑡-test. It is not clear how to
generalize these methods to other settings, e.g., distributions with continuous support
in the first case or general parameter uncertainty in the second. By contrast, we offer
a comprehensive study of the connection between hypothesis testing and uncertainty
set design, addressing a number of cases with general machinery.

Moreover, our hypothesis testing perspective provides a unified view of many other
data-driven methods from the literature. For example, Calafiore and El Ghaoui (2006)
and Delage and Ye (2010) have proposed data-driven methods for chance-constrained
and distributionally robust problems, respectively without using hypothesis testing.
We show how these works can be reinterpreted through the lens of hypothesis testing.
Leveraging this viewpoint enables us to apply state-of-the-art methods from statistics,
such as the bootstrap, to refine these methods and improve their numerical perfor-
mance. Moreover, applying our schema, we can design data-driven uncertainty sets
for robust optimization based upon these methods. Although we focus on Calafiore
and El Ghaoui (2006) and Delage and Ye (2010) in this chapter, this strategy applies
equally well to a host of other methods, such as the likelihood estimation approach
of Wang et al. (2009). In this sense, we believe hypothesis testing and uncertainty
set design provide a common framework in which to compare and contrast different
approaches.

Finally, we note that Campi and Garatti (2008) propose a very different data-
driven method for robust optimization not based on hypothesis tests. In their ap-
proach, one replaces the uncertain constraint 𝑓(ũ,x) ≤ 0 with 𝑁 sampled constraints
over the data, 𝑓(û𝑗,x) ≤ 0, for 𝑗 = 1, . . . , 𝑁 . For 𝑓(u,x) convex in x with arbitrary
dependence in u, they provide a tight bound 𝑁(𝜖) such that if 𝑁 ≥ 𝑁(𝜖), then, with
high probability with respect to the sampling, any x which is feasible in the 𝑁 sam-
pled constraints satisfies P*(𝑓(ũ,x) ≤ 0) ≥ 1 − 𝜖. Various refinements of this base
method have also been proposed yielding smaller bounds 𝑁(𝜖), including incorporat-
ing ℓ1-regularization (Campi and Carè 2013) and allowing x to violate a small fraction
of the constraints (Calafiore and Monastero 2012). Compared to our approach, these
methods are more generally applicable and provide a similar probabilistic guarantee.
In the special case we treat where 𝑓(ũ,x) is concave in u, however, our proposed
approach offers some advantages. First, because it leverages the concave structure
of 𝑓(u,x), our approach generally yields less conservative solutions (for the same 𝑁
and 𝜖) than Campi and Garatti (2008). (See Sec. 5.3.) Second, for fixed 𝜖 > 0,
our approach is applicable even if 𝑁 < 𝑁(𝜖), while theirs is not. This distinction
is important when 𝜖 is very small and there may not exist enough data. Finally, as
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we will show, our approach reformulates (5.1) as a series of (relatively) sparse convex
constraints, while the Campi and Garatti (2008) approach will in general yield 𝑁
dense constraints which may be numerically challenging when 𝑁 is large. For these
reasons, practitioners may prefer our proposed approach in certain applications.

We summarize our contributions:

1. We propose a new, systematic schema for constructing uncertainty sets from
data using statistical hypothesis tests. When the data are drawn i.i.d. from
an unknown distribution P*, sets built from our schema imply a probabilistic
guarantee for P* at any desired level 𝜖.

2. We illustrate our schema by constructing a multitude of uncertainty sets. Each
set is applicable under slightly different a priori assumptions on P* as described
in Table 5.1.

3. We prove that robust optimization problems over each of our sets are generally
tractable. Specifically, for each set, we derive an explicit robust counterpart to
(5.1) and show that for a large class of functions 𝑓(u,x) optimizing over this
counterpart can be accomplished in polynomial time using off-the-shelf software.

4. We unify several existing data-driven methods through the lens of hypothesis
testing. Through this lens, we motivate the use of common numerical techniques
from statistics such as bootstrapping and gaussian approximation to improve
their performance. Moreover, we apply our schema to derive new uncertainty
sets for (5.1) inspired by the refined versions of these methods.

5. We propose a new approach to modeling multiple uncertain constraints simul-
taneously with our sets by optimizing the parameters chosen for each individual
constraint. We prove that this technique is tractable and yields solutions which
will satisfy all the uncertain constraints simultaneously for any desired level 𝜖.

6. We provide guidelines for practitioners on choosing an appropriate set and cali-
brating its parameters by leveraging techniques from model selection in machine
learning.

7. Through applications in queueing and portfolio allocation, we assess the relative
strengths and weaknesses of our sets. Overall, we find that although all of our
sets shrink in size as 𝑁 → ∞, they differ in their ability to represent features
of P*. Consequently, they may perform very differently in a given application.
In the above two settings, we find that our model selection technique frequently
identifies a good set choice, and a robust optimization model built with this set
performs as well or better than other robust data-driven approaches.

The remainder of the chapter is structured as follows. Sec. 5.2 reviews background
to keep the chapter self-contained. Sec. 5.3 presents our schema for constructing
uncertainty sets. Sec. 5.4-5.7 describe the various constructions in Table 5.1. Sec. 5.8
reinterprets several techniques in the literature through the lens of hypothesis testing
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and, subsequently, uses them to motivate new uncertainty sets. Sec. 5.9 and Sec. 5.10
discuss modeling multiple constraints and choosing the right set for an application,
respectively. Sec. 5.11 presents numerical experiments, and Sec. 5.12 concludes. All
proofs are in the electronic companion.

5.1.1 Notation and Setup

Boldfaced lowercase letters (x, 𝜃, . . .) denote vectors, boldfaced capital letters (A, C,
. . .) denote matrices, and ordinary lowercase letters (𝑥, 𝜃) denote scalars. Calligraphic
type (𝒫 ,𝒮 . . .) denotes sets. The 𝑖th coordinate vector is e𝑖, and the vector of all ones is
e. We always use ũ ∈ R𝑑 to denote a random vector and �̃�𝑖 to denote its components.
P denotes a generic probability measure for ũ, and P* denotes its true (unknown)
measure. Moreover, P𝑖 denotes the marginal measure of �̃�𝑖. We let 𝒮 = {û1, . . . , û𝑁}
be a sample of 𝑁 data points drawn i.i.d. according to P*, and let P*𝒮 denote the
measure of the sample 𝒮, i.e., the𝑁 -fold product distribution of P*. Finally, P̂ denotes
the empirical distribution with respect to 𝒮.

5.2 Background

To keep the chapter self-contained, we recall some results needed to prove our sets
are tractable and imply a probabilistic guarantee.

5.2.1 Tractability of Robust Nonlinear Constraints

Ben-Tal et al. (2012) study constraint (5.1) and prove that for nonempty, convex,
compact 𝒰 satisfying a mild, regularity condition1, (5.1) is equivalent to

∃v ∈ R𝑑 s.t. 𝛿*(v| 𝒰)− 𝑓*(v,x) ≤ 0. (5.3)

Here, 𝑓*(v,x) denotes the partial concave-conjugate of 𝑓(u,x) and 𝛿*(v| 𝒰) denotes
the support function of 𝒰 , defined respectively as

𝑓*(v,x) ≡ sup
u∈R𝑑

u𝑇v − 𝑓(u,x), 𝛿*(v| 𝒰) ≡ sup
u∈𝒰

v𝑇u.

For many 𝑓(u,x), 𝑓*(v,x) admits a simple, explicit description. For example, for
bi-affine 𝑓(u,x) = u𝑇Fx+ f𝑇u u+ f𝑇x x+ 𝑓0, we have

𝑓*(v,x) =

{︃
−f𝑇x x− 𝑓0 if 𝑣 = Fx+ fu

−∞ otherwise,

1An example of a sufficient regularity condition is that 𝑟𝑖(𝒰) ∩ 𝑟𝑖(𝑑𝑜𝑚(𝑓(·,x))) ̸= ∅, ∀x ∈ R𝑘.
Here 𝑟𝑖(𝒰) denotes the relative interior of 𝒰 . Recall that for any non-empty convex set 𝒰 , 𝑟𝑖(𝒰) ≡
{u ∈ 𝒰 : ∀z ∈ 𝒰 , ∃𝜆 > 1 s.t. 𝜆u+ (1− 𝜆)z ∈ 𝒰} (cf. Bertsekas et al. (2003)).
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and (5.3) yields
𝛿*(Fx+ fu| 𝒰) + f𝑇x x+ 𝑓0 ≤ 0. (5.4)

In what follows, we concentrate on proving we can separate over {(v, 𝑡) : 𝛿*(v| 𝒰) ≤
𝑡} in polynomial time for each of our sets 𝒰 , usually by representing this set as a small
number of convex inequalities suitable for off-the-shelf solvers. From (5.4), this rep-
resentation will imply that (5.1) is tractable for each of our sets whenever 𝑓(u,x) is
bi-affine.

On the other hand, Ben-Tal et al. (2012) provide a number of other examples of
𝑓(u,x) for which 𝑓*(v,x) is tractable, including:

Separable Concave: 𝑓(u,x) =
∑︀𝑘

𝑖=1 𝑓𝑖(u)𝑥𝑖, for 𝑓𝑖(u) concave and 𝑥𝑖 ≥ 0.

Uncertain Exponentials: 𝑓(u,x) = −
∑︀𝑘

𝑖=1 𝑥
𝑢𝑖
𝑖 , for 𝑥𝑖 > 1 and 0 < 𝑢𝑖 ≤ 1.

Conic Quadratic Representable: 𝑓(u,x) such that the set {(𝑡,u) ∈ R×R𝑑 :
𝑓(u,x) ≥ 𝑡} conic quadratic representable (cf. Ben-Tal and Nemirovski
2001).

Consequently, by providing a representation of {(v, 𝑡) : 𝛿*(v| 𝒰) ≤ 𝑡} for each of our
sets, we will also have proven that (5.1) is tractable for each of these functions via
(5.3). In other words, proving {(v, 𝑡) : 𝛿*(v| 𝒰) ≤ 𝑡} is tractable implies that (5.1)
is tractable not only for bi-affine functions, but for many other concave functions as
well.

For some sets, our formulation of {(v, 𝑡) : 𝛿*(v| 𝒰) ≤ 𝑡} will involve complex
nonlinear constraints, such as exponential cone constraints (cf. Table 5.1). Although
it is possible to optimize over these constraints directly in (5.3), this approach may
be numerically challenging. As mentioned, an alternative is to use cutting-plane
or bundle methods as in Bertsimas et al. (2014a), Mutapcic and Boyd (2009). To
this end, when appropriate, we provide specialized algorithms for separating over
{(v, 𝑡) : 𝛿*(v| 𝒰) ≤ 𝑡} .

5.2.2 Hypothesis Testing

We briefly review hypothesis testing as it relates to our set constructions. See
Lehmann and Romano (2010) for a more complete treatment.

Given a null-hypothesis 𝐻0 that makes a claim about an unknown distribution
P*, a hypothesis test seeks to use data 𝒮 drawn from P* to either declare that 𝐻0

is false, or, else, that there is insufficient evidence to determine its validity. For a
given significance level 0 < 𝛼 < 1, a typical test prescribes a statistic 𝑇 ≡ 𝑇 (𝒮, 𝐻0),
depending on the data and 𝐻0, and a threshold Γ ≡ Γ(𝛼,𝒮, 𝐻0), depending on 𝛼, 𝒮,
and 𝐻0. If 𝑇 > Γ, we reject 𝐻0. Since 𝑇 depends on 𝒮, it is random. The threshold Γ
is chosen so that the probability with respect to the sampling of incorrectly rejecting
𝐻0 is at most 𝛼. The appropriate 𝛼 is often application specific, although values of
𝛼 = 1%, 5% and 10% are common (cf., Lehmann and Romano 2010, Chapt. 3.1).

As an example, consider the two-sided Student’s 𝑡-test (Lehmann and Romano
2010, Chapt. 5). Given 𝜇0 ∈ R, the 𝑡-test considers the null-hypothesis 𝐻0 : EP

*
[�̃�] =

142



𝜇0 using the statistic 𝑇 = |(�̂�− 𝜇0)/(�̂�
√
𝑁)| and threshold Γ = 𝑡𝑁−1,1−𝛼/2. Here �̂�, �̂�

are the sample mean and sample standard deviation, respectively, and 𝑡𝑁−1,1−𝛼 is the
1−𝛼 quantile of the Student 𝑡-distribution with 𝑁−1 degrees of freedom. Under the
a priori assumption that P* is Gaussian, the test guarantees that we will incorrectly
reject 𝐻0 with probability at most 𝛼.

Many of the tests we consider are common in applied statistics, and tables for
their thresholds are widely available. Several of our tests, however, are novel (e.g.,
the deviations test in Sec. 5.5.2.) In these cases, we propose using the bootstrap to
approximate a threshold (cf. Algorithm 1). 𝑁𝐵 should be chosen to be fairly large; we
take 𝑁𝐵 = 104 in our experiments. The bootstrap is a well-studied and widely-used
technique in statistics (Efron and Tibshirani 1993, Lehmann and Romano 2010).
Strictly speaking, hypothesis tests based on the bootstrap are only asymptotically
valid for large 𝑁 . (See the references for a precise statement.) Nonetheless, they are
routinely used in applied statistics, even with 𝑁 as small as 100, and a wealth of
practical experience suggests they are extremely accurate. Consequently, we believe
practitioners can safely use bootstrapped thresholds in the above tests.

Algorithm 1 Bootstrapping a Threshold
Input: 𝒮, 𝑇 , 𝐻0, 0 < 𝛼 < 1, 𝑁𝐵 ∈ Z+

Output: Approximate Threshold Γ
for 𝑗 = 1 . . . 𝑁𝐵 do
𝒮𝑗 ← Resample |𝒮| data points from 𝒮 with replacement
𝑇 𝑗 ← 𝑇 (𝒮𝑗, 𝐻0)

end for
return ⌈𝑁𝐵(1− 𝛼)⌉-largest value of 𝑇 1, . . . , 𝑇𝑁𝐵 .

Finally, we introduce the confidence region of a test, which will play a critical
role in our construction. Given data 𝒮, the 1 − 𝛼 confidence region of a test is the
set of null-hypotheses that would not be rejected for 𝒮 at level 1 − 𝛼. For example,
the 1 − 𝛼 confidence region of the 𝑡-test is

{︁
𝜇 ∈ R :

⃒⃒⃒
�̂�−𝜇
�̂�
√
𝑁

⃒⃒⃒
≤ 𝑡𝑁−1,1−𝛼/2

}︁
. In what

follows, however, we commit a slight abuse of nomenclature and instead use the term
confidence region to refer to the set of all measures that are consistent with any a
priori assumptions of the test and also satisfy a null-hypothesis that would not be
rejected. In the case of the 𝑡-test, the confidence region in the context of this chapter
is

𝒫 𝑡 ≡
{︂
P ∈ Θ(−∞,∞) : P is Gaussian with mean 𝜇, and

⃒⃒⃒⃒
�̂�− 𝜇
�̂�
√
𝑁

⃒⃒⃒⃒
≤ 𝑡𝑁−1,1−𝛼/2

}︂
,

(5.5)
where Θ(−∞,∞) is the set of Borel probability measures on R.

By construction, the probability (with respect to the sampling procedure) that
P* is a member of its confidence region is at least 1 − 𝛼 as long as all a priori
assumptions are valid. This is a critical observation. Despite not knowing P*, we can
use a hypothesis test to create a set of distributions from the data that contains P*

for any specified probability.
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5.3 Designing Data-Driven Uncertainty Sets

5.3.1 Geometric Characterization of the Probabilistic Guar-
antee

As a first step towards our schema, we provide a geometric characterization of (P2).
One might intuit that a set 𝒰 implies a probabilistic guarantee at level 𝜖 only if
P*(ũ ∈ 𝒰) ≥ 1 − 𝜖. As noted by other authors (cf. pg. 32-33 Ben-Tal et al. 2009)),
however, this intuition is false. Often, sets that are much smaller than the 1 − 𝜖
support will still imply a probabilistic guarantee at level 𝜖, and such sets should be
preferred because they are less conservative.

The crux of the issue is that there may be many realizations ũ ̸∈ 𝒰 where nonethe-
less 𝑓(ũ,x*) ≤ 0. Thus, P*(ũ ∈ 𝒰) is in general an underestimate of P*(𝑓(ũ,x*) ≤ 0).
One needs to exploit the dependence of 𝑓 on u to refine the estimate. We note in pass-
ing that many existing data-driven approaches for robust optimization, e.g., Campi
and Garatti (2008), do not leverage this dependence. Consequently, although these
approaches are general purpose, they may yield overly conservative uncertainty sets
for (5.1).

In order to tightly characterize (P2), we introduce the Value at Risk. For any
v ∈ R𝑑 and measure P, the Value at Risk at level 𝜖 with respect to v is

VaRP𝜖 (v) ≡ inf
{︀
𝑡 : P(ũ𝑇v ≤ 𝑡) ≥ 1− 𝜖

}︀
. (5.6)

Value at Risk is positively homogenous (in v), but typically non-convex. (Recall a
function 𝑔(v) is positively homogenous if 𝑔(𝜆v) = 𝜆𝑔(v) for all 𝜆 > 0.) The critical
result underlying our method is, then,

Theorem 5.1.

a) Suppose 𝒰 is nonempty, convex and compact. Then, 𝒰 implies a probabilistic
guarantee at level 𝜖 for P for every 𝑓(u,x) concave in u for every x if

𝛿*(v| 𝒰) ≥ VaRP𝜖 (v) ∀v ∈ R𝑑.

b) Suppose ∃v ∈ R𝑑 such that 𝛿*(v| 𝒰*) < VaRP𝜖 (v). Then, there exists bi-affine
functions 𝑓(u,x) for which (5.2) does not hold.

The first part generalizes a result implicitly used in (Ben-Tal et al. 2009, Chen
et al. 2007) when designing uncertainty sets for the special case of bi-affine functions.
To the best of our knowledge, the extension to general concave functions 𝑓 is new.

5.3.2 Our Schema

The principal challenge in applying Theorem 5.1 to designing uncertainty sets is that
P* is not known. Recall, however, that the confidence region 𝒫 of a hypothesis test,
will contain P* with probability at least 1− 𝛼. This motivates the following schema:
Fix 0 < 𝛼 < 1 and 0 < 𝜖 < 1.
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1. Let 𝒫(𝒮, 𝛼, 𝜖) be the confidence region of a hypothesis test at level 𝛼.

2. Construct a convex, positively homogenous (in v) upperbound 𝑔(v,𝒮, 𝜖, 𝛼) to
the worst-case Value at Risk:

sup
P∈𝒫(𝒮,𝛼,𝜖)

VaRP𝜖 (v) ≤ 𝑔(v,𝒮, 𝜖, 𝛼) ∀v ∈ R𝑑.

3. Identify the convex set 𝒰(𝒮, 𝜖, 𝛼) such that 𝑔(v,𝒮, 𝜖, 𝛼) = 𝛿*(v| 𝒰(𝒮, 𝜖, 𝛼)).2

Theorem 5.2. With probability at least 1 − 𝛼 with respect to the sampling, the re-
sulting set 𝒰(𝒮, 𝜖, 𝛼) implies a probabilistic guarantee at level 𝜖 for P*.

Remark 5.3. We note in passing that 𝛿*(v| 𝒰(𝒮, 𝜖, 𝛼)) ≤ 𝑡 is a safe-approximation
to the ambiguous chance constraint supP∈𝒫(𝒮,𝛼,𝜖) P(v𝑇 ũ ≤ 𝑡) ≥ 1 − 𝜖 as defined in
Ben-Tal et al. (2009). Ambiguous chance-constraints are closely related to sets which
imply a probabilistic guarantee. We refer the reader to Ben-Tal et al. (2009) for more
details.

Theorem 5.2 ensures that with probability at least 1−𝛼 with respect to the sam-
pling, a robust feasible solution x will satisfy a single uncertain constraint 𝑓(ũ,x) ≤ 0
with probability at least 1− 𝜖. Often, however, we face 𝑚 > 1 uncertain constraints
𝑓𝑗(ũ,x) ≤ 0, 𝑗 = 1, . . . ,𝑚, and seek x that will simultaneously satisfy these con-
straints, i.e.,

P
(︂

max
𝑗=1,...,𝑚

𝑓𝑗(ũ,x) ≤ 0

)︂
≥ 1− 𝜖, (5.7)

for some given 𝜖. In this case, one approach is to replace each uncertain constraint
with a corresponding robust constraint

𝑓𝑗(u,x) ≤ 0, ∀u ∈ 𝒰(𝒮, 𝜖𝑗, 𝛼), (5.8)

where 𝒰(𝒮, 𝜖𝑗, 𝛼) is constructed via our schema at level 𝜖𝑗 = 𝜖/𝑚. By the union
bound and Theorem 5.2, with probability at least 1−𝛼 with respect to the sampling,
any x which satisfies (5.8) will satisfy (5.7).

The choice 𝜖𝑗 = 𝜖/𝑚 is somewhat arbitrary. We would prefer to treat the 𝜖𝑗 as
decision variables and optimize over them, i.e., replace the 𝑚 uncertain constraints
by

min
𝜖1+...+𝜖𝑚≤𝜖,𝜖≥0

{︃
max

𝑗=1,...,𝑚

{︁
max

u∈𝒰(𝒮,𝜖𝑗 ,𝛼)
𝑓𝑗(u,x)

}︁}︃
≤ 0

or, equivalently, (5.9)
∃𝜖1 + . . . 𝜖𝑚 ≤ 𝜖, 𝜖 ≥ 0 : 𝑓𝑗(u,x) ≤ 0 ∀u ∈ 𝒰(𝒮, 𝜖𝑗, 𝛼), 𝑗 = 1, . . . ,𝑚.

2The existence of such a set in Step 3 by the bijection between closed, positively homogenous
convex functions and closed convex sets in convex analysis (see Bertsekas et al. (2003)).
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Unfortunately, we cannot use Theorem 5.2 to claim that with probability at least
1−𝛼 with respect to the sampling, any feasible to solution to (5.9) will satisfy (5.7).
Indeed, in general, this implication will hold with probability much less than 1 − 𝛼.
The issue is that Theorem 5.2 requires selecting 𝜖 independently of 𝒮, whereas the
optimal 𝜖𝑗’s in (5.9) will depend on 𝒮, creating an in-sample bias. Consequently, we
next extend Theorem 5.2 to lift this requirement.

Given a family of sets indexed by 𝜖, {𝒰(𝜖) : 0 < 𝜖 < 1}, we say this family
simultaneously implies a probabilistic guarantee for P* if, for all 0 < 𝜖 < 1, each 𝒰(𝜖)
implies a probabilistic guarantee for P* at level 𝜖. Then,

Theorem 5.4. Suppose 𝒫(𝒮, 𝛼, 𝜖) ≡ 𝒫(𝒮, 𝛼) does not depend on 𝜖 in Step 1 above.
Let {𝒰(𝒮, 𝜖, 𝛼) : 0 < 𝜖 < 1} be the resulting family of sets obtained from the our
schema.

a) With probability at least 1 − 𝛼 with respect to the sampling, {𝒰(𝒮, 𝜖, 𝛼) : 0 <
𝜖 < 1} simultaneously implies a probabilistic guarantee for P*.

b) With probability at least 1−𝛼 with respect to the sampling, any x which satisfies
(5.9) will satisfy (5.7).

In what follows, all of our constructions will simultaneously imply a probabilistic
guarantee with the exception of 𝒰𝑀𝜖 in Sec. 5.6. We provide numerical evidence in
Sec. 5.11 that (5.9) offers significant benefit over (5.8). In some special cases, we
can optimize the 𝜖𝑗’s in (5.9) exactly (see Sec. 5.11.2). More generally, we must
approximate this outer optimization numerically. We postpone a treatment of this
optimization problem until Sec. 5.9 after we have introduced our sets.

The next four sections apply this schema to create uncertainty sets. Often, 𝜖, 𝛼
and 𝒮 are typically fixed, so we may suppress some or all of them in the notation.

5.4 Uncertainty Sets Built from Discrete Distribu-
tions

In this section, we assume P* has known, finite support supp(P*) ⊆ {a0, . . . , a𝑛−1}.
We consider two hypothesis tests for this setup: Pearson’s 𝜒2 test and the 𝐺 test (Rice
2007). Both tests consider the hypothesis 𝐻0 : P* = P0 where P0 is some specified
measure. Specifically, let 𝑝𝑖 = P0(ũ = a𝑖) be the specified null-hypothesis, and let p̂
denote the empirical probability distribution , i.e.,

𝑝𝑖 ≡
1

𝑁

𝑁∑︁
𝑗=1

I(û𝑗 = a𝑖) 𝑖 = 0, . . . , 𝑛− 1.

Pearson’s 𝜒2 test rejects 𝐻0 at level 𝛼 if 𝑁
∑︀𝑛−1

𝑖=0
(𝑝𝑖−𝑝𝑖)2

𝑝𝑖
> 𝜒2

𝑛−1,1−𝛼, where 𝜒2
𝑛−1,1−𝛼

is the 1 − 𝛼 quantile of a 𝜒2 distribution with 𝑛 − 1 degrees of freedom. Similarly,
the 𝐺 test rejects the null hypothesis at level 𝛼 if 𝐷(p̂,p) > 1

2𝑁
𝜒2
𝑛−1,1−𝛼 where

𝐷(p,q) ≡
∑︀𝑛−1

𝑖=0 𝑝𝑖 log(𝑝𝑖/𝑞𝑖) is the relative entropy between p and q.
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The confidence regions for Pearson’s 𝜒2 test and the 𝐺 test are, respectively,

𝒫𝜒2

=

{︃
p ∈ Δ𝑛 :

𝑛−1∑︁
𝑖=0

(𝑝𝑖 − 𝑝𝑖)2

2𝑝𝑖
≤ 1

2𝑁
𝜒2
𝑛−1,1−𝛼

}︃
, (5.10)

𝒫𝐺 =

{︂
p ∈ Δ𝑛 : 𝐷(p̂,p) ≤ 1

2𝑁
𝜒2
𝑛−1,1−𝛼

}︂
. (5.11)

Here Δ𝑛 =
{︀
(𝑝0, . . . , 𝑝𝑛−1)

𝑇 : e𝑇p = 1, 𝑝𝑖 ≥ 0 𝑖 = 0, . . . , 𝑛− 1
}︀

denotes the proba-
bility simplex. We will use these two confidence regions in Step 1 of our schema.

For a fixed measure P, and vector v ∈ R𝑑, recall the Conditional Value at Risk:

CVaRP𝜖 (v) ≡ min
𝑡

{︂
𝑡+

1

𝜖
EP[(ũ𝑇v − 𝑡)+]

}︂
. (5.12)

Conditional Value at Risk is well-known to be a convex upper bound to Value at
Risk (Acerbi and Tasche 2002, Rockafellar and Uryasev 2000) for a fixed P. We can
compute a bound in Step 2 by considering the worst-case Conditional Value at Risk
over the above confidence regions, yielding

Theorem 5.5. Suppose supp(P*) ⊆ {a0, . . . , a𝑛−1}. With probability 1 − 𝛼 over the
sample, the families {𝒰𝜒2

𝜖 : 0 < 𝜖 < 1} and {𝒰𝐺𝜖 : 0 < 𝜖 < 1} simultaneously imply a
probabilistic guarantee for P*, where

𝒰𝜒2

𝜖 =

{︃
u ∈ R𝑑 : u =

𝑛−1∑︁
𝑗=0

𝑞𝑗a𝑗, q ∈ Δ𝑛, q ≤ 1

𝜖
p, p ∈ 𝒫𝜒2

}︃
, (5.13)

𝒰𝐺𝜖 =

{︃
u ∈ R𝑑 : u =

𝑛−1∑︁
𝑗=0

𝑞𝑗a𝑗, q ∈ Δ𝑛, q ≤ 1

𝜖
p, p ∈ 𝒫𝐺

}︃
. (5.14)

Their support functions are given by

𝛿*(v| 𝒰𝜒2

𝜖 ) = min
w,𝜂,𝜆,t

𝛽 +
1

𝜖

(︃
𝜂 +

𝜆𝜒2
𝑛−1,1−𝛼

𝑁
+ 2𝜆− 2

𝑛−1∑︁
𝑖=0

𝑝𝑖𝑠𝑖

)︃
s.t. 0 ≤ w ≤ (𝜆+ 𝜂)e, 𝜆 ≥ 0, s ≥ 0,⃦⃦⃦⃦

2𝑠𝑖
𝑤𝑖 − 𝜂

⃦⃦⃦⃦
≤ 2𝜆− 𝑤𝑖 + 𝜂, 𝑖 = 0, . . . , 𝑛− 1

a𝑇𝑖 v − 𝑤𝑖 ≤ 𝛽, 𝑖 = 0, . . . , 𝑛− 1,

(5.15)

𝛿*(v| 𝒰𝐺𝜖 ) = min
w,𝜂,𝜆

𝛽 +
1

𝜖

(︃
𝜂 +

𝜆𝜒2
𝑛−1,1−𝛼

2𝑁
− 𝜆

𝑛−1∑︁
𝑖=0

𝑝𝑖 log

(︂
1− 𝑤𝑖 − 𝜂

𝜆

)︂)︃
s.t 0 ≤ w ≤ (𝜆+ 𝜂)e, 𝜆 ≥ 0,

a𝑇𝑖 v − 𝑤𝑖 ≤ 𝛽, 𝑖 = 0, . . . , 𝑛− 1.

(5.16)
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Remark 5.6. The sets 𝒰𝜒2

𝜖 , 𝒰𝐺𝜖 strongly resemble the uncertainty set for CVaRP̂𝜖 in
Bertsimas and Brown (2009). In fact, as 𝑁 → ∞, all three of these sets converge
almost surely to the set 𝒰CVaRP*

𝜖 defined by 𝛿*(v|𝒰CVaRP*
𝜖 ) = CVaRP

*

𝜖 (v). The key
difference is that for finite 𝑁 , 𝒰𝜒2

𝜖 and 𝒰𝐺𝜖 imply a probabilistic guarantee for P* at
level 𝜖, while 𝒰CVaRP̂

𝜖 does not.

Remark 5.7. Theorem 5.5 exemplifies the distinction drawn in the introduction
between uncertainty sets for discrete probability distributions – such as 𝒫𝜒2 or 𝒫𝐺
which have been proposed in Ben-Tal et al. (2013) – and uncertainty sets for general
uncertain parameters like 𝒰𝜒2

𝜖 and 𝒰𝐺𝜖 . The relationship between these two types
of sets is explicit in eqs. (5.13) and (5.14) because we have known, finite support.
For continuous support and our other sets, the relationship is implicit and must be
understood through worst-case value-at-risk in Step 2 of our schema.

Remark 5.8. When considering {(v, 𝑡) : 𝛿*(v| 𝒰𝜒2

𝜖 ) ≤ 𝑡} or {(v, 𝑡) : 𝛿*(v| 𝒰𝐺𝜖 ) ≤ 𝑡},
we may drop the minimum in the formulation (5.15) or (5.16). Thus, these sets
are second-order-cone representable and exponential-cone representable, respectively.
Although theoretically tractable, the exponential cone can be numerically challenging.

Because of these numerical issues, modeling with 𝒰𝜒2

𝜖 is perhaps preferable to
modeling with 𝒰𝐺𝜖 . Fortunately, for large 𝑁 , the difference between these two sets is
negligible:

Proposition 5.9. With arbitrarily high probability, for any p ∈ 𝒫𝐺, |𝐷(p̂,p) −∑︀𝑛−1
𝑗=0

(𝑝𝑗−𝑝𝑗)2
2𝑝𝑗

| = 𝑂(𝑛𝑁−3).

Thus, for large𝑁 , 𝒫𝐺 is approximately equal to 𝒫𝜒2 , whereby 𝒰𝐺𝜖 is approximately
equal to 𝒰𝜒2

𝜖 . For large 𝑁 , then, 𝒰𝜒2

𝜖 should be preferred for its computational
tractability.

5.4.1 A Numerical Example of 𝒰𝜒2

𝜖 and 𝒰𝐺
𝜖

Figure 5-1 illustrates the sets 𝒰𝜒2

𝜖 and 𝒰𝐺𝜖 with a particular numerical example. The
true distribution is supported on the vertices of the given octagon. Each vertex is
labeled with its true probability. In the absence of data when the support of P* is
known, the only uncertainty set 𝒰 which implies a probabilistic guarantee for P* is
the convex hull of these points. We construct the sets 𝒰𝜒2

𝜖 (grey line) and 𝒰𝐺𝜖 (black
line) for 𝛼 = 𝜖 = 10% for various 𝑁 . For reference, we also plot 𝒰CVaRP*

𝜖 (shaded
region) which is the limit of both sets as 𝑁 → ∞. For small 𝑁 , our data-driven
sets are equivalent to the convex hull of supp(P*), however, as 𝑁 increases, our sets
shrink considerably. For large 𝑁 , as predicted by Propostion 5.9, 𝒰𝐺𝜖 and 𝒰𝜒2

𝜖 are
very similarly shaped.

Remark 5.10. Fig. 5-1 also enables us to contrast our approach to that of Campi and
Garatti (2008). Namely, suppose that 𝑓(u,x) is linear in u. In this case, x satisfies
𝑓(û𝑗,x) ≤ 0 for 𝑗 = 1, . . . , 𝑁 , if and only if 𝑓(u,x) ≤ 0 for all u ∈ conv(𝒜) where
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Figure 5-1: The Uncertainty Sets 𝒰𝜒2

𝜖 and 𝒰𝐺𝜖
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Note: We set 𝛼 = 𝜖 = 10%. When 𝑁 = 0, the smallest set which implies a prob-
abilistic guarantee is supp(P*), the given octagon. As 𝑁 increases, both sets
shrink to the 𝒰CVaRP*

𝜖 given by the shaded region.

𝒜 ≡ {a ∈ supp(P*) : ∃1 ≤ 𝑗 ≤ 𝑁 s.t. a = û𝑗}. As 𝑁 → ∞, 𝒜 → supp(P*) almost
surely. In other words, as 𝑁 →∞, the method of Campi and Garatti (2008) in this
case is equivalent to using the entire support as an uncertainty set, which is much
larger than 𝒰CVaRP*

𝜖 above. Similar examples can be constructed with continuous
distributions or the method of Calafiore and Monastero (2012). In each case, the
critical observation is that these methods do not explicitly leverage the concave (or,
in this case, linear) structure of 𝑓(u,x).

5.5 Independent Marginal Distributions
We next consider the case where P* may have continuous support, but the marginal
distributions P*𝑖 are known to be independent. Our strategy is to build up a multi-
variate test by combining univariate tests for each marginal distribution.

5.5.1 Uncertainty Sets Built from the Kolmogorov-Smirnov
Test

For this section, we assume that supp(P*) is contained in a known, bounded box

[û(0), û(𝑁+1)] ≡ {u ∈ R𝑑 : �̂�(0)𝑖 ≤ 𝑢𝑖 ≤ �̂�
(𝑁+1)
𝑖 , 𝑖 = 1, . . . , 𝑑}.

Given a univariate measure P0,𝑖, the Kolmogorov-Smirnov (KS) goodness-of fit
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Figure 5-2: The Empirical Distribution Function and Confidence Region Correspond-
ing to the KS Test
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test applied to marginal 𝑖 considers the null-hypothesis 𝐻0 : P*𝑖 = P0,𝑖. It rejects this
hypothesis if

max
𝑗=1,...,𝑁

max

(︂
𝑗

𝑁
− P0,𝑖(�̃� ≤ �̂�

(𝑗)
𝑖 ),P0,𝑖(�̃� < �̂�

(𝑗)
𝑖 )− 𝑗 − 1

𝑁

)︂
> Γ𝐾𝑆.

where �̂�(𝑗)𝑖 is the 𝑗th largest element among �̂�1𝑖 , . . . , �̂�𝑁𝑖 . Tables for the threshold Γ𝐾𝑆

are widely available (Stephens 1974, Thas 2009).
The confidence region of the above test for the 𝑖-th marginal distribution is

𝒫𝐾𝑆𝑖 =

{︃
P𝑖 ∈ Θ[�̂�

(0)
𝑖 , �̂�

(𝑁+1)
𝑖 ] :

P𝑖(�̃�𝑖 ≤ �̂�
(𝑗)
𝑖 ) ≥ 𝑗

𝑁
− Γ𝐾𝑆, 𝑗 = 1, . . . , 𝑁

P𝑖(�̃�𝑖 < �̂�
(𝑗)
𝑖 ) ≤ 𝑗−1

𝑁
+ Γ𝐾𝑆, 𝑗 = 1, . . . , 𝑁

}︃
,

where Θ[�̂�
(0)
𝑖 , �̂�

(𝑁+1)
𝑖 ] is the set of all Borel probability measures on [�̂�

(0)
𝑖 , �̂�

(𝑁+1)
𝑖 ].

Unlike 𝒫𝜒2 and 𝒫𝐺, this confidence region is infinite dimensional.
Figure 5-2 illustrates an example. The true distribution is a standard normal

whose cumulative distribution function (cdf) is the dotted line. We draw 𝑁 = 100
data points and form the empirical cdf (solid black line). The 80% confidence region
of the KS test is the set of measures whose cdfs are more than Γ𝐾𝑆 above or below
this solid line, i.e. the grey region.

Now consider the multivariate null-hypothesis 𝐻0 : P* = P0. Since P* has indepen-
dent components, the test which rejects if P𝑖 fails the KS test at level 𝛼′ = 1− 𝑑

√
1− 𝛼

for any 𝑖 is a valid test. Namely, P*𝒮(P*𝑖 is accepted by KS at level 𝛼′ for all 𝑖 =
1, . . . , 𝑑) =

∏︀𝑑
𝑖=1

𝑑
√
1− 𝛼′ = 1 − 𝛼 by independence. The confidence region of this

multivariate test is

𝒫𝐼 =
{︁
P ∈ Θ[û(0), û(𝑁+1)] : P =

𝑑∏︁
𝑖=1

P𝑖, P𝑖 ∈ 𝒫𝐾𝑆𝑖 𝑖 = 1, . . . , 𝑑
}︁
.
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(“I" in 𝒫𝐼 is to emphasize independence). We use this confidence region in Step 1 of
our schema.

When the marginals are independent, Nemirovski and Shapiro (2006) proved

VaRP𝜖 (v) ≤ inf
𝜆≥0

(︃
𝜆 log(1/𝜖) + 𝜆

𝑑∑︁
𝑖=1

logEP𝑖 [𝑒𝑣𝑖�̃�𝑖/𝜆]

)︃
.

We use the worst-case value of this bound over 𝒫𝐼 in Step 2 of our schema. By passing
the supremum through the infimum and logarithm, we obtain

sup
P∈𝒫𝐼

VaRP𝜖 (v) ≤ inf
𝜆≥0

(︃
𝜆 log(1/𝜖) + 𝜆

𝑑∑︁
𝑖=1

log sup
P𝑖∈𝒫𝐾𝑆

𝑖

EP𝑖 [𝑒𝑣𝑖�̃�𝑖/𝜆]

)︃
. (5.17)

Despite the infinite dimensionality, we can solve in the inner-most supremum explicitly
by leveraging the simple geometry of 𝒫𝐾𝑆𝑖 . Intuitively, the worst-case distribution will
either be the lefthand boundary or the righthand boundary of the region in Fig. 5-2
depending on the sign of 𝑣𝑖.

Specifically, define

𝑞𝐿𝑗 (Γ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Γ if 𝑗 = 0,
1
𝑁

if 1 ≤ 𝑗 ≤ ⌊𝑁(1− Γ)⌋,
1− Γ− ⌊𝑁(1−Γ)⌋

𝑁
if 𝑗 = ⌊𝑁(1− Γ)⌋+ 1,

0 otherwise,

(5.18)

𝑞𝑅𝑗 (Γ) = 𝑞𝐿𝑁+1−𝑗(Γ), 𝑗 = 0, . . . , 𝑁 + 1. (5.19)

Both q𝐿(Γ),q𝑅(Γ) ∈ Δ𝑁+2 so that each vector can be interpreted as a discrete proba-
bility distribution on the points �̂�(0)𝑖 , . . . , �̂�

(𝑁+1)
𝑖 . One can check that the distributions

corresponding to these vectors are precisely the lefthand side and righthand side of
the grey region in Fig. 5-2. Then, we have

Theorem 5.11. Suppose P* has independent components, with supp(P*) ⊆ [û(0), û(𝑁+1)].
With probability at least 1 − 𝛼 with respect to the sampling, {𝒰 𝐼𝜖 : 0 < 𝜖 < 1} simul-
taneously implies a probabilistic guarantee for P*, where

𝒰 𝐼𝜖 =

{︃
u ∈ R𝑑 : ∃𝜃𝑖 ∈ [0, 1], q𝑖 ∈ Δ𝑁+2, 𝑖 = 1 . . . , 𝑑,

𝑁+1∑︁
𝑗=0

�̂�
(𝑗)
𝑖 𝑞𝑖𝑗 = 𝑢𝑖, 𝑖 = 1, . . . , 𝑑,

𝑑∑︁
𝑖=1

𝐷(q𝑖, 𝜃𝑖q
𝐿(Γ𝐾𝑆) + (1− 𝜃𝑖)q𝑅(Γ𝐾𝑆)) ≤ log(1/𝜖)

}︃
.

(5.20)
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Moreover,

𝛿*(v| 𝒰 𝐼𝜖 ) = inf
𝜆≥0

{︃
𝜆 log(1/𝜖)

+ 𝜆
𝑑∑︁
𝑖=1

log

[︃
max

(︃
𝑁+1∑︁
𝑗=0

𝑞𝐿𝑗 (Γ
𝐾𝑆)𝑒𝑣𝑖�̂�

(𝑗)
𝑖 /𝜆,

𝑁+1∑︁
𝑗=0

𝑞𝑅𝑗 (Γ
𝐾𝑆)𝑒𝑣𝑖�̂�

(𝑗)
𝑖 /𝜆

)︃]︃}︃
(5.21)

Remark 5.12. Because q𝐿(Γ) (resp. q𝑅(Γ)) is decreasing (resp. increasing) in its
components, the lefthand branch of the innermost maximum in (5.21) will be attained
when 𝑣𝑖 ≤ 0 and the righthand branch is attained otherwise. Thus, for fixed v, the
optimization problem in 𝜆 is convex and differentiable and can be efficiently solved
with a line search.

Remark 5.13. When representing {(v, 𝑡) : 𝛿*(v| 𝒰 𝐼) ≤ 𝑡)}, we can drop the infimum
in (5.21). Thus, this set is exponential cone representable, which, again, may be
numerically challenging. Using the above line search, however, we can separate over
this set: Given v ∈ R𝑑, 𝑡 ∈ R such that 𝛿*(v| 𝒰 𝐼) > 𝑡, solve (5.21) by line search, and
let 𝜆* be an optimal solution. Define

p𝑖 =

{︃
q𝐿 if 𝑣𝑖 ≤ 0,

q𝑅 otherwise,
𝑞𝑖𝑗 =

𝑝𝑖𝑗𝑒
𝑣𝑖�̂�

(𝑗)
𝑖 /𝜆∑︀𝑁+1

𝑗=0 𝑝
𝑖
𝑗𝑒
𝑣𝑖�̂�

(𝑗)
𝑖 /𝜆

, 𝑗 = 0, . . . , 𝑁 + 1, 𝑖 = 1, . . . , 𝑑,

𝑢𝑖 =
𝑁+1∑︁
𝑗=0

𝑞𝑖𝑗�̂�
(𝑗)
𝑖 , 𝑖 = 1 . . . , 𝑑.

Then u ∈ 𝒰 𝐼𝜖 and u𝑇v ≤ 𝑡 is a violated cut for {(v, 𝑡) : 𝛿*(v| 𝒰 𝐼𝜖 ) ≤ 𝑡}. That this
procedure is valid follows from the proof of Theorem 5.11, see appendix.

Remark 5.14. The KS test is one of many goodness-of-fit tests based on the empirical
distribution function (EDF), including the Kuiper (K), Cramer von-Mises (CvM),
Watson (W) and Andersen-Darling (AD) tests (Thas 2009, Chapt. 5). We can define
analogues of 𝒰 𝐼𝜖 for each of these tests, each having slightly different shape. Separating
over {(v, 𝑡) : 𝛿*(v| 𝒰) ≤ 𝑡} is polynomial time tractable for each these sets, but we
no longer have a simple algorithm for generating violated cuts. Thus, these sets are
considerably less attractive from a computational point of view. Fortunately, through
simulation studies with a variety of different distributions, we have found that the
version of 𝒰 𝐼𝜖 based on the KS test generally performs as well as or better than the
other EDF tests. Consequently, we recommend using the sets 𝒰 𝐼𝜖 as described. For
completeness, we present the constructions for the analogous tests in Appendix D.6.
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5.5.2 Uncertainty Sets Motivated by Forward and Backward
Deviations

In Chen et al. (2007), the authors propose an uncertainty set based on the forward
and backward deviations of a distribution. They focus on a non-data-driven setting,
where the mean and support of P* are known a priori, and show how to upper bound
these deviations to calibrate their set. In a setting where one has data and a priori
knows the mean of P* precisely, they propose a method based on sample average
approximation to estimate these deviations. Unfortunately, the precise statistical
behavior of these estimators is not known, so it is not clear that this set calibrated
from data implies a probabilistic guarantee with high probability with respect to the
sampling.

In this section, we use our schema to generalize the set of Chen et al. (2007) to
a data-driven setting where neither the mean of the distribution nor its support are
known. Our set differs in shape and size from their proposal, and, our construction,
unlike their original proposal, will simultaneously imply a probabilistic guarantee for
P*.

We begin by specifying an appropriate multivariate hypothesis test based on com-
bining univariate tests. Specifically, for a known (univariate) distribution P𝑖 define
its forward and backward deviations by

𝜎𝑓𝑖(P𝑖) = sup
𝑥>0

√︂
−2𝜇𝑖

𝑥
+

2

𝑥2
log(EP𝑖 [𝑒𝑥�̃�𝑖 ]), 𝜎𝑏𝑖(P𝑖) = sup

𝑥>0

√︂
2𝜇𝑖
𝑥

+
2

𝑥2
log(EP𝑖 [𝑒−𝑥�̃�𝑖 ]),

(5.22)
where EP𝑖 [�̃�𝑖] = 𝜇𝑖. Notice the optimizations defining 𝜎𝑓𝑖(P𝑖), 𝜎𝑏𝑖(P𝑖) are one dimen-
sional, convex problems which can be solved by a line search. A sufficient, but not
necessary, condition for 𝜎𝑓𝑖(P𝑖), 𝜎𝑏𝑖(P𝑖) to be finite is that P𝑖 has bounded support (c.f.
Chen et al. 2007). To streamline the exposition, we assume throughout this section
P* has bounded (but potentially unknown) support.

For a given 𝜇0,𝑖, 𝜎0,𝑓𝑖, 𝜎0,𝑏𝑖 ∈ R, consider the following three null-hypotheses:

𝐻1
0 : EP*𝑖 [�̃�] = 𝜇0,𝑖, 𝐻2

0 : 𝜎𝑓𝑖(P*𝑖 ) ≤ 𝜎0,𝑓𝑖, 𝐻3
0 : 𝜎𝑏𝑖(P*𝑖 ) ≤ 𝜎0,𝑏𝑖. (5.23)

We can test these hypotheses (separately) using |�̂�𝑖 − 𝜇0,𝑖|, 𝜎𝑓𝑖(P̂𝑖) and 𝜎𝑏𝑖(P̂𝑖), re-
spectively, as test statistics. Since these are not common hypothesis tests in applied
statistics, there are no tables for their thresholds. Instead, we compute approximate
thresholds 𝑡𝑖, 𝜎𝑓𝑖 and 𝜎𝑏𝑖 at the 𝛼/2, 𝛼/4 and 𝛼/4 significance level, respectively,
using the bootstrap procedure in Algorithm 1.

By the union bound, the univariate test which rejects if any of these thresholds is
exceeded is a valid test at level 𝛼 for the three hypotheses above to hold simultane-
ously. The confidence region of this test is

𝒫𝐹𝐵𝑖 = {P𝑖 ∈ Θ(−∞,∞) : 𝑚𝑏𝑖 ≤ EP𝑖 [�̃�𝑖] ≤ 𝑚𝑓𝑖, 𝜎𝑓𝑖(P𝑖) ≤ 𝜎𝑓𝑖, 𝜎𝑏𝑖(P𝑖) ≤ 𝜎𝑏𝑖},

where 𝑚𝑏𝑖 = �̂�𝑖 − 𝑡𝑖 and 𝑚𝑓𝑖 = �̂�𝑖 + 𝑡𝑖.
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Next, consider the multivariate null-hypothesis that all three null-hypotheses in
(5.23) hold simultaneously for all 𝑖 = 1, . . . , 𝑑. As in Sec. 5.5, the test which rejects if
the above univariate test rejects at level 𝛼′ = 1− 𝑑

√
1− 𝛼 for any 𝑖 is a valid test. Its

confidence region is 𝒫𝐹𝐵 = {P : P𝑖 ∈ 𝒫𝐹𝐵𝑖 𝑖 = 1, . . . , 𝑑}. We will use this confidence
region in Step 1 of our schema.

When the mean and deviations for P are known and the marginals are independent,
Chen et al. (2007) prove

VaRP𝜖 (v) ≤
𝑑∑︁
𝑖=1

EP[�̃�𝑖]𝑣𝑖 +

⎯⎸⎸⎷2 log(1/𝜖)

(︃∑︁
𝑖:𝑣𝑖<0

𝜎2
𝑏𝑖(P)𝑣2𝑖 +

∑︁
𝑖:𝑣𝑖≥0

𝜎2
𝑓𝑖(P)𝑣2𝑖

)︃
. (5.24)

Computing the worst-case value of this bound over the above confidence region in
Step 2 of our schema yields:

Theorem 5.15. Suppose P* has independent components and bounded support. With
probability 1− 𝛼 with respect to the sample, the family {𝒰𝐹𝐵𝜖 : 0 < 𝜖 < 1} simultane-
ously implies a probabilistic guarantee for P*, where

𝒰𝐹𝐵𝜖 =

⎧⎪⎨⎪⎩y1 + y2 − y3 :

y2,y2 ∈ R𝑑+,∑︀𝑑
𝑖=1

𝑦22𝑖
2𝜎2

𝑓𝑖
+

𝑦23𝑖
2𝜎2

𝑏𝑖
≤ log(1/𝜖),

𝑚𝑏𝑖 ≤ 𝑦1𝑖 ≤ 𝑚𝑓𝑖, 𝑖 = 1, . . . , 𝑑

⎫⎪⎬⎪⎭ . (5.25)

Moreover,

𝛿*(v| 𝒰𝐹𝐵𝜖 ) =
∑︁
𝑖:𝑣𝑖≥0

𝑚𝑓𝑖𝑣𝑖 +
∑︁
𝑖:𝑣𝑖<0

𝑚𝑏𝑖𝑣𝑖 +

⎯⎸⎸⎷2 log(1/𝜖)

(︃∑︁
𝑖:𝑣𝑖≥0

𝜎2
𝑓𝑖𝑣

2
𝑖 +

∑︁
𝑖:𝑣𝑖<0

𝜎2
𝑏𝑖𝑣

2
𝑖

)︃
(5.26)

Remark 5.16. From (5.26), {(v, 𝑡) : 𝛿*(v| 𝒰𝐹𝐵𝜖 ) ≤ 𝑡} is second order cone repre-
sentable. We can separate over this constraint in closed-form: Given v, 𝑡, use (5.26)
to check if 𝛿*(v| 𝒰𝐹𝐵𝜖 ) > 𝑡. If so, let

𝜆 =

√︃∑︀
𝑖:𝑣𝑖>0 𝑣

2
𝑖 𝜎

2
𝑓𝑖 +

∑︀
𝑖:𝑣𝑖≤0 𝑣

2
𝑖 𝜎

2
𝑏𝑖

2 log(1/𝜖)
, 𝑢𝑖 =

{︃
𝑚𝑓𝑖 +

𝑣𝑖𝜎
2
𝑓𝑖

𝜆
if 𝑣𝑖 > 0

𝑚𝑏𝑖 +
𝑣𝑖𝜎

2
𝑏𝑖

𝜆
otherwise.

Then, u𝑇v ≤ 𝑡 is a violated constraint. The correctness of this procedure follows
from the proof of Theorem 5.15.

Remark 5.17. There is no guarantee that 𝒰𝐹𝐵𝜖 ⊆ supp(P*). Consequently, if we
have a priori information of the support, we can use this to refine 𝒰𝐹𝐵𝜖 . Specifically,
let 𝒰0 be convex, compact such that supp(P*) ⊆ 𝒰0. Then, the family {𝒰𝐹𝐵𝜖 ∩𝒰0 : 0 <
𝜖 < 1} simultaneously implies a probabilistic guarantee. Moreover, for common 𝒰0,
optimizing over (5.3) with 𝒰𝐹𝐵𝜖 ∩𝒰0 is computationally similar to optimizing with 𝒰𝐹𝐵𝜖 .
More precisely, from (Ben-Tal et al. 2012, Lemma A.4), {(v, 𝑡) : 𝛿*(v| 𝒰𝜖(𝒮)∩𝒰0)} is
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Figure 5-3: Comparison of 𝒰 𝐼𝜖 and 𝒰𝐹𝐵𝜖
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Note: The left panel shows the marginal densities. The right panel shows 𝒰 𝐼𝜖 (dashed
black line) and 𝒰𝐹𝐵𝜖 (solid black line) built from 𝑁 = 100 data points (blue
circles) and in the limit as 𝑁 →∞ (corresponding gray lines).

equivalent to{︀
(v, 𝑡) : ∃w,∈ R𝑑, 𝑡1, 𝑡2 ∈ R s.t. 𝛿*(v −w|𝒰𝜖(𝒮)) ≤ 𝑡1, 𝛿

*(w| 𝒰0) ≤ 𝑡2, 𝑡1 + 𝑡2 ≤ 𝑡
}︀
,

(5.27)

so that (5.3) with 𝒰𝐹𝐵𝜖 ∩ 𝒰0 will be tractable whenever {(v, 𝑡) : 𝛿*(v| 𝒰0) ≤ 𝑡} is
tractable, examples of which include when 𝒰0 is a norm-ball, ellipse, or polyhedron
(see Ben-Tal et al. (2012)).

5.5.3 Comparing 𝒰 𝐼
𝜖 and 𝒰𝐹𝐵

𝜖

Figure 5-3 illustrates the sets 𝒰 𝐼𝜖 and 𝒰𝐹𝐵𝜖 numerically. The marginal distributions
of P* are independent and their densities are given in the left panel. Notice that the
first marginal is symmetric while the second is highly skewed.

In the absence of any data, knowing only supp(P*) and that P* has independent
components, the smallest uncertainty which implies a probabilistic guarantee is the
unit square (dotted line). With 𝑁 = 100 data points from this distribution (blue
circles), however, we can construct both 𝒰 𝐼𝜖 (dashed black line) and 𝒰𝐹𝐵𝜖 (solid black
line) with 𝜖 = 𝛼 = 10%, as shown. We also plot the limiting shape of these two sets
as 𝑁 →∞ (corresponding grey lines).

Several features are evident from the plots. First, both sets are able to learn that
P* is symmetric in its first coordinate (the sets display vertical symmetry) and that
P* is skewed downwards in its second coordinate (the sets taper more sharply towards
the top). Both sets learn these features from the data. Second, although 𝒰 𝐼𝜖 is a strict
subset of supp(P*), 𝒰𝐹𝐵𝜖 is not (see also Remark 5.17). Finally, neither set is a subset
of the other, and, although for 𝑁 = 100, 𝒰𝐹𝐵𝜖 ∩ supp(P*) has smaller volume than
𝒰 𝐼𝜖 , the reverse holds for larger 𝑁 . Consequently, it is not clear which set to prefer in
a given application, and the best choice likely depends on 𝑁 .
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5.6 Uncertainty Sets Built from Marginal Samples

In this section, we observe samples from the marginal distributions of P* separately,
but do not assume these marginals are independent. This happens, e.g., when samples
are drawn asynchronously, or when there are many missing values. In these cases, it
is impossible to learn the joint distribution of P* from the data. To streamline the
exposition, we assume that we observe exactly 𝑁 samples of each marginal distribu-
tion. The results generalize to the case of different numbers of samples at the expense
of more notation.

In the univariate case, David and Nagaraja (1970) develop a hypothesis test for
the 1 − 𝜖/𝑑 quantile, or equivalently VaRP𝑖𝜖/𝑑(e𝑖) of a distribution P. Namely, given
𝑞𝑖,0 ∈ R, consider the hypothesis 𝐻0,𝑖 : VaRP

*

𝜖/𝑑(e𝑖) ≥ 𝑞𝑖,0. Define the index 𝑠 by

𝑠 = min

{︃
𝑘 ∈ N :

𝑁∑︁
𝑗=𝑘

(︂
𝑁

𝑗

)︂
(𝜖/𝑑)𝑁−𝑗(1− 𝜖/𝑑)𝑗 ≤ 𝛼

2𝑑

}︃
, (5.28)

and let 𝑠 = 𝑁 + 1 if the corresponding set is empty. Then, the test which rejects
if 𝑞𝑖,0 > �̂�

(𝑠)
𝑖 is valid at level 𝛼/2𝑑 (David and Nagaraja 1970, Sec. 7.1). David and

Nagaraja (1970) also prove that 𝑠
𝑁
↓ (1− 𝜖/𝑑).

The above argument applies symmetrically to the hypothesis 𝐻0,𝑖 : VaRP
*

𝜖/𝑑(−e𝑖) ≥
𝑞
𝑖,0

where the rejection threshold now becomes �̂�(𝑁−𝑠+1)
𝑖 . In the typical case when

𝜖/𝑑 is small, 𝑁 − 𝑠+ 1 < 𝑠 so that �̂�(𝑁−𝑠+1)
𝑖 ≤ �̂�

(𝑠)
𝑖 .

Next given 𝑞𝑖,0, 𝑞𝑖,0 ∈ R for 𝑖 = 1, . . . , 𝑑, consider the multivariate hypothesis:

𝐻0 : VaRP
*

𝜖/𝑑(e𝑖) ≥ 𝑞𝑖,0 and VaRP
*

𝜖/𝑑(−e𝑖) ≥ 𝑞
𝑖,0

for all 𝑖 = 1, . . . , 𝑑.

By the union bound, the test which rejects if �̂�(𝑠)𝑖 < 𝑞𝑖 or −�̂�(𝑁−𝑠+1)
𝑖 < 𝑞

𝑖
, i.e., the

above tests fail for the 𝑖-th component, is valid at level 𝛼. Its confidence region is

𝒫𝑀 =
{︁
P ∈ Θ[û(0), û(𝑁+1)] : VaRP𝑖𝜖/𝑑 ≤ �̂�

(𝑠)
𝑖 , VaRP𝑖𝜖/𝑑 ≥ �̂�

(𝑁−𝑠+1)
𝑖 , 𝑖 = 1, . . . , 𝑑

}︁
.

Here “M" is to emphasize “marginals." We use this confidence region in Step 1 of our
schema.

When the marginals of P are known, Embrechts et al. (2003) proves

VaRP𝜖 (v) ≤ min
𝜆:e𝑇𝜆=𝜖

𝑑∑︁
𝑖=1

VaRP𝜆𝑖(𝑣𝑖e𝑖). (5.29)

Since the minimization on the right-hand side can be difficult, we will use the weaker
bound VaRP𝜖 (v) ≤

∑︀𝑑
𝑖=1 VaRP𝜖/𝑑(𝑣𝑖e𝑖) obtained by letting 𝜆𝑖 = 𝜖/𝑑 for all 𝑖.

We compute the worst case value of this bound over 𝒫𝑀 , yielding:

Theorem 5.18. If 𝑠 defined by Eq. (5.28) satisfies 𝑁−𝑠+1 < 𝑠, then, with probability
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at least 1− 𝛼 over the sample, the set

𝒰𝑀𝜖 =
{︁
u ∈ R𝑑 : �̂�(𝑁−𝑠+1)

𝑖 ≤ 𝑢𝑖 ≤ �̂�
(𝑠)
𝑖 𝑖 = 1, . . . , 𝑑

}︁
. (5.30)

implies a probabilistic guarantee for P* at level 𝜖. Moreover,

𝛿*(v| 𝒰𝑀𝜖 ) =
𝑑∑︁
𝑖=1

max(𝑣𝑖�̂�
(𝑁−𝑠+1)
𝑖 , 𝑣𝑖�̂�

(𝑠)
𝑖 ). (5.31)

Remark 5.19. Notice that the family {𝒰𝑀𝜖 : 0 < 𝜖 < 1}, may not simultaneously
imply a probabilistic guarantee for P* because the confidence region 𝒫𝑀 depends on
𝜖.

Remark 5.20. The set {(v, 𝑡) : 𝛿*(v|𝒰𝑀) ≤ 𝑡} is a simple box, representable by
linear inequalities. We can separate over this set in closed form via (5.31).

5.7 Uncertainty Sets for Potentially Non-independ-
ent Components

In this section, we assume we observe samples drawn from the joint distribution of P*

which may have unbounded support. We consider a goodness-of-fit hypothesis test
based on linear-convex ordering proposed in Bertsimas et al. (2014b). Specifically,
given some multivariate P0, consider the null-hypothesis 𝐻0 : P* = P0. Bertsimas
et al. (2014b) prove that the test which rejects 𝐻0 if ∃(a, 𝑏) ∈ ℬ ≡ {a ∈ R𝑑, 𝑏 ∈ R :
‖a‖1 + |𝑏| ≤ 1} such that

EP0 [(a𝑇 ũ− 𝑏)+]− 1

𝑁

𝑁∑︁
𝑗=1

(a𝑇 û𝑗 − 𝑏)+ > Γ𝐿𝐶𝑋 or
1

𝑁

𝑁∑︁
𝑗=1

(û𝑗)𝑇 û𝑗 − EP0 [ũ𝑇 ũ] > Γ𝜎

for appropriate thresholds Γ𝐿𝐶𝑋 ,Γ𝜎 is a valid test at level 𝛼. The authors provide an
explicit bootstrap algorithm to compute Γ𝐿𝐶𝑋 ,Γ𝜎.

The confidence region of this test is

𝒫𝐿𝐶𝑋 =

{︃
P ∈ Θ(R𝑑) : EP[(a𝑇 ũ− 𝑏)+] ≤ 1

𝑁

𝑁∑︁
𝑗=1

(a𝑇 û𝑗 − 𝑏)+ + Γ𝐿𝐶𝑋 ∀(a, 𝑏) ∈ ℬ,

𝑑∑︁
𝑖=1

EP[‖ũ‖2] ≥ 1

𝑁

𝑁∑︁
𝑗=1

‖û𝑗‖2]− Γ𝜎

}︃
, (5.32)

We will use this confidence region in Step 1 of our schema.
Combining techniques from semi-infinite optimization with our schema (see elec-

tronic companion for proof), we obtain
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Theorem 5.21. The family {𝒰𝐿𝐶𝑋𝜖 : 0 < 𝜖 < 1} simultaneously implies a probabilistic
guarantee for P* where

𝒰𝐿𝐶𝑋𝜖 =

{︃
u ∈ R𝑑 : ∃r ∈ R𝑑, 1 ≤ 𝑧 ≤ 1/𝜖, s.t. (5.33a)

(a𝑇 r− 𝑏(𝑧 − 1))+ + (a𝑇u− 𝑏)+ ≤ 𝑧

𝑁

𝑁∑︁
𝑗=1

(a𝑇 û𝑗 − 𝑏)+ + Γ𝐿𝐶𝑋 , ∀(a, 𝑏) ∈ ℬ

}︃
.

(5.33b)

Moreover,

𝛿*(v| 𝒰𝐿𝐶𝑋𝜖 ) = sup
P∈𝒫𝐿𝐶𝑋

VaRP𝜖 (v) = min
𝜏,𝜃,𝑦1,𝑦2,𝜆

1

𝜖
𝜏 − 𝜃 −

∫︁
ℬ
𝑏𝑑𝑦1(a, 𝑏) +

∫︁
ℬ
𝑏𝑑𝑦2(a, 𝑏)

s.t. 𝜃 +

∫︁
ℬ
𝑏𝑑𝑦1(a, 𝑏) +

∫︁
ℬ
Γ(a, 𝑏)𝑑𝜆(a, 𝑏) ≤ 𝜏

0 ≤ 𝑑𝑦1(a, 𝑏) ≤ 𝑑𝜆(a, 𝑏) ∀(a, 𝑏) ∈ ℬ,
(5.34)

0 ≤ 𝑑𝑦2(a, 𝑏) ≤ 𝑑𝜆(a, 𝑏) ∀(a, 𝑏) ∈ ℬ,∫︁
ℬ
a 𝑑𝑦1(a, 𝑏) = 0, v =

∫︁
ℬ
a 𝑑𝑦2(a, 𝑏),

𝜃, 𝜏 ≥ 0.

Remark 5.22. As the intersection of convex constraints, 𝒰𝐿𝐶𝑋𝜖 is convex.

Remark 5.23. It is possible to separate over (5.33b) efficiently. Specifically, fix
u, r ∈ R𝑑 and 1 ≤ 𝑧 ≤ 1/𝜖. We identify the worst-case (a, 𝑏) ∈ ℬ in (5.33b) by
solving three auxiliary optimization problems:

𝜉1 = max
(a,𝑏)∈ℬ,t≥0

a𝑇 r− 𝑏(𝑧 − 1)) + (a𝑇u− 𝑏)− 𝑧

𝑁

𝑁∑︁
𝑗=1

𝑡𝑗

s.t. 𝑡𝑗 ≥ a𝑇 û𝑗 − 𝑏, a𝑇u− 𝑏 ≥ 0, a𝑇 r− 𝑏(𝑧 − 1) ≥ 0,

𝜉2 = max
(a,𝑏)∈ℬ,t≥0

a𝑇 r− 𝑏(𝑧 − 1))− 𝑧

𝑁

𝑁∑︁
𝑗=1

𝑡𝑗

s.t. 𝑡𝑗 ≥ a𝑇 û𝑗 − 𝑏, a𝑇u− 𝑏 ≤ 0, a𝑇 r− 𝑏(𝑧 − 1) ≥ 0,

𝜉3 = max
(a,𝑏)∈ℬ,t≥0

(a𝑇u− 𝑏)− 𝑧

𝑁

𝑁∑︁
𝑗=1

𝑡𝑗

s.t. 𝑡𝑗 ≥ a𝑇 û𝑗 − 𝑏, a𝑇u− 𝑏 ≥ 0, a𝑇 r− 𝑏(𝑧 − 1) ≤ 0,

corresponding to the potential signs of a𝑇 r − 𝑏(𝑧 − 1) and a𝑇u − 𝑏 at the worst-
case value. (The fourth case, where both terms are negative is trivial since Γ𝐿𝐶𝑋 >
0.) Each of these optimization problems can be written as linear optimizations. If
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max(𝜉1, 𝜉2, 𝜉3) ≤ Γ𝐿𝐶𝑋 , then u, r and 𝑧 are feasible in (5.33b). Otherwise, the optimal
a, 𝑏 in the maximizing subproblem yields a violated cut.

Remark 5.24. The representation of 𝛿*(v| 𝒰𝐿𝐶𝑋) is not particularly convenient.
Nonetheless, we can separate over {(v, 𝑡) : 𝛿*(v| 𝒰𝐿𝐶𝑋) ≤ 𝑡} in polynomial time by us-
ing the above separation routine with the ellipsoid algorithm to solve maxu∈𝒰𝐿𝐶𝑋 v𝑇u.
Alternatively, combining the above separation routine with the dual-simplex algo-
rithm yields a practically efficient algorithm for large-scale instances

5.8 Hypothesis Testing: A Unifying Perspective

Several data-driven methods in the literature create families of measures 𝒫(𝒮) that
contain P* with high probability. These methods do not explicitly reference hypothesis
testing. In this section, we provide a hypothesis testing interpretation of two such
methods (Shawe-Taylor and Cristianini 2003, Delage and Ye 2010). Leveraging this
new perspective, we show how standard techniques for hypothesis testing, such as
the bootstrap, can be used to improve upon these methods. Finally, we illustrate
how our schema can be applied to these improved family of measures to generate
new uncertainty sets. To the best of our knowledge, generating uncertainty sets for
(5.1) is a new application of both (Shawe-Taylor and Cristianini 2003, Delage and Ye
2010).

The key idea in both cases is to recast 𝒫(𝒮) as the confidence region of a hypothesis
test. This correspondence is not unique to these methods. There is a one-to-one
correspondence between families of measures which contain P* with probability at
least 1−𝛼 with respect to the sampling and the confidence regions of hypothesis tests.
This correspondence is sometimes called the “duality between confidence regions and
hypothesis testing" in the statistical literature (Rice 2007). It implies that any data-
driven method predicated on a family of measures that contain P* with probability
1− 𝛼 can be interpreted in the light of hypothesis testing.

This observation is interesting for two reasons. First, it provides a unified frame-
work to compare distinct methods in the literature and ties them to the well-establi-
shed theory of hypothesis testing in statistics. Secondly, there is a wealth of practical
experience with hypothesis testing. In particular, we know empirically which tests are
best suited to various applications and which tests perform well even when the under-
lying assumptions on P* that motivated the test may be violated. In the next section,
we leverage some of this practical experience with hypothesis testing to strengthen
these methods, and then derive uncertainty sets corresponding to these hypothesis
tests to facilitate comparison between the approaches.

5.8.1 Uncertainty Set Motivated by Cristianini and Shawe-
Taylor, 2003

Let ‖ · ‖𝐹 denote the Frobenius norm of matrices. As part of a particular machine
learning application, Shawe-Taylor and Cristianini (2003) prove
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Theorem 5.25 (Cristianini and Shawe-Taylor, 2003). Suppose that supp(P*) is con-
tained within the ball of radius 𝑅 and that 𝑁 > (2+2 log(2/𝛼))2. Then, with probability
at least 1− 𝛼 with respect to the sampling, P* ∈ 𝒫𝐶𝑆 for

𝒫𝐶𝑆 =

{︂
P ∈ Θ(𝑅) :

‖EP[ũ]− �̂�‖2 ≤ Γ1(𝛼/2, 𝑁),

‖EP[ũũ𝑇 ]− EP[ũ]EP[ũ𝑇 ]− Σ̂‖𝐹 ≤ Γ2(𝛼/2, 𝑁)

}︂
,

where �̂�, Σ̂ denote the sample mean and covariance, Γ1(𝛼,𝑁) = 𝑅√
𝑁

(︁
2 +

√︀
2 log 1/𝛼

)︁
,

Γ2(𝛼,𝑁) = 2𝑅2
√
𝑁

(︁
2 +

√︀
2 log 2/𝛼

)︁
, and Θ(𝑅) denotes the set of Borel probability mea-

sures supported on the ball of radius 𝑅.

The key idea of their proof is to use a general purpose concentration inequality
(McDiarmid’s inequality) to compute Γ1(𝛼,𝑁), Γ2(𝛼,𝑁).

We observe that 𝒫𝐶𝑆 is the 1 − 𝛼 confidence region of a hypothesis test for the
mean and covariance of P*. Namely, the test considers

𝐻0 : EP
*
[ũ] = 𝜇0 and EP* [ũũ𝑇 ]− EP* [ũ]EP* [ũ𝑇 ] = Σ0, (5.35)

using statistics ‖�̂�− 𝜇0‖ and ‖Σ̂−Σ0‖ and thresholds Γ1(𝛼/2, 𝑁),Γ2(𝛼/2, 𝑁).
Practical experience in applied statistics suggests, however, that tests whose thresh-

olds are computed as above using general purpose concentration inequalities, while
valid, are typically very conservative for reasonable values of 𝛼, 𝑁 . They reject 𝐻0

when it is false only when 𝑁 is very large. The standard remedy is to use the boot-
strap (Algorithm 1) to calculate alternate thresholds Γ𝐵1 ,Γ

𝐵
2 . These bootstrapped

thresholds are typically much smaller, but still (approximately) valid at level 1 − 𝛼.
The first five columns of Table 5.2 illustrates the magnitude of the difference with a
particular example. Entries of ∞ indicate that the threshold as derived in Shawe-
Taylor and Cristianini (2003) does not apply for this value of 𝑁 . The data are drawn
from a standard normal distribution with 𝑑 = 2 truncated to live in a ball of radius
9.2. We take 𝛼 = 10%, 𝑁𝐵 = 10, 000. We can see that the reduction can be a
full-order of magnitude, or more.

Reducing the thresholds Γ𝐵1 ,Γ
𝐵
2 shrinks 𝒫𝐶𝑆, in turn reducing the ambiguity in

P*. This reduction ameliorates the potential over-conservativeness of any method
using 𝒫𝐶𝑆, including the original machine learning application of Shawe-Taylor and
Cristianini (2003) and our own schema for developing uncertainty sets.

We next use 𝒫𝐶𝑆 in Step 1 of our schema to construct an uncertainty set. Bound-
ing Value at Risk for regions like 𝒫𝐶𝑆 was studied by Calafiore and El Ghaoui (2006).
Their results imply

sup
P∈𝒫𝐶𝑆

VaRP𝜖 (v) = �̂�𝑇v + Γ1‖v‖2 +
√︂

1− 𝜖
𝜖

√︁
v𝑇 (Σ̂+ Γ2I)v. (5.36)

We translate this bound into an uncertainty set.

Theorem 5.26. With probability at least 1−𝛼 with respect to the sampling, the family
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Table 5.2: Comparing Thresholds With and Without Bootstrap

Shawe-Taylor & Cristianini (2003) Delage & Ye (2010)

N Γ1 Γ2 Γ𝐵1 Γ𝐵2 𝛾1 𝛾2 𝛾𝐵1 𝛾𝐵2

10 ∞ ∞ 0.805 1.161 ∞ ∞ 0.526 5.372
50 ∞ ∞ 0.382 0.585 ∞ ∞ 0.118 1.684

100 3.814 75.291 0.262 0.427 ∞ ∞ 0.061 1.452
500 1.706 33.671 0.105 0.157 ∞ ∞ 0.012 1.154

50000 0.171 3.367 0.011 0.018 ∞ ∞ 1e-4 1.015
100000 0.121 2.381 0.008 0.013 0.083 5.044 6e-5 1.010

Note: We use 𝑁𝐵 = 10, 000 replications and 𝛼 = 10%.

{𝒰𝐶𝑆𝜖 : 0 < 𝜖 < 1} simultaneously implies a probabilistic guarantee for P*, where

𝒰𝐶𝑆𝜖 =

{︃
�̂�+ y +C𝑇w : ∃y,w ∈ R𝑑 s.t. ‖y‖ ≤ Γ𝐵1 , ‖w‖ ≤

√︂
1

𝜖
− 1

}︃
, (5.37)

where C𝑇C = Σ̂ + Γ𝐵2 I is a cholesky decomposition. Moreover, 𝛿*(v| 𝒰𝐶𝑆𝜖 ) is given
explicitly by the right-hand side of Eq. (5.36) with (Γ1,Γ2) replaced by the bootstrapped
thresholds Γ𝐵1 ,Γ

𝐵
2 .

Remark 5.27. Notice that (5.36) is written with an equality. The robust con-
straint maxu∈𝒰𝐶𝑆

𝜖
v𝑇x ≤ 0 is exactly equivalent to the ambiguous chance-constraint

suppP∈𝒫𝐶𝑆 VaRP𝜖 (v) ≤ 0 where 𝒫𝐶𝑆 is defined with the smaller (bootstrapped) thresh-
olds.

Remark 5.28. From (5.36), {(v, 𝑡) : 𝛿*(v| 𝒰𝐶𝑆𝜖 ) ≤ 𝑡} is second order cone repre-
sentable. Moreover, we can separate over this constraint in closed-form. Given v, 𝑡

such that 𝛿*(v| 𝒰𝐶𝑆𝜖 ) > 𝑡, let u = 𝜇 +
Γ𝐵
1

‖v‖v +
√︁

1
𝜖
− 1 Cv

‖Cv‖ . Then u ∈ 𝒰𝐶𝑆𝜖 and
u𝑇v ≤ 𝑡 is a violated inequality (cf. Proof of Theorem 5.26.)

Remark 5.29. Like 𝒰𝐹𝐵𝜖 , there is no guarantee that 𝒰𝐶𝑆𝜖 ⊆ supp(P*). Consequently,
when a priori knowledge of the support is available, we can refine this set as in
Remark 5.17.

To emphasize the benefits of bootstrapping when constructing uncertainty sets,
Fig. D-1 in the electronic companion illustrates the set 𝒰𝐶𝑆𝜖 for the example considered
in Fig. 5-3 with thresholds computed with and without the bootstrap.

5.8.2 Uncertainty Set Motivated by Delage and Ye, 2010

Delage and Ye (2010) propose a data-driven approach for solving distributionally
robust optimization problems. Their method relies on a slightly more general version
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of the following:3

Theorem 5.30 (Delage and Ye, 2010). Let 𝑅 be such that P*((ũ−𝜇)𝑇Σ−1(ũ−𝜇) ≤
𝑅2) = 1 where 𝜇,Σ are the true mean and covariance of ũ under P*. Let, 𝛾1 ≡

𝛽2
1−𝛽1−𝛽2 , 𝛾2 ≡

1+𝛽2
1−𝛽1−𝛽2 , 𝛽2 ≡

𝑅2

𝑁

(︁
2 +

√︁
2 log( 2

𝛼
)
)︁2

, 𝛽1 ≡ 𝑅2
√
𝑁

(︁√︁
1− 𝑑

𝑅4 +
√︁

log( 4
𝛼
)
)︁
,

and suppose also that 𝑁 is large enough so that 1 − 𝛽1 − 𝛽2 > 0. Finally suppose
supp(P*) ⊆ [û(0), û(𝑁+1)]. Then with probability at least 1 − 𝛼 with respect to the
sampling, P* ∈ 𝒫𝐷𝑌 where

𝒫𝐷𝑌 ≡

{︃
P ∈ Θ[û(0), û(𝑁+1)] :

(EP[ũ]− �̂�)𝑇 Σ̂
−1
(EP[ũ]− �̂�) ≤ 𝛾1,

EP[(ũ− �̂�)(ũ− �̂�)𝑇 ] ⪯ 𝛾2Σ̂

}︃
.

The key idea is again to compute the thresholds using a general purpose concen-
tration inequality. The condition on 𝑁 is required for the confidence region to be
well-defined.

We again observe that 𝒫𝐷𝑌 is the 1 − 𝛼 confidence region of a hypothesis test.
Specifically, it considers the hypothesis (5.35) using the statistics (�̂�−𝜇0)

𝑇 Σ̂
−1
(�̂�−

𝜇0) and max𝜆
𝜆𝑇 (Σ0+(𝜇0−�̂�)(𝜇0−�̂�)𝑇 )𝜆

𝜆𝑇 Σ̂𝜆
with thresholds 𝛾1, 𝛾2.

Since the thresholds are, again, potentially overly conservative, we approximate
new thresholds using the bootstrap. Table 5.2 shows the reduction in magnitude.
Observe that the bootstrap thresholds exist for all 𝑁 , not just 𝑁 sufficiently large.
Moreover, they are significantly smaller. This reduction translates to a reduction in
the potential over conservatism of any method using 𝒫𝐷𝑌 , including those presented
within Delage and Ye (2010) while retaining the same probabilistic guarantee.

We next consider using 𝒫𝐷𝑌 in Step 1 of our schema to generate an uncertainty
set 𝒰 that “corresponds" to this method.

Theorem 5.31. Suppose supp(P*) ⊂ [û(0), û(𝑁+1)]. Then, with probability at least
1 − 𝛼 with respect to the sampling, the family {𝒰𝐷𝑌𝜖 : 0 < 𝜖 < 1} simultaneously
implies a probabilistic guarantee for P*, where

𝒰𝐷𝑌𝜖 =
{︁
u ∈ [û(0), û(𝑁+1)] :∃𝜆 ∈ R, w,m ∈ R𝑑, A, Â ⪰ 0 s.t.

𝜆 ≤ 1

𝜖
, (𝜆− 1)û(0) ≤m ≤ (𝜆− 1)û(𝑁+1),(︂

𝜆− 1 m𝑇

m A

)︂
⪰ 0,

(︂
1 u𝑇

u Â

)︂
⪰ 0, (5.38)

𝜆�̂� = m+ u+w, ‖Cw‖ ≤ 𝜆
√︁

𝛾𝐵1 ,

𝜆(𝛾𝐵2 Σ̂+ �̂��̂�𝑇 )−A− Â−w�̂�𝑇 − �̂�w𝑇 ⪰ 0
}︁
,

𝐶𝑇𝐶 = Σ̂
−1

is a Cholesky-decomposition, and 𝛾𝐵1 , 𝛾
𝐵
2 are computed by bootstrap.

3Specifically, since 𝑅 is typically unknown, the authors describe an estimation procedure for 𝑅
and prove a modified version of the Theorem 5.30 using this estimate and different constants. We
treat the simpler case where 𝑅 is known here. Extensions to the other case are straightforward.
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Moreover,

𝛿*(v| 𝒰𝐷𝑌𝜖 ) = sup
P∈𝒫𝐷𝑌

VaRP𝜖 (v)

= inf 𝑡

s.t. 𝑟 + 𝑠 ≤ 𝜃𝜖,(︂
𝑟 + y+𝑇

1 û(0) − y−𝑇
1 û(𝑁+1) 1

2
(q− y1)

𝑇 ,
1
2
(q− y1) Z

)︂
⪰ 0,(︂

𝑟 + y+𝑇
2 û(0) − y−𝑇

2 û(𝑁+1) + 𝑡− 𝜃 1
2
(q− y2 − v)𝑇 ,

1
2
(q− y2 − v) Z

)︂
⪰ 0,

𝑠 ≥ (𝛾𝐵2 Σ̂+ �̂��̂�𝑇 ) ∘ Z+ �̂�𝑇q+
√︁
𝛾𝐵1 ‖q+ 2Z�̂�‖

Σ̂
−1 ,

y1 = y+
1 − y−

1 , y2 = y+
2 − y−

2 , y+
1 ,y

−
1 ,y

+
2 ,y

−
2 , 𝜃 ≥ 0.

Remark 5.32. Similar to 𝒰𝐶𝑆𝜖 , the robust constraint maxu∈𝒰𝐷𝑌
𝜖

v𝑇u ≤ 0 is equivalent
to the ambiguous chance constraint supP∈𝒫𝐷𝑌 VaRP𝜖 (v) ≤ 0.

Remark 5.33. The set {(v, 𝑡) : 𝛿*(v| 𝒰𝐷𝑌 ) ≤ 𝑡} is representable as a linear matrix
inequality. At time of writing, solvers for linear matrix inequalities are not as devel-
oped as those for second order cone programs. Consequently, one may prefer 𝒰𝐶𝑆𝜖 to
𝒰𝐷𝑌𝜖 in practice for its simplicity.

5.8.3 Comparing 𝒰𝑀
𝜖 , 𝒰𝐿𝐶𝑋

𝜖 , 𝒰𝐶𝑆
𝜖 and 𝒰𝐷𝑌

𝜖

One of the benefits of deriving uncertainty sets corresponding to the methods of
Shawe-Taylor and Cristianini (2003) and Delage and Ye (2010) is that it facilitates
comparisons between these methods and our own proposals. In Fig. 5-4, we illustrate
the sets 𝒰𝑀𝜖 , 𝒰𝐿𝐶𝑋𝜖 , 𝒰𝐶𝑆𝜖 and 𝒰𝐷𝑌𝜖 for the same numerical example from Fig. 5-
3. Because 𝒰𝑀 does not leverage the joint distribution P*, it does not learn that
its marginals are independent. Consequently, 𝒰𝑀 has pointed corners permitting
extreme values of both coordinates simultaneously. The remaining sets do learn the
marginal independence from the data and, hence, have rounded corners.

The set 𝒰𝐶𝑆𝜖 is not contained in supp(P*). Interestingly, the intersection 𝒰𝐶𝑆𝜖 ∩
supp(P*) is very similar to 𝒰𝐷𝑌𝜖 for this example (indistinguishable in picture). Since
𝒰𝐶𝑆 and 𝒰𝐷𝑌 only depend on the first two moments of P*, neither is able to capture
the skewness in the second coordinate. Finally, 𝒰𝐿𝐶𝑋 is contained within supp(P*)
and displays symmetry in the first coordinate and skewness in the second. In this
example it is also the smallest set (in terms of volume). All sets shrink as 𝑁 increases.

5.8.4 Refining 𝒰𝐹𝐵
𝜖

Another common approach to hypothesis testing in applied statistics is to use tests
designed for Gaussian data that are “robust to departures from normality." The best
known example of this approach is the 𝑡-test from Sec. 5.2.2, for which there is
a great deal of experimental evidence to suggest that the test is still approximately
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Figure 5-4: Comparing 𝒰𝑀𝜖 , 𝒰𝐿𝐶𝑋𝜖 , 𝒰𝐶𝑆𝜖 and 𝒰𝐷𝑌𝜖
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Note: The true distributions are as in Fig. 5-3 and 𝜖 = 10%, 𝛼 = 20%. The left panel
uses 𝑁 = 100 data points, while the right panel uses 𝑁 = 1, 000 data points.

valid when the underlying data is non-Gaussian (Lehmann and Romano 2010, Chapt.
11.3). Moreover, certain nonparametric tests of the mean for non-Gaussian data are
asymptotically equivalent to the 𝑡-test, so that the 𝑡-test, itself, is asymptotically
valid for non-Gaussian data (Lehmann and Romano 2010, p. 180). Consequently,
the 𝑡-test is routinely used in practice, even when the Gaussian assumption may be
invalid.

We next use the 𝑡-test in combination with bootstrapping to refine 𝒰𝐹𝐵𝜖 . We
replace 𝑚𝑓𝑖,𝑚𝑏𝑖 in Eq. (5.25), with the upper and lower thresholds of a 𝑡-test at
level 𝛼′/2. We expect these new thresholds to correctly bound the true mean 𝜇𝑖
with probability approximately 1 − 𝛼′/2 with respect to the data. We then use the
bootstrap to calculate bounds on the forward and backward deviations 𝜎𝑓𝑖, 𝜎𝑏𝑖.

We stress not all tests designed for Gaussian data are robust to departures from
normality. Applying Gaussian tests that lack this robustness will likely yield poor
performance. Consequently, some care must be taken when choosing an appropriate
test.

5.9 Optimizing over Multiple Constraints
In this section, we propose an approach for solving (5.9). The key observation is

Theorem 5.34.

a) The constraint 𝛿*(v| 𝒰𝐶𝑆𝜖 ) ≤ 𝑡 is bi-convex in (v, 𝑡) and 𝜖, for 0 < 𝜖 < .75.

b) The constraint 𝛿*(v| 𝒰𝐹𝐵𝜖 ) ≤ 𝑡 is bi-convex in (v, 𝑡) and 𝜖, for 0 < 𝜖 < 1/
√
𝑒.

c) The constraint 𝛿*(v| 𝒰𝜖) ≤ 𝑡 is bi-convex in (v, 𝑡) and 𝜖, for 0 < 𝜖 < 1, and
𝒰𝜖 ∈ {𝒰𝜒

2

𝜖 ,𝒰𝐺𝜖 ,𝒰 𝐼𝜖 ,𝒰𝐿𝐶𝑋𝜖 ,𝒰𝐷𝑌𝜖 }.
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This observations suggests a heuristic: Fix the values of 𝜖𝑗, and solve the ro-
bust optimization problem in the original decision variables. Then fix this solution
and optimize over the 𝜖𝑗. Repeat until some stopping criteria is met or no further
improvement occurs. Chen et al. (2010) suggested a similar heuristic for multiple
chance-constraints in a different context. In Appendix D.3 we propose a refinement
of this approach that solves a linear optimization problem to obtain the next iter-
ates for 𝜖𝑗, incorporating dual information from the overall optimization and other
constraints. Our proposal ensures the optimization value is non-increasing between
iterations and that the procedure is finitely convergent.

5.10 Choosing the “Right" Set and Tuning 𝛼, 𝜖

Often several of our data-driven sets may be consistent with the a priori knowledge
of P*. Choosing an appropriate set from amongst our proposals is a non-trivial task
that depends on the application and the data. One may be tempted to use the
intersection of all eligible sets. We caution that the intersection of two sets which
imply a probabilistic guarantee at level 𝜖 need not imply a probabilistic guarantee
at level 𝜖. Similarly, one may be tempted to solve the robust optimization model
for each eligible set separately and select the set and solution with best objective
value. We caution that a set chosen in this way will suffer from an in-sample bias.
Specifically, the probability with respect to the sampling that this set does not imply
a probabilistic guarantee at level 𝜖 may be much larger than 𝛼.

Drawing an analogy to model selection in machine learning, we propose a different
approach to set selection. Specifically, split the data into two parts, a training set and
a hold-out set. Use the training set to construct each potential uncertainty set, in turn,
and solve the robust optimization problem. Test each of the corresponding solutions
out-of-sample on the hold-out set, and select the best solution and corresponding
uncertainty set. Since the two halves of the data are independent, it follows that
with probability at least 1 − 𝛼 with respect to the sampling, the set so selected will
correctly imply a probabilistic guarantee at level 𝜖.

The drawback of this approach is that only half the data is used to calibrate the
uncertainty set. When 𝑁 is only moderately large, this may be impractical. In these
cases, 𝑘-fold cross-validation can be used to select a set. (See Hastie et al. (2001) for
a review of cross-validation.) Unlike the above procedure, we cannot prove that the
set chosen by 𝑘-fold cross-validation satisfies the appropriate guarantee. Nevertheless,
experience in model selection suggests that this procedure frequently identifies a good
model, and, thus, we expect it will identify a good set. We use 5-fold cross-validation
in our numerical experiments.

In applications where there is not a natural choice for 𝛼 or 𝜖, we suggest tuning
these parameters in an entirely analogous way. Namely, we propose selecting a grid
of potential values for 𝛼 and/or 𝜖 and then selecting the best value either using a
hold-out set or cross-validation. Since the optimal value likely depends on the choice
of uncertainty set, we suggest choosing them jointly.
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5.11 Applications
We demonstrate how our new sets may be used in two applications: portfolio man-
agement and queueing theory. Our goals are to, first, illustrate their application and,
second, to compare them to one another. We summarize our major insights:

• In these two applications, our data-driven sets outperform traditional, non-
data driven uncertainty sets, and, moreover, robust models built with our sets
perform as well or better than other data-driven approaches.

• Although our data-driven sets all shrink as 𝑁 →∞, they learn different features
of P*, such as correlation structure and skewness. Consequently, different sets
may be better suited to different applications, and the right choice of set may
depend on 𝑁 . Cross-validation and other model selection techniques effectively
identify the best set.

• Optimizing the 𝜖𝑗’s in the case of multiple constraints can significantly improve
performance.

5.11.1 Portfolio Management

Portfolio management has been well-studied in the robust optimization literature
(e.g., Goldfarb and Iyengar 2003, Natarajan et al. 2008, Calafiore and Monastero
2012). For simplicity, we will consider the one period allocation problem:

max
x

{︂
min
r∈𝒰

r𝑇x : e𝑇x = 1, x ≥ 0

}︂
, (5.39)

which seeks the portfolio x with maximal worst-case return over the set 𝒰 . If 𝒰
implies a probabilistic guarantee for P* at level 𝜖, then the optimal value 𝑧* of this
optimization is a conservative bound on the 𝜖-worst case return for the optimal solu-
tion x*.

We consider a synthetic market with 𝑑 = 10 assets. Returns are generated ac-
cording to the following model from Natarajan et al. (2008):

𝑟𝑖 =

⎧⎨⎩
√

(1−𝛽𝑖)𝛽𝑖
𝛽𝑖

with probability 𝛽𝑖

−
√

(1−𝛽𝑖)𝛽𝑖
1−𝛽𝑖 with probability 1− 𝛽𝑖

, 𝛽𝑖 =
1

2

(︂
1 +

𝑖

11

)︂
, 𝑖 = 1, . . . , 10.

(5.40)
In this model, all assets have the same mean return (0%), the same standard devia-
tion (1.00%), but have different skew and support. Higher indexed assets are highly
skewed; they have a small probability of achieving a very negative return. Returns
for different assets are independent. We simulate 𝑁 = 500 returns to use as data.

We will utilize our sets 𝒰𝑀𝜖 and 𝒰𝐿𝐶𝑋𝜖 in this application. We do not consider the
sets 𝒰 𝐼𝜖 or 𝒰𝐹𝐵𝜖 since we do not know a priori that the returns are independent. To
contrast to the methods of (Shawe-Taylor and Cristianini 2003) and (Delage and Ye
2010) we also construct the sets 𝒰𝐶𝑆𝜖 and 𝒰𝐷𝑌𝜖 . Recall from Remarks 5.27 and 5.32
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Table 5.3: Portfolio Statistics for Each of Our Methods

𝑁 = 500 𝑁 = 2000

𝑧𝐼𝑛 CV 𝑧𝑂𝑢𝑡 𝑧𝐴𝑣𝑔 𝑧𝐼𝑛 CV 𝑧𝑂𝑢𝑡 𝑧𝐴𝑣𝑔

M -1.095 -1.095 -1.095 -1.095 -1.095 -1.095 -1.095 -1.095
LCX -0.699 -0.373 -0.373 -0.411 -0.89 -0.428 -0.395 -0.411

CS -1.125 -0.403 -0.416 -0.397 -1.306 -0.400 -0.417 -0.396
CM -0.653 -0.495 -0.425 -0.539 -0.739 -0.426 -0.549 -0.451

Note: 𝒰𝐷𝑌𝜖 and 𝒰𝐶𝑆𝜖 ∩supp(P*) perform identically to 𝒰𝑀𝜖 . “CM” refers to the method
of Calafiore and Monastero (2012).

that robust linear constraints over these sets are equivalent to ambiguous chance-
constraints in the original methods, but with improved thresholds. As discussed in
Remark 5.29, we also construct 𝒰𝐶𝑆𝜖 ∩ supp(P*) for comparison. We use 𝛼 = 𝜖 = 10%
in all of our sets. Finally, we will also compare to the method of Calafiore and
Monastero (2012) (denoted “CM" in our plots), which is not an uncertainty set based
method. We calibrate this method to also provide a bound on the 10% worst-case
return that holds with at least 90% with respect to the sampling so as to provide a
fair comparison.

We first consider the problem of selecting an appropriate set via 5-fold cross-
validation. The top left panel in Fig. 5-5 shows the out-of-sample 10% worst-case
return for each of the 5 runs (blue dots), as well as the average performance on
the 5 runs for each set (black square). Sets 𝒰𝑀𝜖 , 𝒰𝐶𝑆𝜖 ∩ supp(P*) and 𝒰𝐷𝑌𝜖 yield
identical portfolios (investing everything in the first asset) so we only include 𝒰𝑀
in our graphs. The average performance is also shown in Table 5.3 under column
CV (for “cross-validation.") The optimal objective value of (5.39) for each of our sets
(trained with the entire data set) is shown in column 𝑧𝐼𝑛.

Based on the top left panel of Fig. 5-5, it is clear that 𝒰𝐿𝐶𝑋𝜖 and 𝒰𝐶𝑆𝜖 significantly
outperform the remaining sets. They seem to perform similarly to the CM method.
Consequently, we would choose one of these two sets in practice.

We can assess the quality of this choice by using the ground-truth model (5.40)
to calculate the true 10% worst-case return for each of the portfolios. These are
shown in Table 5.3 under column 𝑧𝑂𝑢𝑡. Indeed, these sets perform better than the
alternatives, and, as expected, the cross-validation estimates are reasonably close to
the true out-of-sample performance. By contrast, the in-sample objective value 𝑧𝐼𝑛 is
a loose bound. We caution against using this in-sample value to select the best set.

Interestingly, we point out that while 𝒰𝐶𝑆𝜖 ∩ supp(P*) is potentially smaller (with
respect to subset containment) than 𝒰𝐶𝑆𝜖 , it performs much worse out-of-sample (it
performs identically to 𝒰𝑀𝜖 ). This experiment highlights the fact that size calculations
alone cannot predict performance. Cross-validation or similar techniques are required.

One might ask if these results are specific to the particular draw of 500 data points
we use. We repeat the above procedure 100 times. The resulting distribution of 10%
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worst-case return is shown in the top right panel of Fig. 5-5 and the average of these
runs is shown Table 5.3 under column 𝑧𝐴𝑣𝑔. As might have been guessed from the
cross-validation results, 𝒰𝐶𝑆𝜖 delivers more stable and better performance than either
𝒰𝐿𝐶𝑋𝜖 or CM. 𝒰𝐿𝐶𝑋𝜖 slightly outperforms CM, and its distribution is shifted right.

We next look at the distribution of actual holdings between these methods. We
show the average holding across these 100 runs as well as 10% and 90% quantiles
for each asset in the bottom left panel of Fig. 5-5. Since 𝒰𝑀𝜖 does not use the joint
distribution, it sees no benefit to diversification. Portfolios built from 𝒰𝑀𝜖 consis-
tently holds all their wealth in the first asset over all the runs, hence, omitted from
graphs. The set 𝒰𝐶𝑆𝜖 depends only on the first two moments of the data, and, con-
sequently, cannot distinguish between the assets. It holds a very stable portfolio of
approximately the same amount in each asset. By contrast, 𝒰𝐿𝐶𝑋 is able to learn the
asymmetry in the distributions, and holds slightly less of the higher indexed (toxic)
assets. CM is similar to 𝒰𝐿𝐶𝑋 , but demonstrates more variability in the holdings.

We point out that the performance of each method depends slightly on 𝑁 . We
repeat the above experiments with 𝑁 = 2000. Results are summarized in Table 5.3.
The bottom right panel of Fig. 5-5 shows the distribution of the 10% worst-case
return. (Additional plots are also available in Appendix D.4.) Both 𝒰𝐿𝐶𝑋 and CM
perform noticeably better with the extra data, but 𝒰𝐿𝐶𝑋 now noticeably outperforms
CM and its distribution is shifted significantly to the right.

5.11.2 Queueing Analysis

One of the strengths of our approach is the ability to retrofit existing robust opti-
mization models by replacing their uncertainty sets with our proposed sets, thereby
creating new data-driven models that satisfy strong guarantees. In this section, we
illustrate this idea with a robust queueing model as in Bertsimas et al. (2011a) and
Bandi et al. (2012). Bandi et al. (2012) use robust optimization to generate approxi-
mations to a performance metric of a queuing network. We will combine their method
with our new sets to generate probabilistic upper bounds to these metrics. For con-
creteness, we focus on the waiting time in a G/G/1 queue. Extending our analysis to
more complex queueing networks can likely be accomplished similarly. We stress that
we do not claim that our new bounds are the best possible – indeed there exist ex-
tremely accurate, specialized techniques for the G/G/1 queue – but, rather, that the
retrofitting procedure is general purpose and yields reasonably good results. These
features suggest that a host of other robust optimization applications in information
theory (Bandi and Bertsimas 2012), supply-chain management (Ben-Tal et al. 2005)
and revenue management (Rusmevichientong and Topaloglu 2012) might benefit from
this retrofitting.

Let ũ𝑖 = (�̃�𝑖, 𝑡𝑖) for 𝑖 = 1, . . . , 𝑛 denote the uncertain service times and interarrival
times of the first 𝑛 customers in a queue. We assume that ũ𝑖 is i.i.d. for all 𝑖 and has
independent components, and that there exists û(𝑁+1) ≡ (𝑥, 𝑡) such that 0 ≤ �̃�𝑖 ≤ 𝑥
and 0 ≤ 𝑡𝑖 ≤ 𝑡 almost surely.

169



From Lindley’s recursion (Lindley 1952), the waiting time of the 𝑛th customer is

�̃�𝑛 = max
1≤𝑗≤𝑛

(︃
max

(︃
𝑛−1∑︁
𝑙=𝑗

�̃�𝑙 −
𝑛∑︁

𝑙=𝑗+1

𝑡𝑙, 0

)︃)︃
= max

(︃
0, max

1≤𝑗≤𝑛

(︃
𝑛−1∑︁
𝑙=𝑗

�̃�𝑙 −
𝑛∑︁

𝑙=𝑗+1

𝑡𝑙

)︃)︃
.

(5.41)
Motivated by Bandi et al. (2012), we consider a worst-case realization of a Lindley
recursion

max

(︃
0, max

1≤𝑗≤𝑛
max
(x,t)∈𝒰

(︃
𝑛−1∑︁
𝑙=𝑗

�̃�𝑙 −
𝑛∑︁

𝑙=𝑗+1

𝑡𝑙

)︃)︃
. (5.42)

Taking 𝒰 = 𝒰𝐹𝐵𝜖/𝑛 and applying Theorem 5.15 to the inner-most optimization yields

max
1≤𝑗≤𝑛

(𝑚𝑓1 −𝑚𝑏2)(𝑛− 𝑗) +
√︁
2 log(𝑛/𝜖)(𝜎2

𝑓1 + 𝜎2
𝑏2)
√︀
𝑛− 𝑗 (5.43)

Relaxing the integrality on 𝑗, this optimization can be solved closed-form yielding

𝑊 1,𝐹𝐵
𝑛 ≡

⎧⎨⎩(𝑚𝑓1 −𝑚𝑏2)𝑛+
√︁

2 log(𝑛
𝜖
)(𝜎2

𝑓1 + 𝜎2
𝑏2)
√
𝑛 if 𝑛 < 𝑛1,𝐹𝐵

𝑐 or 𝑚𝑓1 > 𝑚𝑏2,
log(𝑛

𝜖
)(𝜎2

𝑓1+𝜎
2
𝑏2)

2(𝑚𝑏2−𝑚𝑓1)
otherwise,

(5.44)

where 𝑛1,𝐹𝐵
𝑐 =

log(𝑛
𝜖
)(𝜎2

𝑓1+𝜎
2
𝑏2)

2(𝑚𝑏2−𝑚𝑓1)2
. From (5.42), with probability at least 1 − 𝛼 with

respect to the sampling, each of the inner-most optimizations upper bound their
corresponding random quantity with probability 1 − 𝜖/𝑛 with respect to P*. Thus,
by union bound, P*(�̃�𝑛 ≤ 𝑊 1,𝐹𝐵

𝑛 ) ≥ 1− 𝜖.
On the other hand, since {𝒰𝐹𝐵𝜖 : 0 < 𝜖 < 1} simultaneously implies a probabilistic

guarantee, we can also optimize the choice of 𝜖𝑗 in (5.43), yielding

𝑊 2,𝐹𝐵
𝑛 ≡ min

𝑤,𝜖
𝑤

s.t. 𝑤 ≥ (𝑚𝑓1 −𝑚𝑏2)(𝑛− 𝑗) +
√︁

2 log(1/𝜖𝑗)(𝜎2
𝑓1 + 𝜎2

𝑏2)
√︀
𝑛− 𝑗, 𝑗 = 1, . . . , 𝑛− 1,

(5.45)

𝑤 ≥ 0, 𝜖 ≥ 0,
𝑛−1∑︁
𝑗=1

𝜖𝑗 ≤ 𝜖.

From the KKT conditions, the constraint (5.45) will be tight for all 𝑗, so that 𝑊 2,𝐹𝐵
𝑛

satisfies
𝑛−1∑︁
𝑗=1

exp

(︃
−(𝑊 2,𝐹𝐵

𝑛 − (𝑚𝑓1 −𝑚𝑏2))
2

2(𝑛− 𝑗)(𝜎2
𝑓1 + 𝜎2

𝑏2)
2

)︃
= 𝜖, (5.46)

which can be solved by line search. Again, with probability 1−𝛼 with respect to the
sampling, P*(�̃�𝑛 ≤ 𝑊 2,𝐹𝐵

𝑛 ) ≥ 1− 𝜖, and 𝑊 2,𝐹𝐵
𝑛 ≤ 𝑊 1,𝐹𝐵

𝑛 by construction.
We can further refine our bound by truncating the recursion (5.41) at customer
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Figure 5-6: Results for the Queueing Analysis Example
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Note: The left panel shows various bounds on the median waiting time (𝜖 = .5) for
𝑛 = 10 and various values of 𝑁 . The right panel bounds the entire cumulative
distribution of the waiting time for 𝑛 = 10 and 𝑁 = 1000. using 𝑊 𝐹𝐵,3

𝑛 . In
both cases, 𝛼 = 20%.

min(𝑛, 𝑛(𝑘)) where, with high probability, �̃� ≤ 𝑛(𝑘). A formal derivation of the re-
sulting bound, which we denote 𝑊 3,𝐹𝐵

𝑛 , can be found in Appendix D.5. Therein
we also prove that with probability at least 1 − 𝛼 with respect to the sampling,
P*(�̃�𝑛 ≤ 𝑊 3,𝐹𝐵

𝑛 ) ≥ 1− 𝜖.
Finally, our choice of 𝒰𝐹𝐵𝜖 was somewhat arbitrary. Similar analysis can be per-

formed for many of our sets. To illustrate, Appendix D.5 also contains corresponding
bounds for the set 𝒰𝐶𝑆𝜖 .

We illustrate these ideas numerically. Let service times follow a Pareto distribution
with parameter 1.1 truncated at 15, and the interarrival times follow an exponential
distribution with rate 3.05 truncated at 15.25. The resulting truncated distributions
have means of approximately 3.029 and 3.372, respectively, yielding an approximate
90% utilization.

As a first experiment, we bound the median waiting time (𝜖 = 50%) for the 𝑛 = 10
customer, using each of our bounds with differing amounts of data. We repeat this
procedure 100 times to study the variability of our bounds with respect to the data.
The left panel of Fig. 5-6 shows the average value of the bound and error bars for
the 10% and 90% quantiles. As can be seen, all of the bounds improve as we add
more data. Moreover, optimizing the 𝜖𝑗’s (the difference between 𝑊 𝐹𝐵,1

𝑛 and 𝑊 𝐹𝐵,2
𝑛

is significant.
For comparison purposes, we include a sample analogue of Kingman’s bound

(Kingman 1962) on the 1− 𝜖 quantile of the waiting time, namely,

𝑊𝐾𝑖𝑛𝑔 ≡ �̂�𝑥(�̂�
2
𝑎�̂�

2
𝑥 + �̂�2

𝑥�̂�
2
𝑡 )

2𝜖�̂�2
𝑡 (�̂�𝑡 − �̂�𝑥)

,

where �̂�𝑡, �̂�2
𝑡 are the sample mean and sample variance of the arrivals, �̂�𝑥, �̂�2

𝑥 are the
sample mean and sample variance of the service times, and we have applied Markov’s
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Table 5.4: Summary Statistics for Various Bounds on Median Waiting Time

Mean St. Dev 10% 90%

𝑊 𝐹𝐵,1
𝑛 34.6 0.4 34.0 35.2

𝑊 𝐹𝐵,2
𝑛 25.8 0.3 25.4 26.2

𝑊 𝐹𝐵,3
𝑛 14.4 1.2 13.5 15.5

𝑊𝐾𝑖𝑛𝑔 55.1 8.7 46.0 67.4

Note: 𝑁 = 10, 000, 𝑛 = 10, 𝛼 = 10%. The last two columns refer to upper and lower
quantiles over the simulation.

inequality. Unfortunately, this bound is extremely unstable, even for large 𝑁 . The
dotted line in the left-panel of Fig. 5-6 is the average value over the 100 runs of this
bound for 𝑁 = 10, 000 data points (the error-bars do not fit on graph.) Sample
statistics for this bound and our bounds can also be seen in Table 5.4. As shown, our
bounds are both significantly better (with less data), and exhibit less variability.

As a second experiment, we use our bounds to calculate a probabilistic upper
bound on the entire CDF of �̃�𝑛 for 𝑛 = 10 with 𝑁 = 1, 000, 𝛼 = 20%. Results
can be seen in the right panel of Fig. 5-6. We have included the empirical CDF of
the waiting time and the sampled version of the Kingman bound comparison. As
seen, our bounds significantly improve upon the sampled Kingman bound, and the
benefit of optimizing the 𝜖𝑗’s is again, significant. We remark that the ability to
simultaneously bound the entire CDF for any 𝑛, whether transient or steady-state, is
an important strength of this type of analysis.

5.12 Conclusions
The prevalence of high quality data is reshaping operations research. Indeed, a new
data-centered paradigm is emerging. In this work, we took a first step towards adapt-
ing traditional robust optimization techniques to this new paradigm. Specifically, we
proposed a novel schema for designing uncertainty sets for robust optimization from
data using hypothesis tests. Sets designed using our schema imply a probabilistic
guarantee and are typically much smaller than corresponding data poor variants.
Models built from these sets are thus less conservative than conventional robust ap-
proaches, yet retain the same robustness guarantees.
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Part III

The Interface Between Controlled
Experimentation and Modern

Optimization
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Chapter 6

The Power of Optimization Over
Randomization in Designing
Experiments Involving Small Samples

Random assignment, typically seen as the standard in controlled trials, aims to make
experimental groups statistically equivalent before treatment. However, with a small
sample, which is a practical reality in many disciplines, randomized groups are of-
ten too dissimilar to be useful. We propose an approach based on discrete linear
optimization to create groups whose discrepancy in their means and variances is sev-
eral orders of magnitude smaller than with randomization. We provide theoretical
and computational evidence that groups created by optimization have exponentially
lower discrepancy than those created by randomization and that this allows for more
powerful statistical inference.

6.1 Introduction

Experimentation on groups of subjects, similar in all ways but for the application
of an experimental treatment, is a cornerstone of modern scientific inquiry. In any
controlled experiment, the quality, interpretability, and validity of the measurements
and inferences drawn depends upon the degree to which the groups are similar at the
outset.

For close to a century, randomization of subjects into different groups has been
relied upon to generate statistically equivalent groups. Where group size is large
relative to variability, randomization robustly generates groups that are well-matched
with respect to any statistic. However, when group sizes are small, the expected
discrepancy in any covariate under randomization can be surprisingly large, hindering
inference. This problem is further aggravated as the number of groups one needs to
populate becomes larger.

This is the situation faced in numerous disciplines in which the rarity or expense
of subjects makes assembly of large groups impractical. For example, in the field
of oncology research, experimental chemotherapy agents are typically tested first in
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mouse models of cancer, in which tumor-bearing mice are segregated into groups and
dosed with experimental compounds. Since these mouse models are laborious and
expensive, group size is kept small (typically 8-10), while the number of groups is
relatively large, to accommodate comparison of multiple compounds and doses with
standard-of-care compounds and untreated control groups. In this case, it is clear
that initial tumor weight is highly correlated with the post-treatment tumor weight,
in which we measure the effect of treatment. A typical experiment might consist
of 40-60 mice segregated into four to six groups of ten, though experiments using
fewer mice per group and many more groups are performed as well. Given that the
implanted tumors grow quite heterogeneously, a coefficient of variation of 50% or
more in pre-treatment tumor size is not unusual.

In such circumstances, common in nearly all research using animal models of dis-
ease as well as many other endeavors, simple randomization fails to reliably generate
statistically equivalent groups, and therefore fails to generate reliable inference. It is
clearly more desirable that experiments be conducted with groups that are similar,
in particular in mean and variance of relevant baseline covariates. Here we treat the
composition of small statistically equivalent groups as a mathematical optimization
problem in which the goal is to minimize the maximum difference in both mean and
variance between any two groups. We report one treatment of this problem as well as
a study of the size of the discrepancy when group enrollment is optimized compared
to other common designs including complete randomization.

Block and orthogonal designs (see Fisher (1935)) have been a common way to
reduce variability when baseline covariates are categorical, but do not apply to mixed
(discrete and continuous) covariates, which is the main focus of our work. For such
cases, apart from randomization, two prominent methods are pairwise matching for
controlled trials (see Rosenbaum and Rubin (1985) and Greevy et al. (2004)) and re-
randomization as proposed in Morgan et al. (2012).1 The finite selection model (FSM)
proposed by Morris (1979) can also be used for this purpose. In comparisons explored
in Section 6.4, we find that the balance produced by our proposed optimization-based
approach greatly improves on both randomization and these methods.

Pairwise matching is most common in observational studies, where assignment to
treatment cannot be controlled (see Rubin (1979) and Rosenbaum and Rubin (1983)
for a thorough discussion of the application of pairwise matching and other methods
to observational studies). A large impediment to the existing practices is that they
are based on subject pairs. When sample sizes are small and random there will hardly
be any well-matched pairs. We will see that such matching does little to eliminate
bias in the statistics that measure the overall average effect size. Instead we consider
matching the experimental groups in order to minimize the en-masse discrepancies in
means and variances among groups as formulated in (6.1).

When discrepancy is minimized, statistics such as the mean difference in subject
responses are far more precise, concentrated tightly around their nominal value, while

1The work of Morgan et al. (2012) can be seen as formalizing and reinterpreting the common
informal practice of cherry-picking from several randomizations as a principled heuristic method for
matching.
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Figure 6-1: Average Maximal Pairwise Discrepancy in Means Among Randomly As-
signed Groups of Normal Variates
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Note: The vertical axis is in units of standard deviation. The band denotes the
average over- and under-shoot: E [𝑋|𝑋 ≥ E𝑋] and E [𝑋|𝑋 ≤ E𝑋] where 𝑋 is
maximal pairwise discrepancy.

still being unbiased estimates. Indeed, under optimization, these statistics will no
longer follow their usual distributions, which are wider, and traditional tests that rely
on knowledge of this distribution, like the Student T test, no longer apply. Beyond
estimation, we propose a hypothesis test based on the bootstrap to draw inferences on
the differences between treatments – inferences which experimental evidence shows
are much more powerful than is usually possible.

In this chapter, we provide theoretical and computational evidence that groups
created by optimization have exponentially lower discrepancy in pre-treatment co-
variates than those created by randomization or by existing matching methods.

6.2 Limitations of Randomization

Three factors can impair successful matching of the independent variable means of
groups assembled using randomization. These are: (a) the group size, (b) the variance
of the data and (c) the number of groups being populated. The specific influence of
these three factors is shown graphically in Figure 6-1. The plot shows the average
maximal pair-wise discrepancy in means between groups under the conditions indi-
cated for the normal distribution. Average discrepancy is proportional to standard
deviation and is therefore reported in units of standard deviations.

It can be seen from the plot that discrepancy increases with the number of groups
involved and decreases with increasing group size. When all three factors come into
play: small group size, high standard deviation, and numerous groups, the degree
of discrepancy can be substantial. For example, a researcher using randomization to
create four groups of ten mice each will be left with an average discrepancy of 0.66
standard deviations between some two of the groups. Since statistical significance is
often declared at a mean difference of 1.96 standard deviations (𝑝 ≤ 0.05), this intro-
duces enough noise into the experiment to conceal an effect in comparisons between
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the mismatched groups or to severely skew the apparent magnitude and statistical
significance of a larger effect. Examination of Figure 6-1 makes it clear that when
multiple groups are involved, even apparently large group size can still result in a
substantial discrepancy in means between some groups. Doubling the group sizes to
twenty each still leaves the researcher with a discrepancy of 0.47 standard deviations.

One solution to this problem is simply to increase group size until discrepancies
decrease to acceptable levels. However, the size of the groups needed to do so can
be surprisingly large. To reduce the expected discrepancy to below 0.1 standard
deviations would require more than 400 subjects per group in the above experiment.
For 0.01 standard deviations, more than 40,000 subjects per group would be necessary.
With diminishing returns in the reduction of discrepancy with additional subjects,
larger increases in the number of subjects enrolled are needed to conduct experiments
studying subtler effects.

When considering the effects of this on post-treatment measurements such as
mean differences or T statistic, it is clear that a more precise measurement could be
made when groups are well-matched at the onset. As we discuss below, well-matched
groups yield a measurement that is much closer to the nominal (average or mode)
measurement of pure randomization. Indeed, that this distribution of measurements is
different (tighter) means that a naïve application of the Student T test would result in
an underestimate of confidence and power, but that the distribution is tighter should
allow for much more powerful inference.

6.3 Optimization Approach

Our proposal is to assign subjects so to minimize the discrepancies in centered first
and second moments, where this assignment is gleaned via integer optimization. Af-
ter assignment, we randomize which group is given which treatment, which ensures
unbiased estimation as discussed in Section 6.5.

Given pre-treatment values of subjects 𝑤𝑖, 𝑖 = 1, . . . , 𝑛 = 𝑚𝑘, we are interested
in creating 𝑚 groups each containing 𝑘 subjects in such a way that the discrepancy
in means and 𝜌 times the discrepancy in second moments is minimized between any
two groups. We first preprocess the full sample by normalizing it so that it has zero
sample mean and unit sample variance. We set

𝑤′
𝑖 = (𝑤𝑖 − �̂�)/�̂�, where �̂� =

𝑛∑︁
𝑖=1

𝑤𝑖/𝑛 and �̂�2 =
𝑛∑︁
𝑖=1

(𝑤𝑖 − �̂�)2/𝑛.

After construction of 𝑘 groups, we randomize which treatment is given to which
group. Algorithmically, we number the treatments and the groups in any way, shuffle
the numbers 1, . . . ,𝑚 and treat the group in position 𝑗 with treatment number 𝑗.
This does not affect the objective value.

The parameter 𝜌 controls the tradeoff between the discrepancy of first moments
and of second moments and is chosen by the researcher. We introduce the deci-
sion variable 𝑥𝑖𝑝 = 0 or 1 to denote the assignment of subject 𝑖 to group 𝑝. Using
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Figure 6-2: The Progress of Solving an Instance of Problem (6.1) with 𝑛 = 40, 𝑚 = 4
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continuous auxilliary variable 𝑑 and letting

𝜇𝑝(𝑥) =
1

𝑘

𝑛∑︁
𝑖=1

𝑤′
𝑖𝑥𝑖𝑝 and 𝜎2

𝑝(𝑥) =
1

𝑘

𝑛∑︁
𝑖=1

(𝑤′
𝑖)
2
𝑥𝑖𝑝,

we formulate the problem as follows:

𝑍opt
𝑚 (𝜌) = min

𝑥
max
𝑝 ̸=𝑞

(︀
|𝜇𝑝(𝑥)− 𝜇𝑞(𝑥)|+ 𝜌

⃒⃒
𝜎2
𝑝(𝑥)− 𝜎2

𝑞 (𝑥)
⃒⃒)︀

= min
𝑥,𝑑

𝑑 (6.1)

s.t. ∀𝑝 < 𝑞 = 1, . . . ,𝑚 :

𝑑 ≥ 𝜇𝑝(𝑥)− 𝜇𝑞(𝑥) + 𝜌𝜎2
𝑝(𝑥)− 𝜌𝜎2

𝑞 (𝑥)

𝑑 ≥ 𝜇𝑝(𝑥)− 𝜇𝑞(𝑥) + 𝜌𝜎2
𝑞 (𝑥)− 𝜌𝜎2

𝑝(𝑥)

𝑑 ≥ 𝜇𝑞(𝑥)− 𝜇𝑝(𝑥) + 𝜌𝜎2
𝑝(𝑥)− 𝜌𝜎2

𝑞 (𝑥)

𝑑 ≥ 𝜇𝑞(𝑥)− 𝜇𝑝(𝑥) + 𝜌𝜎2
𝑞 (𝑥)− 𝜌𝜎2

𝑝(𝑥)

𝑥𝑖𝑝 ∈ {0, 1}
𝑛∑︁
𝑖=1

𝑥𝑖𝑝 = 𝑘 ∀𝑝 = 1, . . . ,𝑚

𝑚∑︁
𝑝=1

𝑥𝑖𝑝 = 1 ∀𝑖 = 1, . . . , 𝑛

𝑥𝑖𝑝 = 0 ∀𝑖 < 𝑝.

As formulated, problem (6.1) is a mixed integer linear optimization problem with
𝑚(1 + 2𝑛 − 𝑚)/2 binary variables and 1 continuous variable. The last constraint
reduces the redundancy in the branch-and-bound tree due to permutation symmetry.
Further symmetry reduction is possible by methods described in Kaibel et al. (2011).
Symmetry is reintroduced by randomizing which group receives which treatment.

We implement this optimization model in Gurobi v5.6 For values 𝑛 = 40 and 𝑚 =
4 problem (6.1) can be solved to full optimality in under twenty seconds on a personal

179



Figure 6-3: Discrepancy in Means Among Optimally Assigned Groups of Normal
Variates with 𝜌 = 0

5 10 15 20 25 30
Group size

10-7

10-5

0.001

0.1

Discrepancy

Note: The colors are as in Figure 6-1. Notice the vertical log scale compared to the
absolute scale of Figure 6-1.

computer with 8 processor cores. Gurobi also has built-in symmetry detection to avoid
redundant computations in the branch-and-bound tree. We plot the progress of the
branch and bound procedure for one example in Figure 6-2. For larger instances,
Gurobi generally finds a solution with objective value that is near optimal within a
few minutes, while finding the optimum can take longer and proving its optimality
even longer.

The formulation of optimization problem (6.1) extends to multiple covariates.
Suppose we are interested in matching the first and second moments in a vector of
𝑟 covariates where 𝑤𝑖𝑠 denotes the 𝑠th covariate of subject 𝑖. Again, we normal-
ize the sample to have zero sample mean and identity sample covariance by setting
w′
𝑖 = Γ (w𝑖 − �̂�), where Γ is the matrix square root of the (pseudo-)inverse of the

sample covariance Σ̂ =
∑︀𝑛

𝑖=1 (w𝑖 − �̂�) (w𝑖 − �̂�)𝑇 /𝑛. Given the tradeoff parameter
𝜌, we rewrite the optimization problem for this case using 𝑚(1 + 2𝑛 −𝑚)/2 binary
variables and 1 +𝑚(𝑚− 1)𝑟(𝑟 + 3)/4 continuous variables as follows:

min 𝑑

s.t. 𝑥 ∈ {0, 1}𝑛×𝑚, 𝑥𝑖𝑝 = 0∀𝑖 < 𝑝, 𝑑 ≥ 0
𝑛∑︁
𝑖=1

𝑥𝑖𝑝 = 𝑘 ∀𝑝 = 1, . . . ,𝑚

𝑚∑︁
𝑝=1

𝑥𝑖𝑝 = 1 ∀𝑖 = 1, . . . , 𝑛

𝑥𝑖𝑝 = 0 ∀𝑖 < 𝑝

𝑀 ∈ R
𝑚(𝑚−1)

2
×𝑟, 𝑉 ∈ R

𝑚(𝑚−1)
2

× 𝑟(𝑟+1)
2

∀𝑝 = 1, . . . ,𝑚, 𝑞 = 𝑝+ 1, . . . ,𝑚 :

𝑑 ≥
𝑟∑︁
𝑠=1

𝑀𝑝𝑞𝑠 + 𝜌

𝑟∑︁
𝑠=1

𝑉𝑝𝑞𝑠𝑠 + 2𝜌
𝑟∑︁
𝑠=1

𝑟∑︁
𝑠′=𝑠+1

𝑉𝑝𝑞𝑠𝑠′
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∀𝑠 = 1, . . . , 𝑟 :

𝑀𝑝𝑞𝑠 ≥
1

𝑘

𝑛∑︁
𝑖=1

𝑤′
𝑖𝑠 (𝑥𝑖𝑝 − 𝑥𝑖𝑞)

𝑀𝑝𝑞𝑠 ≥
1

𝑘

𝑛∑︁
𝑖=1

𝑤′
𝑖𝑠 (𝑥𝑖𝑞 − 𝑥𝑖𝑝)

∀𝑠 = 1, . . . , 𝑟, 𝑠′ = 𝑠, . . . , 𝑟 :

𝑉𝑝𝑞𝑠𝑠′ ≥
1

𝑘

𝑛∑︁
𝑖=1

𝑤′
𝑖𝑠𝑤

′
𝑖𝑠′ (𝑥𝑖𝑝 − 𝑥𝑖𝑞)

𝑉𝑝𝑞𝑠𝑠′ ≥
1

𝑘

𝑛∑︁
𝑖=1

𝑤′
𝑖𝑠𝑤

′
𝑖𝑠′ (𝑥𝑖𝑞 − 𝑥𝑖𝑝) .

The potential extension to even higher moments is straightforward. More gener-
ally, such optimization procedures, along with complete randomization and pairwise
matching, can all be interpreted under the unifying lens of minimizing worst-case
variance; see Kallus (2014b).

6.4 Optimization vs. Randomization in Reducing
Discrepancies

Using the above optimization model implemented in Gurobi v5.6, we conducted a
series of simulations comparing the results of group assembly using randomization
and optimization. Our key finding is that optimization is starkly superior to random-
ization in matching group means under all circumstances tested.

Figure 6-3 provides the analogue of Figure 6-1 for optimization and Figure 6-4
compares side-by-side the mismatch achieved in the first two moments by optimiza-
tion and by randomization. In particular we show for various numbers of groups and
group sizes the achievable range of feasible matchings as 𝜌 varies. For all values of 𝜌,
the pre-treatment discrepancy is significantly reduced compared to that seen under
randomization, essentially eliminating population variance as a significant source of
noise for all but the most extreme circumstances. Noting that discrepancy in either
moment is minuscule under optimization using any of the values of 𝜌 shown, we arbi-
trarily choose 𝜌 = 0.5 for all further numerical examples unless otherwise noted. To
revisit the example used to illustrate the limitations of randomization, the researcher
assembling four groups of ten mice each under optimization with 𝜌 = 0.5 would end
up with 0.0005 standard deviations of discrepancy in first moment (or a twentieth of
that for 𝜌 = 0, not shown in figure), compared with 0.66 standard deviations under
randomization.

There is some theoretical backing to the experimental evidence that optimization
eliminates all discrepancies to such an extreme degree. When 𝜌 = 0 and 𝑚 = 2
the problem, scaled by 1/𝑛, reduces to the well-studied balanced number partitioning
problem (see Karmarkar and Karp (1982)). Let 𝑍rand

2 denote the discrepancy in means
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under randomization. When pre-treatment covariates are random with variance 𝜎2,
we have by Jensen’s inequality that

E
[︀
𝑍rand

2

]︀
≤
√︂
E
[︁
(𝑍rand

2 )
2
]︁
=

√︂
2

𝑘
𝜎

and if they are normally distributed then

𝐸[𝑍rand
2 ] =

2√
𝜋𝑘
𝜎.

In comparison, an analysis of balanced number partitioning with random weights (see
Karmarkar et al. (1986)) yields that there is a 𝐶 > 0 such that

median
(︀
𝑍opt

2 (0)
)︀
≤ 𝐶

22𝑘

and heuristic arguments from spin-glass theory (see Mertens (2001)) provide the pre-
diction

𝐸[𝑍opt
2 (0)] =

2𝜋𝜎

2𝑘
,

which agrees with our experimental results for large 𝑘. Comparing the asymptotic

Figure 6-4: The Range of Achievable Discrepancies Under Optimization and Under
Randomization
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Note: The upper halves of the plots correspond to randomization and the lower ones
to optimization. Red denotes discrepancy in mean and blue variance. The
bands depict average under- and over-shoot. Notice the log scales and the
break in the vertical axis.
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Table 6.1: The Number of Subjects Per Group Needed to Guarantee an Expected
Discrepancy No More Than 𝜖𝜎 for 𝑚 = 2 and 𝜌 = 0

𝜖 𝑘Opt 𝑘Rand 𝑘Pair 𝑘RR

0.1 3 128 9 4
0.01 5 12833 65 83
0.001 7 1273240 514 8130
0.0001 8 127323955 4354 820143

orders of 𝑍rand
2 and 𝑍opt

2 (0), we see an exponential reduction in discrepancies by opti-
mization versus randomization.

Matching done on a subject-pair-wise basis such as caliper matching as done in
propensity score matching (see Rubin (1979)) does not close this gap either even when
the sample-based optimal caliper width is chosen. Consider for simplicity uniformly-
distributed pre-treatment covariates so that any subsequent difference of two nearest
neighbors are on average (𝑛+ 1)−1. If assignment within each pair is randomized
independently a simple calculation then shows that the average discrepancy is of
order 𝑘−3/2 whereas if assignment is alternating among the sorted covariates then
the average discrepancy is of order 𝑘−1. The case is worse for normally-distributed
covariates as reported below.

Following the average predictions for the normal distribution, if we want to limit
discrepancy to some fraction of the standard deviation, 𝜖𝜎, we see a dramatic differ-
ence in the necessary number of subjects per group, 𝑘:

𝑘Opt =

⌈︂
log2

2𝜋

𝜖

⌉︂
, 𝑘Rand =

⌈︂
4

𝜋𝜖2

⌉︂
.

In Table 6.1 we report specific values of 𝑘Opt and 𝑘Rand, as well as 𝑘PW corresponding
to optimal pairwise matching and 𝑘RR corresponding to the Mahalanobis-distance
re-randomization method of Morgan et al. (2012) with a fixed acceptance probabil-
ity of 5%.2 This is a clear example of the power of optimization for experiments
hindered by small samples. While pairwise matching and re-randomization improve
upon randomization, they are significantly outperformed by optimization especially
when small discrepancy is desired.

A concern may be that by optimizing only the first two moments and not oth-
ers those higher moments may become mismatched. We find, however, that this is
not the case even when compared to all the other methods considered above. In
Table 6.2 we tabulate the mismatch in the first five moments and in the general-
ized moment of log for the various methods when assigning 2𝑘 subjects with baseline
covariates drawn from a standard normal population. In Table 6.3 we tabulate the
mistmatch of multivariate moments for the various methods when assigning 2𝑘 sub-
jects with multivariate baseline covariates drawn from a three-dimensional standard

2Simulation is used to glean 𝑘opt for these values of 𝜖, for which the asymptotic predictions yield
overestimates. Simulation also shows that for FSM, 𝑘FSM ≈ 𝑘Rand.
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Table 6.2: The Discrepancy in Various Moments Under Different Assignment Mech-
anisms

Moment

𝑘 Method 1 2 3 4 5 log

5

Opt 0.0513 0.286 1.43 2.67 9.75 0.498
Rand 0.510 0.689 1.79 3.81 10.3 0.544
Pair 0.184 0.498 1.27 3.29 8.93 0.345

Re-rand 0.047 0.711 1.09 3.88 8.47 0.572
FSM 0.508 0.553 1.76 3.33 10.2 0.440

10

Opt 0.00174 0.0145 0.906 1.47 6.87 0.338
Rand 0.352 0.504 1.30 2.88 7.79 0.399
Pair 0.0839 0.259 0.759 2.09 6.06 0.176

Re-rand 0.0298 0.497 0.764 2.93 6.20 0.389
FSM 0.374 0.334 1.33 2.26 7.90 0.264

20

Opt 1.23e-6 2.34e-6 0.600 1.04 5.23 0.221
Rand 0.258 0.345 0.947 2.13 6.13 0.276
Pair 0.0379 0.140 0.445 1.40 4.24 0.286

Re-rand 0.0207 0.356 0.565 2.16 4.99 0.284
FSM 0.249 0.190 0.896 1.50 5.89 0.146

Note: Column ℓ corresponds to the average mismatch in the ℓth moments between the
two groups and the last column corresponds to the mismatch in the generalized
moments in log |𝑤|.

normal population. For pairwise matching we use the Mahalanobis pairwise distance,
for re-randomization we use an acceptance probability of 5%, for FSM we use the
method implied by equation (2.11) of Morris (1979) with 𝑐𝑖 = 1, 𝑇 = 𝐼, and for our
method we use 𝜌 = 0.5. We notice that optimal assignment yields superior balance
in the moments considered and that all methods result in similar balance for those
moments not directly considered in the optimization problem.

6.5 Optimization, Randomization, and Bias

Randomization has traditionally been used to address two kinds of bias in experimen-
tal design. The first is investigator bias, or the possibility that an investigator may
subconsciously or consciously construct experimental groups in a manner that biases
toward achieving a particular result. As a fixed, mechanical process, optimization
guards against this possibility at least as well as randomization. Indeed it does bet-
ter because any manual manipulation of the optimized results would make the result
less well-matched than the reproducible optimum, which is checkable, whereas no one

184



Table 6.3: The Discrepancy in Various Multivariate Moments Under Different As-
signment Mechanisms

Moment

𝑘 Method 𝑤1 𝑤2
1 𝑤1𝑤2 𝑤3

1 𝑤2
1𝑤2 𝑤1𝑤2𝑤3

10

Opt 0.0701 0.145 0.183 0.93 0.508 0.337
Rand 0.360 0.492 0.344 1.29 0.58 0.333
Pair 0.179 0.383 0.271 0.964 0.478 0.299

Re-rand 0.141 0.493 0.357 0.883 0.484 0.34
FSM 0.368 0.606 0.503 1.30 0.574 0.340

15

Opt 0.0230 0.0450 0.117 0.718 0.411 0.292
Rand 0.292 0.400 0.286 1.05 0.489 0.289
Pair 0.125 0.290 0.201 0.748 0.38 0.247

Re-rand 0.113 0.409 0.289 0.714 0.414 0.293
FSM 0.289 0.597 0.491 1.05 0.488 0.281

25

Opt 0.00302 0.00497 0.0780 0.547 0.315 0.227
Rand 0.226 0.325 0.222 0.842 0.384 0.227
Pair 0.0849 0.196 0.143 0.547 0.276 0.172

Re-rand 0.0863 0.326 0.230 0.566 0.314 0.220
FSM 0.219 0.592 0.494 0.823 0.388 0.224

Note: Column 𝑤1𝑤2, for example, corresponds to the average mismatch in the mo-
ments of 𝑤1𝑤2 between the two groups, which by symmetry is the same as that
of 𝑤1𝑤3 or 𝑤2𝑤3 on average.

grouping can ever be verified to truly be the result of pure randomization.
The second sort of bias is the incidental disproportionate assignment of variables,

measured or hidden, that directly affect the treatment. Randomization, given large
enough samples, will tend to equalize the apportionment of any one factor. However,
just as with the measured covariates 𝑤𝑖, randomization cannot be counted upon to
eliminate discrepancies in hidden factors when samples are relatively small. Optimiza-
tion considers the measured covariates 𝑤𝑖 when allocating a subject to a particular
group. For all factors that are independent with this variable, the allocation remains
just as random. Variables that are correlated with the measured covariates in ways
such as joint normality will be just as well balanced as the measured covariates and
variables with a higher order dependence, such as having a polynomial conditional
expectation in 𝑤, would be as balanced as seen in Tables 6.2 and 6.3.

In general, the observed difference in treatment effects after optimizing the assign-
ment as described herein will always be an unbiased estimator of the true population
average difference, as in a randomized experiment. This is a consequence of random-
izing the identity of treatments (while optimizing the partition of subjects) so that
the assignment of a single subject is marginally independent of its potential responses
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to different treatments.3 Unbiasedness in estimation means that were the experiment
to be repeated many times and the results recorded, the average result would coin-
cide with the true value. In particular, there is no omitted variable bias. That is,
neglecting to take into consideration a relevant covariate does not introduce bias in
estimation.

6.6 Optimization vs. Randomization in Making a
Conclusion

As we have shown in the previous sections, optimization eliminates nearly all noise due
to pre-treatment covariates. One would then expect that it can also offer superior
precision in estimating the differences between treatments and superior power in
making statistical inferences on these differences.

In randomized trials, randomization tests (see Edgington and Onghena (2007)) can
be used to draw inferences based directly on the randomness of assignment without
normality assumptions, which often fail for small samples. However, for optimization
the assignment is not random enough and this test is not applicable. For the purpose
of testing differences of treatments in an optimized trial, we propose the following
test based on the bootstrap (see Efron and Tibshirani (1993)).

Comparing between two treatments, we would like to test the null hypothesis that
every subject 𝑖 = 1, . . . , 𝑛 would have had the same response to treatment whether
either of the two treatments were assigned (this is known as the sharp null hypothesis;
see Rubin (1980)). Let 𝑣𝑖 denote the response measured for subject 𝑖 after it was
administered the treatment to which it was assigned. Given subjects with covariates
𝑤1, . . . , 𝑤𝑛, the test we propose is as follows:

1. Find an optimal assignment of these to two groups (permuting randomly):

{𝑖1, . . . , 𝑖𝑛/2} and {𝑖𝑛/2+1, . . . , 𝑖𝑛}.

2. Administer treatments and measure responses 𝑣𝑖, which are henceforth fixed.

3. Compute 𝛿 = 1
𝑘

(︁
𝑣𝑖1 + · · ·+ 𝑣𝑖𝑛/2

)︁
− 1

𝑘

(︁
𝑣𝑖𝑛/2+1

+ · · ·+ 𝑣𝑖𝑛

)︁
.

4. For 𝑏 = 1, . . . , 𝐵:

(a) Draw a random sample with replacement 𝑤𝑏,1, . . . , 𝑤𝑏,𝑛 from 𝑤1, . . . , 𝑤𝑛.

(b) Find an optimal assignment of these to two groups (permuting randomly):

{𝑖𝑏,1, . . . , 𝑖𝑏,𝑛/2} and {𝑖𝑏,𝑛/2+1, . . . , 𝑖𝑏,𝑛}.

(c) Compute 𝛿𝑏 = 1
𝑘

(︁
𝑣𝑖𝑏,1 + · · ·+ 𝑣𝑖𝑏,𝑛/2

)︁
− 1

𝑘

(︁
𝑣𝑖𝑏,𝑛/2+1

+ · · ·+ 𝑣𝑖𝑏,𝑛

)︁
.

3The correctness of modeling using potential outcomes is contingent on the stable unit treatment
value assumption. See Rubin (1986).
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Figure 6-5: The Distribution of Estimates of Effect Size Under Optimization and
Randomization

-200 0 200 400

Note: Optimization is shown in red and randomization in blue. 𝑘 = 20 and effect sizes
vary among 0mg, 50mg, and 250mg (dashed lines). The overlap of estimates
under randomization of the nonzero effects and of the zero effect elucidate the
low statistical power of randomization in detecting the nonzero effects.

5. Compute the 𝑝-value 𝑝 = 1
1+𝐵

(︁
1 +

∑︀𝐵
𝑏=1 I [|𝛿𝑏| ≥ |𝛿|]

)︁
.

Then, to test our null hypothesis at a significance of 𝛼, we only reject it if 𝑝 ≤ 𝛼.
The quantity 𝛿 above constitutes our estimate of the difference between the two
treatments.

To examine the effect of optimization on making a conclusion about the treatments
we consider again the example of a murine tumor study. We consider two groups,
each of 𝑘 mice, with tumor weights initially normally distributed with mean 200mg
and standard deviation 300mg (truncated to be nonnegative). Two treatments are
considered: a placebo and a proposed treatment. Their effect on the tumor, allowed
to grow for a period of a day, is of interest to the study.

The effects of treatment and placebo are unknown and are to be inferred from
the experiment. We consider a hidden reality where the growth of the tumors are
dictated by the Gomp-ex model of tumor growth (see Wheldon (1988)). That is,
growth is governed by the differential equation:

𝑑𝑤

𝑑𝑡
= 𝑤(𝑡) (𝑎+max {0, 𝑏 log (𝑤𝑐/𝑤(𝑡))}) ,

where 𝑎 and 𝑏 are rate parameters and 𝑤𝑐 is the critical weight that marks the change
between exponential and logistic growth. We arbitrarily choose 𝑎 = 1 1

day , 𝑏 = 5 1
day ,

𝑤𝑐 = 400mg, and 𝑡 = 1day. We pretend that tumors under either treatment grow
according to this equation but subtract 𝛿0 from the final weights for the proposed
treatment. We consider 𝛿0 being 0mg (no effect), 50mg (small effect), and 250mg
(large effect).

For various values of 𝑘 and for several draws of initial weights, we consider as-
signments produced by randomization, our optimization approach (𝜌 = 0.5), pairwise
matching, and re-randomization. We consider both the post-treatment estimate of
the effect and the inference drawn on it at a significance of 𝛼 = 0.05, using our boot-

187



Figure 6-6: The Probability of Rejecting the Null Hypothesis of No Effect for Various
Effect Sizes
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strap test for our method and the standard randomization test for the others.4 In
Figure 6-5 we plot the resulting estimates for 𝑘 = 20 and in Figure 6-6 we plot the
rates at which the null hypothesis is rejected. When there is no effect, this rate should
be no more than the significance 𝛼 = 0.05.5 When there is an effect, we would want
the rate to be as close to 1 as possible. In a sense, the complement of this rate is the
fraction of experiments squandered in pursuit of an effective drug. The cost-saving
benefits of optimization in this case are clear.

The exact improvements in precision and power depend on the nature of treatment
effect. However, comparisons to the existing methods are possible. Morgan et al.
(2012) study reduction in variance due to re-randomization only under the additive
treatment model, a very restrictive assumption. In this setting, when setting 𝜌 =
0, the same analysis as provided in their Theorem 3.2 provides that the reduction
in variance provided by en-masse optimization is exponentially better because the
reduction in mean mismatch is exponentially better. Nonetheless, treatment effects
usually do depend, albeit perhaps to a lesser extent, on higher orders of the covariates
and on their interactions. In Tables 6.2 and 6.3 we saw that optimization balances
higher and interaction moments no worse than other methods (better for second
moments).

6.7 Practical Significance
Here we present evidence that optimization produces groups that are far more similar
in mean and variance than those created by randomization, especially in situations in
which group size is small, data variability is large, and numerous groups are needed
for a single experiment. For each additional subject per group, optimization roughly
halves the discrepancy in the covariate, whereas both randomization and subject-
pair matchings offer quickly diminishing reductions. Making groups similar before

4For non-completely-randomized designs, the randomization test draws random re-assignments
according to the method employed at the onset. See Chapter 10 of Edgington and Onghena (2007).

5The fact that for our bootstrap test this rate is below 0.05 may be an indication that the test is
conservative, i.e., more significant than designed. Nonetheless, despite such conservatism, the test
is still more powerful than the other tests.
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treatment allows for statistical power beyond what can normally be hoped for with
small samples.

We propose that optimization protects against experimental biases at least as well
as randomization and that the advantage of optimized groups over randomized groups
is substantial. We believe that optimization of experimental group composition, im-
plementable on commonplace software such as Microsoft Excel and on commercial
mathematical optimization software, is a practical and desirable alternative to ran-
domization that can improve experimental power in numerous fields, such as cancer
research, neurobiology, immunology, investment analysis, market research, behavioral
research, proof-of-concept clinical trials, and others.
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Chapter 7

Optimal A Priori Balance in the
Design of Controlled Experiments

We develop a unified theory of designs for controlled experiments that balance base-
line covariates a priori (before treatment and before randomization) using the frame-
work of minimax variance. We establish a “no free lunch” theorem that indicates
that, without structural information on the dependence of potential outcomes on
baseline covariates, complete randomization is optimal. Restricting the structure of
dependence, either parametrically or non-parametrically, leads directly to imbalance
metrics and optimal designs. Certain choices of this structure recover known imbal-
ance metrics and designs previously developed ad hoc, including randomized block
designs, pairwise-matched designs, and re-randomization. New choices of structure
based on reproducing kernel Hilbert spaces lead to new methods, both parametric
and non-parametric.

7.1 Introduction

Achieving balance between experimental groups is a corner stone of causal inference,
otherwise any observed difference may be attributed to a difference other than the
treatment alone. In clinical trials, and more generally controlled experiments, where
the experimenter controls the administration of treatment, complete randomization
of subjects has been the golden standard for achieving this balance on average.

The expediency of complete randomization, however, has been controversial since
the founding of statistical inference in controlled experiments. William Gosset, “Stu-
dent” of Student’s T-test, said of assigning field plots to agricultural interventions
that it “would be pedantic to continue with an arrangement of [field] plots known
beforehand to be likely to lead to a misleading conclusion,” such as arrangements
in which one experimental group is on average higher on what he calls the “fertility
slope” than the other experimental group Student (1938). Of course, as the opposite
is just as likely under complete randomization, this is not an issue of estimation bias
in its modern definition, but of estimation variance. Gosset’s sentiment is echoed
in the common statistical maxim “block what you can, randomize what you cannot”
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attributed to George Box and in the words of such individuals as James Heckman
(“Randomization is a metaphor and not an ideal or ‘gold standard” ’ Heckman (2008))
and Donald Rubin (“For gold standard answers, complete randomization may not be
good enough” Rubin (2008)). In one interpretation, these can be seen as calls for
the experimenter to ensure experimental groups are balanced at the onset of the
experiment, before applying treatments and before randomization.

There is a variety of designs for controlled experiments that attempt to achieve
better balance in terms of measurements made prior to treatment, known as base-
line covariates, under the understanding that a predictive relationship possibly holds
between baseline covariates and the outcomes of treatment. We term this sort of
approach a priori balancing as it is done before applying treatments and before ran-
domization (the term a priori is chosen to contrast with post hoc methods such as
post stratification, which may be applied after randomization and after treatment
McHugh and Matts (1983)). The most notable a priori balancing designs are ran-
domized block designs Fisher (1935), pairwise matching Greevy et al. (2004), and
re-randomization Morgan et al. (2012).1

Each of these implicitly defines imbalance between experimental groups differently.
Blocking attempts to achieve exact matching (when possible): a binary measure of
imbalance that is zero only if the experimental groups are identical in their discrete
or coarsened baseline covariates. Pairwise matching treats imbalance as the sum of
pairwise distances, given some pairwise distance metric such as Mahalanobis. There
are both globally optimal and greedy heuristic methods that address this imbalance
measure Gu and Rosenbaum (1993). In Morgan et al. (2012), the authors define
imbalance as the group-wise Mahalanobis distance and propose re-randomization as
a heuristic method for reducing it non-optimally.

It is unclear when each of these different characterizations of imbalance is appro-
priate and when is deviating from complete randomization justified. The connection
between an imbalance metric such as the sum of pairwise distances before treatment
and estimation variance after treatment is also unclear. We here argue that, without
structural information on the dependence of outcomes on baseline covariates, com-
plete randomization is minimax optimal. Furthermore, when structural knowledge
is expressed as membership of conditional expectations in a normed vector space of
functions, an alternative minimax-optimal rule arises for the a priori balancing of ex-
perimental groups. We show how certain choices of this structure reconstruct each of
the aforementioned methods or associated imbalance metrics. We study other choices
of structure using reproducing kernel Hilbert spaces (RKHS), which give rise to new
methods, both parametric and non-parametric.

We study in generality the characteristics of any such method that arises from our
framework, including its estimation variance and consistency, intimately connecting
a priori balance to post-treatment estimation. Whenever a parametric model of de-

1There are also sequential methods to address the case where allocation must be decided before
all subjects are admitted Efron (1971), Pocock and Simon (1975), Kapelner and Krieger (2014).
These are beyond the present scope of this chapter. Response-adaptive designs that use outcome
data to inform future assignments (see Chow et al. (2008)) lie between a priori and post hoc and
are also beyond our scope.
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pendence is known to hold, we show that, relative to complete randomization, the
variance due to the optimal design converges linearly (2−Ω(𝑛) for 𝑛 subjects) to the
best theoretically possible – a generalization of the observation on linear convergence
made in Bertsimas et al.. We provide algorithms for finding the optimal designs using
mixed integer optimization (MIO) and semi-definite optimization (SDO) and hypoth-
esis tests that are appropriate for these designs. We make connections to Bayesian
experimental design and shed light on the usefulness of a priori balance in designing
experiments plagued by non-compliance.

7.1.1 Structure of this Chapter

In Section 7.2, we consider the effect of structure and the lack thereof. In particular,
we set up the problem, argue that complete randomization is optimal in the absence
of structural information (Section 7.2.1), define structural information and the re-
sulting imbalance metrics and optimal designs (Section 7.2.2), show how this recovers
existing imbalance metrics and designs (Section 7.2.3), study the designs that arise
from RKHS structure (Section 7.2.4), and consider a Bayesian interpretation (Section
7.2.4). We end Section 7.2 with simulation studies of fictitious data (Example 7.11)
and of clinical data (Example 7.12). In Section 7.3, we characterize the variance
(Section 7.3.1), consistency (Section 7.3.2), and rate of convergence (Section 7.3.3) of
estimators arising from a priori balancing designs. In Section 7.4, we provide algo-
rithms for finding the optimal designs. In Section 7.5, we provide hypothesis tests for
making inferences on treatment effects. We offer some concluding remarks in Section
7.6.

All proofs are given in the supplement. In the supplement, we also consider the
benefit of a priori balancing to experiments plagued by non-compliance (Section E.1)
and generalizations of structural information (Section E.2).

7.2 The Effect of Structural Information and Lack
Thereof

We begin by describing the set up. Let 𝑚 denote the number of treatments to be
investigated (including controls). We index the subjects by 𝑖 = 1, . . . , 𝑛 and assume
𝑛 = 𝑚𝑝 is divisible by 𝑚. We assume the subjects are independently randomly
sampled but we will consider estimating both sample and population effects. We
denote assigning subject 𝑖 to a treatment 𝑘 by 𝑊𝑖 = 𝑘. We let 𝑤𝑖𝑘 = I [𝑊𝑖 = 𝑘]
and 𝑊 = (𝑊1, . . . ,𝑊𝑛). When 𝑚 = 2, we will use 𝑢𝑖 = 𝑤𝑖1 − 𝑤𝑖2. As is common
for controlled trials, we assume non-interference (see e.g. Rubin (1986), Rosenbaum
(2007) and p. 19 of Cox (1958)). I.e., a subject assigned to a certain treatment
exhibits the same outcome regardless of others’ assignments. Under this assumption
we are able to define the potential post-treatment outcome 𝑌𝑖𝑘 of subject 𝑖 were it
to be subjected to the treatment 𝑘. We let 𝑌 denote the matrix of all potential
outcomes. We assume throughout 𝑌𝑖𝑘 has second moments. Let 𝑋𝑖, taking values in
some 𝒳 , be the baseline covariates of subject 𝑖 that are recorded before treatment
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and let 𝑋 = (𝑋1, . . . , 𝑋𝑛).
We denote by TE𝑘𝑘′𝑖 = 𝑌𝑖𝑘 − 𝑌𝑖𝑘′ the unobservable causal treatment effect for

subject 𝑖. There are two unobservable quantities that will be of interest to estimate.
One is the sample average (causal) treatment effect (SATE):

SATE𝑘𝑘′ =
1

𝑛

𝑛∑︁
𝑖=1

TE𝑘𝑘′𝑖 =
1

𝑛

𝑛∑︁
𝑖=1

𝑌𝑖𝑘 −
1

𝑛

𝑛∑︁
𝑖=1

𝑌𝑖𝑘′ .

Another is the population average (causal) treatment effect (PATE):

PATE𝑘𝑘′ = E [TE𝑘𝑘′1] = E [SATE𝑘𝑘′ ] .

By construction, SATE is an unbiased and strongly consistent estimate of PATE. Our
estimator will always be the simple mean differences estimator

𝜏𝑘𝑘′ =

∑︀
𝑖:𝑊𝑖=𝑘

𝑌𝑖𝑘∑︀
𝑖:𝑊𝑖=𝑘

1
−
∑︀

𝑖:𝑊𝑖=𝑘′
𝑌𝑖𝑘′∑︀

𝑖:𝑊𝑖=𝑘′
1
.

We drop subscripts when 𝑚 = 2 and set 𝑘 = 1, 𝑘′ = 2.
Throughout we will consider only designs that

do not depend on future information, that is, 𝑊 is inde-
pendent of 𝑌 , conditional on 𝑋; (7.1)

blind (randomize) the identity of treatments, that is,
P (𝑊 = (𝑘1, . . . , 𝑘𝑛) |𝑋) = P (𝑊 = (𝜋(𝑘1), . . . , 𝜋(𝑘𝑛)) |𝑋)
for any permutation 𝜋 of 1, . . . ,𝑚; and

(7.2)

split the sample evenly, that is, surely
∑︀

𝑖:𝑊𝑖=𝑘
1 = 𝑝 ∀𝑘. (7.3)

We interpret conditions (7.1)-(7.3) as the definition of a priori balance as they require
that all balancing be done before applying treatments (condition (7.1)) and before
randomization (conditions (7.2)-(7.3)). Condition (7.1) is a reflection of the temporal
logic of first assigning, then experimenting. Condition (7.2) says that balancing is
done before randomization and it ensures that the estimators 𝜏𝑘𝑘′ resulting from the
design are always unbiased, both conditionally on𝑋, 𝑌 (i.e., in estimating SATE) and
marginally (i.e., in estimating PATE; more detail given in Theorem 7.13). Condition
(7.3) is a way to achieve (7.2) in non-completely-randomized designs. If 𝑊 is an even
assignment then randomly permuting treatment indices will blind their identity. Else,
given one fixed uneven assignment, a treatment can be identified by the size of its
experimental group.

We denote by 𝒲 ⊂ {1, . . . ,𝑚}𝑛 the space of feasible assignments satisfying (7.3)
and by Δ ⊂ [0, 1]|𝒲| the space of feasible designs (distributions over assignments)
satisfying (7.1)-(7.3). For𝑚 = 2 we also write𝒲 ∼= 𝒰 = {𝑢 ∈ {−1,+1}𝑛 :

∑︀
𝑖 𝑢𝑖 = 0}

and 𝒫 = covex-hull(𝒰).
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7.2.1 No Free Lunch

We will now argue that without structural information on the relationship between 𝑋𝑖

and 𝑌𝑖𝑘, complete randomization is minimax optimal. For the rest of this subsection
we will restrict to 𝑚 = 2.

Among estimators that are unbiased, the standard way of comparing efficiency is
variance. By the law of total variance and by the conditional unbiasedness of any
estimator resulting from a design satisfying (7.1)-(7.3),

Var (𝜏) = E [Var (𝜏 |𝑋, 𝑌 )] + Var (SATE) .

The variance of SATE is independent of our choice of a priori balancing design.
This choice can only affect the first term. Therefore, an efficient design will seek to
minimize Var (𝜏 |𝑋, 𝑌 ) path-by-path, i.e. for the given subjects at hand. Whatever
the design does to minimize this term will not affect the second term as long as the
design adheres to the above conditions.

Denote by 𝜏CR the estimator arising from complete randomization, which ran-
domizes uniformly over equal partitions independently of 𝑋. Then,

Var
(︀
𝜏CR|𝑋, 𝑌

)︀
=

4

𝑛(𝑛− 1)

⃒⃒⃒⃒
𝑌
⃒⃒⃒⃒2
2

where 𝑌𝑖 =
𝑌𝑖1 + 𝑌𝑖2

2
, �̂� =

1

𝑛

𝑛∑︁
𝑖=1

𝑌𝑖, and 𝑌 𝑖 = 𝑌𝑖 − �̂�.

Using this as a benchmark, we compare efficiency based on the normalized unitless
ratio Var (𝜏 |𝑋, 𝑌 ) /Var

(︀
𝜏CR|𝑋, 𝑌

)︀
.

However, we do not know 𝑌 , only𝑋 (condition (7.1)), and we assume no structural
information on their relationship. Therefore, we consider an adversarial Nature that
chooses 𝑌 so to increase our variance. The following shows that in this situation,
complete randomization is optimal.

Theorem 7.1. Fix 𝑋 ∈ 𝒳 𝑛. Let ||·|| be any permutationally invariant seminorm on
R𝑛. Then, among designs satisfying (7.1)-(7.3) (i.e., among all 𝜎 ∈ Δ), complete
randomization minimizes either of

max
𝑌 ∈R𝑛×2

Var (𝜏 |𝑋, 𝑌 )

‖𝑌1‖2 + ‖𝑌2‖2
= max

𝑌 ∈R𝑛×2

Var (𝜏 |𝑋, 𝑌 )

‖𝑌 ‖2
= max

𝑌 ∈R𝑛×2

Var (𝜏 |𝑋, 𝑌 )

‖𝑌 ‖2

or, for ||·|| = ||·||2, max
𝑌 ∈R𝑛×2

Var (𝜏 |𝑋, 𝑌 )

Var (𝜏CR|𝑋, 𝑌 )
.

In particular, if one randomly permutes a single fixed partition then

max
𝑌 ∈R𝑛×2

Var (𝜏 |𝑋, 𝑌 )

Var (𝜏CR|𝑋, 𝑌 )
= 𝑛− 1. (7.4)
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Example 7.2. Fix 𝑛 = 2𝑏 a power of two and 𝑚 = 2. Let

𝑋𝑖 =

𝑏−max{2,log2 𝑖}∑︁
𝑡=0

(−1)⌈𝑖/2𝑡−1⌉2−2𝑏−1+2𝑏−𝑡−1+(𝑖−1 mod 2𝑡−1),

𝑌𝑖 = (−1)𝑖 = (−1)log2(round(|𝑋𝑖|)).

This rather complicated construction essentially yields

𝑋 ≈ round(𝑋) =
(︁
−1,−2,−4, . . . ,−22𝑏−1−1, 1, 2, 4, . . . , 22

𝑏−1−1
)︁

with some perturbations so that the assignment 𝑊 = (1, 2, 1, 2, . . . , 1, 2) uniquely
minimizes the group-wise Mahalanobis distance of Morgan et al. (2012). Although
𝑋𝑖 completely determines 𝑌𝑖𝑘, we are going to see that complete randomization beats
blocking, pairwise matching, and re-randomization in this case. For blocking for
𝑏 ≥ 4, let us coarsen the space of baseline covariates into eight consecutive intervals
so that each contains the same number of subjects, 2𝑏−3. For pairwise matching,
let us use the pairwise Mahalanobis distance. And, for re-randomizaiton of Morgan
et al. (2012), we consider both a 1% acceptance probability and an infinitesimal ac-
ceptance probability that essentially minimizes the group-wise Mahalanobis metric.
We plot the resulting conditional variances Var

(︀
𝜏
⃒⃒
𝑋, 𝑌

)︀
in Figure 7-1. Specifically,

we get that complete randomization has a variance of 4/(𝑛− 1) whereas blocking has
4/(𝑛− 8), pairwise matching has 8/𝑛, and re-randomization with infinitesimal accep-
tance probability has 4, which realizes the worst-case ratio of (7.4) (it can be verified
that this construction also realizes the corresponding worst-case ratios for blocking
and pairwise matching). The variance of re-randomization with 1% acceptance is
similar to infinitesimal acceptance probability for small 𝑛 and becomes more simi-
lar to randomization as 𝑛 grows. In each case, complete randomization does better,
providing a concrete example of the conclusion of Theorem 7.1.

7.2.2 Structural Information and Optimal Designs

In the above we argued that from a minimax-variance perspective, complete random-
ization is optimal when no structural information about the dependence between 𝑋𝑖

and 𝑌𝑖𝑘 is available. We now consider the effect of such information, which we express
as structure on the conditional expectations of outcomes.

Let us denote

𝑓𝑘(𝑥) := E
[︁
𝑌𝑖𝑘

⃒⃒⃒
𝑋𝑖 = 𝑥

]︁
and 𝜖𝑖𝑘 := 𝑌𝑖𝑘 − 𝑓𝑘 (𝑋𝑖) .

The non-random function 𝑓𝑘 is interchangeably called the conditional expectation
function or regression function. The law of iterated expectation yields that 𝜖𝑖𝑘 has
mean 0, is mean-independent of 𝑋𝑖, and is uncorrelated with any function of 𝑋𝑖.
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Figure 7-1: Variance of Estimating Effect Size Under Various Designs in Example 7.2
Conditional on the given 𝑋 and 𝑌 Values
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Combined with independence of subjects, this yields2

Var (𝜏) = E
[︁
Var

(︁
𝐵(𝑊, 𝑓)

⃒⃒
𝑋
)︁]︁

+
1

𝑛
Var (𝜖11 + 𝜖12) + Var (SATE) ,

where 𝐵(𝑊, 𝑓) =
2

𝑛

∑︁
𝑖:𝑊𝑖=1

𝑓(𝑋𝑖)−
2

𝑛

∑︁
𝑖:𝑊𝑖=2

𝑓(𝑋𝑖), 𝑓(𝑥) =
𝑓1(𝑥) + 𝑓2(𝑥)

2
.

As before, the marginal variances of SATE and of (𝜖11 + 𝜖12) are completely in-
dependent of our choice of design and an efficient design will seek to minimize
Var

(︁
𝐵(𝑊, 𝑓)

⃒⃒
𝑋
)︁
= E

[︁
𝐵(𝑊, 𝑓)2

⃒⃒
𝑋
]︁

path-by-path, i.e. for the given subjects. Now

the unknown is 𝑓 and we let Nature choose it adversarially. We will seek to minimize
E
[︁
𝐵(𝑊, 𝑓)2

⃒⃒
𝑋
]︁

relative to the magnitude of 𝑓 , instead of the magnitude of 𝑌 .

To define a magnitude of 𝑓 , we assume that 𝑓𝑘 ∈ ℱ ∀𝑘, where ℱ is a normed vector
space with norm ||·|| : ℱ → R+. This will represent our structural information about
the dependence between 𝑋𝑖 and 𝑌𝑖𝑘. This space is a subspace of the vector space 𝒱 of
all functions 𝒳 → R under the usual point-wise addition and scaling. For functions
𝑓 that are not in ℱ we formally define ||𝑓 || = ∞. When ℱ is finite-dimensional,
the assumption ‖𝑓𝑘‖ <∞ is a parametric one. When ℱ is infinite-dimensional, it is
non-parametric.

Because 𝐵(𝑊, 𝑓) is invariant to constant shifts to 𝑓 , i.e.,

𝐵(𝑊, 𝑓) = 𝐵(𝑊, 𝑓 + 𝑐) for 𝑐 ∈ R representing a constant function 𝑥 ↦→ 𝑐,

we will want to factor this artifact away. The quotient space ℱ/R consists of the
classes [𝑓 ] = {𝑓 + 𝑐 : 𝑐 ∈ R} with the norm ||[𝑓 ]|| = min𝑐∈R ||𝑓 + 𝑐||. Without loss of
generality, we always restrict to this quotient space and write ||𝑓 || to actually mean

2Theorem 7.13 gives an explicit derivation of this decomposition (for general 𝑚 ≥ 2).
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the norm in this quotient space. Moreover, for worst-case variances to exist, we will
restrict our attention to Banach spaces and require that differences in evaluations
are continuous (i.e., the map 𝑓 ↦→ (𝑓(𝑋𝑖)− 𝑓(𝑋𝑗)) is continuous for each 𝑖, 𝑗). A
Banach space is a normed vector space that is a complete metric space (see Ledoux
and Talagrand (1991) and Chapter 10 of Royden (1988)).

With all structural information summarized by ‖𝑓𝑘‖ <∞, the motivation for the
designs we develop next is the bound on the variance that arises:

E
[︁
𝐵2(𝑊, 𝑓)|𝑋

]︁
≤ ‖𝑓‖2max

𝑓∈ℱ

E [𝐵2(𝑊, 𝑓)|𝑋]

‖𝑓‖2
= ‖𝑓‖2 max

‖𝑓‖≤1
E
[︀
𝐵2(𝑊, 𝑓)|𝑋

]︀
.

Minimizing the above bound is independent of the actual value of ‖𝑓‖ as it merely
scales the objective. We will study this bound further and in greater generality in
Theorems 7.13 and 7.14, leaving this as mere motivation for now.3

Borrowing terminology from game theory, we define two type of designs that
seek to minimize this bound: the pure-strategy optimal design and the mixed-strategy
optimal design. We now consider general 𝑚 ≥ 2 and define

𝐵𝑘𝑘′(𝑊, 𝑓) =
1

𝑝

∑︁
𝑖:𝑊𝑖=𝑘

𝑓(𝑋𝑖)−
1

𝑝

∑︁
𝑖:𝑊𝑖=𝑘′

𝑓(𝑋𝑖).

The pure-strategy optimal design finds single assignments 𝑊 that on their own min-
imize these quantities.

Definition 7.3. Given subjects’ baseline covariates 𝑋 ∈ 𝒳 𝑛 and a magnitude func-
tion ||·|| : 𝒱 → R ∪ {∞}, the pure-strategy optimal design chooses 𝑊 uniformly at
random from the set of optimizers

𝑊 ∈ arg min
𝑊∈𝒲

{︂
𝑀2

p(𝑊 ) := max
||𝑓 ||≤1

max
𝑘 ̸=𝑘′

𝐵2
𝑘𝑘′(𝑊, 𝑓)

}︂
.

We denote by 𝑀2
p-opt the random variable equal to the optimal value.

The mixed-strategy optimal design directly optimizes the distribution of assignments.

Definition 7.4. Given subjects’ baseline covariates 𝑋 ∈ 𝒳 𝑛 and a magnitude func-
tion ||·|| : 𝒱 → R ∪ {∞}, the mixed-strategy optimal design draws 𝑊 randomly
according to a distribution 𝜎 such that

𝜎 ∈ argmin
𝜎∈Δ

{︃
𝑀2

m(𝜎) := max
||𝑓 ||≤1

max
𝑘 ̸=𝑘′

∑︁
𝑊∈𝒲

𝜎(𝑊 )𝐵2
𝑘𝑘′(𝑊, 𝑓)

}︃
.

We denote by 𝑀2
m-opt the random variable equal to the optimal value.

3It can also be noted that this bound is of the same form as the objective in Theorem 7.1 but
employing the potentially non-symmetric norm ‖𝑌 ‖ = min𝑓(𝑋𝑖)=𝑌𝑖

||𝑓 || induced by the quotient of
ℱ over the subspace {𝑓 ∈ ℱ : 𝑓(𝑋𝑖) = 0 ∀𝑖}.
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Both designs satisfy (7.1)-(7.3). The pure-strategy optimal design does due to
the symmetry of the objective function (thus, if 𝑊 is optimal then a treatment-
permutation of 𝑊 is also optimal). The mixed-strategy optimal design does by the
construction of Δ. Because the pure-strategy optimal design is feasible in Δ, it is
also immediate that 𝑀2

m-opt ≤𝑀2
p-opt.

The objectives 𝑀2
p(𝑊 ) and 𝑀2

m(𝜎) are the imbalance metrics that the designs
seek to minimize. The two are different in nature as one expresses imbalance of a
single assignment and the other the imbalance of a whole design. Since evaluation
differences are linear and by assumption continuous, both 𝑀2

p(𝑊 ) and 𝑀2
m(𝜎) are in

fact norms taken in the continuous dual Banach space (and this guarantees they are
defined). For mixed strategies, 𝑀2

m(𝜎) is actually determined by 𝑛(𝑛− 1)/2 sufficient
statistics from 𝜎.

Theorem 7.5. Let 𝜎 ∈ Δ be given. Then

𝑀2
m(𝜎) =𝑀2

m(𝑃 (𝜎)) := max
||𝑓 ||≤1

2

𝑝𝑛

𝑛∑︁
𝑖,𝑗=1

𝑃𝑖𝑗(𝜎)𝑓(𝑋𝑖)𝑓(𝑋𝑗),

where 𝑃𝑖𝑗(𝜎) = 𝜎 ({𝑊𝑖 = 𝑊𝑗})− 1
𝑚−1

𝜎 ({𝑊𝑖 ̸= 𝑊𝑗}).
In the case of 𝑚 = 2, 𝑃 (Δ) = 𝒫 is the space of feasible 𝑃 matrices, which are always
positive semi-definite (i.e., symmetric with nonnegative eigenvalues).

7.2.3 Structural Information and Existing Designs and Imbal-
ance Metrics

We now show how the above framework of optimal design in fact recovers various
existing designs that balance baseline covariates a priori. In this section we consider
two treatments, 𝑚 = 2.

Blocking and Complete Randomization

Randomized block designs are probably the most common non-completely-rando-
mized designs. In a complete block design the sample is segmented into 𝑏 disjoint
evenly-sized blocks {𝑖1,1, . . . , 𝑖1,2𝑝1}, . . . , {𝑖𝑏,1, . . . , 𝑖𝑏,2𝑝𝑏} so that baseline covariates are
equal within each block and unequal between blocks, i.e., 𝑋𝑖ℓ,𝑗 = 𝑋𝑖ℓ′,𝑗′

if and only if
ℓ = ℓ′. (If any coarsening is done, we assume it was done prior and 𝑋𝑖 represents the
coarsened value.) Then complete randomization is applied to each block separately
and independently of the other blocks.

A complete block design is not always feasible, e.g. when there are subjects with
a unique value of covariates or there is an otherwise odd number of subjects with a
particular equal value of covariates. In an incomplete block design, there are left-
over subjects 𝑖0,1, . . . , 𝑖0,𝑏′ . One blocks subjects into evenly-sized blocks so that the
number 𝑏′ is as small as possible, breaking ties randomly as to which subject is left
over; complete randomization is then also applied to the left-overs.4

4Incomplete block designs are much more general than this and cover a much larger scope,
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Complete blocking can be thought of as minimizing a binary measure of imbalance:
0 if the sets of baseline covariates in each experimental groups are exactly the same,
infinity otherwise. Incomplete blocking can be thought of as minimizing a discrete
measure of imbalance equal to the complement of the number of exact perfect matches
across experimental groups (i.e., 𝑏′). If complete blocking is feasible, then incomplete
blocking necessarily recovers it. If all values of 𝑋𝑖 are distinct, then incomplete
blocking is the same as complete randomization. As it is the most general, we will only
treat incomplete blocking. It turns out that incomplete blocking’s exact matching
metric corresponds to the space 𝐿∞, i.e., the space ℱ of bounded functions endowed
with the norm ||𝑓 ||∞ = sup𝑤∈𝑊 𝑓(𝑤).

Theorem 7.6. Let ||𝑓 || = ||𝑓 ||∞. Then the pure-strategy optimal design is equivalent
to incomplete blocking.

As noted before, this also recovers complete blocking (if it is feasible) and complete
randomization (if all subjects’ baseline covariates are distinct).

Pairwise Matching

In optimal pairwise matching, two treatments are considered, subjects are put into
pairs so to minimize the sum of pairwise distances in their covariates, and then each
pair is split randomly among the two treatments. Any pairwise distance metric 𝛿 on 𝒳
can be chosen to define the pairwise distances 𝛿 (𝑋𝑖, 𝑋𝑗). Usually the pairwise Maha-
lanobis distance is used for vector-valued covariates. The motivation behind pairwise
matching is that subjects with similar covariates should have similar outcomes. This
corresponds to the space of Lipschitz functions.

Theorem 7.7. Let a distance metric 𝛿 on 𝒳 be given. Let

||𝑓 || = ||𝑓 ||lip = sup
�̸�=𝑥′

𝑓(𝑥)− 𝑓(𝑥′)
𝛿(𝑥, 𝑥′)

.

Then the pure-strategy optimal design is equivalent to optimal pairwise matching with
respect to the pairwise distance metric 𝛿.5

Corollary 7.8. Let 𝛿0 > 0 and a distance metric 𝛿 be given. Define 𝛿′(𝑥, 𝑥′) =
max {𝛿(𝑥, 𝑥′), 𝛿0} for 𝑥 ̸= 𝑥′ and 𝛿′(𝑥, 𝑥) = 0. Let ||𝑓 || = ||𝑓 ||lip with respect to 𝛿′.
Then the pure-strategy optimal design is equivalent to caliper matching if it is feasible,
i.e., choose at random from pairwise matchings that have all pairwise distances at
most 𝛿0 after blocking exact matches.

especially when treatments outnumber block size, but in our simple setup they amount to breaking
ties randomly while maintaing an even partition.

5While ||·||lip is only a seminorm on functions (i.e., ||𝑓 ||lip = 0 doesn’t necessarily mean 𝑓 = 0),
in the quotient space with respect to constant functions (the kernel of this seminorm) it is a norm
and it forms a Banach space. Evaluation differences are well-defined and continuous because they
are bounded, |𝑓(𝑋𝑖)− 𝑓(𝑋𝑗)| ≤ ||𝑓 ||lip 𝛿(𝑋𝑖, 𝑋𝑗).
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This interpretation of pairwise matching recasts its motivation as structure. Com-
paring with blocking we see that, whereas blocking treats any two subjects with un-
equal covariates as potentially having expected outcomes that are as different as any,
pairwise matching presumes that unequal but similar covariates should lead to sim-
ilar expected outcomes. This interpretation of pairwise matching also allows us to
generalize it to 𝑚 ≥ 3 by using the same space of Lipschitz functions and employing
our definition of the optimal designs for general 𝑚. We study these new designs in
Section 7.4.1.

If we modify the norm and augment it with the sup-norm, we will instead recover
an a priori (rather than on-the-fly) version of the method of Kapelner and Krieger
(2014).

Theorem 7.9. Let 𝛿0 > 0 and a distance metric 𝛿 be given and let

||𝑓 || = max
{︁
||𝑓 ||lip , ||𝑓 ||∞

⧸︀
𝛿0

}︁
.

Then the pure-strategy optimal design is equivalent to the following: minimizes the
sum of pairwise distances with respect to 𝛿 with the option of leaving a subject un-
matched at a penalty of 𝛿0 (thus no pairs at a distance greater than 2𝛿0 will ever
be matched); then matched pairs are randomly split between the two groups and un-
matched subjects are completely randomized.

Re-Randomization of Morgan et al. (2012)

The method of Morgan et al. (2012) formalizes the common, but arguably often
haphazard, practice of re-randomization as a principled, theoretically-grounded a
priori balancing method. The authors consider two treatments, vector-valued baseline
covariates 𝒳 = R𝑑, and an imbalance metric equal to a group-wise Mahalanobis metric

𝑀2
Re-rand(𝑊 ) =

(︃
2

𝑛

𝑛∑︁
𝑖=1

𝑢𝑖𝑋𝑖

)︃𝑇

Σ̂−1

(︃
2

𝑛

𝑛∑︁
𝑖=1

𝑢𝑖𝑋𝑖

)︃
, (7.5)

where Σ̂ is the sample covariance matrix of𝑋. The authors reinterpret re-randomization
as a heuristic algorithm that repeatedly draws random 𝑊 in order to solve the con-
straint satisfaction problem ∃?𝑊 : 𝑀2

Re-rand ≤ 𝑡 for a given 𝑡 (they also propose a
normal-approximation method for selecting 𝑡 to correspond to a particular acceptance
probability of a random 𝑊 ).

We can recover (7.5) using our framework. Let ℱ = span {1, 𝑥1, . . . , 𝑥𝑑} and define
||𝑓 ||2 = 𝛽𝑇 Σ̂𝛽 + 𝛽2

0 for 𝑓(𝑥) = 𝛽0 + 𝛽𝑇𝑥. Using duality of norms,

𝑀2
p(𝑊 ) = max

||𝑓 ||≤1
𝐵2(𝑊, 𝑓) =

(︃
max

𝛽𝑇 Σ̂𝛽≤1
𝛽𝑇

(︃
𝑛

2

𝑛∑︁
𝑖=1

𝑢𝑖𝑋𝑖

)︃)︃2

=𝑀2
Re-rand(𝑊 ).

In Morgan et al. (2012), the authors argue that when a linear model is known to
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hold, i.e.,

𝑌𝑖𝑘 = 𝛽0 + 𝛽𝑇𝑋𝑖 + 𝜏I [𝑘 = 1] + 𝜖𝑖 𝑖 = 1, . . . , 𝑛, 𝑘 = 1, 2, (7.6)

then fixing 𝑡 and re-randomizing until 𝑀2
Re-rand(𝑊 ) ≤ 𝑡 yields a reduction in variance

relative to complete randomization that is constant over 𝑛:

1− Var(𝜏)/Var(𝜏CR) = 𝜂(1− Var (𝜖𝑖) /Var (𝑌𝑖1)), 𝜂 ∈ (0, 1) constant over 𝑛.

For us, the imbalance metric is a direct consequence of structure ((7.6) implies 𝑓𝑘 ∈ ℱ)
and fully minimizing 𝑀2

p(𝑊 ) leads to near-best-possible reduction in variance (see
Corollary 7.15 and Section 7.3.3):

1− Var(𝜏)/Var(𝜏CR) −→ 1− Var (𝜖𝑖) /Var (𝑌𝑖1) at a linear rate 2−Ω(𝑛).

It is important to keep in mind, however, that the assumption that such a finite-
dimensional linear model (7.6) is valid is a parametric, and therefore fragile, assump-
tion. Indeed, we saw in Example 7.2 that fully minimizing 𝑀2

Re-rand when the model
is misspecified can lead to worse variance.

Other Finite-Dimensional Spaces and the Method of Bertsimas et al.

We can generalize the idea of parametric balancing methods using finite-dimensional
spaces with general norms. Consider any finite-dimensional subspace of 𝒱 , ℱ =
span{𝜑1, . . . , 𝜑𝑟}, and any norm on it. Any such space is always a Banach space
and evaluations are always continuous (see Theorems 5.33 and 5.35 of Hunter and
Nachtergaele (2001)). An important example is the 𝑞-norm: ‖𝛽1𝜑1 + · · · + 𝛽𝑟𝜑𝑟‖ =
||𝛽||𝑞 where ||𝛽||𝑞 = (

∑︀
𝑖 |𝛽𝑖|

𝑞)
1/𝑞 for 1 ≤ 𝑞 <∞ and ||𝛽||∞ = max𝑖 |𝛽𝑖|. This yields

𝑀2
p(𝑊 ) =

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
(︃
𝑛

2

𝑛∑︁
𝑖=1

𝑢𝑖𝜑1 (𝑋𝑖) , . . . ,
𝑛

2

𝑛∑︁
𝑖=1

𝑢𝑖𝜑𝑟 (𝑋𝑖)

)︃⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

𝑞*

for 1/𝑞 + 1/𝑞* = 1. Hence, the optimal design matches the sample 𝜑𝑗 moments
between the groups by minimizing a norm in the vector of mismatches.

The covariance-scaled 2-norm on ℱ = span{1, 𝑥1, . . . , 𝑥𝑑} was considered in Sec-
tion 7.2.3 and gave rise to the group-wise Mahalanobis metric. Endowing ℱ =
span{1, 𝑥1, . . . , 𝑥𝑑, 𝑥21/𝜌, . . . , 𝑥2𝑑/𝜌, 𝑥1𝑥2/(2𝜌), . . . , 𝑥𝑑−1𝑥𝑑/(2𝜌)} with the ∞-norm and
normalizing the data will recover the method of Bertsimas et al..

7.2.4 New Designs Using RKHS Structure

In our framework, one starts with structural information about the relationship be-
tween 𝑋𝑖 and 𝑌𝑖𝑘 and this leads to measures of imbalance and to optimal designs
that minimize them. In the previous section we saw how different structures led to
well-known measures of imbalance and designs. We now explore how other choices of
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structure lead to new designs. We treat general 𝑚 ≥ 2 in this section.
We will express structure using reproducing kernel Hilbert spaces (RKHS). A

Hilbert space is an inner-product space such that the norm induced by the inner
product, ‖𝑓‖2 = ⟨𝑓, 𝑓⟩, yields a Banach space. An RKHS ℱ is a Hilbert space of
functions for which evaluation 𝑓 ↦→ 𝑓(𝑥) is continuous for each 𝑥 ∈ 𝒳 (see Berlinet
and Thomas-Agnan (2004)). Continuity and the Riesz representation theorem imply
that for each 𝑥 ∈ 𝒳 there is 𝒦(𝑥, ·) ∈ ℱ such that ⟨𝒦(𝑥, ·), 𝑓(·)⟩ = 𝑓(𝑥) for every
𝑓 ∈ ℱ . The symmetric map 𝒦 : 𝒳 × 𝒳 → R is called the reproducing kernel of
ℱ . The name is motivated by the fact that ℱ = closureℱ (span {𝒦(𝑥, ·) : 𝑥 ∈ 𝒳}).
Thus 𝒦 fully characterizes ℱ . Prominent examples of kernels are:

1. The linear kernel 𝒦(𝑥, 𝑥′) = 𝑥𝑇𝑥′. This spans the finite-dimensional space of
linear functions and induces a 2-norm on coefficients.

2. The polynomial kernel 𝒦𝑠(𝑥, 𝑥′) = (1+𝑥𝑇𝑥′/𝑠)𝑠. It spans the finite-dimensional
space of all polynomials of degree up to 𝑠.

3. Any kernel 𝒦(𝑥, 𝑥′) =
∑︀∞

𝑖=0 𝑎𝑖(𝑥
𝑇𝑥′)𝑖 with 𝑎𝑖 ≥ 0 (subject to convergence).

This includes the previous two examples. Another case is the exponential ker-
nel 𝒦(𝑥, 𝑥′) = 𝑒𝑥

𝑇 𝑥′ , which can be seen as the infinite-dimensional limit of
the polynomial kernel. The corresponding space is infinite-dimensional (non-
parametric).

4. The Gaussian kernel 𝒦(𝑥, 𝑥′) = 𝑒−||𝑥−𝑥′||2 . The corresponding space is infinite-
dimensional (non-parametric) and is studied in Steinwart et al. (2006).

For given 𝑋 ∈ 𝒳 𝑛 and an RKHS with kernel 𝒦, we will often use the Gram matrix
𝐾𝑖𝑗 = 𝒦(𝑋𝑖, 𝑋𝑗). The Gram matrix is always positive semi-definite and as such it
has a matrix square root 𝐾 =

√
𝐾
√
𝐾.

As mentioned above, an RKHS induces a norm. Therefore, in our framework, it
also induces imbalance metrics and optimal designs.

Theorem 7.10. Let ℱ be an RKHS with kernel 𝒦. Then,

𝑀2
p (𝑊 ) =

1

𝑝2
max
𝑘 ̸=𝑘′

𝑛∑︁
𝑖,𝑗=1

(𝑤𝑖𝑘 − 𝑤𝑖𝑘′)𝐾𝑖𝑗(𝑤𝑗𝑘 − 𝑤𝑗𝑘′), and (7.7)

𝑀2
m(𝑃 ) =

2

𝑛𝑝
𝜆max

(︁√
𝐾𝑃
√
𝐾
)︁
. (7.8)

Notice that (7.7) corresponds to a discrepancy statistic known as maximum mean
discrepancy between the experimental groups. Maximum mean discrepancy is used
as a test statistic in two-sample testing (see Gretton et al. (2007, 2012), Sejdinovic
et al. (2013)).

The problem of minimizing (7.7) or (7.8) can be interpreted as a multi-way multi-
criterion number partitioning problem. For 𝑚 = 2, 𝒳 = R, and 𝒦(𝑥, 𝑥′) = 𝑥𝑥′

(𝐾 = 𝑋𝑋𝑇 ), we get the usual balanced number partitioning problem for both (7.7)
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and (7.8): recalling our definitions of 𝒰 and 𝒫 ,

𝑛

2
𝑀p-opt =

√︁
min
𝑢∈𝒰

𝑢𝑇 (𝑋𝑋𝑇 )𝑢 = min
𝑢∈𝒰

⃒⃒⃒⃒
⃒
𝑛∑︁
𝑖=1

𝑢𝑖𝑋𝑖

⃒⃒⃒⃒
⃒ ,

𝑛

2
𝑀m-opt =

√︁
min
𝑃∈𝒫

trace (𝑃 (𝑋𝑋𝑇 )) = min
𝑢∈𝒰

⃒⃒⃒⃒
⃒
𝑛∑︁
𝑖=1

𝑢𝑖𝑋𝑖

⃒⃒⃒⃒
⃒ ,

where the last equality is due to the facts that 𝜆max(𝑀) = trace(𝑀) if 𝑀 is rank-
1 positive semi-definite and that a linear objective on a polytope is optimized at a
corner point. This reduction also shows that both problems are NP-hard (see problem
[SP12] and comment on p. 223 of Garey and Johnson (1979)).

Such partitioning problems generically have unique optima up to permutation so
the pure-strategy optimal design usually randomizes among the 𝑚! permutations of
a single partition of subjects. This is not generally the case for the mixed-strategy
optimal design. Consider 𝑚 = 2. Since the affine hull of 𝒰 is (𝑛−1)-dimensional, the
mixed-strategy optimal design mixes at the very least 2(rank(𝐾) − 1) assignments.
Moreover, by Carathéodory’s theorem any 𝑃 ∈ 𝒫 can be identified as the convex
combination of 𝑛(𝑛− 1) points in {𝑢𝑢𝑇 : 𝑢 ∈ 𝒰} (whose affine hull is (𝑛(𝑛− 1)− 1)-
dimensional) so that the mixed-strategy objective 𝑀2

m(𝜎) of any a priori balancing
design 𝜎 ∈ Δ can also be achieved by mixing no more than 2𝑛(𝑛− 1) assignments.

In Sections 7.4.1 and 7.4.2 we will study how we solve the pure- and mixed-strategy
optimal designs, respectively. For now let us consider two concrete examples with the
various designs we have so far studied.

Example 7.11. Consider the following setup: we measure 𝑑 ≥ 2 baseline covariates
for each subject that are uniformly distributed in the population 𝑋𝑖 ∼ Unif

(︀
[−1, 1]𝑑

)︀
,

the two treatments𝑚 = 2 have constant individual effects 𝑌𝑖1−𝑌𝑖2 = 𝜏 , and the condi-
tional expectation of outcomes depends on two covariates only E

[︀
𝑌𝑖1
⃒⃒
𝑋 = 𝑥

]︀
−𝜏/2 =

E
[︀
𝑌𝑖2
⃒⃒
𝑋 = 𝑥

]︀
+ 𝜏/2 = 𝑓(𝑥1, 𝑥2). We consider a variety of conditional expectation

functions:6

Linear: 𝑓(𝑥1, 𝑥2) = 𝑥1 − 𝑥2.

Quadratic: 𝑓(𝑥1, 𝑥2) = 𝑥1 − 𝑥2 + 𝑥21 + 𝑥22 − 2𝑥1𝑥2.

Cubic: 𝑓(𝑥1, 𝑥2) = 𝑥1 − 𝑥2 + 𝑥21 + 𝑥22 − 2𝑥1𝑥2 + 𝑥31 − 𝑥32 − 3𝑥21𝑥2 + 3𝑥1𝑥
3
2.

Sinusoidal: 𝑓(𝑥1, 𝑥2) = sin(𝜋
3
+ 𝜋𝑥1

3
− 2𝜋𝑥2

3
)− 6 sin(𝜋𝑥1

3
+ 𝜋𝑥2

4
) + 6 sin(𝜋𝑥1

3
+ 𝜋𝑥2

6
).

To simulate the common situation where some covariates matter and some do not and
which is which is not known a priori, we consider both the case 𝑑 = 2 (only balance
the relevant covariates) and 𝑑 = 4 (also balance some covariates that turn out to be
irrelevant).

6We do not consider the case of no relationship (𝑓(𝑥1, 𝑥2) = 𝑐) because Theorem 7.13 proves that
in this case any a priori balancing design yields the same estimation variance.
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We consider the following designs: (1) complete randomization, i.e., the pure-
strategy optimal design for 𝐿∞; (2) blocking on the orthant of 𝑋𝑖 (𝑑 two-level factors),
i.e., the pure-strategy optimal design for 𝐿∞ after coarsening; (3) re-randomization
with 1% acceptance probability and Mahalanobis objective; (4) pairwise matching
with Mahalanobis distance, i.e., the pure-strategy optimal design for the Lipschitz
norm; (5) the pure-strategy optimal design with respect to the linear kernel; (6) the
pure-strategy optimal design with respect to the quadratic kernel (polynomial kernel
with 𝑠 = 2); (7) the mixed-strategy optimal design with respect to the Gaussian
kernel; and (8) the mixed-strategy optimal design with respect to the exponential
kernel.7 All of these designs result in an unbiased estimate of SATE = PATE = 𝜏
and can therefore be compared on their variance. In Figure 7-2 we plot the variances of
the resulting estimators relative to 𝑉𝑛 = Var (SATE)+Var (𝜖11 + 𝜖12) /𝑛 (see Theorem
7.13).

There are several features to note. One is that when a parametric model is cor-
rectly specified and specifically optimized for, the variance (relative to 𝑉𝑛) shrinks
linearly (inverse exponentially) – we argue this is a general phenomenon in Section
7.3.3. This phenomenon is clearest in the case of linear conditional expectation and
the pure-strategy optimal design with respect to the linear kernel, but the same design
does not do so well when the linear model is misspecified. The pure-strategy optimal
design with respect to the quadratic kernel also has a linear, but slower, convergence
for the linear conditional expectation, but it performs better in the other cases, both
when a quadratic model is correctly specified and when it is not. The mixed-strategy
optimal designs with respect to the Gaussian and exponential kernels seem to have
uniformly good performance in all cases and in particular still exhibit what would
seem to be linear convergence for the linear and quadratic cases.8 It would seem
that these non-parametric methods strike a good compromise between efficiency and
robustness. Finally, we note that compared to balancing only those covariates that
matter most (𝑑 = 2), balancing also other covariates (𝑑 = 4) leads to loss of efficiency,
as would be expected, but the order of convergence (linear) is the same.

Example 7.12. We now consider the effect of a priori balance on a real dataset.
We use the diabetes study dataset from Efron et al. (2004) described therein as
follows: “Ten [𝑑 = 10] baseline variables [𝑋𝑖], age, sex, body mass index, average
blood pressure, and six blood serum measurements were obtained for each of [442]
diabetes patients, as well as the response of interest [𝑌 ′

𝑖 ], a quantitative measure of
disease progression one year after baseline.” We consider a hypothetical experiment
where the prognostic features 𝑋𝑖 are measured at the onset, a control or treatment
is applied, and the response after one year is measured. In our hypothetical setup,
the treatment reduces disease progression by exactly 𝜏 so that 𝑌𝑖1 = 𝑌 ′

𝑖 and 𝑌𝑖2 =
𝑌 ′
𝑖 − 𝜏 . Fixing 𝑛, we draw 𝑛 subjects with replacement from the population of 442,

normalize the covariate data so that the sample of 𝑛 has zero sample mean and

7For the mixed-strategy designs we use the heuristic solution given by Algorithm 7.4.3.
8The argument in Section 7.3.3 concerns only finite-dimensional spaces and does not support this

observation as a general phenomenon.
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Figure 7-2: The Estimation Variance Var(𝜏)− 𝑉𝑛 in Example 7.11
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Figure 7-3: Relative Estimation Variance Var(𝜏)/Var(𝜏CR) for the Diabetes Dataset
in Example 7.12
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identity sample covariance and divide by 𝑑 = 10, apply each of the a priori balancing
designs considered in Example 7.11 to the normalized covariates, and finally apply
the treatments and measure the responses and the mean differences 𝜏 . Again, we
consider either balancing all 𝑑 = 10 covariates or only the 𝑑 = 4 covariates that are
ranked first by Efron et al. (2004) (these are {3, 9, 4, 7}). We plot estimation variances
relative to complete randomization in Figure 7-3.

For larger 𝑛, the relative variance of each method stabilizes around a particular
ratio. Each of blocking, pairwise matching, and re-randomization result in a higher
ratio when attempting to balance all covariates compared to balancing only the four
most important. For example, re-randomization on all 10 covariates gives ∼60% of
complete randomization’s variance whereas restricting to the important covariates
yields ∼53%. On the other hand, the RKHS-based optimal designs yield lower rel-
ative variances for both 𝑑 = 10 and 𝑑 = 4, converging slower for 𝑑 = 10 but using
the small additional prognostic content of the extra covariates to reduce variance fur-
ther. For example, the pure-strategy optimal designs with respect to the linear and
quadratic kernels both yield ∼40% of complete randomization’s variance for 𝑑 = 4
and ∼35% for 𝑑 = 10, taking only slightly longer to get below ∼40% when 𝑑 = 10.
This can be attributed to the linear rate at which the optimal designs eliminate im-
balances (see Section 7.3.3). Thus, even if there are some less relevant variables, all
are immediately near-perfectly balanced for modest 𝑛; the only limiting factors are
the residuals (𝜖𝑖𝑘), which, by definition, cannot be controlled for using the covariates
𝑋 alone (see Corollary 7.15).
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Aside: a Bayesian Interpretation

The pure-strategy optimal design can also be interpreted in a Bayesian perspective
as an optimal design. The interpretation is very similar to the standard Bayesian
interpretation of regularized regression using Gaussian processes (see e.g. Kimeldorf
and Wahba (1970) and §6.2 of Rasmussen and Williams (2006)). Let 𝑚 = 2 and
let ℱ be a given RKHS with kernel 𝒦. Let us assume a Gaussian prior on 𝑓 with
covariance operator 𝒦, i.e. 𝑓(𝑥) is Gaussian for every 𝑥 ∈ 𝒳 and the covariance of
𝑓(𝑥) and 𝑓(𝑥′) is equal to 𝒦(𝑥, 𝑥′). Then we have that the Bayes variance risk of a
design 𝑊 is

E
[︀
𝐵2(𝑊, 𝑓)|𝑋, 𝑌,𝑊

]︀
=

4

𝑛2

𝑛∑︁
𝑖,𝑗=1

𝑢𝑖𝑢𝑗E [𝑓(𝑋𝑖)𝑓(𝑋𝑗)|𝑋, 𝑌 ]

=
4

𝑛2

𝑛∑︁
𝑖,𝑗=1

𝑢𝑖𝑢𝑗𝒦(𝑋𝑖, 𝑋𝑗) =
4

𝑛2
𝑢𝑇𝐾𝑢 =𝑀2

p(𝑊 ).

Note however that randomization is not necessary from a standard Bayesian per-
spective (for futher discussion see Kadane and Seidenfeld (1990), Savage (1961)) and
therefore a Bayesian design may not satisfy (7.1)-(7.2). In contrast, the pure- and
mixed-strategy optimal designs both randomize by construction. Moreover, for the
mixed-strategy optimal design, it is generally optimal to randomize beyond just ran-
dom permutations of one partition.

7.3 Characterizations of A Priori Balancing Designs

We now try to characterize the estimators that arise from pure- and mixed-strategy
optimal designs as well as a priori balancing designs in general. We argue the estima-
tor is unbiased and then bound its variance in terms of a priori imbalance – a result
that intimately connects imbalance prior to treatment to variance of estimation after
treatment. We also discuss consistency and the convergence rate of imbalance (and
hence variance).

7.3.1 Variance

We begin by decomposing the variance of any estimator arising from an a priori
balancing design, that is, one satisfying (7.1)-(7.3).

Theorem 7.13. Suppose (7.1)-(7.3) are satisfied. Then, for all 𝑘 ̸= 𝑘′,

(a) 𝜏𝑘𝑘′ is conditionally and marginally unbiased, i.e.,

E
[︀
𝜏𝑘𝑘′
⃒⃒
𝑋, 𝑌

]︀
= SATE𝑘𝑘′ , E [𝜏𝑘𝑘′ ] = PATE𝑘𝑘′ .
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(b) 𝜏𝑘𝑘′ = SATE𝑘𝑘′ +𝐷𝑘𝑘′ + 𝐸𝑘𝑘′ ,

where 𝐷𝑘𝑘′ :=
1

𝑚

∑︁
𝑙 ̸=𝑘

𝐵𝑘𝑙 (𝑓𝑘)−
1

𝑚

∑︁
𝑙 ̸=𝑘′

𝐵𝑘′𝑙 (𝑓𝑘′) ,

𝐸𝑘𝑘′ :=
1

𝑛

𝑛∑︁
𝑖=1

((𝑚𝑤𝑖𝑘 − 1)𝜖𝑖𝑘 − (𝑚𝑤𝑖𝑘′ − 1)𝜖𝑖𝑘′) .

(c) SATE𝑘𝑘′, 𝐷𝑘𝑘′, and 𝐸𝑘𝑘′ are all uncorrelated so that

Var (𝜏𝑘𝑘′) =
1

𝑛
Var (𝑌1𝑘 − 𝑌1𝑘′) + Var (𝐷𝑘𝑘′)

+
1

𝑛
Var (𝜖1𝑘 + 𝜖1𝑘′) +

𝑚− 2

𝑛
(Var (𝜖1𝑘) + Var (𝜖1𝑘′)) .

(Note that the last term drops when only two treatments are considered.)

Note that in part (c), every term except for Var (𝐷𝑘𝑘′) is completely unaffected
by any a priori balancing. Below we provide a bound on it based on the expected
minimal imbalance produced by an optimal design.

Theorem 7.14. If the pure- or mixed-strategy optimal design is used,

Var (𝐷𝑘𝑘′) ≤
(||𝑓𝑘||+ ||𝑓𝑘′||)2

2

(︂
1− 1

𝑚

)︂
E
[︀
𝑀2

opt

]︀
, (7.9)

where 𝑀2
opt =𝑀2

p-opt or 𝑀2
opt =𝑀2

m-opt, respectively.

In (7.9), (||𝑓𝑘||+ ||𝑓𝑘′ ||)2 is unknown but constant, merely scaling the bound.
Combining the two theorems we get that when the pure- or mixed-strategy optimal

design is used, the variance of our estimator is bounded as follows:

Var (𝜏𝑘𝑘′) ≤
1

𝑛
Var (𝑌1𝑘 − 𝑌1𝑘′) +

(||𝑓𝑘||+ ||𝑓𝑘′||)2

2

(︂
1− 1

𝑚

)︂
E
[︀
𝑀2

opt

]︀
+

1

𝑛
Var (𝜖1𝑘 + 𝜖1𝑘′) +

𝑚− 2

𝑛
(Var (𝜖1𝑘) + Var (𝜖1𝑘′)) .

This intimately connects balance prior to treatment and randomization to estimation
variance afterward. For example, for pairwise matching this explicitly connects the
sum of pair differences before treatment to estimation variance after via the Lipschitz
constant of the unknown regression function.

Basic arithmetic with this bound yields the following simplification.

Corollary 7.15. Suppose 𝑚 = 2 and that individual effects are constant 𝑌𝑖1−𝑌𝑖2 = 𝜏 .
Denote 𝜎2 = Var (𝑌𝑖1) = Var (𝑌𝑖2), 𝜉2 = Var (𝜖𝑖1) = Var (𝜖𝑖2), and 𝑅2 = 1 − 𝜉2/𝜎2

(explained variance fraction). Then, the variance due to the optimal design relative
to complete randomization is bounded as follows:

1−𝑅2 ≤ Var (𝜏)

Var (𝜏CR)
≤ 1−𝑅2 − 𝑛

16𝜎2
(||𝑓𝑘||+ ||𝑓𝑘′ ||)2 E

[︀
𝑀2

opt

]︀
.
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Alternatively, the relative reduction in variance is simply one minus the above.
Despite the constant effect assumption, this bound provides important insights. On
the one hand, it says that any a priori balancing effort can never do better than
(1 − 𝑅2) relative to complete randomization. This makes sense: balancing based
on 𝑋 alone can only help to the extent that it is predictive of outcomes. On the
other hand, it says that if E

[︀
𝑀2

opt

]︀
decays super-logarithmically, i.e. 𝑜(1/𝑛), then

the relative variance converges to the best possible, which is (1 − 𝑅2). In Section
7.3.3 we study a case where the convergence is linear, i.e. 2−Ω(𝑛), much faster than
logarithmic.

When 𝑓𝑘 /∈ ℱ we have ||𝑓𝑘|| = ∞ and the bound (7.9) is trivial. Accounting for
the distance between 𝑓𝑘 and ℱ , an alternative bound is possible.
Theorem 7.16. If the pure- or mixed-strategy optimal design is used,

Var (𝐷𝑘𝑘′) ≤
(︂
1− 1

𝑚

)︂
inf

𝑔𝑘,𝑔𝑘′∈ℱ

(︁
(||𝑔𝑘||+ ||𝑔𝑘′ ||)2 E

[︀
𝑀2

opt

]︀
+

2

𝑚
(||𝑓𝑘 − 𝑔𝑘||2 + ||𝑓𝑘′ − 𝑔𝑘′||2)

2
)︁
,

where 𝑀2
opt = 𝑀2

p-opt or 𝑀2
opt = 𝑀2

m-opt, respectively, and ||𝑔||22 = E [𝑔(𝑋1)
2] is the 𝐿2

norm with respect to the measure of 𝑋1. (By the assumption that potential outcomes
have second moments, we have ||𝑓𝑘||2 <∞.)

7.3.2 Consistency

An estimator is said to be strongly consistent if it converges almost surely to the
estimand, the quantity it tries to estimate. In light of Theorem 7.13(b), an a priori
balancing design results in a strongly consistent estimator if and only if 𝐷𝑘𝑘′ converges
to 0 almost surely (since SATE𝑘𝑘′ +𝐸𝑘𝑘′ is already strongly consistent). Employing
laws of large numbers in Banach spaces, we can express sufficient conditions for strong
consistency in terms of a functional analytical property of ℱ known as 𝐵-convexity.
Definition 7.17. A Banach space is said to be 𝐵-convex if there exists 𝑁 ∈ N and
𝜂 < 𝑁 such that for every 𝑔1, . . . , 𝑔𝑁 with ||𝑔𝑖|| ≤ 1 ∀𝑖 there exists a choice of signs
so that ||±𝑔1 ± · · · ± 𝑔𝑁 || ≤ 𝜂.

It is easy to verify that all the Banach spaces so far considered are 𝐵-convex with
the exception of 𝐿∞. In particular, every Hilbert space or finite-dimensional Banach
space is 𝐵-convex. We use this condition to characterize consistency in the following.
Theorem 7.18. Suppose 𝑓𝑘, 𝑓𝑘′ ∈ ℱ . If either

(a) ℱ is 𝐵-convex and E
(︂
max
||𝑓 ||≤1

(𝑓(𝑋1)− 𝑓(𝑋2))

)︂2

<∞ or

(b) ℱ is a Hilbert space and E
⃒⃒⃒⃒
max
||𝑓 ||≤1

(𝑓(𝑋1)− 𝑓(𝑋2))

⃒⃒⃒⃒
<∞

then the estimator 𝜏𝑘𝑘′ arising from either the pure- or mixed-strategy optimal design
is strongly consistent.
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Figure 7-4: The Convergence of E𝑀2
p-opt as the Number of Subjects Per Group 𝑝
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7.3.3 Linear Rate of Convergence for Parametric Designs

In Theorem 7.18, we argued that the estimator converges, i.e., it is consistent, but we
did not discuss its rate of convergence. In this section, we study the rate of conver-
gence of E𝑀2

opt for the pure- and mixed-strategy designs and hence the convergence
of the corresponding estimator’s variance as per Theorem 7.14. In particular, we
now argue that E𝑀2

opt = 2−Ω(𝑛) for the case 𝑚 = 2 and ℱ finite dimensional (i.e.,
parametric). We will also study 𝑚 ≥ 3 empirically and observe similar convergence.

Let 𝜑1, . . . , 𝜑𝑟 be a basis for the finite-dimensional ℱ and Φ𝑖𝑗 = 𝜑𝑗(𝑋𝑖). Because
all norms in finite dimensions are equivalent, i.e., 𝑐 ||·||′ ≤ ||·|| ≤ 𝐶 ||·||′ (see Theorem
5.36 of Hunter and Nachtergaele (2001)), it follows that any rate of convergence
that applies when ℱ is endowed with the 2-norm (||𝛽1𝜑1 + · · ·+ 𝛽𝑟𝜑𝑟|| = ||𝛽||2) also
applies when ℱ has any given norm. Next note that since 𝑀2

m-opt ≤ 𝑀2
p-opt, any

rate of convergence for 𝑀2
p-opt applies also to 𝑀2

m-opt. So, we restrict our attention to
pure-strategy optimal designs under the 2-norm.

Our argument is a heuristic one (not a precise proof) and will follow the asymp-
totic approximation of the configurations 𝑊 with energies 𝑀2

p(𝑊 ) as a spin glass
following the random energy model (REM) where energies are assumed independent.
This approximation is commonly used to study the distributions of the optima of
combinatorial optimization problems with random inputs and has been found to be
valid asymptotically for partition problems similar to the one we are considering (see
Mertens (2001), Borgs et al. (2009a,b)).

Let Σ𝑖𝑗 = Cov (𝜑𝑖(𝑋1), 𝜑𝑗(𝑋1)) and let 𝜆1, . . . , 𝜆𝑟′ > 0 be its positive eigenvalues
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where 𝑟′ = rank (Σ). The distribution of 𝑀2
p(𝑊 ) is the same for any one fixed 𝑊 .

Fix 𝑊𝑖 = (𝑖 mod 2) + 1 (𝑢𝑖 = (−1)𝑖+1). By the multivariate central limit theorem
we have the following convergence in distribution,

2

𝑛
Φ𝑇𝑢 =

⎛⎝ 2

𝑛

𝑛/2∑︁
𝑖=1

(𝜑𝑗(𝑋2𝑖−1)− 𝜑𝑗(𝑋2𝑖))

⎞⎠𝑟

𝑗=1

𝑑−→ 𝒩 (0, 2Σ) .

By continuous transformation, we also have

𝑀2
p(𝑊 ) = sup

||𝛽||2≤1

(︃
2

𝑛

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝑢𝑖𝛽𝑗𝜑𝑗(𝑋𝑖)

)︃2

=

⃒⃒⃒⃒⃒⃒⃒⃒
2

𝑛
Φ𝑇𝑢

⃒⃒⃒⃒⃒⃒⃒⃒2
2

𝑑−→
𝑟′∑︁
𝑖=1

2𝜆𝑖𝜒
2
1,

the weighted sum of independent chi-squared random variables with one degree of
freedom. Denote the corresponding CDF by 𝐻 and PDF by ℎ, which are given in
series representation in Kotz et al. (1967). In following with the REM approxima-
tion we assume independent energies so that 𝑀2

p-opt is distributed as the smallest
order statistic among

(︀
𝑛
𝑛/2

)︀
-many independent draws from 𝐻. By Theorem 11.3 of

Ahsanullah et al. (2013) and lim𝑡→0+ 𝑡ℎ(𝑡)/𝐻(𝑡) = 𝑟′/2, we have that

P
(︀
𝑀2

p-opt/𝛽𝑛 ≤ 𝑡
)︀
−→ 1− exp

(︁
−𝑡𝑟′/2

)︁
for 𝛽𝑛 satisfying 𝐻(𝛽𝑛) ·

(︀
𝑛
𝑛/2

)︀
→ 1. By formula (40) of Kotz et al. (1967) this is true

for

𝛽𝑛 = 4

(︂
Γ (𝑟′/2 + 1)

⧸︁(︂ 𝑛

𝑛/2

)︂)︂2/𝑟′ 𝑟′∏︁
𝑖=1

𝜆
1/𝑟′

𝑖 .

Thus, E𝑀2
p-opt ≈ 𝛽𝑛Γ (2/𝑟′ + 1) asymptotically. By Stirling’s formula,

E𝑀2
m-opt ≤ E𝑀2

p-opt = 𝑂
(︁
2−2𝑛/𝑟′𝑛1/𝑟′

)︁
= 2−Ω(𝑛).

We plot the convergence of E𝑀2
p-opt for a range of cases in Figure 7-4. We con-

sider 𝑚 = 2, 3, 𝑋𝑖 ∼ 𝒩 (0, 𝐼𝑑), 𝜑𝜃(𝑥) = 𝑠1−
∑︀

𝑖 𝜃𝑖
∏︀𝑑

𝑖=1 𝑥
𝜃𝑖
𝑖 , 𝑑 = 1, 2, 3, 𝑟 =

(︀
𝑑+𝑠
𝑠

)︀
(all

monomials up to degree 𝑠) for 𝑠 = 1, 2, 3, and 𝑞-norms 1, 2, and∞. All exhibit linear
convergence (note log scale).

7.4 Algorithms for Optimal Design

We now address how to actually realize the optimal designs, i.e., solve the optimiza-
tion problems in the definitions of the pure- and mixed-strategy optimal designs.
For complete randomization, blocking, and pairwise matching (with two treatments),
how to do so is already clear; here we address the other designs that arouse from our
framework. For the pure-strategy optimal designs, the optimization problems will
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be linear, quadratic, and second-order cone optimization problems subject to integer
constraints on some of the variables. Therefore, for these we can use integer opti-
mization software to find the optimal design. In all numerical results in this chapter,
we use Gurobi v5.6 Gurobi Optimization Inc. (2013). For the mixed-strategy optimal
design, the problem is too hard to solve exactly and we provide heuristics based on
semi-definite optimization.

7.4.1 Optimizing Pure Strategies

The pure-strategy optimization problem can be written as√︁
min
𝑊∈𝒲

𝑀2
p(𝑊 ) = min

𝜆∈R, 𝑤∈{0,1}𝑛
𝜆

s.t. 𝜆 ≥ max
||𝑓 ||≤1

1

𝑝

𝑛∑︁
𝑖=1

(𝑤𝑖𝑘 − 𝑤𝑖𝑘′) 𝑓(𝑋𝑖) ∀𝑘 < 𝑘′ (7.10)

𝑚∑︁
𝑘=1

𝑤𝑖𝑘 = 1 ∀𝑖 = 1, . . . , 𝑛

𝑛∑︁
𝑖=1

𝑤𝑖𝑘 = 𝑝 ∀𝑘 = 1, . . . ,𝑚,

where we have used the fact that optimizing the square is the same as optimizing the
absolute value and then used the symmetry of the norm to remove the absolute value
and rid of excess constraints (𝑘 > 𝑘′). What remains is to write the constraints (7.10)
in a way fitting for a linear, quadratic, or second-order cone optimization problem. We
assume the solver software will arbitrarily return any one optimal solution at random.
In case this is not so, we still randomly permute the result to ensure condition (7.2)
holds.

Finite-Dimensional 𝑞-space

For the setup as in Section 7.2.3,

max
||𝑓 ||≤1

1

𝑝

𝑛∑︁
𝑖=1

(𝑤𝑖𝑘 − 𝑤𝑖𝑘′) 𝑓(𝑋𝑖)

=

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
(︃
𝑛

2

𝑛∑︁
𝑖=1

(𝑤𝑖𝑘 − 𝑤𝑖𝑘′)𝜑1 (𝑋𝑖) , . . . ,
𝑛

2

𝑛∑︁
𝑖=1

(𝑤𝑖𝑘 − 𝑤𝑖𝑘′)𝜑𝑟 (𝑋𝑖)

)︃⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
𝑞*

for 1/𝑞 + 1/𝑞* = 1. It follows that for 𝑞 = 1, ∞, the pure-strategy optimization
problem is a linear optimization problem with integer variables. For 𝑞 = 2, the
problem for 𝑚 = 2 is a quadratic optimization problem with integer variables and
for 𝑚 ≥ 3 it is a second-order cone optimization problem with integer variables
(the difference being whether the quadratic term is in the objective or constraints).
Rational 𝑞 can also be dealt with using second-order cone optimization via the results
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of Lobo et al. (1998). For example, 𝑚 = 2, 𝑞 = 2, and Φ𝑖𝑗 = 𝜑𝑗(𝑋𝑖), leads to a binary
quadratic optimization problem:

𝑀2(𝑊 ) =
4

𝑛2
min
𝑢∈𝒰

𝑢𝑇ΦΦ𝑇𝑢.

Lipschitz Functions

Given a pairwise distance metric 𝛿, we define the norm ||𝑓 || = ||𝑓 ||lip. When 𝑚 = 2,
Theorem 7.7 shows that the pure-strategy optimal design is equivalent to pairwise
matching. The corresponding optimization problem is weighted non-bipartite match-
ing, which can be solved in polynomial time using Edmond’s algorithm Edmonds
(1965). For 𝑚 ≥ 3, we let 𝐷𝑖𝑗 = 𝛿 (𝑋𝑖, 𝑋𝑗) and use linear optimization duality
Bertsimas and Tsitsiklis (1997) to write

𝜆 ≥ max
||𝑓 ||≤1

1

𝑝

𝑛∑︁
𝑖=1

(𝑤𝑖𝑘 − 𝑤𝑖𝑘′) 𝑓(𝑋𝑖) = max
𝑣𝑒𝑇−𝑒𝑣𝑇≤𝐷

1

𝑝

𝑛∑︁
𝑖=1

(𝑤𝑖𝑘 − 𝑤𝑖𝑘′) 𝑣𝑖

⇐⇒ ∃𝑆 ∈ R𝑛×𝑛+ s.t.
𝜆 ≥ trace (𝐷𝑆) /𝑝,∑︀𝑛

𝑗=1 (𝑆𝑖𝑗 − 𝑆𝑗𝑖) = 𝑤𝑖𝑘 − 𝑤𝑖𝑘′ ∀𝑖 = 1, . . . , 𝑛,

yielding a linear optimization problem with integer variables.
For the modification ||𝑓 || = max

{︁
||𝑓 ||lip , ||𝑓 ||∞

⧸︀
𝛿0

}︁
considered in Theorem 7.9,

we can instead write

𝜆 ≥ max
||𝑓 ||≤1

1

𝑝

𝑛∑︁
𝑖=1

(𝑤𝑖𝑘 − 𝑤𝑖𝑘′) 𝑓(𝑋𝑖) = max
𝑣𝑒𝑇−𝑒𝑣𝑇≤𝐷, ||𝑣||∞≤𝛿0

1

𝑝

𝑛∑︁
𝑖=1

(𝑤𝑖𝑘 − 𝑤𝑖𝑘′) 𝑣𝑖

⇐⇒ ∃ 𝑆 ∈ R
𝑛×𝑛
+

𝑡 ∈ R𝑛 s.t.
𝜆 ≥ (trace (𝐷𝑆) + 𝛿0 ||𝑡||1) /𝑝,∑︀𝑛

𝑗=1 (𝑆𝑖𝑗 − 𝑆𝑗𝑖) + 𝑡𝑖 = 𝑤𝑖𝑘 − 𝑤𝑖𝑘′ ∀𝑖 = 1, . . . , 𝑛.

This also leads to a linear optimization problem with integer variables.

RKHS

As in Theorem 7.10 we have(︃
max
||𝑓 ||≤1

1

𝑝

𝑛∑︁
𝑖=1

(𝑤𝑖𝑘 − 𝑤𝑖𝑘′) 𝑓(𝑋𝑖)

)︃2

=
1

𝑝

𝑛∑︁
𝑖,𝑗=1

(𝑤𝑖𝑘 − 𝑤𝑖𝑘′)𝐾𝑖𝑗(𝑤𝑗𝑘 − 𝑤𝑗𝑘′).

Therefore, for 𝑚 = 2 the pure-strategy optimization problem is a quadratic opti-
mization problem with integer variables and for 𝑚 ≥ 3 it is a second-order cone
optimization problem with integer variables. Namely, for 𝑚 = 2, we get the binary
quadratic optimization problem:

𝑀2(𝑊 ) =
4

𝑛2
min
𝑢∈𝒰

𝑢𝑇𝐾𝑢.
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7.4.2 Optimizing Mixed Strategies

For the case of mixed strategies we only consider the case of 𝑚 = 2 and ℱ being an
RKHS. As per Theorems 7.5 and 7.10, the corresponding optimization problem is

4

𝑛2
min
𝑃∈𝒫

𝜆max

(︁√
𝐾𝑃
√
𝐾
)︁
.

From the proof of Theorem 7.1 it can be gathered that if 𝜎 ∈ Δ then,

max
𝑌 ∈R𝑛×2

Var (𝜏 |𝑋, 𝑌 )

Var (𝜏CR|𝑋, 𝑌 )
=

(︂
1− 1

𝑛

)︂
𝜆max (𝑃 (𝜎)) .

Therefore, if we wish, we may ensure that we do not stray too far from complete
randomization in the worst realization of outcomes by instead solving

4

𝑛2
min
𝑃∈𝒫

𝜆max

(︁√
𝐾𝑃
√
𝐾
)︁

(7.11)

s.t.
(︂
1− 1

𝑛

)︂
𝜆max(𝑃 ) ≤ 𝜌.

Since setting 𝜌 =∞ eliminates the constraint, we will only treat (7.11) as it is most
general. Setting 𝜌 = 1 forces (7.11) to choose complete randomization.

While the problem (7.11) has a convex objective and convex feasible region, we
have already observed in Section 7.2.4 that the problem is NP-hard. When 𝜌 = ∞,
the feasible region is 𝒫 , which is a polytope. But what makes (7.11) with 𝜌 = ∞
more difficult than the problem encountered in Section 7.4.1 is that, at the same time
as being NP-hard, it is not amenable to the branch-and-bound techniques employed
by integer optimization software because its optimum generally does not occur at a
corner point of the polytope, as we observed in Section 7.2.4. The polytope 𝒫 is
known as the equipartition polytope of the complete graph on 𝑛 vertices Conforti
et al. (1990a,b).

Therefore, we propose only heuristic solutions to the problem. These heuristics
are based on semi-definite optimization (SDO), i.e., optimization over the cone 𝑆𝑛+ of
𝑛 × 𝑛 positive semi-definite matrices (see Boyd and Vandenberghe (2004) for more
information on SDO). In particular, the heuristics run in polynomial time. We use
Mosek (Mosek, APS (2009)) to solve all SDO problems in our numerical experiments.

The first heuristic is based on a semidefinite outer approximation
𝒫 ⊂

{︀
𝑃 ∈ 𝑆𝑛+ : diag(𝑃 ) = 𝑒, 𝑃𝑒 = 0

}︀
and is motivated by Goemans and Williamson

(1995) and Bertsimas and Ye (1999).
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Algorithm 7.4.1. Let 𝑃 be a solution to the SDO

min
𝜆∈R, 𝑃∈𝑆𝑛

+

𝜆

s. t. 𝜆𝐼 −
√
𝐾𝑃
√
𝐾 ∈ 𝑆𝑛+

𝜌𝐼 −
(︂
1− 1

𝑛

)︂
𝑃 ∈ 𝑆𝑛+

diag(𝑃 ) = 𝑒, 𝑃𝑒 = 0.

Let �̂� be the distribution of 𝑢𝑖 = sign (𝑣𝑖 −median(𝑣)) where 𝑣 ∼ 𝒩 (0, 𝑃 ). (This
provides a sampling mechanism without needing to fully specify �̂�).

The second heuristic is based on an inner approximation of 𝒫 .
Algorithm 7.4.2. Given 𝑢1, . . . , 𝑢𝑇 ∈ 𝒰 , let 𝜃 be the solution to the SDO

min
𝜆∈R, 𝜃∈R𝑇

𝜆

s. t. 𝜆𝐼 −
𝑇∑︁
𝑡=1

𝜃𝑡
√
𝐾𝑢𝑡𝑢

𝑇
𝑡

√
𝐾 ∈ 𝑆𝑛+

𝜌𝐼 −
(︂
1− 1

𝑛

)︂ 𝑇∑︁
𝑡=1

𝜃𝑡𝑢𝑡𝑢
𝑇
𝑡 ∈ 𝑆𝑛+

𝜃 ≥ 0,
𝑇∑︁
𝑡=1

𝜃𝑡 = 1.

Let �̂� be the distribution of 𝑢 = ±𝑢′ equiprobably where 𝑢′ is drawn randomly from
{𝑢𝑡} according to weights 𝜃.

The inputs to Algorithm 7.4.2 can be generated in two ways. One way is to run
Algorithm 7.4.1 and use the solution to draw 𝑢𝑡 (filtering non-unique values up to
negation). Another way is to use as inputs the top 𝑇 solutions to the pure-strategy
problem. As this is the method we use in our numerical experiments we describe it
explicitly below.
Algorithm 7.4.3. Let 𝒰1 = 𝒰 ∩ {𝑢1 = 1}. For 𝑡 = 1, . . . , 𝑇 do:

1: Solve 𝑢𝑡 ∈ argmin𝑢∈𝒰𝑡 𝑢
𝑇𝐾𝑢.

2: Set 𝒰𝑡+1 = 𝒰𝑡 ∩
{︀
𝑢𝑇𝑡 𝑢 ≤ 𝑛− 4

}︀
.

Run Algorithm 7.4.2 using 𝑢1, . . . , 𝑢𝑇 .
The definition of 𝒰1 simply eliminates the symmetry of negation. Each further

refinement in step 2 cuts away the last optimal solution.

7.5 Algorithms for Inference
A priori balance has the potential to significantly reduce estimation variance. One
would expect therefore that inferences on the treatment effect can also have higher
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statistical power. In this section, we will consider 𝑚 = 2 and the sharp null hypothesis

𝐻0 : (TE𝑖 = 0 ∀𝑖 = 1, . . . , 𝑛) .

Under 𝐻0 all post-treatment responses are exchangeable regardless of treatment
given (𝑌𝑖1 = 𝑌𝑖2). We can therefore simulate what would happen under another
assignment and compare. This is the idea behind Fisher’s randomization test, where
new simulated assignments are drawn from the same design as used at the onset of the
experiment. However, the pure-strategy optimal design when ℱ is an RKHS generally
only randomizes over treatment-permutations of a single partition, which does not
provide enough comparison (applying Fisher’s randomization test will always yield
𝑝 = 1). Therefore, we develop an alternative test based on the bootstrap Efron and
Tibshirani (1993):

Algorithm 7.5.1. For a confidence level 0 < 1− 𝛼 < 1:

1: Draw 𝑊 0 from the pure-strategy optimal design for the baseline covariates
𝑋1, . . . , 𝑋𝑛, assign subjects, apply treatments, measure outcomes 𝑌𝑖𝑊 0

𝑖
, and

compute 𝜏 .

2: For 𝑡 = 1, . . . , 𝑇 do:

2.1: Sample 𝑖𝑡𝑗 ∼ Unif{1, . . . , 𝑛} independently for 𝑗 = 1, . . . , 𝑛.

2.2: Draw 𝑊 𝑡 from the pure-strategy optimal design for the baseline covariates
𝑋𝑖𝑡1

, . . . , 𝑋𝑖𝑡𝑛 .

2.3: Compute 𝜏 𝑡 = 1
𝑝

∑︀
𝑖:𝑊 𝑡

𝑖 =1 𝑌𝑖𝑊 0
𝑖
− 1

𝑝

∑︀
𝑖:𝑊 𝑡

𝑖 =2 𝑌𝑖𝑊 0
𝑖
.

(Notice we only use the outcomes we chose to observe in step 1.)

3: The 𝑝-value of 𝐻0 is 𝑝 = (1 + |{𝑡 : |𝜏 𝑡| ≥ |𝜏 |}|)
⧸︀
(1 + 𝑇 ).

If 𝑝 ≤ 𝛼, then reject 𝐻0.

Algorithm 7.5.1 can also be used to answer inferential questions for mixed-strategy
designs, letting𝑊 𝑡 be drawn from the corresponding mixed-strategy optimal design 𝜎𝑡
in step 2.2. However, the additional randomization of mixed-strategy optimal designs
(and of complete randomization, blocking, pairwise matching, and re-randomization
for that matter) allows one to use the standard randomization and exact permutation
tests instead (where new assignments are drawn from the same design as used at the
onset of the experiment). As these tests are standard we defer further discussion to
supplemental Section E.3. We next consider an example using Algorithm 7.5.1.

Example 7.19. Consider the setup as in Example 7.11 with 𝑑 = 2, quadratic 𝑓 , and
𝜖𝑖1 = 𝜖𝑖2 = 0. For various values of 𝜏 , we test 𝐻0 at significance 𝛼 = 0.05 for each
of the designs in Example 7.11 (replacing the mixed-strategy optimal designs with
corresponding pure-strategy optimal designs) using Algorithm 7.5.1 for all RKHS-
based optimal designs and the standard randomization test for all other designs (see
Algorithm E.3.2 in supplemental Section E.3). We plot in Figure 7-5 the probability
of rejecting 𝐻0 as 𝑛 grows.
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Figure 7-5: Probability of Rejecting 𝐻0 Under No Effect 𝜏 = 0 and a Positive Effect
𝜏 = 0.15 at 𝛼 = 5% as in Example 7.19
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When 𝜏 is positive, the quadratic and exponential RKHS-based designs detect
the difference in treatments almost immediately, the Gaussian a bit later. The lin-
ear RKHS-based design parametrically misspecifies the regression function in this
particular case but does not do much worse than the other designs nonetheless. In-
terestingly, as imbalance disappears, Algorithm 7.5.1 has much lower type I error
than the significance 𝛼 = 0.05.

7.6 Conclusions

Designs that provide balance in controlled experiments before treatments are applied
and before randomization provide one answer to the criticism that complete random-
ization may lead to assignments that the experimenter knows will lead to misleading
conclusions. In this chapter we unified these designs under the umbrella of a priori
balance. We argued that structural information on the dependence of outcomes on
baseline covariates was the key to any a priori balance beyond complete randomiza-
tion and developed a framework of optimal designs based on structure expressed on
the conditional expectation function. We have shown how existing a priori balancing
designs, including blocking, pairwise matching, and other designs, are optimal for
certain structures and how existing imbalance metrics, such as the group-wise Ma-
halanobis metric of Morgan et al. (2012), arise from other choices of structure. That
this theoretical framework fit so well into existing practice, led us to endeavor to
discover what other designs may arise from it. We considered a wide range of designs
that follow from structure expressed using RKHS, encompassing both parametric and
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non-parametric methods. We argued and shown numerically that parametric models
(when correctly specified) coupled with optimization lead to estimation variance that
converges very fast to the best theoretically possible.

It has not escaped my notice that this unified perspective on a priori balance
suggests a possible rephrasing of Box’s maxim: “balance what you can, randomize
what you cannot.”
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Appendix A

Appendix to Chapter 2

A.1 Asymptotic Optimality for Mixing Processes and
Proofs

In this supplemental section, we generalize the asymptotic results to mixing process
and provide the omitted proofs.

A.1.1 Mixing Processes

We begin by defining stationary and mixing processes.

Definition A.1. A sequence of random variables 𝑉1, 𝑉2, . . . is called stationary if
joint distributions of finitely many consecutive variables are invariant to shifting.
That is,

𝜇𝑉𝑡,...,𝑉𝑡+𝑘
= 𝜇𝑉𝑠,...,𝑉𝑠+𝑘

∀𝑠, 𝑡 ∈ N, 𝑘 ≥ 0.

In particular, if a sequence is stationary then the variables have identical marginal
distributions, but they may not be independent and the sequence may not be ex-
changeable. Instead of independence, mixing is the property that if standing at
particular point in the sequence we look far enough ahead, the head and the tail
look nearly independent, where “nearly” is defined by different metrics for different
definitions of mixing.

Definition A.2. Given a stationary sequence {𝑉𝑡}𝑡∈N, denote by 𝒜𝑡 = 𝜎 (𝑉1, . . . , 𝑉𝑡)
the sigma-algebra generated by the first 𝑡 variables and by 𝒜𝑡 = 𝜎 (𝑉𝑡, 𝑉𝑡+1, . . . )
the sigma-algebra generated by the subsequence starting at 𝑡. Define the mixing
coefficients at lag 𝑘

𝛼(𝑘) = sup
𝑡∈N, 𝐴∈𝒜𝑡, 𝐵∈𝒜𝑡+𝑘

|𝜇(𝐴 ∩𝐵)− 𝜇(𝐴)𝜇(𝐵)|

𝛽(𝑘) = sup
𝑡∈N

⃒⃒⃒⃒
𝜇{𝑉𝑠}𝑠≤𝑡

⊗ 𝜇{𝑉𝑠}𝑠≥𝑡+𝑘
− 𝜇{𝑉𝑠}𝑠≤𝑡∨𝑠≥𝑡+𝑘

⃒⃒⃒⃒
TV

𝜌(𝑘) = sup
𝑡∈N, 𝑄∈𝐿2(𝒜𝑡), 𝑅∈𝐿2(𝒜𝑡+𝑘)

|Corr(𝑄,𝑅)|
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where ||·||TV is the total variance and 𝐿2(𝒜) is the set of 𝒜-measurable square-
integrable real-valued random variables.
{𝑉𝑡} is said to be 𝛼-mixing if 𝛼(𝑘) 𝑘→∞−→ 0 , 𝛽-mixing if 𝛽(𝑘) 𝑘→∞−→ 0, and 𝜌-mixing

if 𝜌(𝑘) 𝑘→∞−→ 0.

Notice that an iid sequence has 𝛼(𝑘) = 𝛽(𝑘) = 𝜌(𝑘) = 0. Bradley (1986) es-
tablishes that 2𝛼(𝑘) ≤ 𝛽(𝑘) and 4𝛼(𝑘) ≤ 𝜌(𝑘) so that either 𝛽- or 𝜌-mixing implies
𝛼-mixing.

Many processes satisfy mixing conditions under mild assumptions: auto-egressive
moving-average (ARMA) processes (cf. Mokkadem (1988)), generalized autoregres-
sive conditional heteroskedasticity (GARCH) processes (cf. Carrasco and Chen (2002)),
and certain Markov chains. For a thorough discussion and more examples see Doukhan
(1994) and Bradley (2005). Mixing rates are often given explicitly by model parame-
ters but they can also be estimated from data (cf. Mcdonald et al. (2011)). Sampling
from such processes models many real-life sampling situations where observations are
taken from an evolving system such as, for example, the stock market, inter-dependent
product demands, or aggregates of doubly stochastic arrival processes as in the posts
on social media.

A.1.2 Asymptotic Optimality

Let us now restate the results of Section 2.4.2 in more general terms, encompassing
both iid and mixing conditions on 𝑆𝑁 . We will also establish that our cost estimates
converge, i.e.,

min
𝑧∈𝒵

𝑁∑︁
𝑖=1

𝑤𝑁,𝑖(𝑥)𝑐(𝑧; 𝑦
𝑖)→ 𝑣*(𝑥), (A.1)

for 𝜇𝑋-almost-everywhere 𝑥 ∈ 𝑋 (henceforth, 𝜇𝑋-a.e.𝑥) almost surely (henceforth,
a.s.).

Theorem A.3 (𝑘NN). Suppose Assumptions 2.3, 2.4, and 2.5 hold and that 𝑆𝑁 is
generated by iid sampling. Let 𝑤𝑁,𝑖(𝑥) be as in (2.12) with 𝑘 = min

{︀
⌈𝐶𝑁 𝛿⌉, 𝑁 − 1

}︀
for some 𝐶 > 0, 0 < 𝛿 < 1. Let 𝑧𝑁(𝑥) be as in (2.3). Then 𝑧𝑁(𝑥) is asymptotically
optimal and (A.1) holds.

Theorem A.4 (Kernel Methods). Suppose Assumptions 2.3, 2.4, and 2.5 hold and
that E [|𝑐(𝑧;𝑌 )|max {log |𝑐(𝑧;𝑌 )| , 0}] < ∞ for each 𝑧. Let 𝑤𝑁,𝑖(𝑥) be as in (2.13)
with 𝐾 being any of the kernels in (2.14) and ℎ = 𝐶𝑁−𝛿 for 𝐶, 𝛿 > 0. Let 𝑧𝑁(𝑥) be
as in (2.3). If 𝑆𝑁 comes from

1. an iid process and 𝛿 < 1/𝑑𝑥, or

2. a 𝜌-mixing process with 𝜌(𝑘) = 𝑂(𝑘−𝛾) (𝛾 > 0) and 𝛿 < 2𝛾/(𝑑𝑥 + 2𝑑𝑥𝛾), or

3. an 𝛼-mixing process with 𝛼(𝑘) = 𝑂(𝑘−𝛾) (𝛾 > 1) and 𝛿 < 2(𝛾−1)/(3𝑑𝑥+2𝑑𝑥𝛾),

then 𝑧𝑁(𝑥) is asymptotically optimal and (A.1) holds.
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Theorem A.5 (Recursive Kernel Methods). Suppose Assumptions 2.3, 2.4, and 2.5
hold and that 𝑆𝑁 comes from a 𝜌-mixing process with

∑︀∞
𝑘=1 𝜌(𝑘) < ∞ (or iid). Let

𝑤𝑁,𝑖(𝑥) be as in (2.15) with 𝐾 being the naïve kernel and with ℎ𝑖 = 𝐶𝑖−𝛿 for some
𝐶 > 0, 0 < 𝛿 < 1/(2𝑑𝑥). Let 𝑧𝑁(𝑥) be as in (2.3). Then 𝑧𝑁(𝑥) is asymptotically
optimal and (A.1) holds.

Theorem A.6 (Local Linear Methods). Suppose Assumptions 2.3, 2.4, and 2.5 hold,
that 𝜇𝑋 is absolutely continuous and has density bounded away from 0 and ∞ on the
support of 𝑋, and that costs are bounded over 𝑦 for each 𝑧 (i.e., |𝑐(𝑧; 𝑦)| ≤ 𝑔(𝑧)). Let
𝑤𝑁,𝑖(𝑥) be as in (2.16) with 𝐾 being any of the kernels in (2.14) and with ℎ𝑁 = 𝐶𝑁−𝛿

for some 𝐶, 𝛿 > 0. Let 𝑧𝑁(𝑥) be as in (2.3). If 𝑆𝑁 comes from

1. an iid process and 𝛿 < 1/𝑑𝑥, or

2. an 𝛼-mixing process with 𝛼(𝑘) = 𝑂(𝑘−𝛾), 𝛾 > 𝑑𝑥 + 3, and 𝛿 < (𝛾 − 𝑑𝑥 −
3)/(𝑑𝑥(𝛾 − 𝑑𝑥 + 3)),

then 𝑧𝑁(𝑥) is asymptotically optimal and (A.1) holds.

A.1.3 Proofs of Asymptotic Results for Local Predictive Pre-
scriptions

First, we establish some preliminary results. In what follows, let

𝐶(𝑧|𝑥) = E
[︀
𝑐(𝑧;𝑌 )

⃒⃒
𝑋 = 𝑥

]︀
,

̂︀𝐶𝑁(𝑧|𝑥) = 𝑁∑︁
𝑖=1

𝑤𝑁,𝑖(𝑥)𝑐(𝑧; 𝑦
𝑖),

𝜇𝑌 |𝑥(𝐴) = E
[︀
I [𝑌 ∈ 𝐴]

⃒⃒
𝑋 = 𝑥

]︀
,

�̂�𝑌 |𝑥,𝑁(𝐴) =
𝑁∑︁
𝑖=1

𝑤𝑁,𝑖(𝑥)I [𝑥𝑖 ∈ 𝐴] .

Lemma A.7. If {(𝑥𝑖, 𝑦𝑖)}𝑖∈N is stationary and 𝑓 : R𝑚𝑌 → R is measurable then
{(𝑥𝑖, 𝑓(𝑦𝑖))}𝑖∈N is also stationary and has mixing coefficients no larger than those of
{(𝑥𝑖, 𝑦𝑖)}𝑖∈N.

Proof. This is simply because a transform can only make the generated sigma-algebra
coarser. For a single time point, if 𝑓 is measurable and 𝐵 ∈ ℬ(R) then by definition
𝑓−1(𝐵) ∈ ℬ(R) and, therefore, {𝑌 −1(𝑓−1(𝐵)) : 𝐵 ∈ ℬ(R)} ⊂ {𝑌 −1(𝐵) : 𝐵 ∈
ℬ(R𝑚𝑌 )}. Here the transform is applied independently across time so the result
holds (𝑓 × · · · × 𝑓 remains measurable).

Lemma A.8. Suppose Assumptions 2.3 and 2.4 hold. Fix 𝑥 ∈ 𝒳 and a sample path
of data such that, for every 𝑧 ∈ 𝒵, ̂︀𝐶𝑁(𝑧|𝑥) → 𝐶(𝑧|𝑥). Then ̂︀𝐶𝑁(𝑧|𝑥) → 𝐶(𝑧|𝑥)
uniformly in 𝑧 over any compact subset of 𝒵.
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Proof. Let any convergent sequence 𝑧𝑁 → 𝑧 and 𝜖 > 0 be given. By equicon-
tinuity and 𝑧𝑁 → 𝑧, ∃𝑁1 such that |𝑐(𝑧𝑁 ; 𝑦)− 𝑐(𝑧; 𝑦)| ≤ 𝜖/2 ∀𝑁 ≥ 𝑁1. Then⃒⃒⃒ ̂︀𝐶𝑁(𝑧𝑁 |𝑥)− ̂︀𝐶𝑁(𝑧|𝑥)⃒⃒⃒ ≤ E�̂�𝑌 |𝑥,𝑁 |𝑐(𝑧𝑁 ; 𝑦)− 𝑐(𝑧; 𝑦)| ≤ 𝜖/2 ∀𝑁 ≥ 𝑁1. By assumption̂︀𝐶𝑁(𝑧|𝑥) → 𝐶(𝑧|𝑥) and hence ∃𝑁2 such that

⃒⃒⃒ ̂︀𝐶𝑁(𝑧|𝑥)− 𝐶(𝑧|𝑥)⃒⃒⃒ ≤ 𝜖/2. Therefore,
for 𝑁 ≥ max {𝑁1, 𝑁2},⃒⃒⃒ ̂︀𝐶𝑁(𝑧𝑁 |𝑥)− 𝐶(𝑧|𝑥)⃒⃒⃒ ≤ ⃒⃒⃒ ̂︀𝐶𝑁(𝑧𝑁 |𝑥)− ̂︀𝐶𝑁(𝑧|𝑥)⃒⃒⃒+ ⃒⃒⃒ ̂︀𝐶𝑁(𝑧|𝑥)− 𝐶(𝑧|𝑥)⃒⃒⃒ ≤ 𝜖.

Hence ̂︀𝐶𝑁(𝑧𝑁 |𝑥)→ 𝐶(𝑧|𝑥) for any convergent sequence 𝑧𝑁 → 𝑧.
Now fix 𝐸 ⊂ 𝒵 compact and suppose that sup𝑧∈𝐸

⃒⃒⃒ ̂︀𝐶𝑁(𝑧|𝑥)− 𝐶(𝑧|𝑥)⃒⃒⃒ ̸→ 0 for

contradiction. Then ∃𝜖 > 0 and 𝑧𝑁 ∈ 𝐸 such that
⃒⃒⃒ ̂︀𝐶𝑁(𝑧𝑁 |𝑥)− 𝐶(𝑧𝑁 |𝑥)⃒⃒⃒ ≥ 𝜖 in-

finitely often. Restricting first to a subsequence where this always happens and then
using the compactness of 𝐸, there exists a convergent subsequence 𝑧𝑁𝑘

→ 𝑧 ∈ 𝐸 such
that

⃒⃒⃒ ̂︀𝐶𝑁𝑘
(𝑧𝑁𝑘
|𝑥)− 𝐶(𝑧𝑁𝑘

|𝑥)
⃒⃒⃒
≥ 𝜖 for every 𝑘. Then,

0 < 𝜖 ≤
⃒⃒⃒ ̂︀𝐶𝑁𝑘

(𝑧𝑁𝑘
|𝑥)− 𝐶(𝑧𝑁𝑘

|𝑥)
⃒⃒⃒
≤
⃒⃒⃒ ̂︀𝐶𝑁𝑘

(𝑧𝑁𝑘
|𝑥)− 𝐶(𝑧|𝑥)

⃒⃒⃒
+ |𝐶(𝑧|𝑥)− 𝐶(𝑧𝑁𝑘

|𝑥)| .

Since 𝑧𝑁𝑘
→ 𝑧, we have shown before that ∃𝑘1 such that

⃒⃒⃒ ̂︀𝐶𝑁𝑘
(𝑧𝑁𝑘
|𝑥)− 𝐶(𝑧|𝑥)

⃒⃒⃒
≤ 𝜖/2

∀𝑘 ≥ 𝑘1. By equicontinuity and 𝑧𝑁𝑘
→ 𝑧, ∃𝑘2 such that |𝑐(𝑧𝑁𝑘

; 𝑦)− 𝑐(𝑧; 𝑦)| ≤ 𝜖/4
∀𝑘 ≥ 𝑘2. Hence, also |𝐶(𝑧|𝑥)− 𝐶(𝑧𝑁𝑘

|𝑥)| ≤ E
[︀
|𝑐(𝑧𝑁𝑘

; 𝑦)− 𝑐(𝑧; 𝑦)|
⃒⃒
𝑋 = 𝑥

]︀
≤ 𝜖/4

∀𝑘 ≥ 𝑘2. Considering 𝑘 = max{𝑘1, 𝑘2} we get the contradiction that 0 < 𝜖 ≤ 𝜖/2.

Lemma A.9. Suppose Assumptions 2.3, 2.4, and 2.5 hold. Fix 𝑥 ∈ 𝒳 and a sample
path of data such that �̂�𝑌 |𝑥,𝑁 → 𝜇𝑌 |𝑥 weakly and, for every 𝑧 ∈ 𝒵, ̂︀𝐶𝑁(𝑧|𝑥)→ 𝐶(𝑧|𝑥).

Then lim
𝑁→∞

(︂
min
𝑧∈𝒵

̂︀𝐶𝑁(𝑧|𝑥))︂ = 𝑣*(𝑥) and every sequence 𝑧𝑁 ∈ argmin𝑧∈𝒵 ̂︀𝐶𝑁(𝑧|𝑥) sat-

isfies lim
𝑁→∞

𝐶 (𝑧𝑁 |𝑥) = 𝑣*(𝑥) and all of its limit points are contained in argmin
𝑧∈𝒵

𝐶(𝑧|𝑥).

Proof. Suppose that case 1 or 3 of Assumption 2.5 holds (i.e. boundedness or infinite
limit). First, we show ̂︀𝐶𝑁(𝑧|𝑥) and 𝐶(𝑧|𝑥) are continuous and eventually coercive. Let
𝜖 > 0 be given. By equicontinuity, ∃𝛿 > 0 such that |𝑐(𝑧; 𝑦)− 𝑐(𝑧′; 𝑦)| ∀𝑦 ∈ 𝒴 when-
ever ||𝑧 − 𝑧′|| ≤ 𝛿. Hence, whenever ||𝑧 − 𝑧′|| ≤ 𝛿, we have

⃒⃒⃒ ̂︀𝐶𝑁(𝑧|𝑥)− ̂︀𝐶𝑁(𝑧′|𝑥)⃒⃒⃒ ≤
E�̂�𝑌 |𝑥,𝑁 |𝑐(𝑧; 𝑦)− 𝑐(𝑧′; 𝑦)| ≤ 𝜖 and |𝐶(𝑧|𝑥)− 𝐶(𝑧′|𝑥)| ≤ E

[︀
|𝑐(𝑧; 𝑦)− 𝑐(𝑧′; 𝑦)|

⃒⃒
𝑋 = 𝑥

]︀
≤

𝜖. This gives continuity. Coerciveness is trivial if 𝒵 is bounded. Suppose it is
not. Without loss of generality 𝐷𝑥 is compact, otherwise we can take any com-
pact subset of it that has positive probability on it. Then by assumption of weak
convergence ∃𝑁0 such that �̂�𝑌 |𝑥,𝑁(𝐷𝑥) ≥ 𝜇𝑌 |𝑥(𝐷𝑥)/2 > 0 for all 𝑁 ≥ 𝑁0. Now
let 𝑧𝑘 ∈ 𝒵 be any sequence such that ||𝑧𝑘|| → ∞. Let 𝑀 > 0 be given. Let
𝜆′ = lim inf ||𝑘||→∞ inf𝑦/∈𝐷𝑥 𝑐(𝑧𝑘; 𝑦) and 𝜆 = max {𝜆′, 0}. By assumption 𝜆′ > −∞.
Hence ∃𝑘0 such that inf𝑦/∈𝐷𝑥 𝑐(𝑧𝑘; 𝑦) ≥ 𝜆′ ∀𝑘 ≥ 𝑘0. By 𝐷𝑥-uniform coerciveness and
||𝑧𝑘|| → ∞, ∃𝑘1 ≥ 𝑘0 such that 𝑐(𝑧𝑘; 𝑦) ≥ (2𝑀 − 2𝜆)/𝜇𝑌 |𝑥(𝐷𝑥) ∀𝑘 ≥ 𝑘1 and 𝑦 ∈ 𝐷𝑥.
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Hence, ∀𝑘 ≥ 𝑘1 and 𝑁 ≥ 𝑁0,

𝐶(𝑧|𝑥) ≥ 𝜇𝑌 |𝑥(𝐷)× (2𝑀 − 2𝜆)/𝜇𝑌 |𝑥(𝐷𝑥) + (1− 𝜇𝑌 |𝑥(𝐷))𝜆′ ≥ 2𝑀 − 2𝜆+ 𝜆 ≥𝑀,̂︀𝐶𝑁(𝑧|𝑥) ≥ �̂�𝑌 |𝑥,𝑁(𝐷)× (2𝑀 − 2𝜆)/�̂�𝑌 |𝑥,𝑁(𝐷𝑥) + (1− �̂�𝑌 |𝑥,𝑁(𝐷))𝜆′ ≥𝑀,

since 𝛼𝜆′ ≥ 𝜆 if 𝛼 ≥ 0. This gives coerciveness eventually. By the usual extreme
value theorem (c.f. Bertsekas (1999), pg. 669), ̂︀𝒵𝑁(𝑥) = argmin𝑧∈𝒵 ̂︀𝐶𝑁(𝑧|𝑥) and
𝒵*(𝑥) = argmin𝑧∈𝒵 𝐶(𝑧|𝑥) exist, are nonempty, and are compact.

Now we show there exists 𝒵*
∞(𝑥) compact such that 𝒵*(𝑥) ⊂ 𝒵*

∞(𝑥) and ̂︀𝒵𝑁(𝑥) ⊂
𝒵*

∞(𝑥) eventually. If 𝒵 is bounded this is trivial. So suppose otherwise (and again,
without loss of generality 𝐷𝑥 is compact). Fix any 𝑧* ∈ 𝒵*(𝑥). Then by Lemma
A.8 we have ̂︀𝐶𝑁(𝑧*|𝑥) → 𝐶(𝑧*|𝑥). Since min𝑧∈𝒵 ̂︀𝐶𝑁(𝑧|𝑥) ≤ ̂︀𝐶𝑁(𝑧*|𝑥), we have
lim sup𝑁→∞min𝑧∈𝒵 ̂︀𝐶𝑁(𝑧|𝑥) ≤ 𝐶(𝑧*|𝑥) = min𝑧∈𝒵 𝐶(𝑧|𝑥) = 𝑣*. Now suppose for
contradiction no such 𝒵*

∞(𝑥) exists. Then there must be a subsequence 𝑧𝑁𝑘
∈ ̂︀𝒵𝑁𝑘

such that ||𝑧𝑁𝑘
|| → ∞. By 𝐷𝑥-uniform coerciveness and ||𝑧𝑁𝑘

|| → ∞, ∃𝑘1 ≥ 𝑘0 such
that 𝑐(𝑧𝑁𝑘

; 𝑦) ≥ 2 (𝑣* + 1− 𝜆) /𝜇𝑌 |𝑥(𝐷𝑥) ∀𝑘 ≥ 𝑘1 and 𝑦 ∈ 𝐷𝑥. Hence, ∀𝑘 ≥ 𝑘1 and
𝑁 ≥ 𝑁0,̂︀𝐶𝑁(𝑧𝑁𝑘

|𝑥) ≥ �̂�𝑌 |𝑥,𝑁(𝐷)× 2 (𝑣* + 1− 𝜆) /𝜇𝑌 |𝑥(𝐷𝑥) + (1− �̂�𝑌 |𝑥,𝑁(𝐷)) ≥ 𝑣* + 1.

This yields a contradiction 𝑣* + 1 ≤ 𝑣*. So 𝒵*
∞(𝑥) exists.

Applying Lemma A.8,

𝜏𝑁 = sup
𝑧∈𝒵*

∞(𝑥)

⃒⃒⃒ ̂︀𝐶𝑁(𝑧|𝑥)− 𝐶(𝑧|𝑥)⃒⃒⃒→ 0.

The first result follows from

𝛿𝑁 =

⃒⃒⃒⃒
min
𝑧∈𝒵

̂︀𝐶𝑁(𝑧|𝑥)−min
𝑧∈𝒵

𝐶(𝑧|𝑥)
⃒⃒⃒⃒
≤ sup

𝑧∈𝒵*
∞(𝑥)

⃒⃒⃒ ̂︀𝐶𝑁(𝑧|𝑥)− 𝐶(𝑧|𝑥)⃒⃒⃒ = 𝜏𝑁 → 0.

Now consider any sequence 𝑧𝑁 ∈ ̂︀𝒵𝑁(𝑥). The second result follows from⃒⃒⃒⃒
𝐶 (𝑧𝑁 |𝑥)−min

𝑧∈𝒵
𝐶(𝑧|𝑥)

⃒⃒⃒⃒
≤
⃒⃒⃒ ̂︀𝐶𝑁(𝑧𝑁(𝑥)|𝑥)− 𝐶 (𝑧𝑁 |𝑥)

⃒⃒⃒
+

⃒⃒⃒⃒
min
𝑧∈𝒵

̂︀𝐶𝑁(𝑧|𝑥)−min
𝑧∈𝒵

𝐶(𝑧|𝑥)
⃒⃒⃒⃒

≤ 𝜏𝑁 + 𝛿𝑁 → 0.

Since ̂︀𝒵𝑁(𝑥) ⊂ 𝒵*
∞(𝑥) and 𝒵*

∞(𝑥) is compact, 𝑧𝑁 has at least one convergence sub-
sequence. Let 𝑧𝑁𝑘

→ 𝑧 be any convergent subsequence. Suppose for contradiction
that 𝑧 /∈ 𝒵*(𝑥), i.e., 𝜖 = 𝐶(𝑧|𝑥)− 𝑣* > 0. Since 𝑧𝑁𝑘

→ 𝑧 and by equicontinuinty, ∃𝑘2
such that |𝑐(𝑧𝑁𝑘

; 𝑦)− 𝑐(𝑧; 𝑦)| ≤ 𝜖/2 ∀𝑦 ∈ 𝒴 ∀𝑘 ≥ 𝑘2. Then, |𝐶(𝑧𝑁𝑘
|𝑥)− 𝐶(𝑧|𝑥)| ≤

E
[︀
|𝑐(𝑧𝑁𝑘

; 𝑦)− 𝑐(𝑧; 𝑦)|
⃒⃒
𝑋 = 𝑥

]︀
≤ 𝜖/4 ∀𝑘 ≥ 𝑘2. In addition, there exists 𝑘3 such that

𝛿𝑁𝑘
≤ 𝜖/4 ∀𝑘 ≥ 𝑘3. Then, ∀𝑘 ≥ max {𝑘2, 𝑘3}, we have

min
𝑧∈𝒵

̂︀𝐶𝑁𝑘
(𝑧|𝑥) = ̂︀𝐶𝑁𝑘

(𝑧𝑁𝑘
|𝑥) ≥ 𝐶(𝑧𝑁𝑘

|𝑥)− 𝜖/4 ≥ 𝐶(𝑧|𝑥)− 𝜖/2 ≥ 𝑣* + 𝜖/2.
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Taking limits, we derive a contradiction, yielding the third result.
Now suppose that case 2 of Assumption 2.5 holds (i.e. convexity). By Lemma

A.8, ̂︀𝐶𝑁(𝑧|𝑥) → 𝐶(𝑧|𝑥) uniformly in 𝑧 over any compact subset of 𝒵. By Theorem
6.2 of Rockafellar (1997), closed convex 𝒵 has a non-empty relative interior. Let us
restrict to its affine hull where it has a non-empty interior. We have already shown
that Assumption 2.4 implies that ̂︀𝐶𝑁(𝑧|𝑥) and 𝐶(𝑧|𝑥) are continuous. Hence they are
lower semi-continuous. Therefore, by Theorem 7.17 of Rockafellar and Wets (1998),̂︀𝐶𝑁(𝑧|𝑥) epi-converges to 𝐶(𝑧|𝑥) on 𝒵. Consider any 𝑧* ∈ 𝒵*(𝑥) ̸= ∅. Then clearly
min𝑧∈{𝑧*} ̂︀𝐶𝑁(𝑧|𝑥) = ̂︀𝐶𝑁(𝑧*|𝑥)→ 𝐶(𝑧*|𝑥) = min𝑧∈𝒵 𝐶(𝑧|𝑥) and {𝑧*} is compact. By
Theorem 7.31 of Rockafellar and Wets (1998) we have precisely the results desired.

Lemma A.10. Suppose 𝑐(𝑧; 𝑦) is equicontinuous in 𝑧. Suppose moreover that for
each fixed 𝑧 ∈ 𝒵 ⊂ R𝑑 we have that ̂︀𝐶𝑁(𝑧|𝑥)→ 𝐶(𝑧|𝑥) a.s. for 𝜇𝑋-a.e.𝑥 and that for
each fixed measurable 𝐷 ⊂ 𝒴 we have that �̂�𝑌 |𝑥,𝑁(𝐷) → 𝜇𝑌 |𝑥(𝐷) a.s. for 𝜇𝑋-a.e.𝑥.
Then, a.s. for 𝜇𝑋-a.e.𝑥, ̂︀𝐶𝑁(𝑧|𝑥)→ 𝐶(𝑧|𝑥) for all 𝑧 ∈ 𝒵 and �̂�𝑌 |𝑥,𝑁 → 𝜇𝑌 |𝑥 weakly.

Proof. Since Euclidean space is separable, �̂�𝑌 |𝑥,𝑁 → 𝜇𝑌 |𝑥 weakly a.s. for 𝜇𝑋-a.e.𝑥
(c.f. Theorem 11.4.1 of Dudley (2002)).

Consider the set 𝒵 ′ = 𝒵 ∩ Q𝑑 ∪ {the isolated points of 𝒵}. Then 𝒵 ′ is count-
able and dense in 𝒵. Since 𝒵 ′ is countable, by continuity of measure, a.s. for
𝜇𝑋-a.e.𝑥, ̂︀𝐶𝑁(𝑧′|𝑥) → 𝐶(𝑧′|𝑥) for all 𝑧′ ∈ 𝒵 ′. Restrict to a sample path and
𝑥 where this event occurs. Consider any 𝑧 ∈ 𝒵 and 𝜖 > 0. By equicontinuity
∃𝛿 > 0 such that |𝑐(𝑧; 𝑦)− 𝑐(𝑧′; 𝑦)| ≤ 𝜖/2 whenever ||𝑧 − 𝑧′|| ≤ 𝛿. By density there
exists such 𝑧′ ∈ 𝒵 ′. Then,

⃒⃒⃒ ̂︀𝐶𝑁(𝑧|𝑥)− ̂︀𝐶𝑁(𝑧′|𝑥)⃒⃒⃒ ≤ E�̂�𝑌 |𝑥,𝑁 [|𝑐(𝑧; 𝑦)− 𝑐(𝑧′; 𝑦)|] ≤
𝜖/2 and |𝐶(𝑧|𝑥)− 𝐶(𝑧′|𝑥)| ≤ E

[︀
|𝑐(𝑧; 𝑦)− 𝑐(𝑧′; 𝑦)|

⃒⃒
𝑋 = 𝑥

]︀
≤ 𝜖/2. Therefore, 0 ≤⃒⃒⃒ ̂︀𝐶𝑁(𝑧|𝑥)− 𝐶(𝑧|𝑥)⃒⃒⃒ ≤ ⃒⃒⃒ ̂︀𝐶𝑁(𝑧′|𝑥)− 𝐶(𝑧′|𝑥)⃒⃒⃒ + 𝜖 → 𝜖. Since true for each 𝜖, the re-

sult follows for all 𝑧 ∈ 𝒵. The choice of particular sample path and 𝑥 constitute a
measure-1 event by assumption.

Now, we prove the general form of the asymptotic results from Section A.1.2.

Proof of Theorem A.3. Fix 𝑧 ∈ 𝒵. Set 𝑌 ′ = 𝑐(𝑧; 𝑦). By Assumption 2.3, E[|𝑌 ′|] <∞.
Let us apply Theorem 5 of Walk (2010) to 𝑌 ′. By iid sampling and choice of 𝑘, we
have that ̂︀𝐶𝑁(𝑧|𝑥)→ E[𝑌 ′|𝑋 = 𝑥] for 𝜇𝑋-a.e.𝑥, a.s.

Now fix 𝐷 measurable. Set 𝑌 ′ = I [𝑦 ∈ 𝐷]. Then E[𝑌 ′] exists by measurability
and 𝑌 ′ is bounded in [0, 1]. Therefore applying Theorem 5 of Walk (2010) in the
same manner again, �̂�𝑌 |𝑥,𝑁(𝐷) converges to 𝜇𝑌 |𝑥(𝐷) for 𝜇𝑋-a.e.𝑥 a.s.

Applying Lemma A.10 we obtain that assumptions for Lemma A.9 hold for 𝜇𝑋-
a.e.𝑥, a.s., which in turn yields the result desired.

Proof of Theorem A.4. Fix 𝑧 ∈ 𝒵. Set 𝑌 ′ = 𝑐(𝑧; 𝑦). By Assumption 2.3, E[|𝑌 ′|] <∞.
Let us apply Theorem 3 of Walk (2010) to 𝑌 ′. By assumption in theorem statement,
we also have that E {|𝑌 ′|max {log |𝑌 ′| , 0}} < ∞. Moreover each of the kernels in
(2.14) can be rewritten 𝐾(𝑥) = 𝐻(||𝑥||) such that 𝐻(0) > 0 and lim𝑡→∞ 𝑡𝑑𝑋𝐻(𝑡)→ 0.
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Consider the case of iid sampling. Then our data on (𝑋, 𝑌 ′) is 𝜌-mixing with
𝜌(𝑘) = 0. Using these conditions and our choices of kernel and ℎ𝑁 , Theorem 3 of
Walk (2010) gives that ̂︀𝐶𝑁(𝑧|𝑥)→ E[𝑌 ′|𝑋 = 𝑥] for 𝜇𝑋-a.e.𝑥, a.s.

Consider the case of 𝜌-mixing or 𝛼-mixing. By Lemma A.7, equal or lower mixing
coefficients hold for 𝑋, 𝑌 ′ as hold for 𝑋, 𝑌 . Using these conditions and our choices
of kernel and ℎ𝑁 , Theorem 3 of Walk (2010) gives that ̂︀𝐶𝑁(𝑧|𝑥) → E[𝑌 ′|𝑋 = 𝑥] for
𝜇𝑋-a.e.𝑥, a.s.

Now fix 𝐷 measurable. Set 𝑌 ′ = I [𝑦 ∈ 𝐷]. Then E[𝑌 ′] exists by measurability
and E {|𝑌 ′|max {log |𝑌 ′| , 0}} ≤ 1 < ∞. Therefore applying Theorem 3 of Walk
(2010) in the same manner again, �̂�𝑌 |𝑥,𝑁(𝐷) converges to 𝜇𝑌 |𝑥(𝐷) for 𝜇𝑋-a.e.𝑥 a.s.

Applying Lemma A.10 we obtain that assumptions for Lemma A.9 hold for 𝜇𝑋-
a.e.𝑥, a.s., which in turn yields the result desired.

Proof of Theorem A.5. Fix 𝑧 ∈ 𝒵. Set 𝑌 ′ = 𝑐(𝑧; 𝑦). By Assumption 2.3, E[|𝑌 ′|] <∞.
Let us apply Theorem 4 of Walk (2010) to 𝑌 ′. Note that the naïve kernel satisfies
the necessary conditions.

Since our data on (𝑋, 𝑌 ) is 𝜌-mixing by assumption, we have that by Lemma
A.7, equal or lower mixing coefficients hold for 𝑋, 𝑌 ′ as hold for 𝑋, 𝑌 . Using these
conditions and our choice of the naïve kernel and ℎ𝑁 , Theorem 4 of Walk (2010) gives
that ̂︀𝐶𝑁(𝑧|𝑥)→ E[𝑌 ′|𝑋 = 𝑥] for 𝜇𝑋-a.e.𝑥, a.s.

Now fix 𝐷 measurable. Set 𝑌 ′ = I [𝑦 ∈ 𝐷]. Then E[𝑌 ′] exists by measurability.
Therefore applying Theorem 4 of Walk (2010) in the same manner again, �̂�𝑌 |𝑥,𝑁(𝐷)
converges to 𝜇𝑌 |𝑥(𝐷) for 𝜇𝑋-a.e.𝑥 a.s.

Applying Lemma A.10 we obtain that assumptions for Lemma A.9 hold for 𝜇𝑋-
a.e.𝑥, a.s., which in turn yields the result desired.

Proof of Theorem A.6. Fix 𝑧 ∈ 𝒵 and 𝑥 ∈ 𝒳 . Set 𝑌 ′ = 𝑐(𝑧;𝑌 ). By Assumption 2.3,
E[|𝑌 ′|] <∞. Let us apply Theorem 11 of Hansen (2008) to 𝑌 ′ and use the notation
thereof. Fix the neighborhood of consideration to the point 𝑥 (i.e., set 𝑐𝑁 = 0) since
uniformity in 𝑥 is not of interest. All of the kernels in (2.14) are bounded above and
square integrable and therefore satisfy Assumption 1 of Hansen (2008). Let 𝑓 be the
density of 𝑋. By assumption 0 < 𝛿 ≤ 𝑓(𝑥) ≤ 𝐵0 < ∞ for all 𝑥 ∈ 𝒳 . Moreover, our
choice of ℎ𝑁 satisfies ℎ𝑁 → 0.

Consider first the iid case. Then we have 𝛼(𝑘) = 0 = 𝑂(𝑘−𝛾) for 𝛾 = ∞ (𝛽 in
Hansen (2008)). Combined with boundedness conditions of 𝑌 ′ and 𝑓 (|𝑌 ′| ≤ 𝑔(𝑧) <
∞ and 𝛿 < 𝑓 < 𝐵0), we satisfy Assumption 2 of Hansen (2008). Setting 𝛾 = ∞,
𝑠 = ∞ in (17) of Hansen (2008) we get 𝜃 = 1. Therefore, since ℎ = 𝑂(𝑁−1/𝑑𝑥) we
have

(log log𝑁)4(log𝑁)2

𝑁 𝜃ℎ𝑑𝑥𝑁
→ 0.

Having satisfied all the conditions of Theorem 11 of Hansen (2008), we have that̂︀𝐶𝑁(𝑧|𝑥)→ E[𝑌 ′|𝑋 = 𝑥] a.s.
Now consider the 𝛼-mixing case. If the mixing conditions hold for 𝑋, 𝑌 then by

Lemma A.7, equal or lower mixing coefficients hold for 𝑋, 𝑌 ′. By letting 𝑠 = ∞
we have 𝛾 > 𝑑𝑥 + 3 > 2. Combined with boundedness conditions of 𝑌 ′ and 𝑓
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(|𝑌 ′| ≤ 𝑔(𝑧) < ∞ and 𝛿 < 𝑓 < 𝐵0), we satisfy Assumption 2 of Hansen (2008).
Setting 𝑞 = ∞, 𝑠 = ∞ in (16) and (17) of Hansen (2008) we get 𝜃 = 𝛾−𝑑𝑥−3

𝛾−𝑑𝑥+3
.

Therefore, since ℎ𝑁 = 𝑂(𝑁−𝜃/𝑑𝑥) we have

(log log𝑁)4(log𝑁)2

𝑁 𝜃ℎ𝑑𝑥𝑁
→ 0.

Having satisfied all the conditions of Theorem 11 of Hansen (2008), we have again
that ̂︀𝐶𝑁(𝑧|𝑥)→ E[𝑌 ′|𝑋 = 𝑥] a.s.

Since 𝑥 ∈ 𝒳 was arbitrary we have convergence for 𝜇𝑋-a.e.𝑥 a.s.
Now fix 𝐷 measurable. Consider a response variable 𝑌 ′ = I [𝑦 ∈ 𝐷]. Then E[𝑌 ′]

exists by measurability and 𝑌 ′ is bounded in [0, 1]. In addition, by Lemma A.7,
equal or lower mixing coefficients hold for 𝑋, 𝑌 ′ as hold for 𝑋, 𝑌 . Therefore applying
Theorem 11 of Hansen (2008) in the same manner again, �̂�𝑌 |𝑥,𝑁(𝐷) converges to
𝜇𝑌 |𝑥(𝐷) for 𝜇𝑋-a.e.𝑥 a.s.

Applying Lemma A.10 we obtain that assumptions for Lemma A.9 hold for 𝜇𝑋-
a.e.𝑥, a.s., which in turn yields the result desired.

Proof of Theorem 2.10. By assumption of 𝑌 and 𝑉 sharing no atoms, 𝛿 𝑎.𝑠.
= 𝛿 =

I [𝑌 ≤ 𝑉 ] is observable so let us replace 𝛿𝑖 by 𝛿𝑖 in (2.21). Let

𝐹 (𝑦|𝑥) = E
[︀
I [𝑌 > 𝑦]

⃒⃒
𝑋 = 𝑥

]︀
𝐹𝑁(𝑦|𝑥) =

𝑁∑︁
𝑖=1

I
[︀
𝑢𝑖 > 𝑦

]︀
𝑤Kaplan-Meier
𝑁,𝑖 (𝑥),

𝐻1(𝑦|𝑥) = E
[︁
I
[︁
𝑈 > 𝑦, 𝛿 = 1

]︁ ⃒⃒
𝑋 = 𝑥

]︁
�̂�1,𝑁(𝑦|𝑥) =

𝑁∑︁
𝑖=1

I
[︁
𝑢𝑖 > 𝑦, 𝛿𝑖 = 1

]︁
𝑤𝑁,𝑖(𝑥),

𝐻2(𝑦|𝑥) = E
[︀
I [𝑈 > 𝑦]

⃒⃒
𝑋 = 𝑥

]︀
�̂�2,𝑁(𝑦|𝑥) =

𝑁∑︁
𝑖=1

I
[︀
𝑢𝑖 > 𝑦

]︀
𝑤𝑁,𝑖(𝑥).

By assumption on conditional supports of 𝑌 and 𝑉 , sup{𝑦 : 𝐹 (𝑦 : 𝑥) > 0} ≤
sup{𝑦 : 𝐻2(𝑦 : 𝑥) > 0}. By the same arguments as in Theorem 2.6, 2.7, 2.8, or
2.9, we have that, for all 𝑦, �̂�1,𝑁(𝑦|𝑥) → 𝐻1(𝑦|𝑥), �̂�2,𝑁(𝑦|𝑥) → 𝐻2(𝑦|𝑥) a.s. for 𝜇𝑋-
a.e.𝑥. By assumption of conditional independence and by the main result of Beran
(1981), we have that, for all 𝑦, 𝐹𝑁(𝑦|𝑥) → 𝐹 (𝑦|𝑥) a.s. for 𝜇𝑋-a.e.𝑥. Since 𝒴 is a
separable space we can bring the “for all 𝑦” inside the statement, i.e., we have weak
convergence (c.f. Theorem 11.4.1 of Dudley (2002)): �̂�𝑌 |𝑥,𝑁 → 𝜇𝑌 |𝑥 a.s. for 𝜇𝑋-
a.e.𝑥 where �̂�𝑌 |𝑥,𝑁 is based on weights 𝑤Kaplan-Meier

𝑁,𝑖 (𝑥). Since costs are bounded, the
portmanteau lemma (see Theorem 2.1 of Billingsley (1999)) gives that for each 𝑧 ∈ 𝒵,̂︀𝐶𝑁(𝑧|𝑥) → E[𝑐(𝑧;𝑌 )|𝑋 = 𝑥] where ̂︀𝐶𝑁(𝑧|𝑥) is based on weights 𝑤Kaplan-Meier

𝑁,𝑖 (𝑥).
Applying Lemma A.10 we obtain that assumptions for Lemma A.9 hold for 𝜇𝑋-a.e.𝑥,
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a.s., which in turn yields the result desired.

A.2 Out-of-Sample Guarantees for Mixing Processes
and Proofs

First we establish a comparison lemma that is an extension of Theorem 4.12 of Ledoux
and Talagrand (1991) to our multivariate case.

Lemma A.11. Suppose that 𝑐 is 𝐿-Lipschitz uniformly over 𝑦 with respect to ∞-
norm:

sup
𝑧 ̸=𝑧′∈𝒵, 𝑦∈𝒴

𝑐(𝑧; 𝑦)− 𝑐(𝑧′; 𝑦)
max𝑘=1, ..., 𝑑 |𝑧𝑘 − 𝑧′𝑘|

≤ 𝐿 <∞.

Let 𝒢 = {(𝑥, 𝑦) ↦→ 𝑐 (𝑓(𝑥); 𝑦) : 𝑓 ∈ ℱ}. Then we have that ̂︀R𝑛(𝒢;𝑆𝑁) ≤ 𝐿̂︀R𝑛(ℱ ;𝑆𝑥𝑁)
and therefore also that R𝑛(𝒢) ≤ 𝐿R𝑛(ℱ). (Notice that one is a univariate complexity
and one multivariate and that the complexity of ℱ involves only the sampling of 𝑥.)

Proof. Write 𝜑𝑖(𝑧) = 𝑐(𝑧; 𝑦𝑖)/𝐿. Then by Lipschitz assumption and by part 2 of
Proposition 2.2.1 from Bertsekas et al. (2003), for each 𝑖, 𝜑𝑖 is 1-Lipchitz. We now
would like to show the inequality in

̂︀R𝑛(𝒢;𝑆𝑁) = 𝐿E

[︃
2

𝑛
sup
𝑧∈ℱ

𝑛∑︁
𝑖=1

𝜎𝑖0𝜑𝑖(𝑧(𝑥
𝑖))

⃒⃒⃒⃒
⃒ 𝑆𝑁

]︃

≤ 𝐿E

[︃
2

𝑛
sup
𝑧∈ℱ

𝑛∑︁
𝑖=1

𝑑∑︁
𝑘=1

𝜎𝑖𝑘𝑧𝑘(𝑥
𝑖)

⃒⃒⃒⃒
⃒ 𝑆𝑥𝑁

]︃
= 𝐿̂︀R𝑛(ℱ ;𝑆𝑥𝑁).

By conditioning and iterating, it suffices to show that for any 𝑇 ⊂ R × 𝒵 and 1-
Lipchitz 𝜑,

E
[︂
sup
𝑡,𝑧∈𝑇

(𝑡+ 𝜎0𝜑(𝑧))

]︂
≤ E

[︃
sup
𝑡,𝑧∈𝑇

(︃
𝑡+

𝑑∑︁
𝑘=1

𝜎𝑘𝑧𝑘

)︃]︃
. (A.2)

The expectation on the left-hand-side is over two values (𝜎0 = ±1) so there are two
choices of (𝑡, 𝑧), one for each scenario. Let any (𝑡(+1), 𝑧(+1)), (𝑡(−1), 𝑧(−1)) ∈ 𝑇 be given.
Let 𝑘* and 𝑠* = ±1 be such that

max
𝑘=1, ..., 𝑑

⃒⃒⃒
𝑧
(+1)
𝑘 − 𝑧(−1)

𝑘

⃒⃒⃒
= 𝑠*

(︁
𝑧
(+1)
𝑘* − 𝑧(−1)

𝑘*

)︁
.

Fix (𝑡(±1), 𝑧(±1)) = (𝑡(±𝑠
*), 𝑧(±𝑠

*)). Then, since these are feasible choices in the inner
supremum, choosing (𝑡, 𝑧)(𝜎) = (𝑡(𝜎𝑘* ), 𝑧(𝜎𝑘* )), we see that the right-hand-side of (A.2)
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has

RHS (A.2) ≥ 1

2
E

[︃
𝑡(+1) + 𝑧

(+1)
𝑘* +

∑︁
𝑘 ̸=𝑘*

𝜎𝑘𝑧
(+1)
𝑘

]︃

+
1

2
E

[︃
𝑡(−1) − 𝑧(−1)

𝑘* +
∑︁
𝑘 ̸=𝑘*

𝜎𝑘𝑧
(−1)
𝑘

]︃

=
1

2

(︂
𝑡(+1) + 𝑡(−1) + max

𝑘=1, ..., 𝑑

⃒⃒⃒
𝑧
(+1)
𝑘 − 𝑧(−1)

𝑘

⃒⃒⃒)︂
≥ 1

2

(︀
𝑡(+1) + 𝜑

(︀
𝑧(+1)

)︀)︀
+

1

2

(︀
𝑡(−1) − 𝜑

(︀
𝑧(−1)

)︀)︀
where the last inequality is due to the Lipschitz condition. Since true for any
(𝑡(±1), 𝑧(±1)) given, taking suprema over the left-hand-side completes the proof.

Next, the theorem below is a combination and restatement of the main results
of Bartlett and Mendelson (2003) (for iid) and Mohri and Rostamizadeh (2008) (for
mixing) about univariate Rademacher complexities. These are mostly direct result of
McDiarmid’s inequality.

Theorem A.12. Consider a class 𝒢 of functions 𝒰 → R that are bounded: |𝑔(𝑢)| ≤ 𝑔
∀𝑔 ∈ 𝒢, 𝑢 ∈ 𝒰 . Consider a sample 𝑆𝑛 = (𝑢1, . . . , 𝑢𝑁) of some random variable
𝑇 ∈ 𝒯 . Fix 𝛿 > 0. If 𝑆𝑁 is generated by IID sampling, let 𝛿′ = 𝛿′′ = 𝛿 and
𝜈 = 𝑁 . If 𝑆𝑁 comes from a 𝛽-mixing process, fix some 𝑡, 𝜈 such that 2𝑡𝜈 = 𝑁 , let
𝛿′ = 𝛿/2− (𝜈 − 1)𝛽(𝑡) and 𝛿′′ = 𝛿/2− 2(𝜈 − 1)𝛽(𝑡). Then (only for 𝛿′ > 0 or 𝛿′′ > 0
where they appear), we have that with probability 1− 𝛿,

E [𝑔(𝑇 )] ≤ 1

𝑁

𝑁∑︁
𝑖=1

𝑔(𝑢𝑖) + 𝑔
√︀

log(1/𝛿′)/2𝜈 +R𝜈(𝒢) ∀𝑔 ∈ 𝒢, (A.3)

and that, again, with probability 1− 𝛿,

E [𝑔(𝑇 )] ≤ 1

𝑁

𝑁∑︁
𝑖=1

𝑔(𝑢𝑖) + 3𝑔
√︀

log(2/𝛿′)/2𝜈 + ̂︀R𝜈(𝒢) ∀𝑔 ∈ 𝒢. (A.4)

Now, we can prove Theorem 2.13 and extend it to the case of data generated by
a mixing process.

Proof of Theorem 2.13. Apply Theorem A.12 to the random variable 𝑈 = (𝑋, 𝑌 )
and function class 𝒢 = {(𝑥, 𝑦) ↦→ 𝑐 (𝑓(𝑥); 𝑦) : 𝑓 ∈ ℱ}. Note that by assumption we
have boundedness of functions in 𝒢 by the constant 𝑐. Bound the complexity of 𝒢
by that of ℱ using Lemma A.11 and the assumption of 𝑐(𝑧; 𝑦) being 𝐿-Lipschitz.
Equations (A.3) and (A.4) hold for every 𝑔 ∈ 𝒢 and hence for every 𝑓 ∈ ℱ and
𝑔(𝑥, 𝑦) = 𝑐 (𝑓(𝑥); 𝑦), of which the expectation is the expected costs of the decision
rule 𝑓 .
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Next, we prove our bounds on the complexities of the function classes we consider.

Proof of Lemma 2.14. Consider ℱ𝑘 = {𝑧𝑘(·) : 𝑧 ∈ ℱ} = {𝑧𝑘(𝑥) = 𝑤𝑇𝑥 : ||𝑤||𝑝 ≤
𝑅
𝛾𝑘
}, the projection of ℱ onto the 𝑘th coordinate. Then ℱ ⊂ ℱ1 × · · · × ℱ𝑑𝑧 and

R𝑁(ℱ) ≤
∑︀𝑑𝑧

𝑘=1 R𝑁(ℱ𝑘). The latter right-hand-side complexities are the common
univariate Rademacher complexities. Applying Theorem 1 of Kakade et al. (2008) to

each component we get R𝑁(ℱ𝑘) ≤ 2𝑀
√︁

𝑝−1
𝑁

𝑅
𝛾𝑘

.

Proof of Lemma 2.15. Let 𝑞 be 𝑝’s conjugate exponent (1/𝑝 + 1/𝑞 = 1). In terms
of vector norms on 𝑣 ∈ R𝑑, if 𝑞 ≥ 2 then ||𝑣||𝑝 ≤ ||𝑣||2 and if 𝑞 ≤ 2 then ||𝑏||𝑝 ≤
𝑑1/2−1/𝑝 ||𝑣||2. Let 𝐹 be the matrix 𝐹𝑗𝑖 = 𝑥𝑖𝑗. Note that 𝐹𝜎 ∈ R𝑑𝑥×𝑑𝑧 . By Jensen’s
inequality and since Schatten norms are vector norms on singular values,

̂︀R2
𝑁(ℱ ;𝑆𝑥𝑁) ≤

4

𝑁2
E

[︃
sup

||𝑊 ||𝑝≤𝑅
Trace (𝑊𝐹𝜎)2

⃒⃒⃒⃒
𝑆𝑥𝑁

]︃

=
4𝑅2

𝑁2
E
[︁
||𝐹𝜎||2𝑞

⃒⃒
𝑆𝑥𝑁

]︁
≤ 4𝑅2

𝑁2
max

{︁
min {𝑑𝑧, 𝑑𝑥}1−2/𝑝 , 1

}︁
E
[︀
||𝐹𝜎||22

⃒⃒
𝑆𝑥𝑁
]︀

≤ 4𝑅2

𝑁2
max

{︀
𝑑1−2/𝑝
𝑧 , 1

}︀
E
[︀
||𝐹𝜎||22

⃒⃒
𝑆𝑥𝑁
]︀
.

The first result follows because

1

𝑁
E
[︀
||𝐹𝜎||22

⃒⃒
𝑆𝑥𝑁
]︀
=

1

𝑛

𝑑𝑧∑︁
𝑘=1

𝑑𝑥∑︁
𝑗=1

𝑁∑︁
𝑖,𝑖′=1

𝑥𝑖𝑗𝑥
𝑖′

𝑗 E [𝜎𝑖𝑘𝜎𝑖′𝑘]

=
𝑑𝑧
𝑁

𝑁∑︁
𝑖=1

𝑑𝑥∑︁
𝑗=1

(𝑥𝑖𝑗)
2 = 𝑑𝑧 ̂︀E𝑁 ||𝑥||22

The second result follows by applying Jensen’s inequality again to pass the expectation
over 𝑆𝑛 into the square.

A.3 Proofs of Tractability Results

Proof of Theorem 2.1. Let 𝐼 = {𝑖 : 𝑤𝑁,𝑖(𝑥) > 0}, 𝑤 = (𝑤𝑁,𝑖(𝑥))𝑖∈𝐼 . Rewrite (2.3)
as min𝑤𝑇 𝜃 over (𝑧, 𝜃) ∈ R𝑑×𝑛0 subject to 𝑧 ∈ 𝒵 and 𝜃𝑖 ≥ 𝑐(𝑧; 𝑦𝑖) ∀𝑖 ∈ 𝐼. Weak
optimization of a linear objective over a closed convex body is reducible to weak
separation via the ellipsoid algorithm (see Grotschel et al. (1993)). A weak separation
oracle for 𝒵 is assumed given. To separate over the 𝑖th cost constraint at fixed 𝑧′, 𝜃′𝑖
call the evaluation oracle to check violation and if violated call the subgradient oracle
to get 𝑠 ∈ 𝜕𝑧𝑐(𝑧′; 𝑦𝑖) with ||𝑠||∞ ≤ 1 and produce the cut 𝜃𝑖 ≥ 𝑐(𝑧′; 𝑦𝑖)+𝑠𝑇 (𝑧−𝑧′).
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Proof of Theorem 2.11. In the case of (2.22), 𝑧(𝑥𝑖) = 𝑊𝑥𝑖. By computing the norm
of 𝑊 we have a trivial weak membership algorithm for the norm constraint and hence
by Theorems 4.3.2 and 4.4.4 of Grotschel et al. (1993) we have a weak separation
algorithm. By adding affine constraints 𝜁𝑖𝑗 = 𝑧𝑗(𝑥

𝑖), all that is left is to separate over
constraints of the form 𝜃𝑖 ≥ 𝑐(𝜁𝑖; 𝑦

𝑖), which can be done as in the proof of Theorem
2.1.

A.4 Omitted Details from Section 2.1.1

A.4.1 Portfolio Allocation Example

In our portfolio allocation example, we consider constructing a portfolio with 𝑑𝑦 =
𝑑𝑧 = 12 securities. We simulate the observation of 𝑑𝑥 = 3 market factors 𝑋 that,
instead of iid, evolve as a 3-dimensioanl ARMA(2,2) process:

𝑋(𝑡)− Φ1𝑋(𝑡− 1)− Φ2𝑋(𝑡− 2) = 𝑈(𝑡) + Θ1𝑈(𝑡− 1) + Θ2𝑈(𝑡− 2)

where 𝑈 ∼ 𝒩 (0,Σ𝑈) are innovations and

(Σ𝑈)𝑖𝑗 =

(︂
I [𝑖 = 𝑗]

8

7
− (−1)𝑖+𝑗 1

7

)︂
0.05,

Φ1 =

⎛⎝ 0.5 −0.9 0
1.1 −0.7 0
0 0 0.5

⎞⎠ , Φ2 =

⎛⎝ 0. −0.5 0
−0.5 0 0
0 0 0

⎞⎠ ,

Θ1 =

⎛⎝ 0.4 0.8 0
−1.1 −0.3 0
0 0 0

⎞⎠ , Θ2 =

⎛⎝ 0 −0.8 0
−1.1 0 0
0 0 0

⎞⎠ .

We suppose the returns are generated according to a factor model 𝑌𝑖 = 𝐴𝑇𝑖 (𝑋 + 𝛿𝑖/4)+(︀
𝐵𝑇
𝑖 𝑋
)︀
𝜖𝑖, where 𝐴𝑖 is the mean-dependence of the 𝑖th security on these factors with

some idiosyncratic noise, 𝐵𝑖 the variance-dependence, and 𝜖𝑖 and 𝛿𝑖 are independent
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Figure A-1: Network Data for the Shipment Planning Example
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𝐷𝑇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.15 1.3124 1.85 1.3124
0.50026 0.93408 1.7874 1.6039
0.93408 0.50026 1.6039 1.7874
1.3124 0.15 1.3124 1.85
1.6039 0.50026 0.93408 1.7874
1.7874 0.93408 0.50026 1.6039
1.85 1.3124 0.15 1.3124
1.7874 1.6039 0.50026 0.93408
1.6039 1.7874 0.93408 0.50026
1.3124 1.85 1.3124 0.15
0.93408 1.7874 1.6039 0.50026
0.50026 1.6039 1.7874 0.93408

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(b) The distance matrix

standard Gaussian idiosyncratic contributions. For 𝐴 and 𝐵 we use

𝐴 = 2.5%×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8
0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8
0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8
0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝐵 = 7.5%×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 −1
−1 0 −1
−1 −1 0
0 −1 1
−1 0 1
−1 1 0
0 1 −1
1 0 −1
1 −1 0
0 1 1
1 0 1
1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Marginally, all of the returns have mean 0% and standard deviations 20∼30%.

In our objective, we use 𝜆 = 0 and 𝜖 = 0.15, i.e., we minimize the conditional
value at risk at level 15%.

A.4.2 Shipment Planning Example

In our shipment planning example, we consider stocking 𝑑𝑧 = 4 warehouses to serve
𝑑𝑦 = 12 locations. We take locations spaced evenly on the 2-dimensional unit circle
and warehouses spaced evenly on the circle of radius 0.85. The resulting network and
its associated distance matrix are shown in Figure A-1. We suppose shipping costs
from warehouse 𝑖 to location 𝑗 are 𝑐𝑖𝑗 = $10𝐷𝑖𝑗 and that production costs are $5 per
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unit when done in advance and $100 per unit when done last minute.
We consider observing 𝑑𝑥 = 3 demand-predictive features 𝑋. We simulate 𝑋 in

the same manner as in the portfolio allocation example. We simulate demands as

𝑌𝑖 = 100max{0, 𝐴𝑇𝑖 (𝑋 + 𝛿𝑖/4) +
(︀
𝐵𝑇
𝑖 𝑋
)︀
𝜖𝑖}

with 𝐴, 𝐵, 𝛿, 𝜖 as in the portfolio allocation example.
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Appendix B

Appendix to Chapter 3

B.1 Omitted proofs

Proof of Theorem 3.16. Assumption 3.8 gives 𝑅(𝑝) = E
[︀
E
[︀
𝑟(𝑃 )𝐷

⃒⃒
𝑃 = 𝑝,𝑋

]︀]︀
, i.e.

profit is given by taking a partial mean with 𝑃 = 𝑝 fixed of the regression of 𝑟(𝑃 )𝐷 on
𝑃 and𝑋. Partial means of kernel estimators is studied in Newey (1994). Assumptions
3.13, 3.14, and 3.15 imply the assumptions of Theorem 4.1 of Newey (1994), with a
trivial constant trimming function. Applying the Theorem for each fixed 𝑝 ∈ 𝒫 , we
get √︀

𝑛ℎ𝑛(𝑅(𝑝)−𝑅𝑛(𝑝))
𝑑−→ 𝒩 (0, 𝜂𝑝) ∀𝑝 ∈ 𝒫 ,

where 𝜂𝑝 is a paraphrasing of the asymptotic variance derived therein.
Optimizing partial means of kernel estimators is studied in Flores (2005). As-

sumptions 3.13, 3.14, and 3.15 imply the assumptions of Theorem 3 of Flores (2005).
Applying the Theorem, we get√︀

𝑛ℎ3𝑛(𝑝
* − 𝑝𝑛)

𝑑−→ 𝒩
(︂
0,

𝜂′

𝑅′′(𝑝*)2

)︂
, (B.1)

paraphrasing the asymptotic variance.
By Assumption 3.14, 𝑅(𝑝) is twice continuously differentiable. Using Taylor’s

theorem to expand 𝑅(𝑝) around 𝑝 = 𝑝*, there exists 𝑝𝑛 ∈ [min(𝑝*, 𝑝𝑛), max(𝑝*, 𝑝𝑛)]
such that

𝑅(𝑝𝑛) = 𝑅(𝑝*) +𝑅′(𝑝*)(𝑝𝑛 − 𝑝*) +
1

2
𝑅′′(𝑝𝑛)(𝑝𝑛 − 𝑝*)2.

By first order optimality conditions, 𝑅′(𝑝*) = 0. Hence, rearranging, we have

𝑅(𝑝*)−𝑅(𝑝𝑛) = −
1

2
𝑅′′(𝑝𝑛)(𝑝𝑛 − 𝑝*)2. (B.2)

By continuous transformation of eq. (B.1), we have

(︀
𝑛ℎ3𝑛

)︀
(𝑝𝑛 − 𝑝*)2

𝑑−→ 𝜂′

𝑅′′(𝑝*)2
𝜒2
1. (B.3)
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Eq. (B.1) also implies 𝑝𝑛
P−→ 𝑝*, which also implies 𝑝𝑛

P−→ 𝑝* since 𝑝𝑛 is sand-
wiched between 𝑝𝑛 and 𝑝*. Since 𝑅′′(𝑝) is continuous, we also get by continuous
transformation that

𝑅′′(𝑝𝑛)
P−→ 𝑅′′(𝑝*). (B.4)

Combining eqs. (B.2)-(B.4), we get the desired result,

(︀
𝑛ℎ3𝑛

)︀
(𝑅(𝑝*)−𝑅(𝑝𝑛))

𝑑−→ −𝜂′

2𝑅′′(𝑝*)
𝜒2
1.

If 𝑛ℎ2𝑠+1
𝑛 → 0, then Assumptions 3.13, 3.14, and 3.15 also imply the assumptions

of Theorem 4 of Flores (2005) (with equal bandwidths). Applying the Theorem, we
get √︀

𝑛ℎ𝑛(𝑅(𝑝
*)−𝑅𝑛(𝑝𝑛))

𝑑−→ 𝒩 (0, 𝜂) ,

paraphrasing the asymptotic variance.

Proof of Theorem 3.17. We begin by showing that 𝐷(𝑝) ⊥⊥ 𝑃
⃒⃒
𝜑(𝑝,𝑋). On the one

hand we have

𝑓𝑃 |𝜑(𝑝,𝑋)(𝑝|𝑞) = E
[︀
𝛿(𝑃 − 𝑝)

⃒⃒
𝜑(𝑝,𝑋) = 𝑞

]︀
= E

[︀
E
[︀
𝛿(𝑃 − 𝑝)

⃒⃒
𝜑(𝑝,𝑋) = 𝑞,𝑋

]︀ ⃒⃒
𝜑(𝑝,𝑋) = 𝑞

]︀
= E

[︀
E
[︀
𝛿(𝑃 − 𝑝)

⃒⃒
𝑋
]︀ ⃒⃒
𝜑(𝑝,𝑋) = 𝑞

]︀
= E

[︀
𝜑(𝑝,𝑋)

⃒⃒
𝜑(𝑝,𝑋) = 𝑞

]︀
= 𝑞.

On the other hand, using weak ignorability, we have

𝑓𝑃 |𝜑(𝑝,𝑋),𝐷(𝑝)(𝑝|𝑞, 𝑑) = E
[︀
𝛿(𝑃 − 𝑝)

⃒⃒
𝜑(𝑝,𝑋) = 𝑞,𝐷(𝑝) = 𝑑

]︀
= E

[︀
E
[︀
𝛿(𝑃 − 𝑝)

⃒⃒
𝜑(𝑝,𝑋) = 𝑞,𝐷(𝑝) = 𝑑,𝑋

]︀ ⃒⃒
𝜑(𝑝,𝑋) = 𝑞,𝐷(𝑝) = 𝑑

]︀
= E

[︀
E
[︀
𝛿(𝑃 − 𝑝)

⃒⃒
𝐷(𝑝) = 𝑑,𝑋

]︀ ⃒⃒
𝜑(𝑝,𝑋) = 𝑞,𝐷(𝑝) = 𝑑

]︀
= E

[︀
E
[︀
𝛿(𝑃 − 𝑝)

⃒⃒
𝑋
]︀ ⃒⃒
𝜑(𝑝,𝑋) = 𝑞,𝐷(𝑝) = 𝑑

]︀
= E

[︀
𝜑(𝑝,𝑋)

⃒⃒
𝜑(𝑝,𝑋) = 𝑞,𝐷(𝑝) = 𝑑

]︀
= 𝑞.

Equality between the two conditional probabilities implies the desired independence.
Using this independence and then plugging in 𝑃 = 𝑝, we have

E
[︀
𝐷(𝑝)

⃒⃒
𝜑(𝑝,𝑋) = 𝑞

]︀
= E

[︀
𝐷(𝑝)

⃒⃒
𝑃 = 𝑝, 𝜑(𝑝,𝑋)

]︀
= E

[︀
𝐷
⃒⃒
𝑃 = 𝑝,𝑄 = 𝑞

]︀
= 𝑑(𝑝, 𝑞).

By iterated expectations, we get

E [𝐷(𝑝)] = E
[︀
E
[︀
𝐷(𝑝)

⃒⃒
𝜑(𝑝,𝑋)

]︀]︀
= E [𝑑(𝑝, 𝜑(𝑝,𝑋))]

as desired.
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Proof of Theorem 3.21. The proof follows the rough outline of the proof of Theo-
rem 2 of Besbes et al. (2010), but applied to our testing case and non-experimental
estimators.

Decompose the test statistic 𝜌𝑛 into three terms:

𝜌𝑛 = 𝑅𝑛(𝑝𝑛)−𝑅𝑛(𝑝𝑛) = 𝐴𝑛 +𝐵𝑛 + 𝐶𝑛,

where

𝐴𝑛 = 𝑅𝑛(𝑝𝑛)−𝑅𝑛(𝑝
*),

𝐵𝑛 = 𝑅𝑛(𝑝
*)−𝑅𝑛(𝑝),

𝐶𝑛 = 𝑅𝑛(𝑝)−𝑅𝑛(𝑝𝑛).

We begin by showing that (𝑛ℎ3𝑛)𝐴𝑛
𝑑−→ Γ𝜒2

1. By Assumption 3.13, we have that
𝑅𝑛(𝑝) is twice continuously differentiable. Thus, using Taylor’s theorem to expand
𝑅𝑛(𝑝) around 𝑝 = 𝑝𝑛, we get that there exists 𝑝𝑛 ∈ [min(𝑝*, 𝑝𝑛), max(𝑝*, 𝑝𝑛)] such
that

𝑅𝑛(𝑝
*) = 𝑅𝑛(𝑝𝑛) +𝑅

′
𝑛(𝑝𝑛)(𝑝

* − 𝑝𝑛) +
1

2
𝑅

′′
𝑛(𝑝𝑛)(𝑝

* − 𝑝𝑛)2.

By first order optimality conditions, 𝑅′
𝑛(𝑝𝑛) = 0. Hence, rearranging, we have

𝐴𝑛 = −1

2
𝑅

′′
𝑛(𝑝𝑛)(𝑝

* − 𝑝𝑛)2. (B.5)

Next we show that 𝑅′′
𝑛(𝑝𝑛)

P−→ 𝑅′′(𝑝*). Note that⃒⃒⃒
𝑅

′′
𝑛(𝑝𝑛)−𝑅′′(𝑝*)

⃒⃒⃒
≤
⃒⃒⃒
𝑅

′′
𝑛(𝑝𝑛)−𝑅′′(𝑝𝑛)

⃒⃒⃒
+ |𝑅′′(𝑝𝑛)−𝑅′′(𝑝*)| . (B.6)

Assumptions 3.13, 3.14, and 3.15 imply the assumptions of Lemma 5.1 of Newey
(1994) applied to 𝑅′′(𝑝), which in turn yields the uniform convergence in probability
of 𝑅′′

𝑛(𝑝) over 𝒫 since it is compact by Assumption 3.14. Hence,⃒⃒⃒
𝑅

′′
𝑛(𝑝𝑛)−𝑅′′(𝑝𝑛)

⃒⃒⃒
≤ sup

𝑝∈𝒫

⃒⃒⃒
𝑅

′′
𝑛(𝑝)−𝑅′′(𝑝)

⃒⃒⃒
P−→ 0. (B.7)

By Theorem 3.16, 𝑝𝑛
P−→ 𝑝*. Because 𝑝𝑛 is sandwiched between 𝑝𝑛 and 𝑝*, we also

get 𝑝𝑛
P−→ 𝑝*. Since 𝑅′′(𝑝) is continuous by Assumption 3.13, we have

|𝑅′′(𝑝𝑛)−𝑅′′(𝑝*)| P−→ 0 (B.8)

by continuous transformation of the former. Combining eqs. (B.6)-(B.8), we get

𝑅
′′
𝑛(𝑝𝑛)

P−→ 𝑅′′(𝑝*). (B.9)
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By continuous transformation of the result of Theorem 3.16 (eq. (B.1)), we have

(︀
𝑛ℎ3𝑛

)︀
(𝑝𝑛 − 𝑝*)2

𝑑−→ 𝜂′

𝑅′′(𝑝*)2
𝜒2
1. (B.10)

Combining eqs. (B.5)-(B.10), we get

(︀
𝑛ℎ3𝑛

)︀
𝐴𝑛

𝑑−→ −𝜂′

2𝑅′′(𝑝*)
𝜒2
1 = Γ𝜒2

1.

Next, we show that (𝑛ℎ3𝑛)𝐶𝑛
P−→ 0. By Assumption 3.13, we have that 𝑅𝑛(𝑝)

is twice continuously differentiable. Thus, using Taylor’s theorem to expand 𝑅𝑛(𝑝)
around 𝑝 = 𝑝, we get that there exists 𝑝′𝑛 ∈ [min(𝑝, 𝑝𝑛), max(𝑝, 𝑝𝑛)] such that

𝑅𝑛(𝑝𝑛) = 𝑅𝑛(𝑝) +𝑅
′
𝑛(𝑝)(𝑝𝑛 − 𝑝) +

1

2
𝑅

′′
𝑛(𝑝

′
𝑛)(𝑝𝑛 − 𝑝)2.

Rearranging, we have(︀
𝑛ℎ3𝑛

)︀
𝐶𝑛 = −ℎ3/2𝑛

(︁√︀
𝑛ℎ3𝑛𝑅

′
𝑛(𝑝)

)︁ (︀√
𝑛(𝑝𝑛 − 𝑝)

)︀
− 1

2
ℎ3𝑛𝑅

′′
𝑛(𝑝

′
𝑛)
(︀√

𝑛(𝑝𝑛 − 𝑝)
)︀2
. (B.11)

By Assumption 3.20, we have that
√
𝑛(𝑝𝑛 − 𝑝) = 𝑂𝑝(1), and hence also

(︀√
𝑛(𝑝𝑛 − 𝑝)

)︀2
= 𝑂𝑝(1). (B.12)

Applying Theorem 4 of Newey (1994) we get the convergence in distribution of√︀
𝑛ℎ3𝑛

(︁
𝑅

′
𝑛(𝑝)−𝑅′(𝑝)

)︁
for any fixed 𝑝, including 𝑝 and hence we have√︀

𝑛ℎ3𝑛𝑅
′
𝑛(𝑝) = 𝑂𝑝(1). (B.13)

Next we show that 𝑅′′
𝑛(𝑝

′
𝑛) = 𝑂𝑝(1). Note that⃒⃒⃒

𝑅
′′
𝑛(𝑝

′
𝑛)−𝑅′′(𝑝)

⃒⃒⃒
≤
⃒⃒⃒
𝑅

′′
𝑛(𝑝

′
𝑛)−𝑅′′(𝑝′𝑛)

⃒⃒⃒
+ |𝑅′′(𝑝′𝑛)−𝑅′′(𝑝)| . (B.14)

As before, 𝑅′′
𝑛(𝑝) converges uniformly to 𝑅′′(𝑝) in probability over 𝒫 and so⃒⃒⃒

𝑅
′′
𝑛(𝑝

′
𝑛)−𝑅′′(𝑝′𝑛)

⃒⃒⃒
≤ sup

𝑝∈𝒫

⃒⃒⃒
𝑅

′′
𝑛(𝑝)−𝑅′′(𝑝)

⃒⃒⃒
P−→ 0. (B.15)

By Assumption 3.20, 𝑝𝑛
P−→ 𝑝. Because 𝑝′𝑛 is sandwiched between 𝑝𝑛 and 𝑝, we also

get 𝑝′𝑛
P−→ 𝑝. Since 𝑅′′(𝑝) is continuous by Assumption 3.13, we have

|𝑅′′(𝑝′𝑛)−𝑅′′(𝑝)| P−→ 0 (B.16)
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by continuous transformation of the former. Combining eqs. (B.14)-(B.16), we get

𝑅
′′
𝑛(𝑝

′
𝑛)

P−→ 𝑅′′(𝑝). (B.17)

Combining eqs. (B.11)-(B.17) gives (𝑛ℎ3𝑛)𝐶𝑛 = −ℎ3/2𝑛 𝑂𝑝(1) − ℎ3𝑛𝑂𝑝(1). Hence, be-
cause ℎ𝑛 → 0, we get (𝑛ℎ3𝑛)𝐶𝑛

P−→ 0.
Finally, we treat 𝐵𝑛. Under 𝐻0, 𝐵𝑛 = 0 because unique optimizer (Assump-

tion 3.14) and 𝑅(𝑝*) = 𝑅(𝑝) (𝐻0) imply 𝑝* = 𝑝. Next, we show that under 𝐻1,
(𝑛ℎ3𝑛)𝐵𝑛

P−→ ∞. By applying the first results of Theorem 3.16 twice, we have that
𝐵𝑛

P−→ 𝑅(𝑝*)−𝑅(�̂�). Since 𝑘 ≥ 0, Assumption 3.13 implies 𝑛ℎ5𝑛/ log(𝑛)→∞, which,
since we also assume ℎ𝑛 → 0, implies 𝑛ℎ3𝑛 → ∞. Hence, since 𝑅(𝑝*) − 𝑅(�̂�) > 0

under 𝐻1, we have that (𝑛ℎ3𝑛)𝐵𝑛
P−→∞.
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Appendix C

Appendix to Chapter 4

C.1 Computing a threshold 𝑄𝐶𝑁
(𝛼)

We provide two ways to compute 𝑄𝐶𝑁
(𝛼) for use with the LCX-based GoF test. One

is an exact, closed form formula, but which may be loose. Another uses the bootstrap
to compute a tighter, but approximate threshold.

The theorem below employs a bound on E𝐹
[︀
||𝜉||22

]︀
to provide a valid threshold.

This bound could either stem from known support bounds or from changing (4.14)
to a two-sided hypothesis with two-sided confidence interval, using the lower bound
as in (4.16) and the upper bound in (C.2) given below.

Theorem C.1. Let 𝑁 ≥ 2. Suppose that with probability at least 1−𝛼2, E𝐹
[︀
||𝜉||22

]︀
≤

𝑄𝑅𝑁
(𝛼2). Let 𝛼1 ∈ (0, 1) be given and suppose 𝐹0 ⪯LCX 𝐹 . Then, with probability at

least 1− 𝛼1 − 𝛼2,

E𝐹
[︀
||𝜉||22

]︀
≤ 𝑄𝑅𝑁

(𝛼2) and

𝐶𝑁(𝐹0) ≤
(︀
1 +𝑄𝑅𝑁

(𝛼2)
)︀(︂

1 +
𝑝

2− 𝑝

)︂
2

1
2
+ 1

𝑝

𝑁1− 1
𝑝

(C.1)

×

√︃
𝑑+ 1 + (𝑑+ 1) log

(︂
𝑁

𝑑+ 1

)︂
+ log

(︂
4

𝛼1

)︂
, (C.2)

where

𝑝 =
1

2

(︂√︁
log(256) + 8 log (𝑁) + (log (2𝑁))2 − log (2𝑁)

)︂
∈ (1, 2). (C.3)

Hence, defining 𝑄𝐶𝑁
(𝛼1) equal to the right-hand side of (C.2), we get a valid threshold

for 𝐶𝑁 in testing 𝐹0 ⪯L𝐶𝑋 𝐹 at level 𝛼1.

Proof. Fix any 𝑝 ∈ (1, 2). Since

𝒮 =
{︀{︀
𝜉 ∈ Ξ : max

{︀
𝑎𝑇 𝜉 − 𝑏, 0

}︀
≤ 𝑡
}︀
: ||𝑎||1 + |𝑏| ≤ 1, 𝑡 ∈ R

}︀
is contained in the class of the empty set and all halfspaces, it has Vapnik-Chervonenkis
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dimension at most 𝑑+1. Notice that for any ||𝑎||1 + |𝑏| ≤ 1, 0 ≤ max
{︀
𝑎𝑇 𝜉 − 𝑏, 0

}︀
≤

max {1, ||𝜉||∞} ≤ max {1, ||𝜉||2}. Therefore E𝐹
[︁
max

{︀
𝑎𝑇 𝜉 − 𝑏, 0

}︀2]︁ ≤ 1 + E𝐹
[︀
||𝜉||22

]︀
and

∫︁ ∞

0

(︀
P𝐹
(︀
max

{︀
𝑎𝑇 𝜉 − 𝑏, 0

}︀
> 𝑡
)︀)︀1/𝑝

𝑑𝑡 ≤ 1 +

∫︁ ∞

1

(︁
E𝐹
[︁
max

{︀
𝑎𝑇 𝜉 − 𝑏, 0

}︀2]︁)︁1/𝑝
𝑡2/𝑝

𝑑𝑡

≤
(︀
1 + E𝐹

[︀
||𝜉||22

]︀)︀1/𝑝(︂
1 +

𝑝

2− 𝑝

)︂
≤
(︀
1 + E𝐹

[︀
||𝜉||22

]︀)︀(︂
1 +

𝑝

2− 𝑝

)︂
by Markov’s inequality and 1 < 𝑝 < 2. Observe

𝐶𝑁(𝐹0) ≤ sup
||𝑎||1+|𝑏|≤1

(︀
E𝐹0 [max

{︀
𝑎𝑇 𝜉 − 𝑏, 0

}︀
]− E𝐹 [max

{︀
𝑎𝑇 𝜉 − 𝑏, 0

}︀
]
)︀

(C.4)

+ sup
||𝑎||1+|𝑏|≤1

(︃
E𝐹 [max

{︀
𝑎𝑇 𝜉 − 𝑏, 0

}︀
]− 1

𝑁

𝑁∑︁
𝑖=1

max
{︀
𝑎𝑇 𝜉𝑖 − 𝑏, 0

}︀)︃

≤ sup
||𝑎||1+|𝑏|≤1

(︃
E𝐹 [max

{︀
𝑎𝑇 𝜉 − 𝑏, 0

}︀
]− 1

𝑁

𝑁∑︁
𝑖=1

max
{︀
𝑎𝑇 𝜉𝑖 − 𝑏, 0

}︀)︃
,

where the second inequality follows because 𝐹0 ⪯𝐿𝐶𝑋 𝐹 . By applying Theorem 5.2
of Vapnik (1998) to the bottom-rightmost end of (C.4), we conclude that (C.2) holds
for any 𝑝 ∈ (1, 2). The 𝑝 given in (C.3) optimizes the bound for 𝑁 ≥ 2.

Next we show how to bootstrap an approximate threshold 𝑄𝐶𝑁
(𝛼). Recall that we

seek a threshold 𝑄𝐶𝑁
(𝛼) such that P (𝐶𝑁(𝐹0) > 𝑄𝐶𝑁

(𝛼)) ≤ 𝛼 whenever 𝐹0 ⪯LCX 𝐹 .
Employing (C.4), we see that a sufficient threshold is the (1− 𝛼)th quantile of

sup
||𝑎||1+|𝑏|≤1

(︃
E𝐹 [max

{︀
𝑎𝑇 𝜉 − 𝑏, 0

}︀
]− 1

𝑁

𝑁∑︁
𝑖=1

max
{︀
𝑎𝑇 𝜉𝑖 − 𝑏, 0

}︀)︃
,

where 𝜉𝑖 are drawn IID from 𝐹 . The bootstrap Efron and Tibshirani (1993) approx-
imates this by replacing 𝐹 with the empirical distribution 𝐹𝑁 . In particular, given
an iteration count 𝐵, for 𝑡 = 1, . . . , 𝐵 it sets

𝑄𝑡 = sup
||𝑎||1+|𝑏|≤1

(︃
1

𝑁

𝑁∑︁
𝑖=1

max
{︀
𝑎𝑇 𝜉𝑖 − 𝑏, 0

}︀
− 1

𝑁

𝑁∑︁
𝑖=1

max
{︁
𝑎𝑇 𝜉𝑡,𝑖 − 𝑏, 0

}︁)︃
(C.5)

where 𝜉𝑡,𝑖 are drawn IID from 𝐹𝑁 , i.e., IID random choices from {𝜉1, . . . , 𝜉𝑁}. Then
the bootstrap approximates 𝑄𝐶𝑁

(𝛼) by the (1−𝛼)th quantile of {𝑄1, . . . , 𝑄𝐵}. How-
ever, it may be difficult to compute (C.5) as the problem is non-convex. Fortunately
(C.5) can be solved with a standard MILP formulation or by discretizing the space
and enumerating (the objective is Lipschitz).

In particular, our bootstrap algorithm for computing 𝑄𝐶𝑁
(𝛼) is as follows:

242



Input: 𝜉1, . . . , 𝜉𝑁 drawn from 𝐹 , significance 0 < 𝛼 < 1, precision 𝛿 > 0, iteration
count 𝐵
Output: Threshold 𝑄𝐶𝑁

(𝛼) such that P (𝐶𝑁(𝐹0) > 𝑄𝐶𝑁
(𝛼)) . 𝛼 whenever 𝐹0 ⪯LCX

𝐹 .

For 𝑡 = 1, . . . , 𝐵:

1. Draw 𝜉𝑡,1, . . . , 𝜉𝑡,𝑁 IID from 𝐹𝑁 .

2. Solve 𝑄𝑡 = sup
||𝑎||1+|𝑏|≤1

(︃
1

𝑁

𝑁∑︁
𝑖=1

max
{︀
𝑎𝑇 𝜉𝑖 − 𝑏, 0

}︀
− 1

𝑁

𝑁∑︁
𝑖=1

max
{︁
𝑎𝑇 𝜉𝑡,𝑖 − 𝑏, 0

}︁)︃
to precision 𝛿.

Sort 𝑄(1) ≤ · · · ≤ 𝑄(𝐵) and return 𝑄(⌈(1−𝛼)𝐵⌉) + 𝛿.

C.2 Omitted Proofs

Proof of Theorem 4.2. Fix any 𝑥 ∈ 𝑋. Let 𝜖 > 0 be given. By equicontinuity
of the cost at 𝑥 there is a 𝛿 > 0 such that any 𝑦 ∈ 𝑋 with ||𝑥− 𝑦|| ≤ 𝛿 has
|𝑐 (𝑥; 𝜉)− 𝑐 (𝑦; 𝜉)| ≤ 𝜖 for all 𝜉 ∈ Ξ. Fix any such 𝑦. Then

𝒞 (𝑦;ℱ) = sup
𝐹0∈ℱ

E𝐹0 [𝑐(𝑦; 𝜉)] ≤ sup
𝐹0∈ℱ

E𝐹0 [𝑐(𝑥; 𝜉)] + 𝜖 = 𝒞 (𝑥;ℱ) + 𝜖, (C.6)

𝒞 (𝑥;ℱ) = sup
𝐹0∈ℱ

E𝐹0 [𝑐(𝑥; 𝜉)] ≤ sup
𝐹0∈ℱ

E𝐹0 [𝑐(𝑦; 𝜉)] + 𝜖 = 𝒞 (𝑦;ℱ) + 𝜖. (C.7)

Let 𝑆 = {𝑥 ∈ 𝑋 : 𝒞 (𝑥;ℱ) < ∞}. By assumption 𝑥0 ∈ 𝑆, so 𝑆 ̸= ∅. (C.7) implies
that 𝑆 is closed relative to 𝑋, which is closed, and therefore closed relative to R𝑑𝑥 .
Since the objective is only finite on 𝑆 we restrict our attention to 𝑆. (C.6) and (C.7)
imply that 𝒞 (𝑥;ℱ) is continuous in 𝑥 on 𝑆.

If 𝑋 is compact then 𝑆 is compact. Suppose 𝑆 is not compact and let 𝑥𝑖 ∈ 𝑆 be
any sequence such that lim𝑖→∞ ||𝑥0 − 𝑥𝑖|| =∞. Then by coerciveness, 𝑐𝑖(𝜉) = 𝑐(𝑥𝑖; 𝜉)
diverges pointwise to infinity. Fix any 𝐹0 ∈ ℱ . Let 𝑐′𝑖(𝜉) = inf𝑗≥𝑖 𝑐𝑗(𝜉), which is
then pointwise monotone nondecreasing and pointwise divergent to infinity. Then,
by Lebesgue’s monotone convergence theorem, lim𝑖→∞ E𝐹0 [𝑐

′
𝑖(𝜉)] = ∞. Since 𝑐′𝑖 ≤ 𝑐𝑗

pointwise for any 𝑗 ≥ 𝑖, we have E𝐹0 [𝑐
′
𝑖(𝜉)] ≤ inf𝑗≥𝑖 E𝐹0 [𝑐𝑗(𝜉)] and therefore

∞ = lim
𝑖→∞

E𝐹0 [𝑐
′
𝑖(𝜉)] ≤ lim

𝑖→∞
inf
𝑗≥𝑖
E𝐹0 [𝑐𝑖(𝜉)] = lim inf

𝑖→∞
E𝐹0 [𝑐𝑖(𝜉)].

Thus 𝒞(𝑥;ℱ) ≥ E𝐹0 [𝑐(𝑥; 𝜉)] is also coercive in 𝑥 over 𝑆.
By the usual extreme value theorem, with either compactness or coerciveness, the

continuous 𝒞(𝑥;ℱ) attains its minimal (finite) value at an 𝑥 ∈ 𝑆 ⊆ 𝑋.

Proof of Proposition 4.4. Suppose that 𝑐(𝑥; 𝜉) → ∞ as 𝜉 → ∞. The case of un-
boundedness in the negative direction is similar. Let 𝑀 be given. Choose 𝜌 > 0
small so that 𝜉(𝑖) − 𝜉(𝑖−1) > 2𝜌 for all 𝑖. For 𝛿 > 0 and 𝜉′ ≥ 𝜉(𝑁) + 𝜌, let 𝐹𝛿,𝜉′ be the

243



measure with density function

𝑓(𝜉; 𝛿, 𝜉′) =

⎧⎪⎪⎨⎪⎪⎩
1/(2𝑁𝜌) 𝜉(𝑖) − 𝜌 ≤ 𝜉 ≤ 𝜉(𝑖) + 𝜌 for 1 ≤ 𝑖 ≤ 𝑁 − 1,
1/(2𝑁𝜌) 𝜉(𝑁) − 𝜌+ 𝛿𝜌 ≤ 𝜉 ≤ 𝜉(𝑁) + 𝜌− 𝛿𝜌,
1/(2𝑁𝜌) 𝜉′ ≤ 𝜉 ≤ 𝜉′ + 2𝛿𝜌,
0 otherwise.

Notice that for any 𝜉′, 𝐹0,𝜉′ (i.e., take 𝛿 = 0) minimizes 𝑆𝑁(𝐹0) over distributions 𝐹0.
Since 𝛼 > 0, 𝑄𝑆𝑁

(𝛼) is strictly greater than this minimum. Since 𝑆𝑁(𝐹𝛿,𝜉′) increases
continuously with 𝛿 independently of 𝜉′, there must exist 𝛿 > 0 small enough so that
𝐹𝛿,𝜉′ ∈ ℱ𝛼𝑆𝑁

for any 𝜉′ > 𝜉(𝑁) + 𝜌. By infinite limit of the cost function, there exists
𝜉′ > 𝜉(𝑁) + 𝜌 sufficiently large such that 𝑐(𝑥; 𝜉) ≥ 𝑀𝑁/𝛿 for all 𝜉 ≥ 𝜉′. Then, we
have 𝒞

(︀
𝑥;ℱ𝛼𝑆𝑁

)︀
≥ E𝐹𝛿,𝜉′

[𝑐(𝑥; 𝜉)] ≥ P (𝜉 ≥ 𝜉′)𝑀𝑁/𝛿 =𝑀 .
Since we have shown this for every 𝑀 > 0, we have 𝒞

(︀
𝑥;ℱ𝛼𝑆𝑁

)︀
=∞.

Proof of Proposition 4.8. We first prove that a uniformly consistent test is consistent.
Let 𝐺0 ̸= 𝐹 be given. Denote by 𝑑 be the Lévy-Prokhorov metric, which metrizes
weak convergence Billingsley (1999), and observe that 𝑑(𝐺0, 𝐹 ) > 0.

Next, define 𝑅𝑁 = sup𝐹0∈ℱ𝑁
𝑑(𝐹0, 𝐹 ). We claim that if the test is uniformly

consistent, then P (𝑅𝑁 → 0) = 1. Indeed, suppose for some sample path, 𝑅𝑁 ̸→ 0.
By the definition of the supremum, there must exist 𝛿 > 0 and a sequence 𝐹𝑁 ∈ ℱ𝑁
such that 𝑑(𝐹𝑁 , 𝐹 ) ≥ 𝛿 i.o. Since 𝑑 metrizes weak convergence, 𝐹𝑁 does not converge
to 𝐹 . However, 𝐹𝑁 ∈ ℱ𝑁 for all 𝑁 , i.e. it is never rejected, which contradicts what
must hold a.s. under uniform consistency.

Finally, since P (𝑅𝑁 → 0) = 1 and a.s. convergence implies convergence in prob-
ability, we have that P (𝑅𝑁 < 𝜖) → 1 for every 𝜖 > 0, and, in particular, for 𝜖 =
𝑑(𝐺0, 𝐹 ). Then, P (𝐺0 rejected) = P (𝐺0 /∈ ℱ𝑁) ≥ P (𝑅𝑁 < 𝑑(𝐺0, 𝐹 )) → 1. This
proves the first part of the proposition.

For the second part, we describe a test which is consistent but not uniformly
consistent. Consider testing a continuous distribution 𝐹 with the following univariate
GoF test:

Given data 𝜉1, . . . , 𝜉𝑁 drawn from 𝐹 and a hypothetical continuous distribution 𝐹0:
Let 𝑗 = ⌊log2𝑁⌋, 𝑖 = 𝑁 − 2𝑗.

If
𝑖

2𝑗
≤ 𝐹0(𝜉

1) ≤ 𝑖+ 1

2𝑗
then 𝐹0 is not rejected.

Otherwise, reject 𝐹0 if it is rejected by the KS test at level
𝛼

1− 2−𝑗

applied to the data 𝜉2, . . . , 𝜉𝑁 .
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Notice that under the null-hypothesis, the probability of rejection is

P(𝐹0 rejected ) = P
(︂
𝐹0(𝜉

1) ̸∈
[︂
𝑖

2𝑗
,
𝑖+ 1

2𝑗

]︂)︂
P(𝐹0 is rejected by the KS test )

= (1− 2−𝑗)
𝛼

1− 2−𝑗
= 𝛼,

where we’ve used that 𝜉1 is independent of the rest of the sample, and 𝐹0(𝜉
1) is

uniformly distributed for 𝐹0 continuous. Consequently, the test is a valid GoF test
and it has significance 𝛼.

We claim this test is also consistent. Specifically, consider any 𝐹0 ̸= 𝐹 . By
continuity of 𝐹0 and consistency of the KS test,

P (𝐹0 is rejected) = P
(︂
𝐹0(𝜉

1) ̸∈
[︂
𝑖

2𝑗
,
𝑖+ 1

2𝑗

]︂)︂
P (𝐹0 is rejected by the KS test) −→ 1.

However, the test is not uniformly consistent. Fix any continuous 𝐹0 ̸= 𝐹 and let

𝐹𝑁 =

{︂
𝐹0 if 𝑖

2𝑗
≤ 𝐹0(𝜉

1) ≤ 𝑖+1
2𝑗
,

𝐹𝑁 otherwise.

Observe that 0 ≤ 𝐹0(𝜉
1) ≤ 1 and [0, 1] =

⋃︀2𝑗−1
𝑖=0

[︀
𝑖
2𝑗
, 𝑖+1

2𝑗

]︀
. That is, for every 𝑗,

𝐹𝑁 = 𝐹0 at least once for 𝑁 ∈ {2𝑗, . . . , 2𝑗+1 − 1}. Therefore 𝐹𝑁 = 𝐹0 i.o, so it does
not converge weakly to 𝐹 . However, as constructed, 𝐹𝑁 is never rejected by the above
test. This is done for every sample path so the test cannot be uniformly consistent.

To prove Theorems 4.12 and 4.15 we first establish two useful results.

Proposition C.2. Suppose ℱ𝑁 is the confidence region of a uniformly consistent
test and that Assumptions (4.9) and (4.10) hold. Then, almost surely, E𝐹𝑁

[𝑐(𝑥; 𝜉)]→
𝐸𝐹 [𝑐(𝑥; 𝜉)] for any 𝑥 ∈ 𝑋, 𝐹𝑁 ∈ ℱ𝑁 .

Proof. Restrict to the a.s. event that (𝐹𝑁 ̸→ 𝐹 =⇒ 𝐹𝑁 /∈ ℱ𝑁 i.o). Fix 𝐹𝑁 ∈ ℱ𝑁 .
Then the contrapositive gives 𝐹𝑁 → 𝐹 . Fix 𝑥. If Ξ is bounded (Assumption 4.10a)
then the result follows from the portmanteau lemma (see for example Theorem 2.1
of Billingsley (1999)). Suppose otherwise (Assumption (4.10)b). Then E𝐹𝑁

[𝜑(𝜉)] →
E𝐹 [𝜑(𝜉)]. By Theorem 3.6 of Billingsley (1999), 𝜑(𝜉) is uniformly integrable over
{𝐹1, 𝐹2, . . . }. Since 𝑐(𝑥; 𝜉) = 𝑂(𝜑(𝜉)), it is also uniformly integrable over these. Then
the result follows by Theorem 3.5 of Billingsley (1999).

Proposition C.3. Suppose Assumption 4.9 holds and 𝒞(𝑥𝑁 ;ℱ𝑁) → E𝐹 [𝑐(𝑥; 𝜉)] for
any convergent sequence 𝑥𝑁 → 𝑥. Then (4.17) holds.

Proof. Let 𝐸 ⊆ 𝑋 compact be given and suppose sup𝑥∈𝐸 |𝒞(𝑥;ℱ𝑁)− E𝐹 [𝑐(𝑥; 𝜉)]| ̸→ 0
for contradiction. Then ∃𝜖 > 0 and 𝑥𝑁 ∈ 𝐸 such that |𝒞(𝑥𝑁 ;ℱ𝑁)− E𝐹 [𝑐(𝑥𝑁 ; 𝜉)]| ≥ 𝜖
i.o. This, combined with compactness, means that there exists a subsequence 𝑁1 <
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𝑁2 < · · · < 𝑁𝑘 → ∞ such that 𝑥𝑁𝑘
→ 𝑥 ∈ 𝐸 and |𝒞(𝑥𝑁𝑘

;ℱ𝑁𝑘
)− E𝐹 [𝑐(𝑥𝑁𝑘

; 𝜉)]| ≥ 𝜖
∀𝑘. Then,

0 < 𝜖 ≤ |𝒞(𝑥𝑁𝑘
;ℱ𝑁𝑘

)− E𝐹 [𝑐(𝑥𝑁𝑘
; 𝜉)]|

≤ |𝒞(𝑥𝑁𝑘
;ℱ𝑁𝑘

)− E𝐹 [𝑐(𝑥; 𝜉)]|+ |E𝐹 [𝑐(𝑥; 𝜉)]− E𝐹 [𝑐(𝑥𝑁𝑘
; 𝜉)]| .

By assumption, ∃𝑘1 such that |𝒞(𝑥𝑁𝑘
;ℱ𝑁𝑘

)− E𝐹 [𝑐(𝑥; 𝜉)]| ≤ 𝜖/4 ∀𝑘 ≥ 𝑘1. By equicon-
tinuity and 𝑥𝑁𝑘

→ 𝑥, ∃𝑘2 such that |𝑐(𝑥; 𝜉)− 𝑐(𝑥𝑁𝑘
; 𝜉)| ≤ 𝜖/4 ∀𝜉, 𝑘 ≥ 𝑘2. Then,

|E𝐹 [𝑐(𝑥; 𝜉)]− E𝐹 [𝑐(𝑥𝑁𝑘
; 𝜉)]| ≤ E𝐹 [|𝑐(𝑥; 𝜉)− 𝑐(𝑥𝑁𝑘

; 𝜉)|] ≤ 𝜖/4 ∀𝜉, 𝑘 ≥ 𝑘2.

Combining and considering 𝑘 = max {𝑘1, 𝑘2}, we get the contradiction 𝜖 ≤ 𝜖/2 for
strictly positive 𝜖.

We prove the “if” and “only if” sides of Theorem 4.12 separately.

Proofs of Theorem 4.15 and the “if ” side of Theorem 4.12. For either theorem restrict
to the a.s. event that

E𝐹𝑁
[𝑐(𝑥; 𝜉)]→ E𝐹 [𝑐(𝑥; 𝜉)] for every 𝑥 ∈ 𝑋, 𝐹𝑁 ∈ ℱ𝑁 (C.8)

(using Proposition C.2 for Theorem 4.12 or by assumption of 𝑐-consistency for The-
orem 4.15).

Let any convergent sequence 𝑥𝑁 → 𝑥 and 𝜖 > 0 be given. By equicontinu-
ity and 𝑥𝑁 → 𝑥, ∃𝑁1 such that |𝑐(𝑥𝑁 ; 𝜉)− 𝑐(𝑥; 𝜉)| ≤ 𝜖/2 ∀𝜉, 𝑁 ≥ 𝑁1. Then,
|𝒞(𝑥𝑁 ;ℱ𝑁)− 𝒞(𝑥;ℱ𝑁)| ≤ sup𝐹0∈ℱ𝑁

E𝐹0 [|𝑐(𝑥𝑁 ; 𝜉)− 𝑐(𝑥; 𝜉)|] ≤ 𝜖/2 ∀𝑁 ≥ 𝑁1. By def-
inition of supremum, ∃𝐹𝑁 ∈ ℱ𝑁 such that 𝒞(𝑥;ℱ𝑁) ≤ E𝐹𝑁

[𝑐(𝑥; 𝜉)] + 𝜖/4. By (C.8),
E𝐹𝑁

[𝑐(𝑥; 𝜉)] → E𝐹 [𝑐(𝑥; 𝜉)]. Hence, ∃𝑁2 such that |E𝐹𝑁
[𝑐(𝑥; 𝜉)]− E𝐹 [𝑐(𝑥; 𝜉)]| ≤ 𝜖/4

∀𝑁 ≥ 𝑁2. Combining these with

|𝒞(𝑥𝑁 ;ℱ𝑁)− E𝐹 [𝑐(𝑥; 𝜉)]| ≤ |𝒞(𝑥𝑁 ;ℱ𝑁)− 𝒞(𝑥;ℱ𝑁)|+ |𝒞(𝑥;ℱ𝑁)− E𝐹 [𝑐(𝑥; 𝜉)]| ,

we get
|𝒞(𝑥𝑁 ;ℱ𝑁)− E𝐹 [𝑐(𝑥; 𝜉)]| ≤ 𝜖 ∀𝑁 ≥ max {𝑁1, 𝑁2} .

Thus, by Proposition C.3, we get that (4.17) holds.
Let 𝐴𝑁 = argmin𝑥∈𝑋 𝒞(𝑥;ℱ𝑁). We now show that

⋃︀
𝑁 𝐴𝑁 is bounded. If 𝑋 is

compact (Assumption 4.11a) then this is trivial. Suppose 𝑋 is not compact (As-
sumption 4.11b). Using the same arguments as in the proof of Theorem 4.2, we
have in particular that lim||𝑥||→∞ E𝐹 [𝑐(𝑥; 𝜉)] = ∞, 𝑧stoch = min𝑥∈𝑋 E𝐹 [𝑐(𝑥; 𝜉)] < ∞,
that 𝐴 = argmin𝑥∈𝑋 E𝐹 [𝑐(𝑥; 𝜉)] is compact, and each 𝐴𝑁 is compact. Let 𝑥* ∈
𝐴. Fix 𝜖 > 0. By definition of supremum ∃𝐹𝑁 ∈ ℱ𝑁 such that 𝒞(𝑥*;ℱ𝑁) ≤
E𝐹𝑁

[𝑐(𝑥*; 𝜉)] + 𝜖. By (C.8), E𝐹𝑁
[𝑐(𝑥*; 𝜉)] → E𝐹 [𝑐(𝑥*; 𝜉)] = 𝑧stoch. Since true for any

𝜖 and since min𝑥∈𝑋 𝒞(𝑥;ℱ𝑁) ≤ 𝒞(𝑥*;ℱ𝑁), we have lim sup𝑁→∞min𝑥∈𝑋 𝒞(𝑥;ℱ𝑁) ≤
𝑧stoch. Now, suppose for contradiction that

⋃︀
𝑁 𝐴𝑁 is unbounded, i.e. there is a

subsequence 𝑁1 < 𝑁2 < · · · < 𝑁𝑘 → ∞ and 𝑥𝑁𝑘
∈ 𝐴𝑁𝑘

such that ||𝑥𝑁𝑘
|| → ∞.

Let 𝛿′ = lim sup𝑘→∞ inf𝜉 /∈𝐷 𝑐(𝑥𝑁𝑘
; 𝜉) ≥ lim inf𝑁→∞ inf𝜉 /∈𝐷 𝑐(𝑥𝑁 ; 𝜉) > −∞ and 𝛿 =
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min {0, 𝛿′}. By𝐷-uniform coerciveness, ∃𝑘0 such that 𝑐(𝑥𝑁𝑘
; 𝜉) ≥ (𝑧stoch+1−𝛿)/𝐹 (𝐷)

∀𝜉 ∈ 𝐷, 𝑘 ≥ 𝑘0. In the case of Theorem 4.12, let 𝐹𝑁 be any 𝐹𝑁 ∈ ℱ𝑁 . In
the case of Theorem 4.15, let 𝐹𝑁 be the empirical distribution 𝐹𝑁 = 𝐹𝑁 ∈ ℱ𝑁 .
In either case, we get 𝐹𝑁 → 𝐹 weakly. In particular, 𝐹𝑁(𝐷) → 𝐹 (𝐷). Then
E𝐹𝑁

[𝑐(𝑥𝑁𝑘
; 𝜉)] ≥ 𝐹𝑁(𝐷) × (𝑧stoch + 1 − 𝛿)/𝐹 (𝐷) + min {0, inf𝜉 /∈𝐷 𝑐(𝑥𝑁𝑘

; 𝜉)} ∀𝑘 ≥ 𝑘0.
Thus lim sup𝑁→∞ min𝑥∈𝑋 𝒞(𝑥;ℱ𝑁) ≥ lim sup𝑘→∞min𝑥∈𝑋 𝒞(𝑥;ℱ𝑁𝑘

) ≥ 𝑧stoch +1− 𝛿+
𝛿 = 𝑧stoch + 1, yielding the contradiction 𝑧stoch + 1 ≤ 𝑧stoch.

Thus ∃𝐴∞ compact such that 𝐴 ⊆ 𝐴∞, 𝐴𝑁 ⊆ 𝐴∞. Then, by (4.17),

𝛿𝑁 =

⃒⃒⃒⃒
min
𝑥∈𝑋
𝒞(𝑥;ℱ𝑁)−min

𝑥∈𝑋
E𝐹 [𝑐(𝑥; 𝜉)]

⃒⃒⃒⃒
=

⃒⃒⃒⃒
min
𝑥∈𝐴∞

𝒞(𝑥;ℱ𝑁)− min
𝑥∈𝐴∞

E𝐹 [𝑐(𝑥; 𝜉)]
⃒⃒⃒⃒

≤ sup
𝑥∈𝐴∞

|𝒞(𝑥;ℱ𝑁)− E𝐹 [𝑐(𝑥; 𝜉)]| → 0,

yielding (4.18). Let 𝑥𝑁 ∈ 𝐴𝑁 . Since 𝐴∞ is compact, 𝑥𝑁 has at least one convergent
subsequence. Let 𝑥𝑁𝑘

→ 𝑥 be any convergent subsequence. Suppose for contradiction
𝑥 /∈ 𝐴, i.e., 𝜖 = E𝐹 [𝑐(𝑥; 𝜉)] − 𝑧stoch > 0. Since 𝑥𝑁𝑘

→ 𝑥 and by equicontinuity, ∃𝑘1
such that |𝑐(𝑥𝑁𝑘

; 𝜉)− 𝑐(𝑥; 𝜉)| ≤ 𝜖/4 ∀𝜉, 𝑘 ≥ 𝑘1. Then, |E𝐹 [𝑐(𝑥𝑁𝑘
; 𝜉)]− E𝐹 [𝑐(𝑥; 𝜉)]| ≤

E𝐹 [|𝑐(𝑥𝑁𝑘
; 𝜉)− 𝑐(𝑥; 𝜉)|] ≤ 𝜖/4 ∀𝑘 ≥ 𝑘1. Also ∃𝑘2 such that 𝛿𝑁𝑘

≤ 𝜖/4 ∀𝑘 ≥ 𝑘2. Then,
for 𝑘 ≥ max {𝑘1, 𝑘2},

min
𝑥∈𝑋
𝒞(𝑥;ℱ𝑁𝑘

) = 𝒞(𝑥𝑁𝑘
;ℱ𝑁) ≥ E𝐹 [𝑐(𝑥𝑁𝑘

; 𝜉)]− 𝛿𝑁 ≥ E𝐹 [𝑐(𝑥; 𝜉)]− 𝜖/2 ≥ 𝑧stoch + 𝜖/2.

Taking limits, we contradict (4.18).

Proof of the “only if ” side of Theorem 4.12. Consider any Ξ bounded, 𝑅 = sup
𝜉∈Ξ
||𝜉|| <

∞. Let 𝑋 = R𝑑, and

𝑐1(𝑥; 𝜉) = ||𝑥||
(︁
2 + Re

(︁
𝑒𝑖𝑥

𝑇 𝜉
)︁)︁

, 𝑐2(𝑥; 𝜉) = ||𝑥||
(︁
2− Re

(︁
𝑒𝑖𝑥

𝑇 𝜉
)︁
+ 2
)︁
,

𝑐3(𝑥; 𝜉) = ||𝑥||
(︁
2 + Im

(︁
𝑒𝑖𝑥

𝑇 𝜉
)︁)︁

, 𝑐4(𝑥; 𝜉) = ||𝑥||
(︁
2− Im

(︁
𝑒𝑖𝑥

𝑇 𝜉
)︁
+ 2
)︁
.

Since |𝑐𝑖((𝑥, 𝑦), 𝜉)| ≤ 3 ||𝑥||, expectations exist. The gradient of each 𝑐𝑖 at 𝑥 has
magnitude bounded by 𝑅 ||𝑥||+3 uniformly over 𝜉, so equicontinuity is satisfied. Also,
lim||𝑥||→∞ 𝑐𝑖(𝑥, 𝑦; 𝜉) ≥ lim||𝑥||→∞ ||𝑥|| = ∞ uniformly over all 𝜉 ∈ Ξ and 𝑐𝑖(𝑥; 𝜉) ≥
0, so Assumption 4.11 is satisfied. Restrict to the a.s. event that (4.17) applies
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simultaneously for 𝑐1, 𝑐2, 𝑐3, 𝑐4. Then we have that, for every 𝑥 ∈ R𝑑,

2 ||𝑥||+ ||𝑥|| sup
𝐹0∈ℱ𝑁

Re
(︁
E𝐹0

[︁
𝑒𝑖𝑥

𝑇 𝜉
]︁)︁
−→ 2 ||𝑥||+ ||𝑥||Re

(︁
E𝐹
[︁
𝑒𝑖𝑥

𝑇 𝜉
]︁)︁

2 ||𝑥|| − ||𝑥|| inf
𝐹0∈ℱ𝑁

Re
(︁
E𝐹0

[︁
𝑒𝑖𝑥

𝑇 𝜉
]︁)︁
−→ 2 ||𝑥|| − ||𝑥||Re

(︁
E𝐹
[︁
𝑒𝑖𝑥

𝑇 𝜉
]︁)︁

2 ||𝑥||+ ||𝑥|| sup
𝐹0∈ℱ𝑁

Im
(︁
E𝐹0

[︁
𝑒𝑖𝑥

𝑇 𝜉
]︁)︁
−→ 2 ||𝑥||+ ||𝑥|| Im

(︁
E𝐹
[︁
𝑒𝑖𝑥

𝑇 𝜉
]︁)︁

2 ||𝑥|| − ||𝑥|| inf
𝐹0∈ℱ𝑁

Im
(︁
E𝐹0

[︁
𝑒𝑖𝑥

𝑇 𝜉
]︁)︁
−→ 2 ||𝑥|| − ||𝑥|| Im

(︁
E𝐹
[︁
𝑒𝑖𝑥

𝑇 𝜉
]︁)︁

This implies that sup𝐹0∈ℱ𝑁

⃒⃒⃒
E𝐹0

[︁
𝑒𝑖𝑥

𝑇 𝜉
]︁
− E𝐹

[︁
𝑒𝑖𝑥

𝑇 𝜉
]︁⃒⃒⃒
→ 0 for every 𝑥. Fix 𝐹𝑁 such

that 𝐹𝑁 ∈ ℱ𝑁 eventually. Then E𝐹𝑁

[︁
𝑒𝑖𝑥

𝑇 𝜉
]︁
→ E𝐹

[︁
𝑒𝑖𝑥

𝑇 𝜉
]︁

for every 𝑥. By the
Lévy continuity theorem, 𝐹𝑁 converge weakly to 𝐹 . This is the contrapositive of the
uniform consistency condition.

Proof of Theorem 4.16. In the case of finite support Ξ = {𝜉1, . . . , 𝜉𝑛}, total variation
metrizes weak convergence:

𝑑TV(𝑞, 𝑞
′) =

1

2

𝑛∑︁
𝑗=1

|𝑞(𝑗)− 𝑞′(𝑗)| .

Restrict to the almost sure event 𝑑TV(𝑝𝑁 , 𝑝) → 0 (see Theorem 11.4.1 of Dudley
(2002)). We need only show that now sup𝑝0∈ℱ𝑁

𝑑TV(𝑝𝑁 , 𝑝0)→ 0, yielding the contra-
positive of the uniform consistency condition.

By an application of the Cauchy-Schwartz inequality,

𝑑TV(𝑝𝑁 , 𝑝0) =
1

2

𝑛∑︁
𝑗=1

|𝑝𝑁(𝑗)− 𝑝0(𝑗)| ≤
1

2

𝑛∑︁
𝑗=1

|𝑝𝑁(𝑗)− 𝑝0(𝑗)|√︀
𝑝0(𝑗)

≤ 1

2

(︃
𝑛∑︁
𝑗=1

(𝑝𝑁(𝑗)− 𝑝0(𝑗))2

𝑝0(𝑗)

)︃1/2

=
𝑋𝑁(𝑝0)

2
.

By Kullback (1967),

𝑑TV(𝑝𝑁 , 𝑝0) ≤
1√
2

(︃
𝑛∑︁
𝑗=1

𝑛∑︁
𝑗=1

𝑝𝑁(𝑗) log (𝑝𝑁(𝑗)/𝑝0(𝑗))

)︃1/2

=
𝐺𝑁(𝑝0)

2
.

Since both the 𝜒2 and G-tests use a rejection threshold equal to
√︀
𝑄/𝑁 where 𝑄

is the (1 − 𝛼)th quantile of a 𝜒2 distribution with 𝑛 − 1 degrees of freedom (𝑄 is
independent of 𝑁), we have that 𝑑TV(𝑝𝑁 , 𝑝0) is uniformly bounded over 𝑝0 ∈ ℱ𝑁 by
a quantity diminishing with 𝑁 .

Proof of Theorem 4.17. In the case of univariate support, the Lévy metric metrizes
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weak convergence:

𝑑Lévy(𝐺,𝐺
′) = inf{𝜖 > 0 : 𝐺(𝜉 − 𝜖)− 𝜖 ≤ 𝐺′(𝜉) ≤ 𝐹0(𝜉 + 𝜖) + 𝜖 ∀𝜉 ∈ R}.

Restrict to the almost sure event 𝑑Lévy(𝐹𝑛, 𝐹 ) → 0 (see Theorem 11.4.1 of Dudley
(2002)). We need only show that now sup𝐹0∈ℱ𝑁

𝑑Lévy(𝐹𝑁 , 𝐹0) → 0, yielding the
contrapositive of the uniform consistency condition.

Fix 𝐹0 and let 0 ≤ 𝜖 < 𝑑Lévy(𝐹𝑁 , 𝐹0). Then ∃𝜉0 such that either (1) 𝐹𝑁(𝜉0−𝜖)−𝜖 >
𝐹0(𝜉0) or (2) 𝐹𝑁(𝜉0 + 𝜖) + 𝜖 < 𝐹0(𝜉0). Since 𝐹0 is monotonically non-decreasing, (1)
implies 𝐷𝑁(𝐹0) ≥ 𝐹𝑁(𝜉0− 𝜖)−𝐹0(𝜉0− 𝜖) > 𝜖 and (2) implies 𝐷𝑁(𝐹0) ≥ 𝐹0(𝜉0 + 𝜖)−
𝐹𝑁(𝜉0 + 𝜖) > 𝜖. Hence 𝑑Lévy(𝐹𝑁 , 𝐹0) ≤ 𝐷𝑁(𝐹0). Moreover, 𝐷𝑁 ≤ 𝑉𝑁 by definition.
Since sup𝐹0∈ℱ𝛼

𝑆𝑁

𝑆𝑁(𝐹0) = 𝑄𝑆𝑁
(𝛼) = 𝑂(𝑁−1/2) for either statistic, both the KS and

Kuiper tests are uniformly consistent.
Consider 𝐷′

𝑁(𝐹0) = max𝑖=1, ..., 𝑁

⃒⃒
𝐹0(𝜉

(𝑖))− 2𝑖−1
2𝑁

⃒⃒
= 𝜎

(︀
𝐹0(𝜉

(𝑗))− 2𝑗−1
2𝑁

)︀
, where 𝑗

and 𝜎 are the maximizing index and sign, respectively. Suppose 𝐷′
𝑁(𝐹0) ≥ 1/

√
𝑁 +

1/𝑁 . If 𝜎 = +1, this necessarily means that 1 − 2𝑗−1
2𝑁
≥ 1/

√
𝑁 + 1/𝑁 and therefore

𝑁−𝑗 ≥ ⌈
√
𝑁⌉+1. By monotonicity of 𝐹0 we have for 0 ≤ 𝑘 ≤ ⌈

√
𝑁⌉ that 𝑗+𝑘 ≤ 𝑁

and

𝐹0(𝜉
(𝑗+𝑘))− 2(𝑗 + 𝑘)− 1

2𝑁
≥ 𝐹0(𝜉

(𝑗))− 2𝑗 − 1

2𝑁
− 𝑘

𝑁
= 𝐷′

𝑁(𝐹0)−
𝑘

𝑁
≥ 0.

If instead 𝜎 = −1, this necessarily means that 2𝑗−1
2𝑁
≥ 1/

√
𝑁 + 1/𝑁 and therefore

𝑗 ≥ ⌈
√
𝑁⌉+1. By monotonicity of 𝐹0 we have for 0 ≤ 𝑘 ≤ ⌈

√
𝑁⌉ that 𝑗− 𝑘 ≥ 1 and

2(𝑗 − 𝑘)− 1

2𝑁
− 𝐹0(𝜉

(𝑗−𝑘)) ≥ 2𝑗 − 1

2𝑁
− 𝐹0(𝜉

(𝑗))− 𝑘

𝑁
= 𝐷′

𝑁(𝐹0)−
𝑘

𝑁
≥ 0.

In either case we have that

𝑊 2
𝑁 =

1

12𝑁2
+

1

𝑁

𝑁∑︁
𝑖=1

(︂
𝐹0(𝜉

(𝑖))− 2𝑖− 1

2𝑁

)︂2

≥ 1

12𝑁2
+

1

𝑁

⌈
√
𝑁⌉∑︁

𝑘=0

(︂
𝐷′
𝑁 −

𝑘

𝑁

)︂2

≥ 𝐷2
𝑁√
𝑁
− 2

𝑁

using𝐷′
𝑁(𝐹0) ≥ 1/

√
𝑁+1/𝑁 and |𝐷′

𝑁(𝐹0)−𝐷𝑁(𝐹0)| ≤ 1/(2𝑁) in the last inequality.
Therefore,

𝐷2
𝑁(𝐹0) ≤ max

{︂
1√
𝑁

+
3

2𝑁
,
√
𝑁𝑊 2

𝑁(𝐹0) +
2√
𝑁

}︂
.

Since 𝐹0(𝜉)(1 − 𝐹0(𝜉)) ≤ 1 and by using the integral formulation of CvM and AD
(see Thas (2009)) the same is true replacing 𝑊 2

𝑁 by 𝐴2
𝑁 . Since 𝑄𝑆𝑁

(𝛼) = 𝑂(𝑁−1/2)
so that sup𝐹0∈ℱ𝛼

𝑆𝑁

𝑆2
𝑁(𝐹0) = 𝑂(𝑁−1) for either statistic, both the CvM and AD tests
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are uniformly consistent.

𝑊 2
𝑁 − 𝑈2

𝑁 =

(︃
1

𝑁

𝑁∑︁
𝑖=1

𝐹0(𝜉
(𝑖))− 1

2

)︃2

≤ max

⎧⎨⎩
(︃

1

𝑁

𝑁∑︁
𝑖=1

min

{︂
1,

2𝑖− 1

2𝑁
+𝐷′

𝑁(𝐹0)

}︂
− 1

2

)︃2

,

(︃
1

𝑁

𝑁∑︁
𝑖=1

max

{︂
0,

2𝑖− 1

2𝑁
−𝐷′

𝑁(𝐹0)

}︂
− 1

2

)︃2
⎫⎬⎭ .

Letting 𝑀 = ⌊1
2
+𝑁(1−𝐷′

𝑁(𝐹0))⌋ we have

𝑁∑︁
𝑖=1

min

{︂
1,

2𝑖− 1

2𝑁
+𝐷′

𝑁(𝐹0)

}︂
=
𝑀2

2𝑁
+𝑀𝐷′

𝑁(𝐹0) +𝑁 −𝑀

so that in the case of 𝐷′
𝑁(𝐹0) ≥ 1/

√
𝑁 + 1/𝑁 ,(︃

1

𝑁

𝑁∑︁
𝑖=1

min

{︂
1,

2𝑖− 1

2𝑁
+𝐷′

𝑁(𝐹0)

}︂
− 1

2

)︃2

= 𝑂(1/𝑁).

Thus, the Watson test is also uniformly consistent.

Proof of Proposition 4.18. Apply Theorem 4.12 to each 𝑖 and restrict to the almost
sure event that (4.17) holds for all 𝑖. Fix 𝐹𝑁 such that 𝐹𝑁 ∈ ℱ𝑁 eventually. Then,
(4.17) yields E𝐹𝑁

[𝑐𝑖(𝑥; 𝜉𝑖)]→ E𝐹 [𝑐𝑖(𝑥; 𝜉𝑖)] for every 𝑥 ∈ 𝑋. Summing over 𝑖 yields the
contrapositive of the 𝑐-consistency condition.

Proof of Proposition 4.19. Restrict to a sample path in the a.s. event E𝐹𝑁
[𝜉𝑖] →

E𝐹 [𝜉𝑖], E𝐹𝑁
[𝜉𝑖𝜉𝑗] → E𝐹 [𝜉𝑖𝜉𝑗] for all 𝑖, 𝑗. Consider any 𝐹𝑁 such that 𝐹𝑁 ∈ ℱ𝛼CEG,𝑁

eventually. Then clearly E𝐹𝑁
[𝜉𝑖]→ E𝐹 [𝜉𝑖], E𝐹𝑁

[𝜉𝑖𝜉𝑗]→ E𝐹 [𝜉𝑖𝜉𝑗].
Consider any 𝐹𝑁 such that 𝐹𝑁 ∈ ℱ𝛼DY,𝑁 eventually. Because covariances exist, we

may restrict to𝑁 large enough so that
⃒⃒⃒⃒⃒⃒
Σ̂𝑁

⃒⃒⃒⃒⃒⃒
2
≤𝑀 (operator norm) and 𝐹𝑁 ∈ ℱ𝛼DY,𝑁 .

Then we get
||E𝐹𝑁

[𝜉]− �̂�𝑁 || ≤𝑀𝛾1,𝑁(𝛼)→ 0

and

(𝛾3,𝑁(𝛼)− 1) Σ̂𝑁 ⪯ E𝐹0 [(𝜉 − �̂�𝑁) (𝜉 − �̂�𝑁)
𝑇 ]− Σ̂𝑁 ⪯ (𝛾2,𝑁(𝛼)− 1) Σ̂𝑁 ,

which gives⃒⃒⃒⃒⃒⃒
E𝐹0 [(𝜉 − �̂�𝑁) (𝜉 − �̂�𝑁)

𝑇 ]− Σ̂𝑁

⃒⃒⃒⃒⃒⃒
2
≤𝑀 max {𝛾2,𝑁(𝛼)− 1, 1− 𝛾3,𝑁(𝛼)} → 0.
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Then again, we have E𝐹𝑁
[𝜉𝑖]→ E𝐹 [𝜉𝑖], E𝐹𝑁

[𝜉𝑖𝜉𝑗]→ E𝐹 [𝜉𝑖𝜉𝑗].
In either case we get E𝐹𝑁

[𝑐(𝑥; 𝜉)]→ E𝐹𝑁
[𝑐(𝑥; 𝜉)] for any 𝑥 due to factorability as

in (4.25). This yields the contrapositive of the 𝑐-consistency condition.

Proof of Proposition 4.20. If 𝐹0 ̸= 𝐹 then Theorem 1 of Scarsini (1998) yields that
either 𝐹0 �LCX 𝐹 or there is some 𝑗 = 1, . . . , 𝑑 such that E𝐹0 [𝜉

2
𝑗 ] ̸= E𝐹 [𝜉2𝑗 ]. If

𝐹0 �LCX 𝐹 then power approaches one since 𝐶𝑁 > 0 but 𝑄𝐶𝑁
(𝛼1) → 0. Otherwise,

𝐹0 ⪯LCX 𝐹 yields E𝐹0 [𝜉
2
𝑖 ] ≤ E𝐹 [𝜉2𝑖 ] for all 𝑖 via (4.11) using 𝑎 = 𝑒𝑖 and 𝜑(𝜁) = 𝜁2.

Then E𝐹0 [𝜉
2
𝑗 ] ̸= E𝐹 [𝜉2𝑗 ] must mean that E𝐹0

[︀
||𝜉||22

]︀
< E𝐹

[︀
||𝜉||22

]︀
and power still goes

to one.

Proof of Proposition 4.21. Let 𝑅 = sup𝜉∈Ξ ||𝜉||2 < ∞. Restrict to the almost sure
event that 𝐹𝑁 → 𝐹 . Consider 𝐹𝑁 such that 𝐹𝑁 ∈ ℱ𝑁 eventually. Let 𝑁 be large
enough so that it is so. Fix ||𝑎||2 = 1. Let 𝑎1 = 𝑎 and complete an orthonormal basis
for R𝑑: 𝑎1, 𝑎2, . . . , 𝑎𝑑. On the one hand we have 𝑄𝑅𝑁

(𝛼2) ≥ E𝐹𝑁

[︁∑︀𝑑
𝑖=1(𝑎

𝑇
𝑖 𝜉)

2
]︁
−

E𝐹𝑁

[︁∑︀𝑑
𝑖=1(𝑎

𝑇
𝑖 𝜉)

2
]︁
. On the other hand, for each 𝑖,

E𝐹𝑁

[︀
(𝑎𝑇𝑖 𝜉)

2
]︀
− E𝐹𝑁

[︀
(𝑎𝑇𝑖 𝜉)

2
]︀
=

2

∫︁ 0

𝑏=−𝑅

(︀
E𝐹𝑁

[max
{︀
𝑏− 𝑎𝑇𝑖 𝜉, 0

}︀
]− E𝐹𝑁

[max
{︀
𝑏− 𝑎𝑇𝑖 𝜉, 0

}︀
]
)︀
𝑑𝑏

+ 2

∫︁ 𝑅

𝑏=0

(︀
E𝐹𝑁

[max
{︀
𝑎𝑇𝑖 𝜉 − 𝑏, 0

}︀
]− E𝐹𝑁

[max
{︀
𝑎𝑇𝑖 𝜉 − 𝑏, 0

}︀
]
)︀
𝑑𝑏

≥ 4

∫︁ 𝑅

𝑏=0

(||𝑎||1 + |𝑏|)𝑄𝐶𝑁
(𝛼1)𝑑𝑏 ≥ 4

(︁√
𝑑+𝑅2/2

)︁
𝑄𝐶𝑁

(𝛼1) = 𝑝𝑁 .

Therefore, 𝑞𝑁 = 𝑄𝑅𝑁
(𝛼2)+(𝑑−1)𝑝𝑁 ≥ E𝐹𝑁

[︀
(𝑎𝑇 𝜉)2

]︀
−E𝐹𝑁

[︀
(𝑎𝑇 𝜉)2

]︀
and𝑄𝑅𝑁

(𝛼2), 𝑄𝐶𝑁
(𝛼1), 𝑝𝑁 , 𝑞𝑁 →

0. Let 𝐺𝑁(𝑡) = 𝐹𝑁(
{︀
𝜉 : 𝑎𝑇 𝜉 ≤ 𝑡

}︀
) ∈ [0, 1] and �̂�𝑁(𝑡) = 𝐹𝑁(

{︀
𝜉 : 𝑎𝑇 𝜉 ≤ 𝑡

}︀
) ∈ [0, 1] be
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the CDFs of 𝑎𝑇 𝜉 under 𝐹𝑁 and 𝐹𝑁 , respectively. Then,

𝑞𝑁 ≥ E𝐹𝑁

[︀
(𝑎𝑇 𝜉)2

]︀
− E𝐹𝑁

[︀
(𝑎𝑇 𝜉)2

]︀
=

2

∫︁ 0

𝑏=−𝑅

(︀
E𝐹𝑁

[max
{︀
𝑏− 𝑎𝑇 𝜉, 0

}︀
]− E𝐹𝑁

[max
{︀
𝑏− 𝑎𝑇 𝜉, 0

}︀
]
)︀
𝑑𝑏

+ 2

∫︁ 𝑅

𝑏=0

(︀
E𝐹𝑁

[max
{︀
𝑎𝑇 𝜉 − 𝑏, 0

}︀
]− E𝐹𝑁

[max
{︀
𝑎𝑇 𝜉 − 𝑏, 0

}︀
]
)︀
𝑑𝑏

= 2

∫︁ 0

𝑏=−𝑅

∫︁ 𝑏

𝑡=−𝑅

(︁
�̂�𝑁(𝑡)−𝐺𝑁(𝑡)

)︁
𝑑𝑡 𝑑𝑏

+ 2

∫︁ 𝑅

𝑏=0

∫︁ 𝑅

𝑡=𝑏

(︁
𝐺𝑁(𝑡)− �̂�𝑁(𝑡)

)︁
𝑑𝑡 𝑑𝑏 ≥ 𝑝𝑁 ,∫︁ 𝑏

𝑡=−𝑅

(︁
�̂�𝑁(𝑡)−𝐺𝑁(𝑡)

)︁
𝑑𝑡 ≥ −(

√
𝑑+𝑅)𝑄𝐶𝑁

(𝛼) ∀𝑏 ∈ [−𝑅, 0],∫︁ 𝑅

𝑡=𝑏

(︁
𝐺𝑁(𝑡)− �̂�𝑁(𝑡)

)︁
𝑑𝑡 ≥ −(

√
𝑑+𝑅)𝑄𝐶𝑁

(𝛼) ∀𝑏 ∈ [0, 𝑅],

Because 𝐹𝑁 → 𝐹 , we get �̂�𝑁(𝑡)→ 𝐹 (
{︀
𝜉 : 𝑎𝑇 𝜉 ≤ 𝑡

}︀
) and therefore at every continuity

point 𝑡 we have 𝐺𝑁(𝑡) → 𝐹 (
{︀
𝜉 : 𝑎𝑇 𝜉 ≤ 𝑡

}︀
). Because true for every 𝑎, the Cramer-

Wold device yields 𝐹𝑁 → 𝐹 . This is the contrapositive of the uniform consistency
condition.

Proof of Theorem 4.23. Problem (4.3) is equal to the optimization problems of The-
orem 4.22 augmented with the variable 𝑥 ∈ 𝑋 and weak optimization is polynomially
reducible to weak separation (see Grotschel et al. (1993)). Tractable weak separation
for all constraints except 𝑥 ∈ 𝑋 and (4.27) is given by the tractable weak optimiza-
tion over these standard conic-affine constraints. A weak separation oracle is assumed
given for 𝑥 ∈ 𝑋. We polynomially reduce separation over 𝑐𝑗 ≥ max𝑘 𝑐𝑗𝑘(𝑥) for fixed
𝑐′𝑗, 𝑥

′ to the oracles. We first call the evaluation oracle for each 𝑘 to check violation
and if there is a violation and 𝑘* ∈ argmax𝑘 𝑐𝑗𝑘(𝑥

′) then we call the subgradient
oracle to get 𝑠 ∈ 𝜕𝑐𝑗𝑘*(𝑥

′) with ||𝑠||∞ ≤ 1 and produce the separating hyperplane
0 ≥ 𝑐𝑗𝑘*(𝑥

′)− 𝑐𝑗 + 𝑠𝑇 (𝑥− 𝑥′).

Proof of Theorem 4.25. Substituting the given formulas for 𝐾𝑆𝑁
, 𝐴𝑆𝑁

, 𝑏𝑆𝑁 ,𝛼 for each
𝑆𝑁 ∈ {𝐷𝑁 , 𝑉𝑁 ,𝑊𝑁 , 𝑈,𝑁,𝐴𝑁} in 𝐴𝑆𝑁

𝜁 − 𝑏𝑆𝑁 ,𝛼 ∈ 𝐾𝑆𝑁
we obtain 𝑆𝑁(𝜁1, . . . , 𝜁𝑁) ≤

𝑄𝑆𝑁
(𝛼) exactly for 𝑆𝑁 as defined in (4.7). We omit the detailed arithmetic.

Proof of Theorem 4.27. Under these assumptions (4.3) is equal to the optimization
problems of Theorem 4.26 augmented with the variable 𝑥 and weak optimization is
polynomially reducible to weak separation (see Grotschel et al. (1993)). Tractable
weak separation for all constraints except 𝑥 ∈ 𝑋 and (4.29) is given by the tractable
weak optimization over these standard conic-affine constraints. A weak separation
oracle is assumed given for 𝑥 ∈ 𝑋. By continuity and given structure of 𝑐(𝑥; 𝜉), we
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may rewrite (4.29) as

𝑐𝑖 ≥ max
𝜉∈[𝜉(𝑖−1),𝜉(𝑖)]

𝑐𝑘(𝑥; 𝜉) ∀𝑘 = 1, . . . , 𝐾. (C.9)

We polynomially reduce weak 𝛿-separation over the 𝑘th constraint at fixed 𝑐′𝑖, 𝑥′ to the
oracles. We call the 𝛿-optimization oracle to find 𝜉′ ∈ [𝜉(𝑖−1), 𝜉(𝑖)] such that 𝑐𝑘(𝑥′; 𝜉′) ≥
max𝜉∈[𝜉(𝑖−1),𝜉(𝑖)] 𝑐𝑘(𝑥; 𝜉)− 𝛿. If 𝑐′𝑖 ≥ 𝑐𝑘(𝑥

′; 𝜉′) then (𝑐′𝑖+ 𝛿, 𝑥′) satisfy the constraint and
is within 𝛿 of (𝑐′𝑖, 𝑥

′). If 𝑐′𝑖 < 𝑐𝑘(𝑥
′; 𝜉′) then we call the subgradient oracle to get

𝑠 ∈ 𝜕𝑥𝑐𝑘(𝑥′, 𝜉′) with ||𝑠||∞ ≤ 1 and produce the hyperplane 𝑐𝑖 ≥ 𝑐(𝑥′; 𝜉′) + 𝑠𝑇 (𝑥− 𝑥′)
that is violated by (𝑐′𝑖, 𝑥

′) and for any (𝑐𝑖, 𝑥) satisfying (C.9) (in particular if it is in
the 𝛿-interior) we have 𝑐𝑖 ≥ max𝜉∈[𝜉(𝑖−1),𝜉(𝑖)] 𝑐𝑘(𝑥; 𝜉) ≥ 𝑐𝑘(𝑥; 𝜉

′) ≥ 𝑐𝑘(𝑥
′; 𝜉′)+ 𝑠𝑇 (𝑥−𝑥′)

since 𝑠 is a subgradient. The case for constraints (4.30) is similar.

Proof of Lemma 4.29. According to Theorem 4.26, the observations in Example 4.28,
and by renaming variables, the DRO (4.3) is given by

(𝑃 ) min 𝑦 +
𝑁∑︁
𝑖=1

(︂
𝑄𝐷𝑁

(𝛼) +
𝑖− 1

𝑁

)︂
𝑠𝑖 +

𝑁∑︁
𝑖=1

(︂
𝑄𝐷𝑁

(𝛼)− 𝑖

𝑁

)︂
𝑡𝑖

s. t. 𝑥 ∈ R+, 𝑦 ∈ R, 𝑠 ∈ R𝑁+ , 𝑡 ∈ R𝑁+

(𝑟 − 𝑐)𝑥+ 𝑦 +
𝑁∑︁
𝑖=𝑗

(𝑠𝑖 − 𝑡𝑖) ≥ (𝑟 − 𝑐)𝜉(𝑗) ∀𝑗 = 1, . . . , 𝑁 + 1

−(𝑐− 𝑏)𝑥+ 𝑦 +
𝑁∑︁
𝑖=𝑗

(𝑠𝑖 − 𝑡𝑖) ≥ −(𝑐− 𝑏)𝜉(𝑗−1) ∀𝑗 = 1, . . . , 𝑁 + 1.

Applying linear optimization duality we get that its dual is

(𝐷) max (𝑟 − 𝑐)
𝑁+1∑︁
𝑖=1

𝜉(𝑖)𝑝𝑖 − (𝑐− 𝑏)
𝑁+1∑︁
𝑖=1

𝜉(𝑖−1)𝑞𝑖

s. t. 𝑝 ∈ R𝑁+1
+ , 𝑞 ∈ R𝑁+1

+

(𝑟 − 𝑐)
𝑁+1∑︁
𝑖=1

𝑝𝑖 − (𝑐− 𝑏)
𝑁+1∑︁
𝑖=1

𝑞𝑖 ≤ 0

𝑁+1∑︁
𝑖=1

𝑝𝑖 +
𝑁+1∑︁
𝑖=1

𝑞𝑖 = 1

𝑗∑︁
𝑖=1

𝑝𝑖 +

𝑗∑︁
𝑖=1

𝑞𝑖 ≤ 𝑄𝐷𝑁
(𝛼) +

𝑗 − 1

𝑁
∀𝑗 = 1, . . . , 𝑁

−
𝑗∑︁
𝑖=1

𝑝𝑖 −
𝑗∑︁
𝑖=1

𝑞𝑖 ≤ 𝑄𝐷𝑁
(𝛼)− 𝑗

𝑁
∀𝑗 = 1, . . . , 𝑁.

It can be directly verified that the following primal and dual solutions are respectively
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feasible

𝑥 = (1− 𝜃)𝜉(𝑖lo) + 𝜃𝜉(𝑖hi),

𝑦 = (𝑟 − 𝑐)𝜉(𝑁+1) − (𝑟 − 𝑐)𝑥,

𝑠𝑖 =

{︂
(𝑐− 𝑏)

(︀
𝜉(𝑖) − 𝜉(𝑖−1)

)︀
𝑖 ≤ 𝑖lo

0 otherwise ∀𝑖 = 1, . . . , 𝑁,

𝑡𝑖 =

{︂
(𝑟 − 𝑐)

(︀
𝜉(𝑖+1) − 𝜉(𝑖)

)︀
𝑖 ≥ 𝑖hi

0 otherwise ∀𝑖 = 1, . . . , 𝑁

𝑝𝑖 =

⎧⎪⎪⎨⎪⎪⎩
0 𝑖 ≤ 𝑖hi − 1
𝑖/𝑁 − 𝜃 −𝑄𝐷𝑁

(𝛼) 𝑖 = 𝑖hi

1/𝑁 𝑁 ≥ 𝑖 ≥ 𝑖hi + 1
𝑄𝐷𝑁

(𝛼) 𝑖 = 𝑁 + 1

, ∀𝑖 = 1, . . . , 𝑁

𝑞𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝑄𝐷𝑁

(𝛼) 𝑖 = 1
1/𝑁 2 ≤ 𝑖 ≤ 𝑖lo
𝜃 −𝑄𝐷𝑁

(𝛼)− (𝑖− 2)/𝑁 𝑖 = 𝑖lo + 1
0 𝑖 ≥ 𝑖lo + 2

∀𝑖 = 1, . . . , 𝑁

and that both have objective cost in their respective programs of

𝑧 =− (𝑐− 𝑏)𝑄𝐷𝑁
(𝛼)𝜉(0) − 𝑐− 𝑏

𝑁

𝑖lo−1∑︁
𝑖=1

𝜉(𝑖) − (𝑐− 𝑏)
(︂
𝜃 −𝑄𝐷𝑁

(𝛼)− 𝑖lo − 1

𝑁

)︂
𝜉(𝑖lo)

+ (𝑟 − 𝑐)𝑄𝐷𝑁
(𝛼)𝜉(𝑁+1) +

𝑟 − 𝑐
𝑁

𝑁∑︁
𝑖=𝑖hi+1

𝜉(𝑖) + (𝑟 − 𝑐)
(︂
𝑖hi

𝑁
−𝑄𝐷𝑁

(𝛼)− 𝜃
)︂
𝜉(𝑖hi).

This proves optimality of 𝑥. Adding 0 = (𝑐 − 𝑏)𝜃𝑥 − (𝑟 − 𝑐)(1 − 𝜃)𝑥 to the above
yields the form of the optimal objective given in the statement of the result.

Proof of Theorem 4.32. Fix 𝑥. Let 𝑆 = {(𝑎, 𝑏) ∈ R𝑑+1 : ||𝑎||1 + |𝑏| ≤ 1}. Using the
notation of Shapiro (2001), letting 𝐶 be the cone of nonnegative measures on Ξ and
𝐶 ′ the cone of nonnegative measures on 𝑆, we write the inner problem as

sup
𝐹

⟨𝐹, 𝑐(𝑥; 𝜉)⟩

s. t. 𝐹 ∈ 𝐶, ⟨1, 𝐹 ⟩ = 1

sup
(𝑎,𝑏)∈𝑆

(︃⟨︀
𝐹,max{𝑎𝑇𝑗 𝜉 − 𝑏, 0}

⟩︀
− 1

𝑁

𝑁∑︁
𝑖=ℓ+1

max{𝑎𝑇 𝜉𝑖 − 𝑏, 0} −𝑄𝐶𝑁
(𝛼1)

)︃
≤ 0⟨︀

𝐹, ||𝜉||22
⟩︀
≥ 𝑄𝛼2

𝑅𝑁

Invoking Proposition 2.8 of Shapiro (2001) (with the generalized Slater point equal to
the empirical distribution), and using the representation (4.36) of the cost function,
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we have that the strongly dual minimization problem is

min
𝐺,𝜏,𝜃

𝜃 +𝑄𝐶𝑁
(𝛼)𝐺{𝑆}+

⟨
𝐺,

1

𝑁

𝑁∑︁
𝑖=ℓ+1

max{𝑎𝑇 𝜉𝑖 − 𝑏, 0}

⟩
−𝑄𝛼2

𝑅𝑁
𝜏 (C.10)

s. t. 𝐺 ∈ 𝐶 ′, 𝜏 ∈ R+, 𝜃 ∈ R

inf
𝜉∈R𝑑

(︁⟨︀
𝐺,max{𝑎𝑇 𝜉 − 𝑏, 0}

⟩︀
−
(︀
𝑝𝑘2 + 𝑃 𝑇

𝑘 𝑥
)︀𝑇
𝜉 − 𝜏 ||𝜉||22

)︁
≥ 𝑝𝑘0 + 𝑝𝑇𝑘1𝑥− 𝜃 ∀𝑘.

(C.11)

We will now show that only 𝜏 = 0 is feasible. Consider any feasible solution with
𝜏 > 0. Notice that⟨︀

𝐺,max{𝑎𝑇 𝜉 − 𝑏, 0}
⟩︀
−
(︀
𝑝𝑘2 + 𝑃 𝑇

𝑘 𝑥
)︀𝑇
𝜉 ≤

(︀
𝐺{𝑆}+

⃒⃒⃒⃒
𝑝𝑘2 + 𝑃 𝑇

𝑘 𝑥
⃒⃒⃒⃒
∞

)︀
(||𝜉||1 + 1) ,

which grows linearly with growing 𝜉. In contrast, 𝜏 ||𝜉||22 grows quadratically, i.e.
strictly faster. Therefore, the left-hand side of (C.11) is negative infinity but the
right hand side is finite. Therefore only 𝜏 = 0 is feasible so fix it as such. Now rewrite
the 𝑘th constraint in (C.11) as follows

𝑝𝑘0 + 𝑝𝑇𝑘1𝑥− 𝜃 ≤ min
𝜉𝑘∈R𝑑,𝑔𝑘

⟨𝐺, 𝑔𝑘⟩ −
(︀
𝑝𝑘2 + 𝑃 𝑇

𝑘 𝑥
)︀𝑇
𝜉𝑘

s. t. inf
(𝑎,𝑏)∈𝑆

(︀
𝑔𝑘(𝑎, 𝑏)− 𝑎𝑇 𝜉𝑘 + 𝑏

)︀
≥ 0

inf
(𝑎,𝑏)∈𝑆

𝑔𝑘(𝑎, 𝑏) ≥ 0.

Again invoking Proposition 2.8 of Shapiro (2001) (with the generalized Slater point
𝜉 = 𝑒, 𝑔(𝑎, 𝑏) = max{𝑎𝑇 𝑒− 𝑏, 0}+ 1) we see that the above is equivalent to

∃𝐻𝑘 s.t. ⟨𝐻𝑘,−𝑏⟩ ≥ 𝑝𝑘0 + 𝑝𝑇𝑘1𝑥− 𝜃
𝐻𝑘 ∈ 𝐶 ′, (𝐺−𝐻𝑘) ∈ 𝐶 ′

⟨𝐻𝐾 , 𝑎⟩ = 𝑝𝑘2 + 𝑃 𝑇
𝑘 𝑥.

Thus, introducing these variables 𝐻𝑘 into the problem (C.10) as well as the variable
𝑥 ∈ 𝑋 and invoking Proposition 2.8 of Shapiro (2001) again (with the generalized
Slater point being all variables zero except 𝜃 sufficiently large) we get the strongly
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dual maximization problem

max
𝑟,𝑠,𝑡,𝜓

𝐾∑︁
𝑘=1

(𝑝𝑘0𝑟𝑘 + 𝑝𝑘2𝑠𝑘) + ℎ𝑇 𝑡

s.t. 𝑟 ∈ R𝑘+, 𝑠 ∈ R𝑘×𝑑, 𝑡 ∈ R𝑑
′

inf
(𝑎,𝑏)∈𝑆

𝜓𝑘(𝑎, 𝑏) ≥ 0 ∀𝑘 = 1, . . . , 𝐾

inf
(𝑎,𝑏)∈𝑆

(︀
𝜓𝑘(𝑎, 𝑏)− 𝑎𝑇 𝑠𝑘 + 𝑏𝑟𝑘

)︀
≥ 0 ∀𝑘 = 1, . . . , 𝐾

sup
(𝑎,𝑏)∈𝑆

(︃
𝐾∑︁
𝑘=1

𝜓𝑘(𝑎, 𝑏)−
1

𝑁

𝑁∑︁
𝑖=1

max{𝑎𝑇 𝜉𝑖 − 𝑏, 0} −𝑄𝐶𝑁
(𝛼1)

)︃
≤ 0

𝐾∑︁
𝑘=1

𝑟𝑘 = 1

𝐻𝑇 𝑡−
𝐾∑︁
𝑘=1

(𝑟𝑘𝑝𝑘1 − 𝑃𝑘𝑧𝑘) ≤ 0 (C.12)

where 𝑥 is the dual variable associated with (C.12). Recognizing that given any
feasible solution we may set 𝜓𝑘(𝑎, 𝑏) = max{𝑎𝑇 𝑠𝑘 − 𝑏𝑟𝑘, 0} and remain feasible with
the same objective, we arrive at the formulation in the statement of the theorem.
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Appendix D

Appendix to Chapter 5

D.1 Omitted Proofs

Proof of Theorem 5.1. For the first part, let x* be robust feasible in (5.2) and consider
the closed, convex set {u ∈ R𝑑 : 𝑓(u,x*) ≥ 𝑡} where 𝑡 > 0. That x* is robust feasible
implies maxu∈𝒰 𝑓(u,x

*) ≤ 0 which implies that 𝒰 and {u ∈ R𝑑 : 𝑓(u,x*) ≥ 𝑡} are
disjoint. From the separating hyperplane theorem, there exists a strict separating
hyperplane v𝑇u = 𝑣0 such that 𝑣0 > v𝑇u for all u ∈ 𝒰 and v𝑇u < 𝑣0 for all
u ∈ {u ∈ R𝑑 : 𝑓(u,x*) ≥ 𝑡} . Observe

𝑣0 > max
u∈𝒰

v𝑇u = 𝛿*(v| 𝒰) ≥ VaRP𝜖 (v),

and
P(𝑓(ũ,x*) ≥ 𝑡) ≤ P(v𝑇 ũ > 𝑣0) ≤ P(v𝑇 ũ > VaRP𝜖 (v)) ≤ 𝜖.

Taking the limit as 𝑡 ↓ 0 and using the continuity of probability proves P(𝑓(ũ,x*) >
0) ≤ 𝜖 and that (5.2) is satisfied.

For the second part of the theorem, let 𝑡 > 0 be such that 𝛿*(v| 𝒰) ≤ VaRP𝜖 (v)− 𝑡.
Define 𝑓(u, 𝑥) ≡ v𝑇u− 𝑥. Then 𝑥* = 𝛿(v| 𝒰) is robust feasible in (5.2), but

P(𝑓(ũ,x) > 0) = P(ũ𝑇v > 𝛿(v| 𝒰)) ≥ P(ũ𝑇v ≥ VaRP𝜖 (v)− 𝑡) > 𝜖

by (5.6).

Proof. Proof of Theorem 5.2.

P*𝒮(𝒰(𝒮, 𝜖, 𝛼) implies a probabilistic guarantee at level 𝜖 for P*)
= P*𝒮(𝛿*(v| 𝒰(𝒮, 𝜖, 𝛼)) ≥ VaRP

*

𝜖 (v) ∀v ∈ R𝑑) (Theorem 5.1)
≥ P*𝒮(P* ∈ 𝒫(𝒮, 𝜖, 𝛼)) (Step 2 of schema)
≥ 1− 𝛼 (Confidence region).
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Proof. Proof of Theorem 5.4. For the first part,

P*𝒮({𝒰(𝒮, 𝜖, 𝛼) : 0 < 𝜖 < 1} simultaneously implies a probabilistic guarantee)

= P*
𝒮(𝛿

*(v| 𝒰(𝒮, 𝜖, 𝛼)) ≥ VaRP
*

𝜖 (v) ∀v ∈ R𝑑, 0 < 𝜖 < 1) (Theorem 5.1)

≥ P*
𝒮(P* ∈

⋂︁
𝜖:0≤𝜖≤1

𝒫(𝒮, 𝜖, 𝛼)) (Step 2 of schema)

= P*
𝒮(P* ∈ 𝒫(𝒮, 𝛼)) (𝒫(𝒮, 𝛼) = 𝒫(𝒮, 𝜖, 𝛼))

≥ 1− 𝛼 (Confidence region).

For the second part, let 𝜖1, . . . , 𝜖𝑚 denote any feasible 𝜖𝑗’s in (5.9).

1− 𝛼 ≤ P*𝒮({𝒰(𝒮, 𝜖, 𝛼) : 0 < 𝜖 < 1} simultaneously implies a probabilistic guarantee)
≤ P*𝒮(𝒰(𝒮, 𝜖𝑗, 𝛼) implies a probabilistic guarantee at level 𝜖𝑗, 𝑗 = 1, . . . ,𝑚).

Applying the union-bound and Theorem 5.2 yields the result.

To prove Theorem 5.5 we require the following well-known result.

Theorem D.1 (Rockafellar and Ursayev, 2000). Suppose supp(P) ⊆ {a0, . . . , a𝑛−1}
and let P(ũ = a𝑗) = 𝑝𝑗. Let

𝒰CVaRP
𝜖 =

{︃
u ∈ R𝑑 : u =

𝑛−1∑︁
𝑗=0

𝑞𝑗a𝑗, q ∈ Δ𝑛, q ≤ 1

𝜖
p

}︃
. (D.1)

Then, 𝛿*(v| 𝒰CVaRP
𝜖 ) = CVaRP(v).

Proof of Theorem 5.5: We prove the theorem for 𝒰𝜒2

𝜖 . The proof for 𝒰𝐺𝜖 is simi-
lar. From Thm. 5.2, it suffices to show that 𝛿*(v| 𝒰𝜒2

𝜖 ) is an upper bound to
supP∈𝒫𝜒2 VaRP𝜖 (v):

sup
P∈𝒫𝜒2

VaRP𝜖 (v) ≤ sup
P∈𝒫𝜒2

CVaRP𝜖 (v) (CVaR is an upper bound to VaR)

= sup
P∈𝒫𝜒2

max
u∈𝒰CVaRP

𝜖

u𝑇v (Thm. D.1)

= max
u∈𝒰𝜒2

𝜖

u𝑇v (Combining Eqs. (5.13) and (5.10)).

To obtain the expression for 𝛿*(v| 𝒰𝜒2

𝜖 ) observe,

𝛿*(v| 𝒰𝜒2

𝜖 ) = inf
w≥0

{︃
max
q∈Δ𝑛

𝑛−1∑︁
𝑖=0

𝑞𝑖(a
𝑇
𝑖 v − 𝑤𝑖) +

1

𝜖
max
p∈𝒫𝜒2

w𝑇p

}︃
,

from Lagrangian duality. The optimal value of the first max is 𝛽 = max𝑖 a
𝑇
𝑖 v − 𝑤𝑖.

The second max is of the form studied in (Ben-Tal et al. 2013, Corollary 1) and has
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optimal value

𝜂 +
𝜆𝜒2

𝑛−1,1−𝛼

𝑁
+ 2𝜆− 2

𝑛−1∑︁
𝑖=0

𝑝𝑖
√
𝜆
√︀
𝜆+ 𝜂 − 𝑤𝑖.

Using the second-order cone representation of the hyperbolic constraint 𝑠2𝑖 ≤ 𝜆 · (𝜆+
𝜂 − 𝑤𝑖) (Lobo et al. 1998) and simplifying we obtain the result.

Proof of Proposition 5.9. Let Δ𝑗 ≡ 𝑝𝑗−𝑝𝑗
𝑝𝑗

. Then, 𝐷(p̂,p) =
∑︀𝑛−1

𝑗=0 𝑝𝑗 log(𝑝𝑗/𝑝𝑗) =∑︀𝑛−1
𝑗=0 𝑝𝑗(Δ𝑗+1) log(Δ𝑗+1). Using a Taylor expansion of 𝑥 log 𝑥 around 𝑥 = 1 yields,

𝐷(p̂,p) =
𝑛−1∑︁
𝑗=0

𝑝𝑗

(︂
Δ𝑗 +

Δ2
𝑗

2
+𝑂(Δ3

𝑗)

)︂
=

𝑛−1∑︁
𝑗=0

(𝑝𝑗 − 𝑝𝑗)2

2𝑝𝑗
+

𝑛−1∑︁
𝑗=0

𝑂(Δ3
𝑗), (D.2)

where the last eqDelageYe10uality follows by expanding out terms and observing that∑︀𝑛−1
𝑗=0 𝑝𝑗 =

∑︀𝑛−1
𝑗=0 𝑝𝑗 = 1. Next, note p ∈ 𝒫𝐺 =⇒ 𝑝𝑗/𝑝𝑗 ≤ exp(

𝜒2
𝑛−1,1−𝛼

2𝑁𝑝𝑗
). From the

Strong Law of Large Numbers, for any 0 < 𝛼′ < 1, there exists 𝑀 such that 𝑝𝑗 ≥ 𝑝*𝑗/2
with probability at least 1−𝛼′ for all 𝑗 = 0, . . . , 𝑛−1, simultaneously. It follows that
for 𝑁 sufficiently large, with probability 1 − 𝛼′, p ∈ 𝒫𝐺 =⇒ 𝑝𝑗/𝑝𝑗 ≤ exp(

𝜒2
𝑛−1,1−𝛼

𝑁𝑝*𝑗
)

which implies that |Δ𝑗| ≤ exp(
𝜒2
𝑛−1,1−𝛼

𝑁𝑝*𝑗
) − 1 = 𝑂(𝑁−1). Substituting into (D.2)

completes the proof.

To prove Theorem 5.11 we first prove the following auxiliary result that will allow
us to evaluate the inner supremum in (5.17).

Theorem D.2. Suppose 𝑔(𝑢) is monotonic. Then,

sup
P𝑖∈𝒫𝐾𝑆

𝑖

EP𝑖 [𝑔(�̃�𝑖)] = max

(︃
𝑁+1∑︁
𝑗=0

𝑞𝐿𝑗 (Γ
𝐾𝑆)𝑔(�̂�

(𝑗)
𝑖 ),

𝑁+1∑︁
𝑗=0

𝑞𝑅𝑗 (Γ
𝐾𝑆)𝑔(�̂�

(𝑗)
𝑖 )

)︃
(D.3)

Proof. Observe that the discrete distribution which assigns mass 𝑞𝐿𝑗 (Γ
𝐾𝑆) (resp.

𝑞𝑅𝑗 (Γ
𝐾𝑆)) to the point �̂�(𝑗) for 𝑗 = 0, . . . , 𝑁 +1 is an element of 𝒫𝐾𝑆𝑖 . Thus, Eq. (D.3)

holds with “=" replaced by “≥".
For the reverse inequality, we have two cases. Suppose first that 𝑔(𝑢𝑖) is non-

decreasing. Given P𝑖 ∈ 𝒫𝐾𝑆𝑖 , consider the measure Q defined by

Q(�̃�𝑖 = �̂�
(0)
𝑖 ) ≡ 0, Q(�̃�𝑖 = �̂�

(1)
𝑖 ) ≡ P𝑖(�̂�(0)𝑖 ≤ �̃�𝑖 ≤ �̂�

(1)
𝑖 ), (D.4)

Q(�̃�𝑖 = �̂�
(𝑗)
𝑖 ) ≡ P𝑖(�̂�(𝑗−1)

𝑖 < �̃�𝑖 ≤ �̂�
(𝑗)
𝑖 ), 𝑗 = 2, . . . , 𝑁 + 1.

Then, Q ∈ 𝒫𝐾𝑆, and since 𝑔(𝑢𝑖) is non-decreasing, EP𝑖 [𝑔(�̃�𝑖)] ≤ EQ[𝑔(�̃�𝑖)]. Thus,
the measure attaining the supremum on the left-hand side of Eq. (D.3) has discrete
support {�̂�(0)𝑖 , . . . , �̂�

(𝑁+1)
𝑖 }, and the supremum is equivalent to the linear optimization
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problem:

max
p

𝑁+1∑︁
𝑗=0

𝑝𝑗𝑔(�̂�
(𝑗))

s.t. p ≥ 0, e𝑇p = 1, (D.5)
𝑗∑︁

𝑘=0

𝑝𝑘 ≥
𝑗

𝑁
− Γ𝐾𝑆 ,

𝑁+1∑︁
𝑘=𝑗

𝑝𝑘 ≥
𝑁 − 𝑗 + 1

𝑁
− Γ𝐾𝑆 , 𝑗 = 1, . . . , 𝑁,

(We have used the fact that P𝑖(�̃�𝑖 < �̂�
(𝑗)
𝑖 ) = 1− P𝑖(�̃� ≥ �̂�

(𝑗)
𝑖 ).) Its dual is:

min
x,y,𝑡

𝑁∑︁
𝑗=1

𝑥𝑗

(︂
Γ𝐾𝑆 − 𝑗

𝑁

)︂
+

𝑁∑︁
𝑗=1

𝑦𝑗

(︂
Γ𝐾𝑆 − 𝑁 − 𝑗 + 1

𝑁

)︂
+ 𝑡

s.t. 𝑡−
∑︁

𝑘≤𝑗≤𝑁
𝑥𝑗 −

∑︁
1≤𝑗≤𝑘

𝑦𝑗 ≥ 𝑔(�̂�(𝑘)), 𝑘 = 0, . . . , 𝑁 + 1,

x,y ≥ 0.

Observe that the primal solution q𝑅(Γ𝐾𝑆) and dual solution y = 0, 𝑡 = 𝑔(�̂�
(𝑁+1)
𝑖 )

and

𝑥𝑗 =

{︃
𝑔(�̂�

(𝑗+1)
𝑖 )− 𝑔(�̂�(𝑗)𝑖 ) for 𝑁 − 𝑗* ≤ 𝑗 ≤ 𝑁,

0 otherwise,

constitute a primal-dual optimal pair. This proves (D.3) when 𝑔 is non-decreasing.
The case of 𝑔(𝑢𝑖) non-increasing is similar.

Proof of Theorem 5.11. Notice by Theorem D.2, Eq. (5.17) is equivalent to the given
expression for 𝛿*(v| 𝒰 𝐼𝜖 ). By our schema, it suffices to show then that this expression
is truly the support function of 𝒰 𝐼𝜖 . By Lagrangian duality,

𝛿*(v| 𝒰 𝐼𝜖 ) = inf
𝜆≥0

⎛⎜⎜⎝𝜆 log(1/𝜖) + max
q,𝜃

𝑑∑︁
𝑖=1

𝑣𝑖

𝑁+1∑︁
𝑗=0

�̂�
(𝑗)
𝑖 𝑞𝑖𝑗 − 𝜆

𝑑∑︁
𝑖=1

𝐷(q𝑖, 𝜃𝑖q
𝐿 + (1− 𝜃𝑖)q𝑅)

s.t.q𝑖 ∈ Δ𝑁+2, 0 ≤ 𝜃𝑖 ≤ 1, 𝑖 = 1, . . . , 𝑑.

⎞⎟⎟⎠
The inner maximization decouples in the variables indexed by 𝑖. The 𝑖th subproblem
is

max
𝜃𝑖∈[0,1]

𝜆

{︃
max

q𝑖∈Δ𝑁+2

{︃
𝑁+1∑︁
𝑗=0

𝑣𝑖�̂�
(𝑗)
𝑖

𝜆
𝑞𝑖𝑗 −𝐷(q𝑖, 𝜃𝑖q

𝐿 + (1− 𝜃𝑖)q𝑅)

}︃}︃
.

The inner maximization can be solved analytically (Boyd and Vandenberghe 2004,
pg. 93), yielding:

𝑞𝑖𝑗 =
𝑝𝑖𝑗𝑒

𝑣𝑖�̂�
(𝑗)
𝑖 /𝜆∑︀𝑁+1

𝑗=0 𝑝
𝑖
𝑗𝑒
𝑣𝑖�̂�

(𝑗)
𝑖 /𝜆

, 𝑝𝑖𝑗 = 𝜃𝑖𝑞
𝐿
𝑗 (Γ

𝐾𝑆) + (1− 𝜃𝑖)𝑞𝑅𝑗 (Γ𝐾𝑆). (D.6)
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Substituting in this solution and recombining subproblems yields

𝜆 log(1/𝜖) + 𝜆
𝑑∑︁
𝑖=1

log

(︃
max
𝜃𝑖∈[0,1]

𝑁+1∑︁
𝑗=0

(𝜃𝑖𝑞
𝐿
𝑗 (Γ

𝐾𝑆) + (1− 𝜃𝑖)𝑞𝑅𝑗 (Γ𝐾𝑆))𝑒𝑣𝑖�̂�
(𝑗)
𝑖 /𝜆.

)︃
(D.7)

The inner optimizations over 𝜃𝑖 are all linear, and hence achieve an optimal solution
at one of the end points, i.e., either 𝜃𝑖 = 0 or 𝜃𝑖 = 1. This yields the given expression
for 𝛿*(v| 𝒰).

Following this proof backwards to identify the optimal q𝑖, and, thus, u ∈ 𝒰 𝐼 also
proves the validity of the procedure given in Remark 5.13

Proof Theorem 5.15. By inspection, (5.26) is the worst-case value of (5.24) over 𝒫𝐹𝐵.
By Theorem 5.4, it suffices to show that this expression truly is the support function
of 𝒰𝐹𝐵𝜖 . First observe

max
u∈𝒰𝐹𝐵

𝜖

u𝑇v = min
𝜆≥0

⎧⎨⎩𝜆 log(1/𝜖) + max
m𝑏≤y1≤m𝑏,
y2≥,y3≥0

𝑑∑︁
𝑖=1

𝑣𝑖(𝑦1𝑖 + 𝑦2𝑖 − 𝑦3𝑖)− 𝜆
𝑑∑︁
𝑖=1

𝑦22𝑖
2𝜎2

𝑓𝑖

+
𝑦23𝑖
2𝜎2

𝑏𝑖

⎫⎬⎭
by Lagrangian strong duality. The inner maximization decouples by 𝑖. The 𝑖th sub-
problem further decouples into three sub-subproblems. The first is max𝑚𝑏𝑖≤𝑦𝑖1≤𝑚𝑓𝑖

𝑣𝑖𝑦1𝑖
with optimal solution

𝑦1𝑖 =

{︃
𝑚𝑓𝑖 if 𝑣𝑖 ≥ 0,

𝑚𝑏𝑖 if 𝑣𝑖 < 0.

The second sub-subproblem is max𝑦2𝑖≥0 𝑣𝑖𝑦2𝑖 − 𝜆 𝑦22𝑖
2𝜎2

𝑓𝑖
. This is maximizing a concave

quadratic function of one variable. Neglecting the non-negativity constraint, the
optimum occurs at 𝑦*2𝑖 =

𝑣𝑖𝜎
2
𝑓𝑖

𝜆
. If this value is negative, the optimum occurs at

𝑦*2𝑖 = 0. Consequently,

max
𝑦2𝑖≥0

𝑣𝑖𝑦2𝑖 − 𝜆
𝑦22𝑖
2𝜎2

𝑓𝑖

=

{︃
𝑣𝑖𝜎

2
𝑓𝑖

2𝜆
if 𝑣𝑖 ≥ 0,

0 if 𝑣𝑖 < 0.

Similarly, we can show that the third subproblem has the following optimum value

max
𝑦3𝑖≥0

−𝑣𝑖𝑦3𝑖 − 𝜆
𝑦23𝑖
2𝜎2

𝑏𝑖

=

{︃
𝑣𝑖𝜎

2
𝑏𝑖

2𝜆
if 𝑣𝑖 ≤ 0,

0 if 𝑣𝑖 > 0.

Combining the three sub-subproblems yields

𝛿*(v|𝒰𝐹𝐵𝜖 ) =
∑︁
𝑖:𝑣𝑖>0

𝑣𝑖𝑚𝑓𝑖+
∑︁
𝑖:𝑣𝑖≤0

𝑣𝑖𝑚𝑏𝑖+min
𝜆≥0

𝜆 log(1/𝜖)+
1

2𝜆

(︃∑︁
𝑖:𝑣𝑖>0

𝑣2𝑖 𝜎
2
𝑓𝑖 +

∑︁
𝑖:𝑣𝑖≤0

𝑣2𝑖 𝜎
2
𝑏𝑖

)︃
.

261



This optimization can be solved closed-form, yielding

𝜆* =

√︃∑︀
𝑖:𝑣𝑖>0 𝑣

2
𝑖 𝜎

2
𝑓𝑖 +

∑︀
𝑖:𝑣𝑖≤0 𝑣

2
𝑖 𝜎

2
𝑏𝑖

2 log(1/𝜖)
.

Simplifying yields the right hand side of (5.26). Moreover, following the proof back-
wards to identify the maximizing u ∈ 𝒰𝐹𝐵𝜖 proves the validity of the procedure given
in Remark 5.16.

Proof of Theorem 5.18. Observe,

sup
P∈𝒫𝑀

VaRP𝜖 (v) ≤ sup
P∈𝒫𝑀

𝑑∑︁
𝑖=1

VaRP𝜖/𝑑(𝑣𝑖e𝑖) =
∑︁
𝑖:𝑣𝑖>0

𝑣𝑖�̂�
(𝑠)
𝑖 +

∑︁
𝑖:𝑣𝑖≤0

𝑣𝑖�̂�
(𝑁−𝑠+1)
𝑖 , (D.8)

where the equality follows rom the positive homogeneity of VaRP𝜖 , and this last ex-
pression is equivalent to (5.31) because �̂�(𝑁−𝑠+1)

𝑖 ≤ �̂�
(𝑠)
𝑖 . By Theorem 5.2, it suffices to

show that 𝛿*(v| 𝒰𝑀) truly is the support function of 𝒰𝑀𝜖 , and this is immediate.

Proof of Theorem 5.21. We first compute supP∈𝒫𝐿𝐶𝑋 P(v𝑇 ũ > 𝑡) for fixed v, 𝑡. In
this spirit of Shapiro (2001), Bertsimas et al. (2014b), this optimization admits the
following strong dual:

inf
𝜃,𝑤𝜎 ,𝜆(a,𝑏)

𝜃 +

(︃
1

𝑁

𝑁∑︁
𝑗=1

‖û𝑗‖2 − Γ𝜎

)︃
𝑤𝜎 +

∫︁
ℬ
Γ(a, 𝑏)𝑑𝜆(a, 𝑏)

s.t. 𝜃 − 𝑤𝜎‖u‖2 +
∫︁
ℬ
(a𝑇u− 𝑏)+𝑑𝜆(𝑎, 𝑏) ≥ I(u𝑇v > 𝑡) ∀u ∈ R𝑑, (D.9)

𝑤𝜎 ≥ 0, 𝑑𝜆(a, 𝑏) ≥ 0,

where Γ(a, 𝑏) ≡ 1
𝑁

∑︀𝑁
𝑗=1(a

𝑇 û𝑗 − 𝑏)+ + Γ𝐿𝐶𝑋 . We claim that 𝑤𝜎 = 0 in any feasible
solution. Indeed, suppose 𝑤𝜎 > 0 in some feasible solution. Note (a, 𝑏) ∈ ℬ implies
that (a𝑇u − 𝑏)+ = 𝑂(‖u‖) as ‖u‖ → ∞. Thus, the left-hand side of eq. (D.9)
tends to −∞ as ‖u‖ → ∞ while the right-hand side is bounded below by zero. This
contradicts the feasibility of the solution.

Since 𝑤𝜎 = 0 in any feasible solution, rewrite the above as

inf
𝜃,𝜆(a,𝑏)

𝜃 +

∫︁
ℬ
Γ(a, 𝑏)𝑑𝜆(a, 𝑏)

s.t. 𝜃 +

∫︁
ℬ
(a𝑇u− 𝑏)+𝑑𝜆(𝑎, 𝑏) ≥ 0 ∀u ∈ R𝑑, (D.10)

𝜃 +

∫︁
ℬ
(a𝑇u− 𝑏)+𝑑𝜆(𝑎, 𝑏) ≥ 1 ∀u ∈ {u ∈ R𝑑 : u𝑇v > 𝑡},

𝑑𝜆(a, 𝑏) ≥ 0.

The two infinite constraints can be rewritten using duality. Specifically, the first
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constraint is

−𝜃 ≤ min
𝑠(a,𝑏)≥0,ũ∈R𝑑

∫︁
ℬ
𝑠(a, 𝑏)𝑑𝜆(a, 𝑏)

s.t. 𝑠(a, 𝑏) ≥ (a𝑇 ũ− 𝑏) ∀(a, 𝑏) ∈ ℬ,

which admits the dual:

−𝜃 ≤ max
𝑦1(a,𝑏)

−
∫︁
ℬ
𝑏 𝑑𝑦1(a, 𝑏)

s.t. 0 ≤ 𝑑𝑦1(a, 𝑏) ≤ 𝑑𝜆(a, 𝑏) ∀(a, 𝑏) ∈ ℬ,∫︁
ℬ
a 𝑑𝑦1(a, 𝑏) = 0.

The second constraint can be treated similarly using continuity to take the closure of
{u ∈ R𝑑 : u𝑇v > 𝑡}. Combining both constraints yields the equivalent representation
of (D.10)

inf
𝜃,𝜏,𝜆(a,𝑏),

𝑦1(a,𝑏),𝑦2(a,𝑏)

𝜃 +

∫︁
ℬ
Γ(a, 𝑏)𝑑𝜆(a, 𝑏)

s.t. 𝜃 −
∫︁
ℬ
𝑏 𝑑𝑦1(a, 𝑏) ≥ 0, 𝜃 + 𝑡𝜏 −

∫︁
ℬ
𝑏 𝑑𝑦2(a, 𝑏) ≥ 1,

0 ≤ 𝑑𝑦1(a, 𝑏) ≤ 𝑑𝜆(a, 𝑏) ∀(a, 𝑏) ∈ ℬ, (D.11)
0 ≤ 𝑑𝑦2(a, 𝑏) ≤ 𝑑𝜆(a, 𝑏) ∀(a, 𝑏) ∈ ℬ,∫︁

ℬ
a 𝑑𝑦1(a, 𝑏) = 0, 𝜏v =

∫︁
ℬ
a 𝑑𝑦2(a, 𝑏),

𝜏 ≥ 0.

Now the worst-case Value at Risk can be written as

sup
P∈𝒫𝐿𝐶𝑋

VaRP𝜖 (v) = inf
𝜃,𝜏,𝑡,𝜆(a,𝑏),
𝑦1(a,𝑏),𝑦2(a,𝑏)

𝑡

s.t. 𝜃 +

∫︁
ℬ
Γ(a, 𝑏)𝑑𝜆(a, 𝑏) ≤ 𝜖,

(𝜃, 𝜏, 𝜆(a, 𝑏), 𝑦1(a, 𝑏), 𝑦2(a, 𝑏), 𝑡) feasible in (D.11) .

We claim that 𝜏 > 0 in an optimal solution. Suppose to the contrary that 𝜏 = 0
in some solution. Let 𝑡 → −∞ in this solution. The resulting solution remains
feasible, implying that P(ũ𝑇v > −∞) ≤ 𝜖 for all P ∈ 𝒫𝐿𝐶𝑋 . However, the empirical
distribution P̂ ∈ 𝒫𝐿𝐶𝑋 , a contradiction.

Since 𝜏 > 0, apply the transformation

(𝜃/𝜏, 1/𝜏, 𝜆(a, 𝑏)/𝜏,y(a, 𝑏)/𝜏)→ (𝜃, 𝜏, 𝜆(a, 𝑏),y(a, 𝑏))
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yielding

inf
𝜃,𝜏,𝑡,𝜆(a,𝑏),
𝑦1(a,𝑏),𝑦2(a,𝑏)

𝑡

s.t. 𝜃 +

∫︁
ℬ
Γ(a, 𝑏)𝑑𝜆(a, 𝑏) ≤ 𝜖𝜏

𝜃 −
∫︁
ℬ
𝑏 𝑑𝑦1(a, 𝑏) ≥ 0, 𝜃 + 𝑡−

∫︁
ℬ
𝑏 𝑑𝑦2(a, 𝑏) ≥ 𝜏,

0 ≤ 𝑑𝑦1(a, 𝑏) ≤ 𝑑𝜆(a, 𝑏) ∀(a, 𝑏) ∈ ℬ,
0 ≤ 𝑑𝑦2(a, 𝑏) ≤ 𝑑𝜆(a, 𝑏) ∀(a, 𝑏) ∈ ℬ,∫︁

ℬ
a 𝑑𝑦1(a, 𝑏) = 0, v =

∫︁
ℬ
a 𝑑𝑦2(a, 𝑏),

𝜏 ≥ 0.

Eliminate the variable 𝑡, and make the transformation (𝜏𝜖, 𝜃−
∫︀
ℬ 𝑏𝑑𝑦1(a, 𝑏))→ (𝜏, 𝜃)

to yield the righthand side of (5.34).
By Theorem 5.4, it suffices to show that the right hand side of (5.34) is indeed

the support function of 𝒰𝐿𝐶𝑋𝜖 . Take the dual of (5.34) and simplify to yield the given
description of 𝒰𝐿𝐶𝑋𝜖 .

Proof of Theorem 5.26. By Theorem 5.4, it suffices to show that 𝛿*(v| 𝒰𝐶𝑆𝜖 ) is given
by (5.36), which follows immediately from two applications of the Cauchy-Schwartz
inequality.

To prove Theorem 5.31 we require the following proposition.

Proposition D.3.

sup
P∈𝒫𝐷𝑌

P(ũ𝑇v > 𝑡) (D.12)

= min
𝑟,𝑠,𝜃,y1,y2,Z

𝑟 + 𝑠 (D.13)

s.t.
(︂
𝑟 + y+𝑇

1 û(0) − y−𝑇
1 û(𝑁+1) 1

2
(q− y1)

𝑇 ,
1
2
(q− y1) Z

)︂
⪰ 0,(︂

𝑟 + y+𝑇
2 û(0) − y−𝑇

2 û(𝑁+1) + 𝜃𝑡− 1 1
2
(q− y2 − 𝜃v)𝑇 ,

1
2
(q− y2 − 𝜃v) Z

)︂
⪰ 0,

𝑠 ≥ (𝛾𝐵2 Σ̂+ �̂��̂�𝑇 ) ∘ Z+ �̂�𝑇q+
√︁
𝛾𝐵1 ‖q+ 2Z�̂�‖

Σ̂
−1 ,

y1 = y+
1 − y−

1 , y2 = y+
2 − y−

2 , y+
1 ,y

−
1 ,y

+
2 ,y

−
2 𝜃 ≥ 0.
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Proof. We claim that supP∈𝒫𝐷𝑌 P(ũ𝑇v > 𝑡) has the following dual representation:

min
𝑟,𝑠,q,Z,y1,y2,𝜃

𝑟 + 𝑠

s.t. 𝑟 + u𝑇Zu+ u𝑇q ≥ 0 ∀u ∈ [û(0), û(𝑁+1)],

𝑟 + u𝑇Zu+ u𝑇q ≥ 1 ∀u ∈ [û(0), û(𝑁+1)] ∩ {u : u𝑇v > 𝑡},
(D.14)

𝑠 ≥ (𝛾𝐵2 Σ̂+ �̂��̂�𝑇 ) ∘ Z+ �̂�𝑇q+,
√︁
𝛾𝐵1 ‖q+ 2Z�̂�‖

Σ̂
−1 ,

Z ⪰ 0.

See the proof of Lemma 1 in Delage and Ye (2010) for details. Since Z is positive
semidefinite, we can use strong duality to rewrite the two semi-infinite constraints:

min
u

u𝑇Zu+ u𝑇q

s.t. û(0) ≤ u ≤ û(𝑁+1),

⇐⇒

max
y1,y

+
1 ,y

−
1

− 1

4
(q− y1)

𝑇Z−1(q− y1) + y+
1 û

(0) − y−
1 û

(𝑁+1)

s.t. y1 = y+
1 − y−

1 , y+
1 ,y

−
1 ≥ 0,

min
u

u𝑇Zu+ u𝑇q

s.t. û(0) ≤ u ≤ û(𝑁+1),

u𝑇v ≥ 𝑡,

⇐⇒

max
y2,y

+
2 ,y

−
2

− 1

4
(q− y2 − 𝜃v)𝑇Z−1(q− y2 − 𝜃v) + y+

2 û
(0) − y−

2 û
(𝑁+1) + 𝜃𝑡

s.t. y2 = y+
2 − y−

2 , y+
2 ,y

−
2 ≥ 0, 𝜃 ≥ 0.

Then, by using Schur-Complements, we can rewrite Problem (D.14) as in the propo-
sition.

We can now prove the theorem.

Proof of Theorem 5.31. Using Proposition D.3, we can characterize the worst-case
VaR by

sup
P∈𝒫𝐷𝑌

VaRP𝜖 (v) = inf {𝑡 : 𝑟 + 𝑠 ≤ 𝜖, (𝑟, 𝑠, 𝑡, 𝜃,y1,y2,Z) are feasible in problem (D.12)} .

(D.15)
We claim that 𝜃 > 0 in any feasible solution to the infimum in Eq. (D.15). Suppose
to the contrary that 𝜃 = 0. Then this solution is also feasible as 𝑡 ↓ ∞, which
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implies that P(ũ𝑇v > −∞) ≤ 𝜖 for all P ∈ 𝒫𝐷𝑌 . On the other hand, the empirical
distribution P̂ ∈ 𝒫𝐷𝑌 , a contradiction.

Since 𝜃 > 0, we can rescale all of the above optimization variables in prob-
lem (D.12) by 𝜃. Substituting this into Eq. (D.15) yields the given expression for
supP∈𝒫𝐷𝑌 VaRP𝜖 (v). Rewriting this optimization problem as a semidefinite optimiza-
tion problem and taking its dual yields 𝒰𝐷𝑌𝜖 in the theorem. By Theorem 5.4, this
set simultaneously implies a probabilistic guarantee.

Proof of Theorem 5.34. For each part, the convexity in (v, 𝑡) is immediate since
𝛿*(v| 𝒰𝜖) is a support function of a convex set. For the first part, note that from
the second part of Theorem 5.26, 𝛿*(v| 𝒰𝐶𝑆𝜖 ) ≤ 𝑡 will be convex in 𝜖 for a fixed (v, 𝑡)
whenever

√︀
1/𝜖− 1 is convex. Examining the second derivative of this function, this

occurs on the interval 0 < 𝜖 < .75. Similarly, for the second part, note that from the
second part of Theorem 5.15, 𝛿*(v| 𝒰𝐹𝐵𝜖 ) ≤ 𝑡 will be convex in 𝜖 for a fixed (v, 𝑡)
whenever

√︀
2 log(1/𝜖) is convex. Examining the second derivative of this function,

this occurs on the interval 0 < 𝜖 < 1
√
𝑒.

From the representations of 𝛿*(v|𝒰𝜒2

𝜖 ) and 𝛿*(v|𝒰𝐺𝜖 ) in Theorem 5.5, we can see
they will be convex in 𝜖 whenever 1/𝜖 is convex, i.e., 0 < 𝜖 < 1. From the representa-
tion of 𝛿*(v|𝒰 𝐼𝜖 ) in Theorem 5.11 and since 𝜆 ≥ 0, we see this function will be convex
in 𝜖 whenever log(1/𝜖) is convex, i.e., 0 < 𝜖 < 1.

Finally, examining the support functions of 𝒰𝐿𝐶𝑋𝜖 and 𝒰𝐷𝑌𝜖 shows that 𝜖 occurs
linearly in each of these functions.

D.2 Omitted Figures
This section contains additional figures omitted from the main text.

D.3 Optimizing 𝜖𝑗’s for Multiple Constraints
In this section we specify the optimization problem that we solve in 𝜖𝑗’s as part
of our alternating optimization heuristic for treating multiple constraints. We first
present our approach using 𝑚 constraints of the form 𝛿*(v| 𝒰𝐶𝑆𝜖 ) ≤ 𝑡. Without loss
of generality, assume the overall optimization problem is a minimization. Consider
the 𝑗th constraint, and let (v′, 𝑡′) denote the subset of the solution to the original
optimization problem at the current iterate pertaining to the 𝑗th constraint. Let 𝜖′𝑗,
𝑗 = 1, . . . ,𝑚 denote the current iterate in 𝜖. Finally, let 𝜆𝑗 denote the shadow price
of the 𝑗th constraint in the overall optimization problem.

Notice from the second part of Theorem 5.26 that 𝛿*(v| 𝒰𝐶𝑆𝜖 ) is decreasing in 𝜖.
Thus, for all 𝜖𝑗 ≥ 𝜖𝑗, 𝛿*(v′| 𝒰𝐶𝑆𝜖𝑗 ) ≤ 𝑡′, where,

𝜖𝑗 ≡
[︂
(𝑡′ − �̂�𝑇v′ − Γ1‖v′‖2)2

v′𝑇 (Σ+ Γ2I)v′ + 1

]︂−1

.

Motivated by the shadow-price 𝜆𝑗, we define the next iterates of 𝜖𝑗, 𝑗 = 1, . . . ,𝑚
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Figure D-1: 𝒰𝐶𝑆𝜖 With and Without Bootstrapping for the Example from Fig. 5-3

(a) Not Bootstrapped (b) Bootstrapped

Note: 𝑁𝐵 = 10, 000, 𝛼 = 10%, 𝜖 = 10%. Notice that for 𝑁 = 1, 000, the non-
bootstrapped set is almost as big as the full support and shrinks slowly to its
infinite limit. The bootstrapped set with 𝑁 = 100 points is smaller than the
non-bootstrapped version with 50 times as many points.

to be the solution of the linear optimization problem

min
𝜖

−
𝑑∑︁
𝑗=1

⎛⎝√︀v′𝑇 (Σ+ Γ2I)v′

2𝜖′2
√︁

1
𝜖′
− 1

⎞⎠𝜆𝑗 · 𝜖𝑗

s.t. 𝜖𝑗 ≤ 𝜖𝑗 ≤ .75, 𝑗 = 1, . . . ,𝑚, (D.16)
𝑚∑︁
𝑗=1

𝜖𝑗 ≤ 𝜖, ‖𝜖′ − 𝜖‖1 ≤ 𝜅.

The coefficient of 𝜖𝑗 in the objective function is 𝜆𝑗 ·𝜕𝜖𝑗𝛿*(v′| 𝒰𝐶𝑆𝜖𝑗 ) which is intuitively
a first-order approximation to the improvement in the overall optimization problem
for a small change in 𝜖𝑗. The norm constraint on 𝜖 ensures that the next iterate is
not too far away from the current iterate, so that the shadow-price 𝜆𝑗 remains a good
approximation. (We use 𝜅 = .05 in our experiments.) The upper bound ensures that
we remain in a region where 𝛿*(v| 𝒰𝐶𝑆𝜖𝑗 ) is convex in 𝜖𝑗. Finally, the lower bounds on
𝜖𝑗 ensure that the previous iterate of the original optimization problem (v′, 𝑡′) will
still be feasible for the new values of 𝜖𝑗. Consequently, the objective value of the
original optimization problem is non-increasing. We terminate the procedure when
the objective value no longer makes significant progress.

With the exception of 𝒰𝐿𝐶𝑋𝜖 , we can follow an entirely analogous procedure, sim-
ply adjusting the formulas for 𝜖𝑗, the upper bounds, and the objective coefficient
appropriately. We omit the details. Computing the relevant objective coefficient for
𝒰𝐿𝐶𝑋 is more subtle. From (5.34), we require the optimal 𝜏 corresponding to v′.
This 𝜏 is dual to the constraint 𝑧 ≤ 1

𝜖
. Thus, our strategy is to evaluate 𝛿*(v′| 𝒰𝜖′𝑗)
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Figure D-2: The Case 𝑁 = 2000 for the Experiment Outlined in Sec. 5.11.1
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Note: The left panel shows the cross-validation results. The right panel shows the
average holdings by method. 𝛼 = 𝜖 = 10%.

by generating (a, 𝑏)’s via the separation routine of Remark 5.24. At termination, we
let 𝜏 be the dual variable to the constraint 𝑧 ≤ 1

𝜖
, and, finally, we set the objective

coefficient of 𝜖𝑗 in (D.16) to be − 𝜏
𝜖′𝑗

2. Again, intuitively, this coefficient corresponds
to the change in the overall optimization problem for a small change in 𝜖𝑗.

D.4 Additional Portfolio Results
Fig. D-2 summarizes the case 𝑁 = 2000 for the experiment outlined in Sec. 5.11.1.

D.5 Additional Queueing Results
We first derive the bound 𝑊 3,𝐹𝐵

𝑛 . Notice that in (5.41), the optimizing index 𝑗
represents the most recent customer to arrive when the queue was empty. Let �̃�
denote the number of customers served in a typical busy period. Intuitively, it suffices
to truncate the recursion (5.41) at customer min(𝑛, 𝑛(𝑘)) where, with high probability,
�̃� ≤ 𝑛(𝑘). More formally, considering only the first half of the data �̂�1, . . . , �̂�⌈𝑁/2⌉ and
𝑡1, . . . , 𝑡⌈𝑁/2⌉, we compute the number of customers served in each busy period of the
queue, denoted �̂�1, . . . , �̂�𝐾 , which are i.i.d. realizations of �̃�. Using the KS test at
level 𝛼1, we observe that with probability at least 1−𝛼 with respect to the sampling,

P(�̃� > �̂�(𝑘)) ≤ 1− 𝑘

𝐾
+ Γ𝐾𝑆(𝛼), ∀𝑘 = 1, . . . , 𝐾. (D.17)

In other words, the queue empties every �̂�(𝑘) customers with at least this probability.
Next, calculate the constants m𝑓 ,m𝑏,𝜎𝑓 ,𝜎𝑏 using only the second half of the

data. Then, truncate the sum in (5.46) at min(𝑛, 𝑛(𝑘)) and replace the righthand side
by 𝜖− 1+ 𝑘

𝐾
−Γ𝐾𝑆(𝛼/2). Denote the solution of this equation by 𝑊 2,𝐹𝐵

𝑛 (𝑘). Finally,
let 𝑊 3,𝐹𝐵

𝑛 ≡ min1≤𝑘<𝐾𝑊
2,𝐹𝐵
𝑛 (𝑘), obtained by grid-search.

We claim that with probability at least 1 − 2𝛼 with respect to the sampling,
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P(�̃�𝑛 > 𝑊 3,𝐹𝐵
𝑛 ) ≤ 𝜖. Namely, from our choice of parameters, eqs.(5.46) and (D.17)

hold simultaneously with probability at least 1− 2𝛼. Restrict attention to a sample
path where these equations hold. Since (D.17) holds for the optimal index 𝑘*, recur-
sion (5.41) truncated at 𝑛(𝑘*) is valid with probability at least 1− 𝑘*

𝐾
+Γ𝐾𝑆(𝛼). Finally,

P(�̃�𝑛 > 𝑊 3,𝐹𝐵
𝑛 ) ≤ P( (5.41) is invalid ) + P((�̃�𝑛 > 𝑊 2,𝐹𝐵

𝑛 (𝑘*) and(5.41) is valid ) ≤
𝜖. This proves the claim.

We observe in passing that since the constants m𝑓 ,m𝑏,𝜎𝑓 ,𝜎𝑏 are computed using
only half the data, it may not be the case that 𝑊 3,𝐹𝐵

𝑛 < 𝑊 2,𝐹𝐵
𝑛 , particularly for small

𝑁 , but that typically 𝑊 3,𝐹𝐵
𝑛 is a much stronger bound than 𝑊 2,𝐹𝐵

𝑛 .
Applying a similar analysis with set 𝒰𝐶𝑆𝜖 , yields the following bounds:

𝑊 1,𝐶𝑆
𝑛 ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(�̂�1 − �̂�2)𝑛+

(︁
Γ1 +

√︁
(𝑛
𝜖
− 1)(𝜎2

1 + 𝜎2
2 + 2Γ2)

)︁√
𝑛 if 𝑛 < 𝑛1,𝐶𝑆

𝑐

or �̂�1 > �̂�2,(︁
Γ1+
√

(𝑛
𝜖
−1)(𝜎2

1+𝜎
2
2+2Γ2)

)︁2

4(�̂�2−�̂�1) otherwise,

where 𝑛1,𝐶𝑆
𝑐 =

(︁
Γ1+
√

(𝑛
𝜖
−1)(𝜎2

1+𝜎
2
2+2Γ2)

)︁2

4(�̂�1−�̂�2)2 , 𝑊 2,𝐶𝑆
𝑛 is the solution to

𝑛−1∑︁
𝑗=1

⎡⎣(︃𝑊 2,𝐶𝑆
𝑛 − (�̂�1 − �̂�2)(𝑛− 𝑗)√
𝑛− 𝑗

√︀
𝜎2
1 + 𝜎2

2 + 2Γ2

− Γ1√︀
𝜎2
1 + 𝜎2

2 + 2Γ2

)︃2

+ 1

⎤⎦−1

= 𝜖, (D.18)

and 𝑊 3,𝐶𝑆
𝑛 defined analogously to 𝑊 3,𝐹𝐵

𝑛 but using (D.18) in lieu of (5.46).

D.6 Constructing 𝒰 𝐼𝜖 from Other EDF Tests

In this section we show how to extend our constructions for 𝒰 𝐼𝜖 to other EDF tests. We
consider several of the most popular, univariate goodness-of-fit, empirical distribution
function test. Each test below considers the null-hypothesis 𝐻0 : P*𝑖 = P0,𝑖.

Kuiper (K) Test: The K test rejects the null hypothesis at level 𝛼 if

max
𝑗=1,...,𝑁

(︂
𝑗

𝑁
− P0,𝑖(�̃�𝑖 ≤ �̂�

(𝑗)
𝑖 )

)︂
+ max
𝑗=1,...,𝑁

(︂
P0,𝑖(�̃�𝑖 < �̂�

(𝑗)
𝑖 )− 𝑗 − 1

𝑁

)︂
> 𝑉1−𝛼.

Cramer von-Mises (CvM) Test: The CvM test rejects the null hypothesis at level 𝛼 if

1

12𝑁2
+

1

𝑁

𝑁∑︁
𝑗=1

(︂
2𝑗 − 1

2𝑁
− P0,𝑖(�̃�𝑖 ≤ �̂�

(𝑗)
𝑖 )

)︂2

> (𝑇1−𝛼)
2.

Watson (W) Test: The W test rejects the null hypothesis at level 𝛼 if

1

12𝑁2
+

1

𝑁

𝑁∑︁
𝑗=1

(︂
2𝑗 − 1

2𝑁
− P0,𝑖(�̃�𝑖 ≤ �̂�

(𝑗)
𝑖 )

)︂2

−

⎛⎝ 1

𝑁

𝑁∑︁
𝑗=1

P0,𝑖(�̃�𝑖 ≤ �̂�
(𝑗)
𝑖 )− 1

2

⎞⎠2

> (𝑈1−𝛼)
2.
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Anderson-Darling (AD) Test: The AD test rejects the null hypothesis at level 𝛼 if

−1−
𝑁∑︁
𝑗=1

2𝑗 − 1

𝑁2

(︁
log
(︁
P0,𝑖(�̃�𝑖 ≤ �̂�

(𝑗)
𝑖 )
)︁
+ log

(︁
1− P0,𝑖(�̃�𝑖 ≤ �̂�

(𝑁+1−𝑗)
𝑖 )

)︁)︁
> (𝐴1−𝛼)

2

Tables of the thresholds above are readily available (e.g., Stephens 1974, and
references therein).

As described in Bertsimas et al. (2014b), the confidence regions of these tests can
be expressed in the form

𝒫𝐸𝐷𝐹𝑖 = {P𝑖 ∈ 𝜃[�̂�(0)𝑖 , �̂�
(𝑁+1)
𝑖 ] : ∃𝜁 ∈ R𝑁 , P𝑖(�̃�𝑖 ≤ �̂�

(𝑗)
𝑖 ) = 𝜁𝑖, A𝑆𝜁 − b𝑆 ∈ 𝒦𝑆},

where the the matrix A𝑆, vector b𝑆 and cone 𝒦𝑆 depend on the choice of test and
are given by Theorem 4.25.

Let 𝒦* denote the dual cone to 𝒦. By specializing Theorem 10 of Bertsimas et al.
(2014b), we obtain the following theorem, paralleling Theorem D.2.

Theorem D.4. Suppose 𝑔(𝑢) is monotonic and right-continuous, and let 𝒫𝑆 denote
the confidence region of any of the above EDF tests.

sup
P𝑖∈𝒫𝐸𝐷𝐹

𝑖

EP𝑖 [𝑔(�̃�𝑖)] = min
r,c

b𝑇𝑆r+ 𝑐𝑁+1

s.t. − r ∈ 𝒦*
𝑆, c ∈ R𝑁+1,

(A𝑇
𝑆r)𝑗 = 𝑐𝑗 − 𝑐𝑗+1 ∀𝑗 = 1, . . . , 𝑁,

𝑐𝑗 ≥ 𝑔(�̂�
(𝑗−1)
𝑖 ), 𝑐𝑗 ≥ 𝑔(�̂�

(𝑗)
𝑖 ), 𝑗 = 1, . . . , 𝑁 + 1. (D.19)

= max
z,q𝐿,q𝑅,p

𝑁+1∑︁
𝑗=0

𝑝𝑗𝑔(�̂�
(𝑗)
𝑖 )

s.t. A𝑆z− b𝑆 ∈ 𝒦𝑆, q𝐿,q𝑅,p ∈ R𝑁+1
+

𝑞𝐿𝑗 + 𝑞𝑅𝑗 = 𝑧𝑗 − 𝑧𝑗−1, 𝑗 = 1, . . . , 𝑁, (D.20)

𝑞𝐿𝑁+1 + 𝑞𝑅𝑁+1 = 1− 𝑧𝑁
𝑝0 = 𝑞𝐿1 , 𝑝𝑁+1 = 𝑞𝑅𝑁+1, 𝑝𝑗 = 𝑞𝐿𝑗+1 + 𝑞𝑅𝑗 , 𝑗 = 1, . . . , 𝑁,

where A𝑆,b𝑆,𝒦𝑆 are the appropriate matrix, vector and cone to the test. Moreover,
when 𝑔(𝑢) is non-decreasing (resp. non-increasing), there exists an optimal solution
where q𝐿 = 0 (resp. q𝑅 = 0) in (D.20).

Proof. Proof. Apply Theorem 10 of Bertsimas et al. (2014b) and observe that since
𝑔(𝑢) is monotonic and right continuous,

𝑐𝑗 ≥ sup
𝑢∈(�̂�(𝑗−1)

𝑖 ,�̂�
(𝑗)
𝑖 ]

𝑔(𝑢) ⇐⇒ 𝑐𝑗 ≥ 𝑔(�̂�
(𝑗−1)
𝑖 ), 𝑐𝑗 ≥ 𝑔(�̂�

(𝑗)
𝑖 ).

Take the dual of this (finite) conic optimization problem to obtain the given maxi-
mization formulation.
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To prove the last statement, suppose first that 𝑔(𝑢) is non-decreasing and fix
some 𝑗. If 𝑔(�̂�(𝑗)𝑖 ) > 𝑔(�̂�

(𝑗−1)
𝑖 ), then by complementary slackness, q𝐿 = 0. If 𝑔(�̂�(𝑗)𝑖 ) =

𝑔(�̂�
(𝑗−1)
𝑖 ), then given any feasible (𝑞𝐿𝑗 , 𝑞

𝑅
𝑗 ), the pair (0, 𝑞𝐿𝑗 + 𝑞𝑅𝑗 ) is also feasible with

the same objective value. Thus, without loss of generality, q𝐿 = 0. The case where
𝑔(𝑢) is non-increasing is similar.

Remark D.5. At optimality of (D.20), p can be considered a probability distribution,
supported on the points �̂�(𝑗)𝑖 𝑗 = 0, . . . , 𝑁 + 1. This distribution is analogous to
q𝐿(Γ),q𝑅(Γ) for the KS test.

In the special case of the 𝐾 test, we can solve (D.20) explicitly to find this worst-
case distribution.

Corollary D.6. When 𝒫𝐸𝐷𝐹𝑖 refers specifically to the K test in Theorem D.4 and if
𝑔 is monotonic, we have

sup
P𝑖∈𝒫𝐸𝐷𝐹

𝑖

EP𝑖 [𝑔(�̃�𝑖)] = max

(︃
𝑁+1∑︁
𝑗=0

𝑞𝐿𝑗 (Γ
𝐾)𝑔(�̂�

(𝑗)
𝑖 ),

𝑁+1∑︁
𝑗=0

𝑞𝑅𝑗 (Γ
𝐾)𝑔(�̂�

(𝑗)
𝑖 )

)︃
. (D.21)

Proof. Proof. One can check that in the case of the 𝐾 test, the maximization formu-
lation given is equivalent to (D.5) with Γ𝐾𝑆 replaced by Γ𝐾 . Following the proof of
Theorem D.2 yields the result.

Remark D.7. One an prove that Γ𝐾 ≥ Γ𝐾𝑆 for all 𝑁 , 𝛼. Consequently, 𝒫𝐾𝑆𝑖 ⊆ 𝒫𝐾𝑖 .
For practical purposes, one should thus prefer the KS test to the K test, as it will
yield smaller sets.

We can now generalize Theorem 5.11. For each of K, CvM, W and AD tests,
define the (finite dimensional) set

𝒫𝐸𝐷𝐹𝑖 = {p ∈ R𝑁+2
+ : ∃q𝐿,q𝑅 ∈ R𝑁+2

+ , z ∈ R𝑁 , p,q𝐿,q𝑅, z are feasible in (D.20)},
(D.22)

using the appropriate A𝑆,b𝑆,𝒦𝑆.

Theorem D.8. Suppose P* has independent components, with supp(P*) ⊆ [û(0), û(𝑁+1)].

i) With probability at least 1 − 𝛼 over the sample, the family {𝒰 𝐼𝜖 : 0 < 𝜖 < 1}
simultaneously implies a probabilistic guarantee, where

𝒰 𝐼𝜖 =

{︃
u ∈ R𝑑 : ∃p𝑖 ∈ 𝒫𝐸𝐷𝐹𝑖 , q𝑖 ∈ Δ𝑁+2, 𝑖 = 1 . . . , 𝑑,

𝑁+1∑︁
𝑗=0

�̂�
(𝑗)
𝑖 𝑞𝑖𝑗 = 𝑢𝑖 𝑖 = 1, . . . , 𝑑,

𝑑∑︁
𝑖=1

𝐷(q𝑖,p𝑖) ≤ log(1/𝜖)

}︃
.

(D.23)

ii) In the special case of the K test, the above formulation simplifies to (5.20) with
Γ𝐾𝑆 replaced by Γ𝐾.
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The proof of the first part is entirely analogous to Theorem 5.11, but uses Theo-
rem D.4 to evaluate the worst-case expectations. The proof of the second part follows
by applying Corollary D.6. We omit the details.

Remark D.9. In contrast to our definition of 𝒰 𝐼𝜖 using the KS test, we know of no
simple algorithm for evaluating 𝛿*(v| 𝒰 𝐼𝜖 ) when using the CvM, W, or AD tests. (For
the K test, the same algorithm applies but with Γ𝐾 replacing Γ𝐾𝑆.) Although it
still polynomial time to optimize over constraints 𝛿*(v| 𝒰 𝐼𝜖 ) ≤ 𝑡 for these tests using
interior-point solvers for conic optimization, it is more challenging numerically.
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Appendix E

Appendix to Chapter 7

E.1 A Priori Balance in Estimating Treatment Effect
on Compliers

In many experimental endeavors involving human subjects the researcher does not
fully control the treatment actually administered. Consider two treatments, “treat-
ment” (𝑘 = 1) and “control” (𝑘 = 2). Situations where a subject receives a treatment
different from their assignment include refusal of surgery, ethical codes that allow
subjects assigned to control to demand treatment, or the leakage of information to
some control subjects in a teaching intervention. This issue is termed non-compliance.
In such situations, 𝑊 represents initial assignment intent and our estimator 𝜏 esti-
mates the effect of the intent to treat (ITT). Often a researcher is interested in the
compliers’ average treatment effect in the sample (CSATE) or population (CPATE),
disregarding all non-compliers. Subjects that always demand treatment are known
as always-takers, those that always refuse treatment as never-takers, and those that
always choose the opposite of their assignment as defiers (this is exhaustive if sub-
jects comply based only on their own assignment). Denote by 𝜋𝑐 and Π𝑐 the unknown
fraction of compliers in the sample and population, respectively. In the absence of
defiers we can observe the identity of never-takers in the treatment group and of
always-takers in the control group. We can estimate the fraction of compliers as the
complement of those:

�̂�𝑐 = 1− 2

𝑛

∑︁
𝑖:𝑊𝑖=1

NT𝑖−
2

𝑛

∑︁
𝑖:𝑊𝑖=2

AT𝑖

where NT𝑖 = 1 if 𝑖 is a never-taker and AT𝑖 = 1 if 𝑖 is an always-taker (both 0
for compliers). Under an assignment that blinds the identity of treatment, such as
complete randomization, �̂�𝑐 is conditionally (for 𝜋𝑐) and marginally (for Π𝑐) unbiased
if there are no defiers. Moreover, without defiers,

CSATE = SATE /𝜋𝑐 CPATE = PATE /Π𝑐
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since the individual ITT effect for an always- or never-taker is identically 0. It has
been often advocated (see Imbens and Rubin (1997), Little and Yau (1998)) in com-
pletely randomized trials to estimate the compliers’ average treatment effect by a
ratio estimator 𝜏𝑐 = 𝜏/�̂�𝑐. Such an estimator need not be unbiased but because it is
the ratio of two unbiased estimators it has been argued to be approximately unbiased
(ibid.). Under a design that blinds the identity of treatments the two estimators
remain unbiased and the very same approach can be taken.

We can do even better if we use a priori balance to improve the precision of the
compliance fraction estimator. The difference between the sample compliance fraction
and our estimator of it can be seen to be

�̂�𝑐 − 𝜋𝑐 =
2

𝑁

∑︁
𝑖:𝑊𝑖=1

(AT𝑖−NT𝑖)−
2

𝑛

∑︁
𝑖:𝑊𝑖=2

(AT𝑖−NT𝑖) =
2

𝑛

𝑛∑︁
𝑖=1

𝑢𝑖𝐶𝑖

where 𝐶𝑖 =

⎧⎨⎩
1 𝑖 is always-taker
0 𝑖 is complier
−1 𝑖 is never-taker

is 𝑖’s compliance status.

Therefore, matching the means of 𝑓𝑐(𝑥) = E [𝐶𝑖|𝑋𝑖 = 𝑥] will eliminate variance in
estimating the compliance fraction and get us closer to the true CSATE and CPATE.
Moreover, if the two unbiased estimators, 𝜏 and �̂�𝑐, are both more precise, their ratio
𝜏𝑐 is both more precise and less biased. To achieve this through our framework we
need only incorporate our belief ℱ𝑐 about 𝑓𝑐 into the larger ℱ and proceed as before.
(See also supplemental Section E.2 for a discussion about combining spaces.)

E.2 Generalizations of ℱ
In this supplemental section we consider more general forms of the space ℱ . For the
most part, the theorems presented in the main text will still apply. We deferred this
discussion to this supplement to avoid overly cumbersome notation in the main text.

First, we consider the restriction to cones in ℱ . A cone is a set 𝐶 ⊂ ℱ such that
𝑓 ∈ 𝐶 =⇒ 𝑐𝑓 ∈ 𝐶 ∀𝑐 > 0. We may then further restrict to 𝑓 ∈ 𝐶, ||𝑓 || ≤ 1 in the
definitions of 𝑀2

p(𝑊 ) and 𝑀2
m(𝜎). By symmetry, this is the same as restricting to

𝐶 ∪ (−𝐶). Since it is still the case that ||𝑐𝑓 || = 𝑐 ||𝑓 ||, Theorems 7.14 and 7.18 still
apply. One example of a cone is the cone of monotone functions (either nondecreasing
or nonincreasing). In a single dimension and for two treatments, this will result
in a pure-strategy optimal design that sorts the data and assigns subjects in an
alternating fashion. This is also a feasible assignment for pairwise matching in one
dimension. More generally and in higher dimensions, we can consider a directed
acyclic graph (DAG) on the nodes 𝑉 = {1, . . . , 𝑛} with edge set 𝐸 ⊂ 𝑉 2 and its
associated topological cone 𝐶 = {𝑓 : 𝑓(𝑋𝑖) ≤ 𝑓(𝑋𝑗) ∀(𝑖, 𝑗) ∈ 𝐸}. Other cones
include nonnegative/positive functions and ±-sum-of-squares polynomials.

Second, we consider re-centering the norms. We might have a nominal regression
function 𝑔 that we believe is approximately right, perhaps due to a prior regression
analysis or based on models from the literature. In this case, it would make sense to
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solve the minimax problem against perturbations around this 𝑔. Given a norm ||·||′
on ℱ we can formally define the magnitude

||𝑓 || = max
{︀
min

{︀
||𝑓 − 𝑔||′ , ||𝑓 + 𝑔||′

}︀
, 1
}︀
. (E.1)

We consider both 𝑔 and −𝑔 because it has no effect on the imbalance metrics due to
symmetry of the objective while it can only reduce magnitudes. Using this alternate
definition of ||·|| in (E.1), Theorem 7.14 still applies and Theorem 7.18 applies if its
conditions apply to the Banach space ℱ with its usual norm and E |𝑔(𝑋1)| <∞. In
the Bayesian interpretation discussed in Section 7.2.4, this is equivalent to making
the prior mean of 𝑓(𝑥) be 𝑔(𝑥).

Third, we consider combining multiple spaces ℱ1, . . . ,ℱ𝑏. There are two ways. The
first way is to combine these via an algebraic sum. The space ℱ = ℱ1+· · ·+ℱ𝑏 = {𝜑1+
· · · + 𝜑𝑏 : 𝜑𝑗 ∈ ℱ𝑗 ∀𝑗} endowed with the norm ||𝑓 || = min

𝜑𝑗∈ℱ𝑗 :𝑓=𝜑1+···+𝜑𝑏
max
𝑗=1,...,𝑏

||𝜑𝑗||ℱ𝑗

is Banach space and as such a valid choice. In particular, the algebraic sum ℱ can
be identified with the quotient of the direct sum ℱ ′ = ℱ1 ⊕ · · · ⊕ ℱ𝑏 by its subspace
{(𝜑1, . . . , 𝜑𝑏) ∈ ℱ ′ : 𝜑1+· · ·+𝜑𝑏 = 0}. We can decompose the pure-strategy imbalance
metric corresponding to this new choice as follows:

𝑀2
p(𝑊 ) = max

𝑘 ̸=𝑘′

⎛⎝ 𝑏∑︁
𝑗=1

sup
||𝜑𝑗 ||ℱ𝑗

≤1

𝐵𝑘𝑘′(𝑊,𝜑𝑗)

⎞⎠2

.

Theorems 7.14 and 7.18 still apply (in particular the conditions of Theorem 7.18 hold
for ℱ if they hold for each ℱ𝑗).

The second way is to combine these formally via a union. Consider the space
ℱ = ℱ1 ∪ · · · ∪ ℱ𝑏 = {𝑓 : 𝑓 ∈ ℱ𝑗 for some 𝑗}. This is not a vector space but we can
formally define the magnitude ||𝑓 || = min𝑗=1,...,𝑏 ||𝑓 ||ℱ𝑗

. We can then decompose the
pure-strategy imbalance metric corresponding to this new choice as follows:

𝑀2
p(𝑊 ) = max

𝑘 ̸=𝑘′
max
𝑗=1,...,𝑏

sup
||𝜑𝑗 ||ℱ𝑗

≤1

𝐵2
𝑘𝑘′(𝑊,𝜑𝑗).

Theorem 7.14 still applies and Theorem 7.18 applies if its conditions hold for each
Banach space ℱ𝑗.

We can even take several spaces ℱ1, . . . ,ℱ𝑏, re-center each norm with its own 𝑔𝑗
as in (E.1), and then combine them in either of the two ways, defining the combined
magnitudes strictly formally. In this way, we can have multiple centers to represent
various beliefs about the same or different regression functions 𝑓𝑘. Theorem 7.14 still
applies and Theorem 7.18 applies if its conditions hold for each ℱ𝑗 and E |𝑔𝑗(𝑋1)| <∞
for for each 𝑗.
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E.3 Inference for Mixed-Strategy Designs
As noted in Section 7.5 Algorithm 7.5.1 can be used to answer inferential questions
for mixed-strategy designs as well, but their additional randomization allows for the
standard randomization and exact permutation tests to be used instead. The follow-
ing is the standard permutation test when applied to a non-completely randomized
design, including the mixed-strategy optimal design.

Algorithm E.3.1. Let 𝜎 be given. For a confidence level 0 < 1− 𝛼 < 1:

1: Draw 𝑊 0 from 𝜎, assign subjects, apply treatments, measure 𝑌𝑖𝑊 0
𝑖
, and com-

pute 𝜏 . Let 𝒲 ′ = {𝑊 ∈ 𝒲 : 𝜎(𝑊 ) > 0}.

2: For 𝑊 ∈ 𝒲 ′ compute 𝜏𝑊 = 1
𝑝

∑︀
𝑖:𝑊𝑖=1 𝑌𝑖𝑊 0

𝑖
− 1

𝑝

∑︀
𝑖:𝑊𝑖=2 𝑌𝑖𝑊 0

𝑖
.

3: The 𝑝-value of 𝐻0 is 𝑝 =
∑︀

𝑊∈𝒲 ′ 𝜎(𝑊 )I
[︀⃒⃒
𝜏𝑊
⃒⃒
≥ |𝜏 |

]︀
.

If 𝑝 ≤ 𝛼 then reject 𝐻0.

The above exact test requires that we have a full description of 𝜎 and that we
iterate over all feasible assignments. This works well for the output of Algorithm 7.4.2
but can be prohibitive for the output of Algorithm 7.4.1. The standard randomization
test eschews these issues.

Algorithm E.3.2. Let 𝜎 be given. For a confidence level 0 < 1− 𝛼 < 1:

1: Draw 𝑊 0 from 𝜎, assign subjects, apply treatments, measure 𝑌𝑖𝑊 0
𝑖
, and com-

pute 𝜏 .

2: For 𝑡 = 1, . . . , 𝑇 do:

2.1: Draw 𝑊 𝑡 from 𝜎.

2.2: Compute 𝜏 𝑡 = 1
𝑝

∑︀
𝑖:𝑊 𝑡

𝑖 =1 𝑌𝑖𝑊 0
𝑖
− 1

𝑝

∑︀
𝑖:𝑊 𝑡

𝑖 =2 𝑌𝑖𝑊 0
𝑖
.

3: The 𝑝-value of 𝐻0 is 𝑝 = (1 + |{𝑡 : |𝜏 𝑡| ≥ |𝜏 |}|)
⧸︀
(1 + 𝑇 ).

If 𝑝(𝐻0) ≤ 𝛼 then reject 𝐻0.

E.4 Omitted Proofs
Proof of Theorem 7.1. Simple arithmetic yields,

𝜏 − SATE =
2

𝑛

∑︁
𝑖:𝑊𝑖=1

(︂
𝑌𝑖1 + 𝑌𝑖2

2

)︂
− 2

𝑛

∑︁
𝑖:𝑊𝑖=2

(︂
𝑌𝑖1 + 𝑌𝑖2

2

)︂
=

2

𝑛

𝑛∑︁
𝑖=1

𝑢𝑖𝑌𝑖.

By conditional unbiasedness, we have

Var (𝜏 |𝑋, 𝑌 ) = E
[︀
(𝜏 − SATE)2

⃒⃒
𝑋, 𝑌

]︀
= E

⎡⎣(︃ 2

𝑛

𝑛∑︁
𝑖=1

𝑢𝑖𝑌𝑖

)︃2
⃒⃒⃒⃒
⃒⃒𝑋, 𝑌

⎤⎦ .
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Consider any feasible 𝜎 ∈ Δ and let 𝑊 be drawn from it. Because shifting 𝑌1 by
one constant and 𝑌2 by another amounts to shifting 𝑌 by a constant, which does not
change 𝜏 , by minimizing norms we have that

max
𝑌 ∈R𝑛×2

Var (𝜏 |𝑋, 𝑌 )

‖𝑌1‖2 + ‖𝑌2‖2
= max

𝑌 ∈R𝑛×2

Var (𝜏 |𝑋, 𝑌 )

‖𝑌 ‖2
= max

𝑌 ∈R𝑛×2

Var (𝜏 |𝑋, 𝑌 )

‖𝑌 ‖2

= max
𝑌 ∈R𝑛:‖𝑌 ‖≤1

∑︁
𝑊∈𝒲

𝜎 (𝑊 )

(︃
2

𝑛

𝑛∑︁
𝑖=1

𝑢𝑖𝑌𝑖

)︃2

. (E.2)

Suppose 𝜎 ∈ Δ minimizes (E.2). For any 𝜋 ∈ 𝑆𝑛 a permutation of {1, . . . , 𝑛}, de-
fine 𝜎𝜋((𝑊1, . . . ,𝑊𝑛)) = 𝜎((𝑊𝜋(1), . . . ,𝑊𝜋(𝑛))). Then by the symmetry of ||·||, 𝜎𝜋
is also optimal. Next note that (E.2) is a maximum over linear forms in 𝜎 and is
therefore convex. Therefore, 𝜎*(𝑊 ) = 1

𝑛!

∑︀
𝜋∈𝑆𝑛

𝜎𝜋(𝑊 ) is also optimal. By con-
struction we get 𝜎*((𝑊1, . . . ,𝑊𝑛)) = 𝜎*((𝑊𝜋(1), . . . ,𝑊𝜋(𝑛))) for any 𝜋 ∈ 𝑆𝑛. Hence,
𝜎*((𝑊1, . . . ,𝑊𝑛)) = 𝜎*((1, 2, 1, 2, . . . , 1, 2)) is constant for every 𝑊 ∈ 𝒲 , and there-
fore 𝜎* is complete randomization.

Proof of Theorem 7.5. First note that by (7.2), for any 𝑖, 𝑗, 𝑘, 𝑘′,

𝜎 ({𝑊𝑖 = 𝑊𝑗, 𝑊𝑖 ∈ {𝑘, 𝑘′}, 𝑊𝑗 ∈ {𝑘, 𝑘′}}) =
2

𝑚
𝜎 ({𝑊𝑖 = 𝑊𝑗}) ,

𝜎 ({𝑊𝑖 ̸= 𝑊𝑗, 𝑊𝑖 ∈ {𝑘, 𝑘′}, 𝑊𝑗 ∈ {𝑘, 𝑘′}}) =
2

𝑚

1

𝑚− 1
𝜎 ({𝑊𝑖 ̸= 𝑊𝑗}) .

Therefore, by squaring and interchanging sums, we have

𝑀2
m(𝜎) = max

||𝑓 ||≤1
max
𝑘 ̸=𝑘′

1

𝑝2

𝑛∑︁
𝑖,𝑗=1

𝑓(𝑋𝑖)𝑓(𝑋𝑗)
∑︁
𝑊∈𝒲

𝜎(𝑊 )(𝑤𝑖𝑘 − 𝑤𝑖𝑘′)(𝑤𝑗𝑘 − 𝑤𝑗𝑘′)

= max
||𝑓 ||≤1

max
𝑘 ̸=𝑘′

2

𝑝𝑛

𝑛∑︁
𝑖,𝑗=1

𝑃𝑖𝑗(𝜎)𝑓(𝑋𝑖)𝑓(𝑋𝑗)

= max
||𝑓 ||≤1

2

𝑝𝑛

𝑛∑︁
𝑖,𝑗=1

𝑃𝑖𝑗(𝜎)𝑓(𝑋𝑖)𝑓(𝑋𝑗).

Proof of Theorem 7.6. Let {𝑥1, . . . , 𝑥ℓ} be the set of values taken by the baseline
covariates 𝑋1, . . . , 𝑋𝑛 (ℓ ≤ 𝑛). Let an assignment 𝑊 be given. Let {𝑖1, 𝑖′1}, . . . , {𝑖𝑞, 𝑖′𝑞}
denote a maximal perfect exact match across the two groups (𝑊𝑖𝑗 = 1, 𝑊𝑖′𝑗

= 2, 𝑋𝑖𝑗 =

𝑋𝑖′𝑗
, and 𝑞 maximal) with {𝑖′′1, . . . , 𝑖′′𝑞′}, {𝑖′′′1 , . . . , 𝑖′′′𝑞′} being the remaining unmatched

subjects (𝑊𝑖′′𝑗
= 1, 𝑊𝑖′′′

𝑗′
= 2, 𝑋𝑖′′𝑗

̸= 𝑋𝑖′′′
𝑗′
). For 𝑖 = 1, . . . , ℓ, if there are more 𝑥𝑖’s in

group 1 set 𝑓 ′(𝑥𝑖) = 1 otherwise set 𝑓 ′(𝑥𝑖) = −1. This 𝑓 ′ is feasible (||𝑓 ′||∞ ≤ 1) and
hence

max
||𝑓 ||≤1

|𝐵(𝑊, 𝑓)| ≥ |𝐵(𝑊, 𝑓 ′)| = 2

𝑛
× 𝑞′ × 2 = 2− 4

𝑛
𝑞.
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At the same time, we have

max
||𝑓 ||≤1

|𝐵(𝑊, 𝑓)| = max
||𝑓 ||≤1

⃒⃒⃒⃒
⃒
𝑛∑︁
𝑖=1

𝑢𝑖𝑓(𝑋𝑖)

⃒⃒⃒⃒
⃒

≤ 2

𝑛

𝑞∑︁
𝑗=1

max
||𝑓 ||≤1

⃒⃒⃒
𝑓(𝑋𝑖𝑗)− 𝑓(𝑋𝑖′𝑗

)
⃒⃒⃒
+

2

𝑛

𝑞′∑︁
𝑗=1

max
||𝑓 ||≤1

⃒⃒⃒
𝑓(𝑋𝑖′′𝑗

)− 𝑓(𝑋𝑖′′′𝑗
)
⃒⃒⃒

= 0 +
2

𝑛
× 𝑞′ × 2 = 2− 4

𝑛
𝑞.

To summarize,√︁
𝑀2

p(𝑊 ) = 2− 4

𝑛

(︂
number of perfect exact matches
across the experimental groups

)︂
.

Proof of Theorem 7.7. Let 𝐷𝑖𝑗 = 𝛿(𝑋𝑖, 𝑋𝑗). The pure-strategy optimal design solves
the optimization problem

min
𝑊∈𝒲

max
||𝑓 ||lip≤1

|𝐵(𝑊, 𝑓)| = 2

𝑛
min

𝑢 ∈ {−1, 1}𝑛∑︀𝑛
𝑖=1 𝑢𝑖 = 0

max
𝑦 ∈ R𝑛

𝑦𝑖 − 𝑦𝑗 ≤ 𝐷𝑖𝑗

𝑢𝑇𝑦. (E.3)

We will show that the set of optimal solutions 𝑢 to (E.3) is equal to the set of
assignments of +1,−1 to the pairs in any minimal-weight pairwise match. Since the
pure-strategy optimal design randomizes over these, this will show that it is equivalent
to pairwise matching, which randomly splits pairs.

Consider any non-bipartite matching 𝜇 = {{𝑖1, 𝑗1}, . . . , {𝑖𝑛/2, 𝑗𝑛/2}} and any 𝑡 ∈
{−1,+1}𝑛/2. Let 𝑢𝑖𝑙 = 𝑡𝑙, 𝑢𝑗𝑙 = −𝑡𝑙. Enforcing only a subset of the constraints on 𝑦,
the cost of 𝑢 in (E.3) is bounded above as follows

max
𝑦𝑖−𝑦𝑗≤𝐷𝑖𝑗

𝑢𝑇𝑦 = max
𝑦𝑖−𝑦𝑗≤𝐷𝑖𝑗

𝑛/2∑︁
𝑙=1

𝑡𝑙(𝑦𝑖𝑙 − 𝑦𝑗𝑙) ≤
𝑛/2∑︁
𝑙=1

𝐷𝑖𝑙𝑗𝑙 ,

which is the matching cost of 𝜇. Now let instead a feasible solution 𝑢 to (E.3) be
given. Let 𝑆 = {𝑖 : 𝑢𝑖 = +1} = {𝑖1, . . . , 𝑖𝑛/2} and its complement 𝑆𝐶 = {𝑖 : 𝑢𝑖 =
−1} = {𝑖′1, . . . , 𝑖′𝑛/2}. By linear programming duality we have

max
𝑦𝑖−𝑦𝑗≤𝐷𝑖𝑗

𝑢𝑇𝑦 = min
𝐹𝑒−𝐹𝑇 𝑒=𝑢, 𝐹≥0

𝑛∑︁
𝑖,𝑗=1

𝐷𝑖𝑗𝐹𝑖𝑗 (E.4)

since the LHS is bounded (≤ 𝐷𝑖1𝑖′1
+ · · ·+𝐷𝑖𝑛/2𝑖

′
𝑛/2

) and feasible (𝑦𝑖 = 0 ∀𝑖). The RHS
is an uncapacitated min-cost transportation problem with sources 𝑆 (with inputs
1) and sinks 𝑆𝐶 (with outputs 1). Consider any 𝑗𝑠 ∈ 𝑆, 𝑗𝑡 ∈ 𝑆𝐶 and any path
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𝑗𝑠, 𝑗1, . . . , 𝑗𝑝, 𝑗𝑡. By the triangle inequality,

𝐷𝑗𝑠𝑗𝑡 ≤ 𝐷𝑗𝑠𝑗1 +𝐷𝑗1𝑗2 + · · ·+𝐷𝑗𝑝𝑗𝑡 .

Therefore, it is always preferable to send flow along edges between 𝑆 and 𝑆𝐶 only.
Thus, erasing all edges within 𝑆 or 𝑆𝐶 , the problem is seen to be a bipartite matching
problem. The min-weight bipartite matching is also a non-bipartite matching and by
(E.4) its matching cost is the same as the cost of the given 𝑢 in the objective of
(E.3).

Proof of Theorem 7.9. The argument is similar to the above. This time the network
flow problem has an additional node with zero external flow (neither sink nor source),
uncapacitated edges into it from every other node with a unit cost of 𝛿0, and unca-
pacitated edges out of it to every other node with a unit cost of 𝛿0.

Proof of Theorem 7.10. For the pure-strategy case we have,

𝑀2
p(𝑊 ) = max

𝑘 ̸=𝑘′
max
||𝑓 ||≤1

(︃
1

𝑝

𝑛∑︁
𝑖=1

(𝑤𝑖𝑘 − 𝑤𝑖𝑘′)𝑓(𝑋𝑖)

)︃2

= max
𝑘 ̸=𝑘′

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒1𝑝

𝑛∑︁
𝑖=1

(𝑤𝑖𝑘 − 𝑤𝑖𝑘′)𝒦(𝑋𝑖, ·)

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

=
1

𝑝2
max
𝑘 ̸=𝑘′

⟨
𝑛∑︁
𝑖=1

(𝑤𝑖𝑘 − 𝑤𝑖𝑘′)𝒦(𝑋𝑖, ·),
𝑛∑︁
𝑖=1

(𝑤𝑖𝑘 − 𝑤𝑖𝑘′)𝒦(𝑋𝑖, ·)

⟩

=
1

𝑝2
max
𝑘 ̸=𝑘′

𝑛∑︁
𝑖,𝑗=1

(𝑤𝑖𝑘 − 𝑤𝑖𝑘′)𝐾𝑖𝑗(𝑤𝑗𝑘 − 𝑤𝑗𝑘′)

Now, consider the maximum over 𝑓 in 𝑀2
m(𝑃 ). Let 𝑓0 be a feasible solution.

Write 𝑓0 = 𝑓 + 𝑓⊥ with 𝑓 ∈ 𝑆 = span{𝒦(𝑋𝑖, ·) : 𝑖 = 1, . . . , 𝑛} and 𝑓⊥ ∈ 𝑆⊥,
its orthogonal complement. By orthogonality 𝑓⊥(𝑋𝑖) =

⟨︀
𝒦(𝑋𝑖, ·), 𝑓⊥⟩︀ = 0 and

||𝑓 ||2 = ||𝑓0||2 −
⃒⃒⃒⃒
𝑓⊥
⃒⃒⃒⃒2 ≤ 1 so that 𝑓 achieves the same objective value as 𝑓0 and

remains feasible. Therefore we may restrict to 𝑆 and assume that 𝑓 =
∑︀

𝑖 𝛽𝑖𝒦(𝑋𝑖, ·)
such that 𝛽𝑇𝐾𝛽 ≤ 1.

By positive semi-definiteness of 𝐾 and 𝑃 , we get

𝑀2
m(𝑃 ) =

2

𝑛𝑝
sup

𝛽𝑇𝐾𝛽≤1

𝑛∑︁
𝑖,𝑗=1

𝑃𝑖𝑗 (𝐾𝛽)𝑖 (𝐾𝛽)𝑗 =
2

𝑛𝑝
sup

𝛽𝑇𝐾𝛽≤1

𝛽𝑇𝐾𝑃𝐾𝛽

=
2

𝑛𝑝
sup
𝛾𝑇 𝛾≤1

𝛾𝑇
√
𝐾𝑃
√
𝐾𝛾 =

2

𝑛𝑝
𝜆max

(︁√
𝐾𝑃
√
𝐾
)︁
.

Proof of Theorem 7.13. By blinding of treatments (7.2), each 𝑊𝑖 by itself (but not
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the vector 𝑊 ) is statistically independent of 𝑋, 𝑌 so that

E
[︀
𝑤𝑖𝑘𝑌𝑖𝑘

⃒⃒
𝑋, 𝑌

]︀
= E [𝑤𝑖𝑘]𝑌𝑖𝑘 =

1

𝑚
𝑌𝑖𝑘, and therefore

E
[︀
𝜏𝑘𝑘′
⃒⃒
𝑋, 𝑌

]︀
=

1

𝑝

𝑛∑︁
𝑖=1

1

𝑚
𝑌𝑖𝑘 −

1

𝑝

𝑛∑︁
𝑖=1

1

𝑚
𝑌𝑖𝑘′ = SATE𝑘𝑘′ .

Note that we can rewrite 𝐸𝑘𝑘′ as

𝐸𝑘𝑘′ =
1

𝑚

∑︁
𝑙 ̸=𝑘

Ξ𝑘𝑙 −
1

𝑚

∑︁
𝑙 ̸=𝑘′

Ξ𝑘′𝑙 where Ξ𝑘𝑙 :=
1

𝑝

𝑛∑︁
𝑖=1

(𝑤𝑖𝑘 − 𝑤𝑖𝑙) 𝜖𝑖𝑘.

Using the notation 𝐴𝑘𝑘′ = 1
𝑝

∑︀
𝑖:𝑊𝑖=𝑘′

𝑌𝑖𝑘, 𝐶𝑘𝑙 = 𝐵𝑘𝑙 (𝑓𝑘) + Ξ𝑘𝑙, we have

𝜏𝑘𝑘′− SATE𝑘𝑘′ = 𝐴𝑘𝑘 − 𝐴𝑘′𝑘′ −
1

𝑚

𝑚∑︁
𝑙=1

𝐴𝑘𝑙 +
1

𝑚

𝑚∑︁
𝑙=1

𝐴𝑘′𝑙

=
𝑚− 1

𝑚
𝐴𝑘𝑘 −

1

𝑚
𝐴𝑘𝑘′ +

1

𝑚
𝐴𝑘′𝑘 −

𝑚− 1

𝑚
𝐴𝑘′𝑘′

− 1

𝑚

∑︁
𝑙 ̸=𝑘,𝑘′

(𝐴𝑘𝑘 − 𝐶𝑘𝑙) +
1

𝑚

∑︁
𝑙 ̸=𝑘,𝑘′

(𝐴𝑘′𝑘′ − 𝐶𝑘′𝑙) = 𝐷𝑘𝑘′ + 𝐸𝑘𝑘′ .

Let 𝑖, 𝑗 be equal or unequal, 𝑘, 𝑘′, 𝑙, 𝑙′ equal or unequal. Then,

Cov(𝑤𝑖𝑙𝑓𝑘(𝑋𝑖), 𝑤𝑗𝑙′𝜖𝑗𝑘′) = E [𝑤𝑖𝑙𝑤𝑗𝑙′𝑓𝑘(𝑋𝑖)E [𝜖𝑗𝑘′|𝑋,𝑍]]
− E [𝑤𝑖𝑙𝑓𝑘(𝑋𝑖)]E [𝑤𝑗𝑙′E [𝜖𝑗𝑘′|𝑋,𝑍]] = 0− 0 = 0,

Cov((𝑤𝑖𝑘 − 𝑤𝑖𝑙)𝑓𝑘(𝑋𝑖), 𝑓𝑘′(𝑋𝑗)) = E [𝑤𝑖𝑘 − 𝑤𝑖𝑙] Cov (𝑓𝑘(𝑋𝑖), 𝑓𝑘′(𝑋𝑗)) = 0,

Cov((𝑤𝑖𝑘 − 𝑤𝑖𝑙)𝜖𝑖𝑘, 𝑓𝑘′(𝑋𝑗)) = E [𝑤𝑖𝑘 − 𝑤𝑖𝑙] Cov (𝜖𝑖𝑘, 𝑓𝑘′(𝑋𝑗)) = 0,

where the latter two equalities are due to the independence of 𝑊𝑖 due to blinding
treatments. This proves uncorrelateness. The rest follows from an application of the
law of total variance and rearranging terms.

Proof of Theorem 7.14. Define

𝑍(𝑓, 𝑔) = E

[︃(︃
1

𝑝

𝑛∑︁
𝑖=1

(𝑤𝑖1 − 𝑤𝑖2) 𝑓(𝑋𝑖)

)︃(︃
1

𝑝

𝑛∑︁
𝑖=1

(𝑤𝑖1 − 𝑤𝑖2) 𝑔(𝑋𝑖)

)︃]︃
.
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By construction, 𝑍(𝑓, 𝑓) ≤ ||𝑓 ||2 E
[︀
𝑀2

opt

]︀
. By condition (7.2),

Var (𝐵𝑘𝑙(𝑓)) = 𝑍(𝑓, 𝑓) for 𝑙 ̸= 𝑘,

Cov (𝐵𝑘𝑙(𝑓), 𝐵𝑘𝑙′(𝑓)) =
1

2
𝑍(𝑓, 𝑓) for 𝑘, 𝑙, 𝑙′ distinct,

Cov (𝐵𝑘𝑙(𝑓), 𝐵𝑘′𝑙′(𝑔)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2
𝑍(𝑓, 𝑔) for 𝑙 = 𝑙′ /∈ {𝑘, 𝑘′},
−1

2
𝑍(𝑓, 𝑔) for 𝑙 = 𝑘′, 𝑙′ ̸= 𝑘,

−1
2
𝑍(𝑓, 𝑔) for 𝑙 ̸= 𝑘′, 𝑙′ = 𝑘,

−𝑍(𝑓, 𝑔) for 𝑙 = 𝑘′, 𝑙′ = 𝑘,
0 for 𝑘, 𝑘′, 𝑙, 𝑙′ distinct.

It follows that

Var (𝐷𝑘𝑘′) =
1

𝑚2

(︂
𝑚2 −𝑚

2
𝑍(𝑓𝑘, 𝑓𝑘) +

𝑚2 −𝑚
2

𝑍(𝑓𝑘′ , 𝑓𝑘′)

)︂
+
𝑚+ 2

𝑚2
𝑍(𝑓𝑘, 𝑓𝑘′)

=
1

𝑚2

(︂
𝑚2

2
−𝑚− 1

)︂
(𝑍(𝑓𝑘, 𝑓𝑘) + 𝑍(𝑓𝑘′ , 𝑓𝑘′))

+
1

𝑚2

(︂
𝑚+ 2

2

)︂
𝑍(𝑓𝑘 + 𝑓𝑘′ , 𝑓𝑘 + 𝑓𝑘′)

≤ 1

𝑚2

(︂
𝑚2

2
−𝑚− 1

)︂(︀
E
[︀
𝑀2

opt

]︀
||𝑓𝑘||2 + E

[︀
𝑀2

opt

]︀
||𝑓𝑘′ ||2

)︀
+

1

𝑚2

(︂
𝑚+ 2

2

)︂
E
[︀
𝑀2

opt

]︀
||𝑓𝑘 + 𝑓𝑘′||2

≤ (||𝑓𝑘||+ ||𝑓𝑘′ ||)2

2

(︂
1− 1

𝑚

)︂
E
[︀
𝑀2

opt

]︀
since ||𝑓 + 𝑔||2 ≤ (||𝑓 ||+ ||𝑔||)2 and

(︀
||𝑓 ||2 + ||𝑔||2

)︀
≤ (||𝑓 ||+ ||𝑔||)2.

Proof of Theorem 7.16. Fix 𝑓 and 𝑔. Using
(︁∑︀𝑏

𝑖=1 𝑧𝑖

)︁2
≤ 𝑏

∑︀𝑏
𝑖=1 𝑧

2
𝑖 ,

𝑍(𝑓, 𝑓) = E

(︃
1

𝑝

𝑛∑︁
𝑖=1

(𝑤𝑖1 − 𝑤𝑖2) (𝑓 − 𝑔)(𝑋𝑖) +
1

𝑝

𝑛∑︁
𝑖=1

(𝑤𝑖1 − 𝑤𝑖2) 𝑔(𝑋𝑖)

)︃2

≤ 2E

(︃
1

𝑝

𝑛∑︁
𝑖=1

(𝑤𝑖1 − 𝑤𝑖2) (𝑓 − 𝑔)(𝑋𝑖)

)︃2

+ 2E

(︃
1

𝑝

𝑛∑︁
𝑖=1

(𝑤𝑖1 − 𝑤𝑖2) 𝑔(𝑋𝑖)

)︃2

≤ 2

𝑝2
× 𝑝× 𝑝× 2

𝑚
× E((𝑓 − 𝑔)(𝑋1))

2 + 2𝑍(𝑔, 𝑔) =
4

𝑚
||𝑓 − 𝑔||22 + 2𝑍(𝑔, 𝑔)

The rest is as in the proof of Theorem 7.14, choosing 𝑔 ∈ ℱ .

Proof of Theorem 7.18. Fix the assignment 𝑊 ′
𝑖 = (𝑖 mod 𝑝) + 1 and let 𝜉(𝑘,𝑘

′)
𝑖 : 𝑓 ↦→(︀

𝑓
(︀
𝑋𝑚(𝑖−1)+𝑘

)︀
− 𝑓

(︀
𝑋𝑚(𝑖−1)+𝑘′

)︀)︀
. Then, since 𝜉(𝑘,𝑘

′)
𝑖 is in the continuous dual space
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ℱ*, we can write 𝑀2
p (𝑊

′) = max𝑘 ̸=𝑘 𝑇
(𝑘,𝑘′)
𝑛 where

𝑇 (𝑘,𝑘′)
𝑛 = sup

||𝑓 ||≤1

(︃
1

𝑝

𝑝∑︁
𝑖=1

𝜉
(𝑘,𝑘′)
𝑖 (𝑓)

)︃2

=

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒1𝑝

𝑝∑︁
𝑖=1

𝜉
(𝑘,𝑘′)
𝑖

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

ℱ*

.

Note 𝜉(𝑘,𝑘
′)

𝑖 are independent and identically distributed with expectation (Bochner
integral) equal 0. 𝐵-convexity of ℱ implies the 𝐵-convexity of ℱ*. By 𝐵-convexity
and the main result of Beck (1962) (or by Chen and Zhu (2011) for the Hilbert case),

𝑇 (𝑘,𝑘′)
𝑛 → 0 almost surely as 𝑛→∞.

As there are only finitely many 𝑘, 𝑘′, we have 𝑀2
p (𝑊

′) → 0 almost surely. By
construction, 𝑀2

m-opt ≤ 𝑀2
p-opt ≤ 𝑀2

p (𝑊
′). Hence, the distance between 𝜏𝑘𝑘′ and

SATE𝑘𝑘′ +𝐸𝑘𝑘′ is |𝐷𝑘𝑘′ | ≤
(︀
1− 1

𝑚

)︀
(||𝑓𝑘||+ ||𝑓𝑘′||)

√︁
𝑀2

opt → 0 almost surely. There-
fore, as SATE𝑘𝑘′ +𝐸𝑘𝑘′ is strongly consistent, so is 𝜏𝑘𝑘′ .
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