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Abstract
Thin films are the fundamental building blocks of many micro- and nano-scale devices.
However, their high surface-area-to-volume ratio makes them unstable due to excess surface
free energy. Capillarity drives a process known as dewetting, during which holes form, the
film edges retract, and a thickened rim of material accumulates at the edges. Various shape
instabilities can occur on the film edge, resulting in complicated morphologies and break-up
of the film into isolated particles. Dewetting occurs in the solid state by surface self-diffusion.

In this work, a variety of models are presented to gain insights into the mechanisms that
control the shape evolution of thin films. A combination of thermodynamic study, stability
analyses, analytical models, explicit interface-tracking simulations, and phase-field simula-
tions reveal the underlying driving forces and mass flows, explain observed morphologies and
instabilities, and offer insights into how to manipulate the final structure. These pathways
to control dewetting are applicable in two areas: to design micro- and nano-scale devices
that are resistant to thermal degradation, and to use dewetting as a new patterning method
to generate stable, complex, small-scale geometries.
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Figure 0-1: The structure of this thesis is illustrated. The experimental images at the left of
each box are from references [22, 1, 89, 47, 95, 34, 90].
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Extended Abstract

Excess free surface energy exerts a driving force on materials known as capillarity. If trans-

port mechanisms are active, solids can undergo shape changes to minimize their surface

energy. Surface diffusion is usually the fastest capillary-driven kinetic mechanism in solids.

Substrate-supported thin films are the basic components of most micro- and nano-scale

devices. However, their high surface-area-to-volume ratios equate to large capillary forces.

Shape evolution by capillary-driven surface diffusion in thin films is known as “dewetting.”

Dewetting is a well-known thermal degradation mechanism, but it is also gaining popularity

as a patterning method.

Dewetting microstructures are distinctive, characterized by holes forming in the film,

retracting edges, and a rim of material accumulating at the edges. The film undergoes

either periodic pinch-off, which deposits strips of material that further break up due to a

Rayleigh instability, or a shape instability, which leads to cellular or dendritic morphologies

that ultimately break up into isolated particles. Prior to this work, only the simplest two

shape evolution modes were understood: periodic pinch-off in isotropic materials [75, 85],

and the Rayleigh instability for isotropic materials [67, 49].

In this thesis, the shape evolution modes that determine dewetting microstructures are

explained and characterized. It is organized by the techniques used, which are (1) classi-

cal, thermodynamic approaches, (2) analytical models of dewetting that rely on geometric

simplifications, and (3) simulations that attempt to capture the full phenomenology. The

sub-structure of this work is described in more detail below, and visualized in the graphical

abstract, Figure 0-1.

1. Thermodynamics

The calculation and display of equilibrium shapes

The equilibrium geometry of the thin film/substrate system is the end-state of

dewetting. There are two constructions available to compute equilibrium ge-

ometries: the Wulff construction for isolated particles, and the Winterbottom

construction for particles attached to a rigid substrate. However, these are te-

dious to execute. In Chapter 2, a fast, user-friendly, open-source software tool is
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introduced to calculate and display equilibrium shapes. A new algorithm was de-

veloped to accelerate the computation. In addition, a new convexification method,

the “double-Winterbottom” construction, is introduced to calculate the equilib-

rium geometry of a particle when the substrate mobility is not zero, as is often

the case. This new class of equilibrium geometry is studied, and the double-

Winterbottom method is implemented within the software tool. This work was

published in the Journal of Materials Science [94].

The Rayleigh instability on a torus

The Rayleigh instability refers to the surface energy minimization-drive break-up

of a cylinder of material into isolated particles. The Rayleigh instability also acts

during dewetting, assisting in the break-up of strips of material. However, the

strips generated by dewetting are not always straight. In Chapter 3, an exact

treatment of the Rayleigh instability on a curved strip of material, i.e., a torus, is

provided. The curvature is found to have a stabilizing effect. The strip’s radius

of curvature must be at least four times greater than its cross-sectional radius to

undergo a Rayleigh instability. When the strip evolves by surface diffusion, long-

wavelength perturbations decay, in contrast to the result for a straight cylinder. A

torus is found to be susceptible to an additional mode of instability, the “shrinking”

instability, in which the in-plane radius decreases uniformly to reach a spherical

morphology without breaking apart. The two instabilities may act simultaneously,

and which one happens first depends on the aspect ratio of the torus.

2. Analytical models

A geometric model of edge retraction

The distance a film edge has retracted with time is usually fitted to a power law.

However, recent numerical simulations [85, 96] have suggested that edge retraction

does not follow a power-law. In Chapter 4, a simple, geometric model of edge

retraction is presented that reproduces the simulation time scalings analytically.

The model shows that initially, retraction is linear with time, and at late times, it

approaches a power-law with 𝑡2/5 scaling. The transition time from linear to 2/5
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power-law scaling is calculated as a function of contact angle. The time scalings

are explained by the shape of the rim in the short and long time limits, and this

model describes isotropic and anisotropic films equally well.

Stability analysis: the fingering instability

The edges of retracting thin films often undergo a shape instability. An initially-

straight edge can develop finger-like projections and deposit a trail of particles

behind each finger as it retracts. The “fingering instability” presents a simple

means for producing nanoparticle arrays, but the cause of the instability and the

factors that determine the finger spacing are unknown. In Chapter 5, a linear

stability analysis on the film edge reveals the underlying cause of the instability.

It is driven not by a Rayleigh-like or Mullins-Sekerka-like instability, as previously

thought, but by the “divergent retraction” instability: fluctuations in rim height

lead to varying retraction rates along the film edge, which grow into fingers.

The analysis predicts that perturbations must have a sufficiently-large wavelength

to lead to instability, and arbitrarily-long wavelength perturbations can grow.

Therefore, a wide range of finger spacings are possible.

A model of the corner instability

If a film is patterned with a pre-existing polygonal hole, or if the film is anisotropic

and holes are naturally polygonal, an additional shape instability is possible. The

corners of holes are known to retract with constant velocity, while the edges retract

at a decreasing rate [18]. This results in star-shaped holes, often with a dendritic

morphology. In Chapter 6, the underlying cause of the “corner instability” is

revealed using a geometric model of retraction on polygonal holes. The perimeter

increase of the hole occurs entirely at the corners, and the need to lengthen the

rim consumes the volume that would otherwise go into building the rim height.

The rim at the corner tip reaches a stable equilibrium height, while the edges of

the hole retract as usual, without interacting with the corner. The corner and

edge rim height and retraction distances predicted by this simple model agree well

with experiments.
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3. Simulations

A 2D model of fully-faceted edge retraction

The profile of a retracting film edge has been modeled and studied before for

isotropic [75, 85] and weakly-anisotropic [27] materials. In these cases, the film

edge develops a thickening rim, followed by a thinning valley. However, experi-

ments show that strongly-anisotropic materials do not have a valley. In Chapter 7,

a model is introduced to simulate fully-faceted edge retraction. Simulations re-

produce the observation that there is no valley, but visualizing the mass flows

reveals slow thinning of the entire film, suggesting that the bulk of the film acts

as a valley. The simulations also show that diffusivity anisotropy plays a domi-

nant role in determining the rate of edge retraction. This work was published in

Comptes Redus Physique [96].

A phase field simulation method for dewetting

The intermediate geometries during dewetting are usually quite complicated. Up

until now, no method has been available that can simulate dewetting in 3D in a

reasonable amount of time. In Chapter 8, a phase field model of dewetting, for

arbitrary anisotropy, is developed and demonstrated. The phase field approach

easily handles topological changes (such as hole formation and pinch-off), and

the corresponding code is a finite element method including parallelization, time

adaptivity, adaptive grids, implicit stabilizing terms, and a regularization scheme

for handling strong anisotropy. The boundary conditions in the case of anisotropy

are presented and implemented. Several test cases are shown in two and three

dimensions with isotropic, weakly-anisotropic, and strongly-anisotropic surface

properties.

There are five mechanisms of film break-up during dewetting: hole formation, edge retrac-

tion and pinch-off, the fingering instability, the Rayleigh instability, and the corner instability.

This document contains significant advances in the understanding of four of these mecha-

nisms (the exception is hole formation, which cannot be explained by capillarity alone [55]).

Future work includes testing the predictions of a linear edge retraction rate at early times, the
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wavelength dependance for fingering and Rayleigh instabilities, and the equilibrium corner

height following a corner instability, with experiments and phase field simulations.
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Chapter 1

Introduction

1.1 The capillary force

Surface tension, or capillarity, is familiar when dealing with liquids. The capillary force

holds drops of liquid together, creates the meniscus line in a container, and is responsible

for “capillary action;” that is, the ability of a liquid to climb up a narrow channel, even in

opposition to external forces like gravity. Capillarity acts on solids as well. At macroscopic

length scales, there are few visible effects of surface tension in solids. However, at the micro-

and nano-scales, capillarity can be the largest driving force acting on a system and dominate

its dynamics.

Capillarity is chemical in origin. It can be explained two ways: either as a pressure, or as

an excess free energy. As a pressure, it originates from the attractive bonds between atoms

or molecules in a condensed phase. For example, water molecules interact via hydrogen

bonds, which holds a water or ice droplet together. The water molecules in the center have

neighboring molecules in all directions, so the net force is zero. However, the water molecules

on the surface only have neighbors on one side, generating a pressure that compresses the

droplet. As an energy, it originates from the unsatisfied bonds of the surface molecules.

For example, consider a material that has minimum energy when it has twelve nearest-

neighbors, such as an FCC crystal. At the surface, only six nearest-neighbor bonds are

possible. The six remaining unsatisfied bonds increase the free energy of the surface atom.

Therefore, one might expect the surface energy density of this material to be six times
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The effect of surface curvature on excess free energy
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Figure 1-1: A schematic shows the effect of curvature on excess surface free energy. Atoms
are shaded by their energy, using a Lennard-Jones pair potential. An atom in the bulk of
this material has 8 bonds. An atom at the surface has less than 8 bonds, but the number
depends on the surface curvature.

the bond energy, divided by the surface area per atom (the square of the bond length).

This bond-breaking estimation of the surface energy density is crude, but it gives a decent

approximation (e.g., [81]).

1.2 Thermodynamics of Interfaces

The bond-breaking explanation of capillarity is useful for understanding its dependance on

surface curvature. If a normally 8-coordinated material is cut along a plane, the average

number of unsatisfied bonds is exactly 3, as shown in Figure 1-1. However, if the surface

of the material is corrugated, the average number of unsatisfied bonds varies. For an atom

sitting on top of a hill, there are more than 3 unsatisfied bonds. For an atom sitting in a

valley, the number of unsatisfied bonds is less than 3.

Consider the change in energy of the system in Figure 1-1 upon adding an atom to the

surface. The change in energy will depend on where the atom is placed. If the change in

energy upon adding an atom to an infinite, flat surface is defined to be zero, then the energy

will increase if the atom is placed on top of a hill, and decrease if it is placed in a valley. This
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is the reason that the chemical potential of a surface is proportional to the mean curvature,

𝐾. For capillarity, the chemical potential along a surface, 𝜇, relative to an infinite, flat

surface, is [32]

𝜇 = 𝛾𝐾Ω, (1.1)

where 𝛾 is the surface energy density of the material, and Ω is the atomic volume. Because a

pure material is being considered, the chemical potential refers to single species and 𝜇 can be

related to the local vapor pressure. The mean curvature 𝐾 is a geometric property defined

as 𝐾 = 1/2(𝐾1 + 𝐾2), where 𝐾1 and 𝐾2 are the principal curvatures of the surface. If 𝑟1

and 𝑟2 are the principal radii of curvature on the surface, then 𝐾 = 1/2(1/𝑟1 + 1/𝑟2). Mean

curvature is a measure of how quickly the surface area 𝐴 changes if the interface moves and

sweeps through some volume 𝑉 : 𝐾 = 𝑑𝐴/𝑑𝑉 .

The total energy of an interface is
∫︀
𝐴
𝛾𝑑𝐴, where 𝐴 is the total interfacial area, 𝑑𝐴 is a

surface element, and 𝛾 is the surface energy density of the material. In the isotropic case, 𝛾

is independent of the surface orientation, so it can be moved outside the integral, and the

total energy is 𝛾𝐴. If the material is anisotropic, 𝛾 is a function of surface orientation, and

must remain inside the integrand.

Anisotropic materials have a surface energy density that depends on the interface orien-

tation, 𝛾(𝑛), where 𝑛 is the surface normal. In the extreme case of a fully-faceted material,

the isotropic definition of chemical potential becomes meaningless because the facets have

zero mean curvature, except at the corners, where the mean curvature is undefined. The

chemical potential is instead written in terms of the more general weighted mean curvature,

or WMC, 𝜅𝛾 [77]:

𝜇 = 𝜅𝛾Ω. (1.2)

The physical meaning of chemical potential can be used to obtain an expression for WMC.

The chemical potential for a pure material is the change in total energy upon the addition of

material, 𝑑𝐸/𝑑𝑁 , where 𝑁 is the number of atoms. 𝑑𝐸/𝑑𝑁 is equal to Ω 𝑑𝐸/𝑑𝑉 . Figure 1-2

shows 𝑑𝐸/𝑑𝑉 for three cases of a fully-faceted geometry. The additional volume is shaded

light blue, and the change in length of facets on the shape are highlighted. The change in

total surface energy, divided by the volume added, is the WMC, 𝑑𝐸/𝑑𝑉 .
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The weighted mean curvature and dE/dV

Figure 1-2: The change in length caused by moving a facet outwards along its normal, for
three types of facet. Facets are labeled in gray, and their normal vectors are drawn in
black. (a) A regular facet, which has positive WMC (weighted-mean curvature) and 𝜎 = 1.
Outward motion causes the total length of the facet to decrease. (b) A neutral facet, with
zero WMC and 𝜎 = 0. Outward motion causes no net change in the length of the facet. (c)
An inverse facet, which has negative WMC and 𝜎 = −1. Outward motion causes the total
length of the facet to increase. (Figure after [77].)

In the isotropic limit, WMC reduces to the surface energy times mean curvature, 𝛾𝐾.

For fully-faceted 2D geometries, it can be shown that the WMC of the 𝑖𝑡ℎ facet on a polygon

is [77]

𝜅𝛾
𝑖 =

𝜎Λ𝑖

𝐿𝑖

(1.3)

where 𝜎𝑖 is 1 if the facet is regular, 0 if the facet is neutral, and -1 if the facet is inverse (see

Figure 1-2 for explanations of regular, neutral, and inverse), 𝐿𝑖 is the length of the facet,

and Λ𝑖 is a geometric factor, given by

Λ𝑖 =
𝛾𝑖+1 − 𝑛𝑖 · 𝑛𝑖+1𝛾𝑖√︀

1 − (𝑛𝑖 · 𝑛𝑖+1)2
+

𝛾𝑖−1 − 𝑛𝑖 · 𝑛𝑖−1𝛾𝑖√︀
1 − (𝑛𝑖 · 𝑛𝑖−1)2

, (1.4)

where 𝑖+1 indicates the next facet, 𝑖−1 is the previous facet, and 𝑛𝑖 is the normal vector of

the facet [77]. This expression can be calculated from Figure 1-2. The geometric factor is also

identical to the length of the facet with the same orientation on the equilibrium shape [77].

1.3 Equilibirum shapes

1.3.1 Isolated particles: the Wulff construction

When the only contribution to excess free energy is interfacial energy and the volume is fixed,

the equilibrium shape of an isolated particle in a homogeneous environment is the Wulff
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The Wulff construction

1. Surface 
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Figure 1-3: The Wulff construction is demonstrated for a two-dimensional material. The
Wulff construction begins with a plot of 𝑛 𝛾(𝑛) for all 𝑛 on the unit sphere, where 𝑛 is
the normal vector to a surface, and 𝛾(𝑛) is the interfacial energy of that surface. For all
orientations, a plane perpendicular to 𝑛 is drawn a distance 𝛾(𝑛) from the origin. All points
on the far side of the plane are discarded. The remaining volume is the equilibrium shape,
or Wulff shape.

shape [86]. For isotropic materials, the Wulff shape is a sphere because this minimizes the

total area. For anisotropic materials, there is a competition between two effects: a sphere

has the minimum area, but a polyhedron with facets corresponding to the lowest energy

orientations avoids the higher energy orientations. The equilibrium shape is a compromise

between these two extremes.

The equilibrium shape can be found using the Wulff construction [86] (Figure 1-3). The

Wulff construction is performed on the interfacial energy density −→𝛾 (�̂�) ≡ |−→𝛾 (�̂�)|�̂� = �̂�𝛾(�̂�),

where −→𝛾 is a vector function of all possible interface orientations �̂� and 𝛾(�̂�) (n.b., with no

vector notation) is the magnitude of −→𝛾 in the direction �̂�. An orientation, �̂�, may not be

a stable interface orientation: stability is determined by whether it is removed by the Wulff

construction.

To generate the Wulff shape, one begins with the plot of �̂�𝛾(�̂�). For each orientation �̂�𝑖,

a plane perpendicular to �̂�𝛾(�̂�) is drawn. This perpendicular plane divides space, and all

points on the far side of the plane are discarded. After this exclusion procedure is repeated

for all orientations, the remaining volume is the Wulff shape, 𝒲 . The Wulff construction

can be stated concisely as 𝒲 = {−→𝑝 ∈ 𝛾-space|−→𝑝 · �̂� ≤ 𝛾(�̂�)}, where −→𝑝 are points in 𝒲-

space. Because the shapes in 𝛾-space (i.e., the space in which the 𝛾-plot is drawn—where

coordinates have units of energy/area) and real space are the same, the Wulff construction
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can be written in real space as 𝒲 = {−→𝑥 ∈ ℜ3|−→𝑝 · �̂� ≤ 𝛾(�̂�)} with an additional constraint on

the particle’s volume 𝑉particle =
∫︀
𝑑3−→𝑥 . The Wulff shape is always convex, and if facets are

present, all facets have 𝜎 = 1. The chemical potential is uniform at equilibrium, so WMC is

constant on the Wulff shape.

There is an analogy between unstable interfacial orientations and the unstable chemical

compositions in a miscibility gap [10]. The Wulff construction is a convexification of �̂�𝛾(�̂�)

(|�̂�| = 1) which results in the removal of unstable orientations from the final shape, just as the

common-tangent construction is a convexification of the molar free energy 𝐺(𝑋1, 𝑋2, . . . 𝑋𝑛)

(𝑋1+𝑋2+ . . . 𝑋𝑛 = 1) which removes unstable compositions from the phase diagram. When

a material phase separates into two distinct compositions, it does so because a mixture of the

two phases has lower energy than the original composition. When an orientation separates

into a collection of two or more orientations, e.g. sharp “hills-and-valleys” or “pyramids”, it

does so because the total energy per projected surface area is less than that of the orientation.

Such unstable orientations do not appear on the Wulff shape—they disband into 𝒲-edges

for “hill-and-valley” morphologies, and disband into 𝒲-corners for pyramid morphologies.

To continue the analogy to phase diagrams, the familiar phase-diagram is a representation

of the stable compositions (𝑋1, 𝑋2, . . . , 𝑋𝑁), and 𝒲 is the orientation-diagram for a physical,

tangible, shape [12]. When �̂�𝛾(�̂�) has sufficiently strong anisotropy, 𝒲 is composed of planar

facets, which are analogous to line-compounds. Whereas line-compounds occur at special

stoichiometries, the facets appear at all crystallographically-equivalent special orientations.

Smooth or partially-faceted 𝒲 occur for weaker anisotropy; these also have phase diagram

analogies.

1.3.2 Particles Attached to a Planar Substrate: The Winterbot-

tom Construction

The Wulff construction only applies to isolated particles in homogeneous environments.

However, in many contexts of practical importance (e.g., solid-state dewetting, catalysis,

micropatterned surfaces, pores in a sintered body), a particle can be attached to one or

more interfaces. The equilibrium shape must minimize the sum of each total interfacial
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energy while maintaining other constraints, such as particle volume and connectivity of the

interfaces. The simplest example is a deformable particle with a fixed volume that abuts a

non-deformable (rigid) planar interface (e.g., a liquid drop on an inert solid planar surface).

In addition to the interfacial energy between the particle and its environment in the absence

of the substrate (𝛾𝑃𝑉 , where V refers to the environment, which is often a vapor phase),

there are two additional interfacial energies: the interface where the substrate abuts the par-

ticle (𝛾𝑆𝑃 ) and where the substrate is not in contact with the particle (𝛾𝑆𝑉 ). The isotropic

particle case is familiar: minimization produces a spherical cap that intersects the substrate

with a uniform wetting angle, 𝜃, for the particle on the substrate, with

𝜃 = cos−1 𝛾𝑆𝑉 − 𝛾𝑆𝑃
𝛾𝑃𝑉

. (1.5)

Equation 1.5 is known as the Young equation, and can be interpreted as a force balance or as

a boundary condition that derives from global energy minimization—these interpretations

are not independent [14]. The Young Equation is independent of particle size (in the absence

of other defect energies), but the curvature of the spherical cap is determined by the particle

volume. Considering the geometry of the shape in 𝒲-space, the center of the spherical

gamma surface for the particle/exterior interface (with radius 𝛾𝑃𝑉 ) sits a distance (𝛾𝑆𝑉 −𝛾𝑆𝑃 )

above the substrate. If (𝛾𝑆𝑉 −𝛾𝑆𝑃 ) is negative, then most of the sphere is discarded, and only

a small cap remains. This is the Winterbottom construction for an isotropic particle [83].

The Young equation is helpful in determining the equilibrium shape of an isotropic par-

ticle, but it is not obvious how it pertains to a general anisotropic particle. Winterbottom

showed that the 𝛾 = 0 point will be a distance (𝛾𝑆𝑉 − 𝛾𝑆𝑃 ) above the substrate not only

for isotropic particles, but for a particle with a general Wulff shape [83]. Additionally, the

selection of the 𝛾 = 0 point is known to be arbitrary [46]. An example of the Winterbot-

tom construction with various (𝛾𝑆𝑉 − 𝛾𝑆𝑃 ) values is shown in Figure 1-4. The case when

(𝛾𝑆𝑉 −𝛾𝑆𝑃 ) is positive is often referred to as “bad wetting,” while the case when (𝛾𝑆𝑉 −𝛾𝑆𝑃 )

is negative is “good wetting” [41].

35



The Winterbottom construction

=

Substrate

+

Figure 1-4: Left: the Winterbottom construction begins with the Wulff shape of a particle
and (𝛾𝑆𝑉 − 𝛾𝑆𝑃 ). Right: the distance between the 𝛾 = 0 point in the Wulff shape and the
substrate surface is equal to (𝛾𝑆𝑉 − 𝛾𝑆𝑃 ). Top: the equivalent wetting angle, 𝜃, is 135∘.
Middle: 90∘. Bottom: 45∘.

1.4 Capillarity far from equilibrium

For a body of material that is not in the equilibrium shape, there will be a difference in

chemical potential across its surface. If a kinetic mechanism is available, the gradient in

chemical potential will drive mass to flow from high to low WMC positions. The shape will

evolve towards the equilibrium shape by a pathway determined by the fastest kinetic process

available.

It is necessary to identify the dominant (fastest) transport mechanism to describe the

shape evolution. In a solid, there are four possible kinetic pathways: volume diffusion, surface

diffusion, evaporation-condensation, and viscous flow. All of these are thermally-activated,

so shape changes due to capillarity are measurable only at homologous temperatures above

about 0.5 [32]. Herring showed that capillarity does not drive viscous flow in crystalline ma-

terials, so viscous flow can be eliminated (though it is possible in amorphous materials) [33].

For most materials, surface diffusion is orders of magnitude faster than volume diffusion,

so volume diffusion can be eliminated as well. Finally, Mullins calculated that surface dif-

fusion dominates over evaporation-condensation for crystalline materials with moderate or

low vapor pressures [54]. This prediction has been verified experimentally, as the kinetics
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of capillary-driven shape changes in crystalline materials which do not evaporate away over

the course of annealing are consistent only with surface diffusion [78].

In the rare case that evaporation-condensation is the dominant mechanism, the mathe-

matical description is much simpler than for surface diffusion, and it can be studied fairly

easily [54, 15]. However, the simpler mathematics means that the morphological evolution is

simple as well [15]. The rich morphological variety resulting from motion by surface diffusion

(discussed in Section 1.4.3) makes it a much more exciting topic for investigation.

1.4.1 The kinetics of capillary-driven surface diffusion

To describe the motion of a two-dimensional surface, the arc length 𝑠 is used to define the

position on the surface. The normal vector, 𝑛(𝑠, 𝑡), gives the orientation of the surface as a

function of position and time. By convention, the normal vector points outwards, away from

the material. The speed of outward motion of the interface parallel to the surface normal,

𝑉𝑛, as a function of time and position, gives the complete evolution.

Mullins developed an expression for 𝑉𝑛(𝑠, 𝑡) for isotropic materials undergoing capillary-

driven surface diffusion [54]. His derivation began with the chemical potential (𝜇(𝑠, 𝑡) =

𝐾(𝑠, 𝑡)𝛾Ω), discussed in Section 1.2. The flux of surface atoms in response to curvature

gradients is given by Fick’s first law:

𝐽(𝑠, 𝑡) = −𝐷𝑠𝜈

𝑘𝑇
∇𝑠𝜇(𝑠, 𝑡) = −𝐷𝑠𝛾Ω𝜈

𝑘𝑇
∇𝑠𝐾(𝑠, 𝑡), (1.6)

where 𝐷𝑠 is the surface self-diffusivity, 𝜈 is the surface concentration of mobile atoms, 𝑘 is

Boltzmann’s constant, 𝑇 is temperature, and ∇𝑠 is the Laplace-Beltrami operator, i.e., the

gradient operator restricted to the surface profile [54]. Physically, Fick’s first law states that

when a gradient in potential is present, material tends to flow down that gradient to lower

the total energy.

If the flux is locally divergent, then mass is leaving that location and the surface height

is decreasing. Likewise, if the flux is convergent, the surface height is increasing, and it has

a positive velocity along its normal. Thus, the surface velocity along its normal, 𝑉𝑛(𝑠, 𝑡), is
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minus the divergence of the flux:

𝑉𝑛(𝑠, 𝑡) =
𝐷𝑠𝛾Ω2𝜈

𝑘𝑇
∇2

𝑠𝐾(𝑠, 𝑡), (1.7)

where the extra factor of Ω is included to convert the units to a velocity [54]. This governing

equation can be generalized to include anisotropy [93, 15]. The result is much less readable,

but the derivation is the same.

The material constants in Equation 1.7 can be collected into a single material property,

𝐵 = (𝐷𝑠𝛾Ω2𝜈)/(𝑘𝑇 ). The governing equation can be non-dimensionalized using 𝐵 (units of

length4/time) and a characteristic length scale 𝐿:

𝑣𝑛(𝑠, 𝑡) = ∇2
𝑠𝜅(𝑠, 𝑡), (1.8)

where 𝑣𝑛 is the dimensionless normal velocity, 𝑣𝑛 = 𝑉𝑛𝐿
4/𝐵, and 𝜅 is the dimensionless

mean curvature, 𝜅 = 𝐾𝐿.

1.4.2 Thin films

Although capillary forces affect material of all shapes and sizes, in this work, special attention

is given to solid thin films. This is for two reasons: first, thin films are the basic building

blocks of most micro- and nano-scale devices, so they are of technological relevance, and

second, thin films have large aspect ratios (width/thickness), so they are especially unstable

with respect to capillarity. Large aspect ratios mean large surface-area-to-volume ratios, so

the excess surface energy is high, thus the capillary driving forces are high.

We define a “thin film” as any material body supported by a substrate with a characteristic

thickness 𝐿. The shape of the thin film in the plane of the substrate may be simple or quite

complicated, e.g. as a result of patterning with lithography. The presence of the substrate

has a profound effect on the shape evolution because it provides an additional constraint

(i.e., maintaining contact with the substrate).

The process of capillary-driven shape evolution in thin films is called “dewetting.” The

end state of dewetting is an array of isolated particles, each having the equilibrium shape. De-
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pending on the materials and starting geometry, the particles may be randomly-distributed,

or ordered. Nanoparticle and quantum dot arrays are in demand for a variety of applications,

and dewetting provides a simple method to make them. Dewetting has been used to generate

particle arrays for optical and magnetic devices [3, 65], sensors [50, 3], catalysis [19, 64, 57],

nanowire growth [70, 21, 92, 20], and memory devices [17, 65]. These applications mo-

tivate investigations to understand how to control the particle arrangements produced by

dewetting.

The intermediate stages of dewetting include a huge variety of morphologies. An example

of incomplete dewetting is reproduced from Ye et al. [90] in Figure 1-5. When anisotropic

films are patterned via lithography and then dewetted, reproducible, complex structures

with sub-lithographic feature sizes are produced. Possible features include isolated particles,

wire-like lines of material, which may be interconnected, and unaffected film. Devices with

components made by partial dewetting should be much more thermally stable than equivalent

devices made by conventional methods. This is because the components are already partially

equilibrated, so the driving force for motion is dramatically lower.

1.4.3 Dewetting phenomenology

Dewetting is a well-known phenomenon, and it has been studied extensively [78]. Dewetting

has four main morphological features: edge retraction, the growth of rims, hole formation,

and break-up into islands of material.

Dewetting is mostly localized at film edges. This is because the gradients in surface

curvature, and therefore driving forces, are largest near the edge. Edges bound the as-

deposited film, or they can be the result of post-deposition patterning, or they can form

spontaneously when a film is heated and holes form by natural processes. As an example

of the latter, grain boundary grooves in polycrystalline films can extend through the entire

thickness of the film and nucleate holes [38, 74].

Once edges are present, they will retract to reduce the film’s surface area. Retraction is

facilitated by a mass flux from the receding triple line (the intersection of the film/vapor,

vapor/substrate, and substrate/film interfaces) to the advancing side of the rim [96]. An

edge with an initially-square profile will evolve toward a shape with uniform WMC and
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Experiments showing incomplete dewetting morphologies

Figure 1-5: This figure shows a variety of starting geometries (dashed lines) and the corre-
sponding incomplete dewetting morphology. This image is reproduced from Ye et al. [90].
The view is top-down, dark gray is the substrate, and light gray is the film material. Each
subfigure corresponds to a unique starting condition, and the resulting film pattern is repro-
ducible. The black scale bar is 10 micrometers.
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Isotropic edge retraction

film

substrate

mass flux

rim
retraction
direction

Figure 1-6: During isotropic dewetting, the initially-flat film forms the equilibrium contact
angle with the substrate, the corner rounds, and the triple line retracts. Mass accumulation
at the film edge generates a rim, and a valley follows.

forms the equilibrium contact angle at the triple line [75, 85]. A thickened rim develops on

the edge due to mass accumulation, as shown in Figure 1-6. The thickening rim also lowers

the WMC, so the edge retraction rate decreases with time.

As a film edge retracts, a valley may form ahead of the moving rim [75, 85, 27]. Relative

to the bulk film height, the valley is roughly an order of magnitude smaller in depth than the

rim is tall [75, 85]. As the rim grows, the valley deepens. In no other process interferes, the

valley eventually touches the substrate, pinching-off a strip of material, and the cycle begins

again with quick adjustment to the equilibrium contact angle, formation of a new rim, and

ultimately another pinch-off event [85]. The cyclic formation of valleys and pinch-off has

been seen experimentally [88].

However, pinch-off is not always observed. The “fingering instability” may instead dom-

inate the dewetting morphology (see Figure 1-7). This instability is observed in both poly-

crystalline [37, 38, 53] and single-crystal films [24, 29, 47], and is characterized by growing

variations in triple line position and rim height, which eventually develop into an array of

protruding fingers. The fingers may undergo a Rayleigh instability [67], as shown on the

right in Figure 1-7, and deposit a trail of isolated particles. The spacing and width of the

fingers primarily determines the spacing of particles produced via dewetting. Knowledge of

the parameters which govern the length scale of break-up can therefore be used to control
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The fingering instability

Figure 1-7: Fingering instabilities in polycrystalline Au (left) and single-crystal Si (right)
are shown. The images are reproduced from Jiran & Thompson [38] and Leroy et al. [47].

structures resulting from via dewetting.

Anisotropic single-crystal films exhibit additional features. They are strongly affected

by the crystallographic alignment of the film [24, 89, 60, 76, 29], and edges with different

in-plane crystallographic orientations retract at different rates [89, 8]. If the equilibrium

shape is composed of flat facets connected by rounded corners, numerical simulations give

a rim-and-valley film edge profile [27]. However, when the equilibrium shape is composed

exclusively of flat facets with sharp corners, no valley is expected [43]. An absence of valleys

is observed for fully-faceted single-crystal Si films [27, 8], Au-Fe films [43], and for some edge

orientations in Ni films [34].

Strongly-anisotropic films have edges which are composed of facets. These edges have

minimum retraction rates. If a film is patterned with an edge that is not kinetically-stable, it

may decompose into stable facets and develop a “staircase” morphology [89]. This break-up

is referred to as a “faceting instability.”

Strongly-anisotropic films develop polygonal holes bounded by kinetically-stable facets.

After the initial stages of growth, the corners are observed to retract faster than the centers

of the edges. This is typically referred to as the “corner instability,” and leads to dendritic or

star-shaped holes [88, 89, 63, 60, 7, 76, 29, 18, 8], as shown in Figure 1-8. Kinetic Monte Carlo

simulations of dewetting in single-crystal structures also exhibit corner instabilities [61, 8].
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The corner instability

Figure 1-8: Corner instabilities in various materials are shown. The figure is reproduced
from the review by Thompson [78], and the sub-figures are from references [76, 60, 29, 7].

1.5 Scope of this work

Although much of the relevant thermodynamic and kinetic framework to describe dewetting

has already been developed, many of the mechanisms which govern dewetting remain un-

known. Some of the outstanding fundamental questions in capillary-driven surface diffusion

are presented in the following chapters, and resolved using advancements in thermodynamic

theory (chapters 2 & 3), the development of new analytical models (chapters 4-6), and the

development and application of new simulation techniques (chapters 7 & 8). The last chapter

discusses broader conclusions about dewetting that can be drawn from this work.
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Chapter 2

The Calculation and Display of

Interfacial-Energy Minimizing Shapes

2.1 Introduction

To study capillary-driven shape changes, it is essential to know the equilibrium configuration

of the system. The equilibrium state defines the direction of evolution. The Wulff construc-

tion and Winterbottom construction, introduced in Chapter 1, are approaches to compute

the equilibrium shape. However, these constructions are tedious. Having a software tool to

do the computation would be advantageous during investigations of dewetting.

There is an additional equilibrium configuration which is relevant in capillary-driven

motion. If the substrate is deformable, rather than rigid, a constraint on the interface shape

is removed. “Deformable” does not refer to the mechanism by which the system achieves

equilibrium, but to the freedom to take the shape which satisfies the energy minimization.

For the deformable substrate case, there is no previously known construction.

In this chapter, we present a fast, conceptually simple, analytical method for finding

equilibrium morphologies and energies of particles on deformable boundaries, and discuss

the possible morphologies and their consequences for microstructures. In addition, a public-

domain software suite, Wulffmaker, is developed to enable fast and easy display of equi-

librium shapes. A discussion of allowed and non-physical morphologies is aided by these

computational tools, and their utility for interpreting real data is demonstrated.
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2.1.1 A rigorous approach to finding the equilibrium shape

The equilibrium thermodynamics of interfaces has been formulated by Cahn [9]. He presents

a general method of expressing measurable interfacial properties in terms of derivatives of

the free energy with respect to the system’s independent variables. Cahn’s formulation

parallels that of Gibbs in that it begins with the interface’s differential contribution to the

total system energy: 𝛾𝑑𝐴. The interfacial tension is a function of the system’s independent

variables (for example, 𝛾(𝑇, 𝑃, 𝜇𝑖, . . .) and this choice of independent system variables 𝑇, 𝑃, 𝜇𝑖

is used below). In elementary treatments, 𝛾 does not depend on total interfacial area, 𝐴.

The equilibrium values of each phase’s entropy, volume, and composition are completely

determined by the potentials (𝑇, 𝑃, 𝜇𝑖), and their values within each phase are determined

by a convexity condition on the total free energy. This condition applies when there are no

constraints on inter-phase exchange of such extensive quantities. However, if the volume of

one phase is fixed, a pressure difference develops at the interface of the constrained phase—

for isotropic fluid/fluid interfaces, this produces an interface of constant mean curvature.

This homogeneous constant mean curvature is a result of minimization and appears as a

force balance. A concrete example follows: consider an isolated soap bubble with a fixed

volume. Total energy minimization results in a spherical bubble and the pressure difference

is 2𝛾/𝑅. If the soap bubble is in contact with a rigid surface, minimization produces a

uniform mean curvature and a boundary condition on the dihedral angle at contact [14].

The interface adopts a local composition, entropy density, and volume which are inter-

nal quantities—that is, they are completely determined by the system’s (𝜇𝑖, 𝑇, 𝑃 ). For a

fluid/fluid interface, its area is also an internal variable which is determined by minimiza-

tion. For solid/fluid and solid/solid interfaces, additional variables arise. When atoms are

prevented from moving from the bulk to the interface, a surface stress occurs. Surface stress

is addressed by Weissmüller [82]. When one of the phases is crystalline (or a liquid crystal),

𝛾𝑑𝐴 generalizes to
−→
𝜉 𝑑

−→
𝐴 where 𝑑

−→
𝐴 includes variation of the interfacial area |

−→
𝐴 | and the

variation of the local surface normal �̂� (
−→
𝐴 = |

−→
𝐴 |�̂�). In this case, the capillarity vector,

−→
𝜉 (𝑝, 𝑇, 𝜇𝑖, �̂�), depends on orientation, which is an “internal” interfacial variable.

While Cahn’s formal derivation utilizing
−→
𝜉 is general and rigorous, when 𝛾 is known,
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the system’s internal geometry is often easier to compute by convexification of 𝛾. This con-

vexification produces the well-known Wulff construction, which always has uniform weighted

mean curvature as indicated by minimization with a volume constraint [77]. Convexification

is also the proof for the Winterbottom construction [41], and it is the method used in the

following sections to demonstrate the “double-Winterbottom” construction for deformable

interfaces.

2.1.2 Isolated Particles in Homogeneous Environments: Wulff Shapes

The Wulff construction can become cumbersome in three dimensions because the number

of computations necessary grows with the cube of the number of �̂�’s included. Roosen,

McCormack, and Carter developed the public domain software Wulffman for the general

calculation of Wulff shapes [68]. Their method relies on techniques from computational

geometry that are dramatically faster than the Wulff construction. Although Wulffman is

powerful, fast, and versatile, it has not been supported since 2002 and only runs on Linux

operating systems. This paper introduces new software, Wulffmaker, that is distributed as

Wolfram Mathematica code and as a .cdf, and runs on all platforms. Wolfram now distributes

a free visualizer for interactive Computable-Document-Format (cdf) files.

For anisotropic particles, there is distinction between the geometrical contact angle be-

tween the particle and the substrate, 𝛼, and the equivalent wetting angle, 𝜃, which appears

in the Young equation. 𝛼 is determined by the facets available on the Wulff shape and their

inclinations with respect to the substrate, and can only take on discrete values for a fully-

faceted particle. 𝛼 is a local property because it also varies along the triple line as different

facets of the Wulff shape are traversed. On the other hand, 𝜃 can take any value between 0∘

and 180∘, and encapsulates information about the relative magnitudes of the three interface

energies present. 𝜃 is defined via the Young equation (see Section 1.3). The appropriate

definition of each 𝛾 term that determines 𝜃 is clear for isotropic particles, but the equiva-

lent 𝛾𝑃𝑉 (i.e., considering its multiple values and arbitrary crystallographic orientation) is

ambiguous in the case of anisotropic particles. This ambiguity is resolved in the discussion,

below.
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2.1.3 Particles Attached to Deformable Interfaces

Particles often nucleate at pre-existing defects to eliminate some of the associated defect

energy. It is quite common to observe a minor phase in a multiphase system, such as

precipitate particles in an alloy, attaching to grain boundaries in the major phase. In this

case, the equilibrium shape is more complicated because the particle can distort the boundary

and the triple line is not confined to a plane. A similar case occurs when particles of a distinct

phase are deposited on a soft substrate, such as when a patterned thin film is annealed at

a temperature high enough to allow diffusion in the substrate. The particles can become

partially submerged in the substrate to create substrate-particle interface at the expense

of particle-environment interface (e.g., [16]). These two cases are examples of particles

attached to deformable boundaries, and represent morphologies that occur in technological

applications.

To date, no simple method has be demonstrated to find the equilibrium shape of such

particles. A Winterbottom-like truncation construction was demonstrated by Cahn and Hoff-

mann for isotropic or symmetric and twinned particles, but they did not address a means to

solve for general geometries [13]. The truncation method was proven in two dimensions [45],

and has been applied in two dimensions by overlaying the appropriate Wulff shapes to ex-

plain particle morphology [39]. However, the truncation method has not been discussed

nor proven in three dimensions. Siem and coworkers presented a general numerical method

to find these shapes, but its implementation is impractical and offers little insight into the

nature of these geometries [72, 73].

The global stability of a particle attached to an interface is determined by the energy of

the wetting particle compared to the energy of the particle in bulk. Methods to calculate

the energy of such particles would enable an anisotropic model of heterogeneous nucleation,

as well provide insight into Zener pinning for anisotropic particles.
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2.2 Methods: The Wulffmaker Software Suite and the

Double-Winterbottom Method

In order to calculate equilibrium shapes, software tools were developed to quickly and eas-

ily generate Wulff shapes, Winterbottom shapes, and the shapes of particles attached to

deformable interfaces, which we call double-Winterbottom shapes. New, fast computa-

tional methods to generate Wulff and Winterbottom shapes are developed and implemented

in Wulffmaker. A general method for the construction of double-Winterbottom shapes

is needed, so a new algorithm was developed and implemented in the Wulffmaker suite.

These tools run in Wolfram Mathematica 8 or later versions, and are platform-independent.

Wulffmaker also runs in Wolfram CDF Player, which is free and available for download:

<http://www.wolfram.com/cdf-player/>. The code for these software tools and installation

instructions are available online at <pruffle.mit.edu/wulffmaker>.

2.2.1 Wulffmaker for Wulff and Winterbottom Shapes

Wulffmaker employs a new algorithm to quickly generate Wulff shapes. When 𝒲 is com-

pletely faceted, the computation becomes discrete and finite. In this case, the normal vectors

for each facet, �̂�𝑖, and their corresponding interface energies, 𝛾𝑖, are used to construct the

Wulff shape (Figure 2-1a). The set of �̂�𝛾(�̂�) from which 𝒲 is computed has repeated values

(i.e., 𝛾𝑖(�̂�𝑖) = 𝛾𝑗(�̂�𝑗) = . . . = 𝛾𝑚(�̂�𝑚)) when symmetry requires equivalence of several direc-

tions (i.e., �̂�𝑖 ∼ �̂�𝑗 ∼ . . . ∼ �̂�𝑚 where −→𝑎 ∼
−→
𝑏 implies that there is a symmetry operation

that maps −→𝑎 to
−→
𝑏 ). The user interface is greatly simplified by utilizing this symmetry so

that only one normal and one 𝛾 need be specified for all equivalent facets. However, the

code computes 𝒲 by using all of the �̂�𝛾(�̂�). Symmetrically-equivalent �̂�𝛾(�̂�) are generated

by applying each symmetry operation allowed for the specified point group by the following

process on the initial set of generating {�̂�𝑖𝛾(�̂�𝑖)}:

1. Iteratively apply each symmetry operation to each member of the set

2. Add the results of each above operation to the set

3. Remove any redundant elements of the set
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4. Repeat 1-3 until the set stops changing.

The result of such an operation is shown in Figure 2-1(b).

Some of the generated {�̂�𝑖𝛾(�̂�𝑖)} may have such high energy that they do not appear

on the Wulff shape. The Wulff construction requires that the projection of any vector −→𝑥 𝑖

from the origin to the surface of 𝒲 onto any other such vector −→𝑥 𝑗 is shorter than −→𝑥 𝑗.

Therefore, if the projection of a gamma vector �̂�𝑖𝛾(�̂�𝑖) onto another gamma vector �̂�𝑗𝛾(�̂�𝑗)

is longer than �̂�𝑗𝛾(�̂�𝑗) itself, then �̂�𝑖𝛾(�̂�𝑖) does not appear on the Wulff shape, and it can be

eliminated from the remainder of the calculation. Additionally, if �̂�𝑖𝛾(�̂�𝑖) is eliminated, then

all symmetrically-equivalent gamma vectors must also be eliminated. Therefore, only one

member of each set of symmetrically-equivalent vectors undergoes the projection test against

all other gamma vectors, and if it fails even once, the entire set of symmetric equivalents are

eliminated. The result of this rapid elimination procedure is shown in Figure 2-1(c).

The elimination procedure provides the final list of gamma vectors that correspond to

facets on the Wulff shape. Each gamma vector defines a facet plane with �̂�𝑖 and a distance to

the origin 𝛾𝑖. The vertices defining 𝒲 are where three facet planes intersect, and the edges

of 𝒲 are where two facet planes intersect. Therefore, 𝒲 can be found by calculating all of

the points where three facets on the Wulff shape intersect, and selecting only those that fall

on the surface of 𝒲 (using the same elimination procedure as above). The vertices on the

surface are always generated by adjacent, or nearest-neighbor, gamma vectors. The nearest

neighbor metric is defined by the projection of other �̂�𝛾(�̂�) onto the vector in question. To

reduce the number of vertices that must be calculated, a list of nearby gamma vectors is

assembled for each �̂�𝑖𝛾(�̂�𝑖). The intersection points of each facet plane 𝑖 with its neighbors

are calculated and tagged with the identities of the three facet planes that generated it. All of

the intersection points generated from two example facet planes are shown in Figure 2-1(d).

The elimination procedure applied to remove �̂�𝛾(�̂�)’s that are too large also works for the

elimination of intersection points that do not appear on the surface of 𝒲 . Each intersection

point is projected onto the nearby gamma vectors, and if the projection is longer than the

gamma vector, that point is eliminated. The remaining points define the Wulff shape, as

shown in Figure 2-1(e).
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After the vertices are computed for each facet, they are reordered by sorting with respect

to right-handed rotation about the normal. The result is a list of the vertices that define the

edges of each facet on the Wulff shape, which are plotted in Figure 2-1(f).

The user interface for Wulffmaker is shown in Figure 2-2. There are several variants of

Wulffmaker, including a version that makes it easy to introduce many hundreds or thousands

of facets with equal interface energy, which approximates an isotropic interface which may be

included as part of 𝒲 . Another variant displays the total interface area of each facet type to

aid in the interpretation of experimental observations. All crystallographic symmetries are

available, along with the 32 point groups. The viewing direction, or “zone axis,” can be typed

in, or the user can click and drag the figure to the desired orientation. The interface energies

can be specified by typing in values, and the � button on the interface energy sliders can be

pressed to animate through the range of interface energies. Wulffmaker typically solves and

renders Wulff shapes in a fraction of a second on (circa 2010) laptops, which makes it also

appropriate for live demonstrations or as a teaching tool. Because the tool is written with

Wolfram Mathematica, modifications to the source code are relatively easy and allow for

customization, including custom graphing options, custom non-crystallographic symmetries,

and adding features.

The Winterbottom variant of Wulffmaker includes controls for the orientation of a sub-

strate, a slider for (𝛾𝑆𝑉 − 𝛾𝑆𝑃 ), and additional plotting options. There is also an option to

“show data”, which produces a print-out below the figure of the equivalent wetting angle 𝜃,

the value of 𝛾𝑃𝑉 , the volume of the Winterbottom shape, the total energy of the system,

and the contact area between the particle and substrate.

2.2.2 Double-Winterbottom Construction

The Winterbottom construction applies for particles sitting on a non-deformable substrate.

However, in many cases, such as a particle attached to a grain boundary or a particle

supported by a soft substrate, the Winterbottom construction does not apply. A new method

is needed to calculate equilibrium shapes on deformable boundaries.

Consider a particle, P, attached to a boundary between phase A and phase B. The AB

interface is taken to be isotropic, and the PA and PB interfaces may be anisotropic. The
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The new convexification algorithm
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operations
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Figure 2-1: The method developed for finding Wulff shapes is depicted. (a) The user specifies
the symmetry and the �̂�𝑖𝛾(�̂�𝑖) vectors. In this case, �̂�1 = [100], 𝛾1 = 1, �̂�2 = [111], 𝛾2 = 0.9,
�̂�3 = [101], 𝛾3 = 1.5. These are the “generators” for all gamma vectors. (b) The symmetry
operations allowed under the specified point group are repeatedly applied to generate all
symmetrically-equivalent gamma vectors. (c) Each generator is projected onto every other
gamma vector. If the projection of the generator is longer than the gamma vector it was
projected onto, then that generator and all symmetrically-equivalent gamma vectors are
eliminated. (d) Each gamma vector defines a facet plane with normal �̂�𝑖 and distance to
the origin 𝛾𝑖. Every point where three facet planes intersect is identified as a possible vertex
location. For clarity, only the intersection points that fall onto two example facet planes
are shown. (e) Each possible vertex is projected onto the nearby gamma vectors. If the
projection of the possible vertex is longer than the gamma vector it was projected onto, then
that vertex is eliminated. The surviving vertices define the facets on 𝒲 . (f) The surviving
vertices are put in order so that connecting them successively defines the facets of the Wulff
shape.
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The Wulffmaker user interface

Figure 2-2: The basic user interface for Wulffmaker is shown. The lattice symmetry, point
group, number of crystallographically-distinct facets to include, and plotting preferences are
set at the top. The orientations of facets to include, as well as their surface energy and color,
are selected at left. The magnitudes of the crystallographic axes and angles (if variable under
the selected symmetry) are entered at right.
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The double-Winterbottom construction

=
+

+

WA

BW

Figure 2-3: The double-Winterbottom method is demonstrated. Left: The Wulff shape of
the particle in bulk A, 𝒲𝐴, the Wulff shape of the particle in bulk B, 𝒲𝐵, and an initially
planar interface are shown. Right: The centers of each Wulff shape are displaced away from
the interface by an amount 1

2
𝛾𝐴𝐵. The 𝛾 = 0 point on each Wulff shape is shown with a

dark point, and the triple line is indicated by the heavy black line.

triple line is not necessarily confined to the plane of the AB boundary. Let the Wulff shape

of the particle in bulk A be 𝒲𝐴, the Wulff shape in bulk B is 𝒲𝐵.

To find the equilibrium shape of the particle, the Winterbottom method can be applied

to each side of the interface. When calculating (𝛾𝑆𝑉 − 𝛾𝑆𝑃 ), there is no particle-substrate

interface energy because the interface is eliminated within the particle (see Figure 2-3). Given

that the Winterbottom method is applied to each side of the AB interface, the equivalent to

substrate-environment interface energy becomes 1
2
𝛾𝐴𝐵, so that summing the projected top-

and bottom-side interface energies (described below) gives 𝛾𝐴𝐵. The particle shape can be

found by displacing 𝒲𝐴 below the interface by an amount (𝛾𝑆𝑉 -𝛾𝑆𝑃 ) = (1
2
𝛾𝐴𝐵 − 0), and

likewise displacing 𝒲𝐵 above the interface by 1
2
𝛾𝐴𝐵. The intersection of 𝒲𝐴 and 𝒲𝐵 after

the displacement gives the equilibrium particle shape.

To demonstrate the validity of the double-Winterbottom method, we can compare the

energy of facet i when P is in bulk versus when P is attached to the AB interface. The
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interfacial free energy contributed by facet i when P is in bulk A is

𝐸𝑖 = 𝛾𝑖𝐴𝑖 (2.1)

where 𝛾𝑖 is the interface energy density of facet i, and A𝑖 is the area of facet i. When P is

attached to the AB interface, then the energetic contribution of facet i becomes

𝐸𝑖 = 𝛾𝑖𝐴𝑖 −
1

2
𝛾𝐴𝐵𝐴

𝑝𝑟𝑜𝑗
𝑖 , (2.2)

where 𝐴𝑝𝑟𝑜𝑗
𝑖 is the projected area of facet i onto the AB boundary, because it replaces an

amount 𝐴𝑝𝑟𝑜𝑗
𝑖 of AB interface (see Figure 2-4). The factor of 1

2
comes from the PB interface

also projecting onto the AB interface, so the PA and PB interfaces must share the energetic

benefit of removing AB interface. If the two halves did not equally share the energetic

benefit, then one side of the particle would be lower energy than the other, and the particle

will adjust its morphology to create more of the low energy interface at the expense of the

high energy interface until the two are equal. The effective interface energy density of facet

i is 𝐸𝑖/𝐴𝑖, which is:
𝐸𝑖

𝐴𝑖

= 𝛾𝑖,eff = 𝛾𝑖 −
𝐴𝑝𝑟𝑜𝑗

𝑖

2𝐴𝑖

𝛾𝐴𝐵. (2.3)

Therefore, the equilibrium shape of the particle should be the one with the 𝛾 = 0 point

on the AB interface, composed of the available facets from the PA interface above and PB

interface below the AB boundary, except their interface energies are replaced by 𝛾𝑖,eff. This

is identical to the double-Winterbottom construction because if the 𝛾 = 0 points for 𝒲𝐴 and

𝒲𝐵 were re-defined to be at the same location on the AB interface (which has no effect on

the Wulff shapes themselves [46]), geometry shows that the new distances to the facets will be

𝛾𝑖,eff = 𝛾𝑖− 1
2
𝛾𝐴𝐵 cos 𝛽, where 𝛽 is the angle between the normal to the AB interface and the

normal to facet i (see Figure 2-4). Geometric consideration also reveals that 𝐴𝑝𝑟𝑜𝑗
𝑖

𝐴𝑖
= cos 𝛽,

so the two descriptions are equivalent.
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The double-Winterbottom method and the energetic description of wetting

Figure 2-4: The double-Winterbottom method is compared with the energetic description
of wetting, to show their equivalence. Top: the Wulff shape of a material is shown with the
interface energy and area of facet i. Middle: Facet i has an interface energy of 𝛾𝑖, but because
it removes some AB interface with area 𝐴𝑝𝑟𝑜𝑗

𝑖 (the projection of facet i onto the substrate
is shown as a dark “shadow”), its effective interface energy becomes 𝛾𝑖,eff = 𝛾𝑖 − 𝐴𝑝𝑟𝑜𝑗

𝑖

2𝐴𝑖
𝛾𝐴𝐵.

Bottom: The double-Winterbottom construction indicates that the 𝛾 = 0 point should be
placed a distance (𝛾𝑆𝑉 − 𝛾𝑆𝑃 ) = (1

2
𝛾𝐴𝐵) above the AB interface, resulting in an effective

surface energy of 𝛾𝑖,eff = 𝛾𝑖 − 1
2
𝛾𝐴𝐵 cos 𝛽. The position of facet i in the middle and bottom

graphics is identical.
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2.2.3 Wulffmaker for Double-Winterbottom Shapes

The Wulffmaker algorithm for calculating double-Winterbottom shapes uses the method

described in Figure 2-1 to generate 𝒲𝐴 and 𝒲𝐵. Then, the Wulff shapes are rotated relative

to the AB interface to satisfy the user-specified orientation relationships. The center of

𝒲𝐴 is shifted along the interface normal by −1
2
𝛾𝐴𝐵, and 𝒲𝐵 is shifted along the interface

normal by 1
2
𝛾𝐴𝐵, as indicated by the double-Winterbottom construction. The result is two

overlapping shapes, as shown on the right in Figure 2-3. The Wulff shape-finding algorithm

described in Section 2.2.1 is applied to the overlapping shape to select the union of 𝒲𝐴 and

𝒲𝐵 and to identify the triple line ABP position. Because the triple line may not be planar,

there is additional AB -interface energy associated with satisfying the boundary conditions

at the triple line.

The AB interface is assumed to be both deformable and isotropic, so the AB interface

can distort such that it meets the particle at the triple line. It is assumed that far from the

particle, the AB-interface approaches a plane. The equilibrium shape of the AB interface is

found by discretizing it and allowing each mesh point to apply a tension on its neighboring

mesh points equal to the interface tension of the AB boundary. With the mesh points on

the triple line fixed, the model converges to the minimum energy configuration for the AB

interface. The total area of the AB interface will be augmented by deviations from the plane,

or “wrinkles,” which arise from the interface being constrained to meet the triple line. The

consequences of the presence of wrinkles are discussed in Section 2.3.3.

The ABP triple line will not generally fall near the original AB interface position when

using the double-Winterbottom construction. For example, in Figure 2-3, the triple line

is below the original interface. This occurs when the average interface energy on 𝒲𝐴 is

different from that of 𝒲𝐵. To correct this offset, the entire particle is shifted by an amount

equal to the mean normal displacement of the triple line from the AB interface so that it is

in-plane with the interface. Physically, the triple line should align with the interface because

an average displacement would create unnecessary AB interfacial area.

To analyze the stability of the particle, the total energy is computed as the sum of the

energetic contributions from the part of the particle in contact with A, the part of the
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particle in contact with B, the energy gain from replacing a portion of the AB interface

with the particle, and the energy penalty from creating new AB interface area as wrinkles.

Wulffmaker displays the total energy of a particle of equal volume if embedded within bulk

A and bulk B for comparison with the total energy of the double-Winterbottom shape.

The user interface for generating double-Winterbottom shapes is similar to that for Wulff

shapes, except there are additional controls for the additional degrees of freedom, including

the particle’s orientation with respect to the interface and interfacial energy of the AB

interface, the orientation relationships between 𝒲𝐴, 𝒲𝐵, and the AB interface, and plotting

options (such as opacity, how much of the discretized AB interface to display, whether to

highlight the triple line, etc.). There is also an option to “show data,” which reports a break-

down of energetic contributions to the overall double-Winterbottom shape energy, the total

energies of 𝒲𝐴 and 𝒲𝐵, the equivalent wetting angles for each half, and the value of 𝛾𝑃𝐴

and 𝛾𝑃𝐵 used to find the equivalent wetting angles. The source code is included with the

distribution, so with relatively simple changes, default values and elements of the calculation

can be modified by the user.

2.3 Discussion

2.3.1 The Equivalent Wetting Angle

In equation 1.5, the contact or wetting angle 𝜃 is defined in terms of 𝛾𝑆𝑃 , 𝛾𝑃𝑉 , and 𝛾𝑆𝑉 . It

would clarify the description—and comparisons to the isotropic cases—of the Winterbottom

and double-Winterbottom constructions if there were a convenient way to define 𝜃 in the

general, anisotropic case. 𝛾𝑆𝑃 is well-defined for the Winterbottom shape, and is zero for the

double-Winterbottom shape. 𝛾𝑆𝑉 is also defined for the Winterbottom case, and becomes
1
2
𝛾𝐴𝐵 in the double-Winterbottom case. However, identifying a simple equivalent for 𝛾𝑃𝑉 is

non-trivial because the interface-mediated equilibrium-shape depends on the relative crys-

tallographic orientation to the substrate/interface for the same unattached Wulff shape. For

example, consider the case of a Wulff shape consisting only of (100)-type facets with 𝛾 = 1,

so that 𝒲 is a simple cube (see Figure 2-5). In the Winterbottom case, if the substrate
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The effect of orientation of the contact angle

Figure 2-5: A cubic Wulff shape of fixed volume with 𝛾 = 1 is shown on a substrate with
(𝛾𝑆𝑉 − 𝛾𝑆𝑃 ) = 1. Left: The SP interface is along a [100] facet, so the shape is not truncated
at all, and has an equivalent wetting angle of 180∘. Right: The SP interface is along a [111]
orientation, and the corner on the Winterbottom shape is truncated. The equivalent wetting
angle is 125.3∘.

orientation is along a (100) direction, then complete dewetting of the substrate (the point at

which the Wulff shape no longer intersects the substrate when shifted by 𝛾𝑆𝑉 − 𝛾𝑆𝑃 ) occurs

when 𝛾𝑆𝑉 − 𝛾𝑆𝑃 = 1. However, if the cube is oriented into a [111]-orientation with respect

to the substrate, complete dewetting will not occur until 𝛾𝑆𝑉 − 𝛾𝑆𝑃 =
√

3. This orientation

dependence can be accounted for by defining 𝛾𝑃𝑉 to be the distance from the 𝛾 = 0 point

to the surface of the Wulff shape along the direction parallel to the interface normal. Ex-

perimentally, 𝛾𝑃𝑉 can be measured along a symmetrically-equivalent axis, or on an isolated

particle in the same medium. Computationally, the value of 𝛾𝑃𝑉 is found by extending all

planes on the Wulff shape to intersect the vector parallel to the substrate/interface normal,

and identifying the lowest intersection value. On a double-Winterbottom shape, each half

of the particle has its own wetting angle, so in general, an equivalent wetting angle must be

reported for each side.

2.3.2 Contact Area

By default, Winterbottom shapes are calculated with a constant volume. The effects of vary-

ing the wetting angle are shown in Figure 2-6. As 𝜃 approaches 0∘, the particle approaches

complete wetting of the interface, so the contact area between the particle and the substrate

diverges. As 𝜃 approaches 180∘, the contact area approaches that of the facet on the Wulff

shape parallel to the substrate. In between, the contact area will change discontinuously

when facets appear on the Winterbottom shape. The same general trend is observed for
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The influence of contact angle on particle geometry

Figure 2-6: For a given Wulff shape and fixed particle volume, the contact area between the
particle and the substrate decreases as the equivalent contact angle, 𝜃, increases (thick line).
The contact area for an isotropic (spherical) particle is shown for comparison (dashed line).

double-Winterbottom shapes (see Figure 2-8). Contact area versus particle volume can be

used to estimate the equivalent wetting angle and constrain the relative interface energies.

In the case of double-Winterbottom shapes, the definition of contact area is slightly less

well defined because there is no interface within the particle. To find the area of interface

removed, Wulffmaker projects the position of the triple line onto the original plane of the

interface, and takes the inscribed area to be the equivalent to contact area.

2.3.3 Wrinkles and the Limitations of Wulffmaker

Wulffmaker provides a first-order model of the equilibrium shape of a particle attached

to a deformable interface. However, the non-planar nature of the triple line introduces

some second order effects which can become significant under certain conditions. The main

limitation is that Wulffmaker does not adjust the particle shape in response to wrinkles

that form in the surrounding AB interface. The wrinkles create new interfacial area, and

introduce an additional term in the energy minimization. When 𝛾𝐴𝐵 is very small, then

the triple line tends to take a more circuitous path and causes a lot of interfacial area to
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be formed (see Figure 2-8), but the energetic contribution is typically negligible (< 1% of

the total particle energy) as 𝛾𝐴𝐵 → 0. When 𝛾𝐴𝐵 is large, then the double-Winterbottom

construction results in near-planar triple lines, so the AB area created is small, and the

energetic contribution is negligible. However, when:

1. one or both halves of the particle have facets that meet at sharp angles, where “sharp”

means ≈ 90∘ or larger,

2. the orientation relationship between 𝒲𝐴 and 𝒲𝐵 is such that the triple line is forced

to traverse the sharp angles and dramatically deviate from planar, and

3. 𝛾𝐴𝐵 is on the order of 𝛾𝑃𝐴 and/or 𝛾𝑃𝐵,

then the energetic contribution of the wrinkles can become as high as several percent of the

total energy of the particle (see Figure 2-7). However, only few geometries can be devised

that meet all 3 criteria, and few materials have Wulff shapes that could cause significant

energetic contributions from the wrinkles. In the vast majority of cases tested, the energetic

contribution from wrinkles does not exceed ∼2%. If the wrinkle contribution is deemed to

be significant enough to materially alter the particle shape, the system could respond in

numerous ways to this additional energetic contribution. The facets near the triple line may

change shape to minimize deviations from the interface plane. Or, facets which normally do

not occur on the Wulff shape may be stabilized by the presence of the AB interface, and new

facets could appear. Wulffmaker includes a readout of the wrinkle energy (within the “show

data” option) so the user can judge whether the contribution is negligible or not. However,

because the effect of wrinkle energy is uncertain, Wulffmaker does not treat its inclusion in

shape generation.

Another limitation of Wulffmaker is that the assumption that the AB interface is isotropic

may not hold for some systems. Any anisotropy in the surrounding interface will cause the

actual equilibrium particle shape to differ from the double-Winterbottom shape. Anisotropy

in the AB interface would constrain the shape of the triple line, and may even force the

particle towards a more Winterbottom-like shape, but with the added condition that the

particle halves must somehow meet. This case is not treated by Wulffmaker.
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Wrinkles and the double-Winterbottom construction

Figure 2-7: The conditions necessary for wrinkles to contribute significantly to the total
energy of a particle are demonstrated. Top: only [100]-type facets are available, and the
orientation relationship is such that the triple line must traverse sharp edges. Middle: small
[110] and [111]-type facets “soften” the corners, and significantly reduce the energetic contri-
bution from wrinkles. Bottom: the wrinkle area is negligible when the triple line is nearly
contained within a plane. In all three pictures, the full extent of the calculated AB interface
is not shown, for clarity.

When 𝛾𝐴𝐵 is small, facets normal to the interface may appear on the equilibrium shape.

If a facet from 𝑊𝐴 is oriented identically to a facet on 𝑊𝐵, and they have the same 𝛾

value, then the triple line could traverse the common facet, rather than strictly follow edges

between facets. In its current version, Wulffmaker cannot find the triple line location in this

special case because it is difficult to determine where it will fall and what functional form it

will take.

Another possible energetic contribution that is not accounted for is edge energy. It is

conceivable that the presence of edges or corners introduces an energetic penalty beyond the

interface energies of the adjacent facets. The Wulff construction does not address such a

possibility, nor does any method discussed herein.
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The influence of interfacial energy on the triple line shape

Figure 2-8: For a fixed orientation relationship and with all 𝛾𝑃 = 1 on the particle, 𝛾𝐴𝐵 is
varied. Top: as 𝛾𝐴𝐵 → 0, the triple line becomes very long because the interface only weakly
affects the particle morphology. Bottom: as 𝛾𝐴𝐵 → 2𝛾𝑃 , the particle approaches complete
wetting of the interface. 𝛾𝐴𝐵 is pulling very hard on the triple line, forcing it to fall into the
plane of the AB interface.

2.3.4 Calculating interface energies from the equilibrium shape

Another application for Wulffmaker is an inverse method of finding relative interface energies

given an experimental observation of the equilibrium shape of a particle. Measurements of

angles between facets and their symmetry can be used to identify their relative orientations,

and relative edge lengths can be used to constrain interface energies. Once all facet indices

and orientation relationships are specified in the software, the interface energy sliders can

be used to match the observed geometric parameters. There are versions within the Wulff-

maker suite that include readouts of relative edge lengths. Alternatively, if the area fraction

occupied by each facet type can be measured experimentally, the software can be used to

match area fractions and therefore provide interface energies.

An example inverse solution is demonstrated in Figure 2-9. The micrograph from Dah-

men et al. contains two single-crystal Pb particles attached to a 90∘ [110] Al grain boundary.

Each particle has a fully-faceted half with 𝑚3̄𝑚 point symmetry, and the other half appears

isotropic. The faceted halves are crystallographically aligned (topotactic) with their respec-

tive Al host as derived from the moiré patterns [22].
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The Wulff shape for crystallographically-aligned Pb in Al is known to show the (100) and

(111) facets with 𝛾100
𝛾111

= 1.15 [52]. This information was used to constrain the software fit.

All that remains unknown are 𝛾𝐺𝐵

𝛾111
and 𝛾𝑃𝑏𝐴𝑙

𝛾111
, where 𝛾𝐺𝐵 is the interface energy of the Al grain

boundary, and 𝛾𝑃𝑏𝐴𝑙 is the interface energy of Pb in Al when it is not crystallographically

aligned (isotropic side). To quantitatively extract interface energy values, some geometric

measurement must be made. In the case of Figure 2-9, the viewing direction is known from

TEM conditions to be [110], so that several facets are seen edge-on, and the 2D-projection

geometry is sufficient to constrain the 𝛾’s.

The region of the grain boundary surrounding the top particle in Figure 2-9 is oriented

about 25∘ relative to the grain boundary surrounding the lower particle, so a different 𝛾𝐺𝐵

was found for each particle.

The relative lengths of the edge-on facets, the apparent contact angles, the apparent

radius of curvature of the PB interface relative to particle volume, and the apparent particle

widths were used as geometric constraints. Using these metrics, Wulffmaker obtains 𝛾𝐺𝐵

𝛾111
≈

0.85 ± 0.1 for the top grain, 𝛾𝐺𝐵

𝛾111
≈ 1.22 ± 0.1 for the lower grain, and 𝛾𝑃𝑏𝐴𝑙

𝛾111
≈ 1.27 ± 0.1.

2.3.5 Allowed and Non-Physical Morphologies

A series of double-Winterbottom shapes are shown in Figure 2-10, and present a summary of

allowed morphologies. This example is a particular case that generates general morpholog-

ical features. The example particle has cubic symmetry and is faceted on the A side of the

interface with each ([111],[100],[110]) facet having 𝛾𝑃𝐴 = 1. The 𝑃𝐵-interface is a faceted

approximation to a spherical patch. The A side is fixed with the equivalent wetting angle

𝜃𝐴𝑃 = 60∘, and the interface energy on the B side is varied through the sequence of simu-

lations (e.g., 𝜃𝑃𝐵 = 1∘, . . . , 72.7∘). In all cases, the discussion is focused on global minima

for the energy of the system, but metastability is always possible. If the particle is at the

global minimum when attached to the AB interface, local minima exist where the particle

is embedded completely within bulk A or bulk B.

When 𝛾𝑃𝐵 is close to 𝛾𝑃𝐴 (≈ 1), the particle has a lenticular form. When 𝛾𝑃𝐵 is less

than 1
2
𝛾𝐴𝐵, the particle will have a “hemispherical” morphology, similar to that in the top

left of Figure 2-10. This morphology occurs because although complete wetting would lower

64



Comparison of real and modeled double-Wintrebottom particles

Figure 2-9: Left: A micrograph from Dahmen et al. shows two Pb particles attached to a
grain boundary in Al. The top particle is topotactic with the Al grain on the right, and the
lower particle is topotactic with the Al grain on the left. The interface between the particles
and the non-topotactic grains are taken to be isotropic [22]. This figure is reprinted with
permission from the original journal of publication. Right: Wulffmaker was used to fit the
particle geometries to find 𝛾𝐺𝐵

𝛾111
and 𝛾𝑃𝑏𝐴𝑙

𝛾111
, given that 𝛾100

𝛾111
= 1.15 for Pb/Al interfaces.

the energy on the B side of the AB interface, it would increase the energy on the A side.

The PA interface holds the particle back and prevents complete wetting.

When 𝛾𝑃𝐵 is very large, the penalty of having any PB interface is so great that the

particle will have lower energy if entirely embedded within A. For the example shown, this

occurs when 𝛾𝑃𝐵 > 1.68𝛾𝐴𝐵. Note that this wetting transition occurs well below the expected

value of 2𝛾𝐴𝐵 for a Winterbottom-like geometry, where the 𝒲𝑃𝐴 is shifted relative to the

AB interface, without consideration of the PB interface. This is because the particle is not

truncated by a plane, but is truncated a curved interface, which has more interfacial area.

The additional area from the curvature of the PB side of the interface creates additional

energy, causing the wetting transition to occur at smaller 𝛾𝑃𝐵.

When 1.64 ≤ 𝛾𝑃𝐵 ≤ 1.68, the particle contains “overturned” facets on the A side (i.e.,

their normal is directed towards the 𝐴𝐵-interface). The overturned facets cancel any region

of the 𝑃𝐴-interface which projects onto them from above, thus any benefit of removing 𝐴𝐵

interface is negated. However, overturning allows the higher energy interface area to decrease.

Overturned facets are possible because the balance of interface energies (Equation 1.5) can
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be satisfied, but such shapes only occur when the particle is on the cusp of instability on the

interface. Furthermore, the overturned facets are stable over a very small range of relative 𝛾

values because the associated energetic penalty quickly overwhelms the benefit of partially

wetting the AB interface.

In summary, there are five regimes of relative 𝛾 values for double-Winterbottom particles:

1. When 𝛾𝑃𝐴 + 𝛾𝑃𝐵 is less than 𝛾𝐴𝐵, the particle completely wets the interface.

2. When either 𝛾𝑃𝐴 or 𝛾𝑃𝐵 is less than 1
2
𝛾𝐴𝐵 and 𝛾𝑃𝐴 + 𝛾𝑃𝐵 > 𝛾𝐴𝐵, then the particle

takes on a “hemispherical” shape, with the flat surface on the high energy side, and

the domed surface on the low energy side of the interface.

3. When 𝛾𝑃𝐴 and 𝛾𝑃𝐵 are of similar magnitude, the particle has a lenticular shape. This

is true even when both 𝛾𝑃𝐴 and 𝛾𝑃𝐵 are very large compared to 𝛾𝐴𝐵.

4. When either 𝛾𝑃𝐴 or 𝛾𝑃𝐵 is large, overturned facets may occur on the low energy side.

This only occurs when the energy of the particle on the interface is nearly equal to the

energy of the particle if embedded within bulk of the lower energy environment.

5. When either 𝛾𝑃𝐴 or 𝛾𝑃𝐵 is so large that it overwhelms the energetic benefit of partially

wetting the interface, the particle will have minimal energy when embedded completely

in the bulk of the lower energy environment.

For a particle without an internal boundary (that is, a single crystal particle), the particle

must be convex for two reasons. First, Wulff shapes are always convex to minimize interfacial

area, and double-Winterbottom shapes are no different. Secondly, for particles attached to

interfaces, it is not possible to have “dumbbell”-shaped particles, (i.e. particles which are

non-convex near the triple line), because the balance of interface tensions at the triple line

would require that the AB interfacial energy is negative, which is non-physical. For particles

which do contain an internal boundary, e.g. a twin boundary, the Wulffmaker software suite

can be used to generate their geometry by applying the Winterbottom construction to half

of the particle with a known internal boundary energy, and then mirroring it across the

interface.
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Possible double-Winterbottom morphologies

Figure 2-10: Example calculations are shown to describe the allowed morphologies of double-
Winterbottom shapes. 𝒲𝐴 is faceted with cubic symmetry, and 𝒲𝐵 is isotropic. 𝛾𝐴𝐵 =
𝛾𝑃𝐴 = 1 for all facets on the PA interface, and 𝛾𝑃𝐵 is varied. When 𝛾𝑃𝐵 < 1

2
𝛾𝐴𝐵 and

𝛾𝑃𝐵 + 𝛾𝑃𝐴 > 𝛾𝐴𝐵, the particle can minimize its total energy by assuming a hemispherical
shape, as in the top left. When 𝛾𝑃𝐵 > 1.68𝛾𝐴𝐵, the particle is no longer globally stable on the
interface, and is instead embedded in bulk A. Wetting no longer occurs when 𝜃𝑃𝐵 > 72.7∘.
Overturned facets (small triangular facets near the triple line) are visible on the 𝜃𝑃𝐵 > 72.7∘

shape. For 1
2
𝛾𝐴𝐵 < 𝛾𝑃𝐵 < 1.68𝛾𝐴𝐵, the particle is stable when wetting the AB interface.
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2.3.6 Consequences of Anisotropy on the Wetting of Interfaces

As discussed in the context of Winterbottom shapes, anisotropy greatly affects the stability

range of particles on interfaces. For a given particle and substrate, (i.e. fixed 𝛾𝑆𝑉 −𝛾𝑆𝑃 ), the

stability of a particle may vary with interface orientation, as shown in Figure 2-5. Double-

Winterbottom shapes may attach to the interface, or dewet the interface and be completely

embedded in the phase above the interface, or become completely embedded in the phase

below the interface. This “choice” between globally- and locally-stable solutions and the

appearance of unstable solutions, creates a richness of behavior for particles on soft interfaces

demonstrated in Figure 2-10.

Even if 𝒲𝐴, 𝒲𝐵, their orientation relationship, and 𝛾𝐴𝐵 are held constant, as the orien-

tation of the AB interface is changed, the effective wetting angles vary and the energy of the

particle varies (see Figure 2-11). It is possible for a particle to partially wet the interface for

some orientations, and not wet the same interface for other orientations. Wulffmaker could

thus be used to predict how much heterogeneous nucleation of a second phase to expect

along grain boundaries as a function of orientation, or the distribution of nucleation sizes as

a function of boundary orientation. This has implications not only for microstructure mor-

phology, but also for microstructure development via Zener pinning. The critical nucleus will

be smaller for particles nucleating in lower energy orientations, so they will be more numer-

ous on a favorably-oriented interface. Additionally, the pinning force exerted by particles in

a favorable orientation is stronger, resulting in a two-fold effect on grain boundary mobility.

Even if the grain boundary itself is isotropic, the anisotropic particles that pin it will cause

anisotropy in its mobility.

2.4 Conclusions

The double-Winterbottom construction determines equilibrium shapes of particles attached

to deformable interfaces. This construction enables quantitative analysis of the stability of

particles on deformable free interfaces and grain boundaries. Analysis of such particles in the

general anisotropic case offers a new tool for the study of heterogeneous nucleation, Zener

pining, and the study of devices made of isolated bodies on a substrate, such as electronic
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Interface orientation and the contact angle

Figure 2-11: The dependence of contact angle on interface orientation is explored. 𝒲𝐴, 𝒲𝐵,
their orientation relationship, and 𝛾𝐴𝐵 are held constant, and only the interface orientation
is changed. 𝛾𝐴𝐵 = 𝛾𝑃𝐵 = 1, 𝛾𝑃𝐴,[111] = 0.9, 𝛾𝑃𝐴,[100] = 1.1, and 𝛾𝑃𝐴,[110] = 1. The interface
normal is tilted from [001] (top left) to [111] (bottom right), and the contact angle of the
top half of the particle is shown with each image.

and optical devices.

Wulffmaker is a platform-independent software tool that enable fast, convenient calcu-

lation of Wulff, Winterbottom, and double-Winterbottom particle morphologies and associ-

ated energetic and geometric properties. This tool introduces a new computational method

for finding shapes of minimal interface energy. It also helps to build intuition about the

macroscopic properties of interfaces and their interactions, and aids in the quantitative mea-

surement of interface energy densities, given a geometry. Properties such as the equivalent

wetting angle, particle contact area, total energies, and distortions to the interface surround-

ing the particle are displayed by the software to enable further insight and analysis.
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Chapter 3

The stability of a torus under

capillary forces

3.1 Introduction

The stability of a cylinder under capillary forces is a well-known, classical problem. However,

to our knowledge, the stability of a torus has never been reported. The case of a torus is

of interest because it is closely-related to the “fingering instability,” which occurs when a

thin film dewets an underlying substrate. It has been suggested that the Rayleigh instability

plays a role in driving the fingering instability [75, 40]. Knowledge of which wavelength

perturbations should grow due to a Rayleigh instability can be used to determine what, if

any, role a Rayleigh instability plays in the fingering process. However, knowledge of the

Rayleigh instability on a cylinder is insufficent because thin film edges are often curved.

The thickened rim on the edge of a circular island of thin film, or surrounding a growing

hole, resembles a portion of a torus. The curved edge case is more common in dewetting

experiments because thin films are finite in extent, evolving to an island geometry relatively

quickly, and holes often form naturally. To interpret the fingering instability on curved film

edges, it is necessary to understand the stability of a torus under capillary-driven surface

tension.
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3.1.1 Review of the Rayleigh instability on a cylinder

Under surface tension, a cylinder is a metastable shape. Determining whether such a cylinder

will break-up into a spherical particles is a classical problem, first reported by Lord Rayleigh.

His method for a stability analysis is as follows [67]:

1. Sinusoidally perturb the surface of the cylinder by replacing the radius 𝑟 with 𝑟0(1 +

𝜖 cos 𝑘𝑧), where 𝑟0 is the mean radius, 𝜖 is the amplitude of the perturbation, 𝑘 is the

wavenumber of the perturbation, and 𝑧 is the axial coordinate.

2. Find the surface area and volume of the perturbed cylinder as a function of 𝑟0 and 𝜖,

to second-order accuracy in 𝜖.

3. Apply volume conservation by equating the volume of an unperturbed cylinder of

radius 𝑟0 with the second order-accurate volume of the perturbed cylinder, and solve

for 𝑟0.

4. Determine whether the perturbation increases or decreases the total surface area of the

cylinder. The sign of area change is the sign of the second-order term of the surface area,

computed using the mean radius that enforces volume conservation, when expanded in

𝜖. The value of 𝑘 for which the surface area is unchanged is the critical wavenumber,

𝑘𝑐𝑟𝑖𝑡.

His analysis yielded that 𝑘𝑐𝑟𝑖𝑡 is equal to 1. In other words, a sinusoidal perturbation of a

wavelength longer than 2𝜋𝑟0 will reduce the total area of the cylinder. As the perturbation

grows, the total area (and therefore total energy) decreases, ultimately breaking-up the

cylinder into individual spheres.

To obtain which wavelength perturbation grows the fastest, Nichols and Mullins [58]

calculated the perturbation growth rates when surface diffusion is the dominant transport

mechanism. They obtained the result 𝜆𝑓𝑎𝑠𝑡𝑒𝑠𝑡 = 2
√

2𝜋𝑟0.
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The torus geometry

Rp

Rc

x
y
z

θ
ϕ

Figure 3-1: A cut-away view of a torus, 𝑇 (𝜃, 𝜑,𝑅𝑐, 𝑅𝑝), with 𝜃, 𝜑, 𝑅𝑐, and 𝑅𝑝 defined on the
image. The cartesian axes are shown in grey. 𝑅𝑐 is the radius of the torus cross-section, and
𝑅𝑝 is the radius of the torus in the 𝑥𝑦-plane. The white mesh lines are curves with constant
𝜃 and 0 ≤ 𝜑 ≤ 2𝜋, and the black mesh lines are curves with constant 𝜑 and 0 ≤ 𝜃 ≤ 2𝜋.
The image only shows half of the torus, 0 ≤ 𝜃 ≤ 𝜋.

3.2 The stability of a torus against capillary forces

3.2.1 Geometry

A torus is described by the parametric expression

𝑇 (𝜃, 𝜑,𝑅𝑐, 𝑅𝑝) =
(︁

(𝑅𝑝 + 𝑅𝑐 cos𝜑) cos 𝜃, (𝑅𝑝 + 𝑅𝑐 cos𝜑) sin 𝜃, 𝑅𝑐 sin𝜑
)︁
, (3.1)

with all parameters defined in Figure 3-1. In this chapter, lower-case 𝑟’s refer to a variable,

while upper-case 𝑅’s refer to a particular, fixed value.

Four modes of sinusoidal perturbations were tested on the torus surface: perturb 𝑅𝑐 in

𝜃, perturb 𝑅𝑐 in 𝜑, perturb 𝑅𝑝 in 𝜃, and perturb 𝑅𝑝 in 𝜑. The stability analysis will only

be shown in detail for the perturbation of 𝑅𝑐 in 𝜃, but the other three follow in the same

fashion, the results of which are discussed in the subsequent subsection.

3.2.2 Possible perturbation wavenumbers

On a cylinder, there is no restriction on which wavenumbers are possible, because the geome-

try is not periodic. On a torus, only perturbations with an integer wavenumber 𝑘 = 1, 2, 3, ...

fit exactly around the torus, in both the 𝜃 and 𝜑 directions.

However, non-integer 𝑘-values are not only possible, but probable. This is because per-

turbations usually originate at some point, and then propagate along the body if they grow,
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rather than occurring everywhere simultaneously. Variations in the spacings between per-

turbation maxima would accommodate the mismatch if such a disturbance propagated all

the way around the torus. As long as the spacings correspond to unstable wavelengths, the

perturbations will continue to grow. Experimentally, it would be unsurprising to see multiple

wavelength perturbations nucleate on the torus, with an intermediate spacing where they

meet.

Perturbations with a 𝑘-value less than 1 are not possible on a torus. This is because a

single wavelength cannot fit around the circumference of the torus, so it cannot be repre-

sented. The effect is similar to a Nyquist frequency: a perturbation with 𝑘 < 1 is equivalent

to some other perturbation with 𝑘 > 1. For this reason, only results for 𝑘 ≥ 1 are considered.

However, there is one exception: when 𝑘 = 0, the torus is unchanged, so this mode is also

possible.

3.2.3 Longitudinal perturbations

The torus is initially perturbed by replacing 𝑅𝑐 in Equation 3.1 with 𝑅𝑐(1 + 𝜖 cos 𝑘𝜃), where

𝜖 is the perturbation amplitude and 𝑘 is the wavenumber of the perturbation. The in-plane

radius of the torus is held fixed at some value, 𝑅𝑝.

The surface area of the perturbed surface is

𝐼 =

√︃
𝜕𝑇

𝜕𝜃
· 𝜕𝑇
𝜕𝜑

, (3.2)

𝐴 =

∫︁ 2𝜋

0

∫︁ 2𝜋
𝑘

0

𝐼 𝑑𝜃 𝑑𝜑, (3.3)

where 𝐼 is the integrand to compute the surface area, 𝐴 is the surface area over one wave-

length, and 𝐼 is the Taylor series expansion of 𝐼 to second order. This gives

𝐴 =
4𝜋2𝑅𝑐𝑅𝑝

𝑘
+

𝜖2𝑘𝜋2𝑅3
𝑐√︀

𝑅2
𝑝 −𝑅2

𝑐

. (3.4)

The volume contained in one wavelength of the perturbation is found using the deter-

minant of the Jacobian matrix. The components of the Jacobian matrix are 𝜕𝑇𝑖

𝜕𝑗
, where 𝑖 is
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the 𝑥, 𝑦, or 𝑧 component of 𝑇 , and 𝑗 is 𝜃, 𝜑, or 𝑟𝑐. If the perturbation in question was on

𝑟𝑝 instead of 𝑟𝑐, then the derivatives in the Jacobian are with respect to 𝜃, 𝜑, and 𝑟𝑝. The

determinant of the Jacobian for perturbations in 𝑟𝑐 is 𝐽 = 𝑟𝑐(𝑅𝑝 + 𝑟𝑐 cos𝜑). The volume of

the perturbed torus segment is

𝑉 =

∫︁ 𝑅𝑐(1+𝜖 cos 𝑘𝜃)

0

∫︁ 2𝜋

0

∫︁ 2𝜋
𝑘

0

𝐽 𝑑𝜃 𝑑𝜑 𝑑𝑟𝑐, (3.5)

which evaluates to

𝑉 =
2 + 𝜖2

𝑘
𝜋2𝑅2

𝑐𝑅𝑝. (3.6)

The volume of the perturbed torus must equal the volume of the original torus. This

puts a constraint on 𝑅𝑐. When 𝑉 is set equal to a constant 𝐶 and solved for 𝑅𝑐, it yields

𝑅𝑐 =
√
𝐶/
(︁
𝜋
√︁

2+𝜖2

𝑘
𝑅𝑝

)︁
. This value of 𝑅𝑐 can be plugged into the expression for the surface

area (Equation 3.4), and 𝐶 is replaced with the volume of the unperturbed torus segment,

𝐶 = (1/𝑘)2𝜋2𝑅2
𝑐𝑅𝑝. This gives the surface area of the perturbed torus segment to be

𝐴 = 2
√

2𝜋2

(︃
2

√︃
1

(2 + 𝜖2)𝑘2
𝑅𝑐𝑅𝑝 +

𝜖2𝑘𝑅3
𝑐

(2 + 𝜖2)
√︁

(2 + 𝜖2)𝑅2
𝑝 − 2𝑅2

𝑐

)︃
, (3.7)

including the condition that the volume of this segment is equal to an unperturbed torus

segment with the same value of 𝑅𝑝.

Equation 3.8 is equal to

𝐴 =
4𝜋2

𝑘
𝑅𝑐𝑅𝑝 +

(︃
𝜋2𝑅𝑐

(︁ 𝑘𝑅2
𝑐√︀

𝑅2
𝑝 −𝑅2

𝑐

− 𝑅𝑝

𝑘

)︁)︃
𝜖2 + 𝒪(𝜖3). (3.8)

The sign of the second-order term determines whether the torus area increases or decreases

due to the perturbation. The second-oder term is equal to zero when 𝑘 = 𝑅−1
𝑐 (𝑅4

𝑝−𝑅2
𝑐𝑅

2
𝑝)

1/4.

Therefore, the critical wavelength for stability is

𝜆𝑐𝑟𝑖𝑡 =
2𝜋𝑅𝑐𝑅𝑝

(𝑅4
𝑝 −𝑅2

𝑐𝑅
2
𝑝)

1/4
. (3.9)

This result is analogous to the classical Rayleigh result. In the limit 𝑅𝑝 → ∞, the critical
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The stability field for a torus
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Figure 3-2: The critical perturbation wavelength for a torus (black curve) and for a cylinder
(dashed magenta curve). The region below the stability curve (shaded cyan) corresponds
to perturbations that decay away for a given value of 𝑅𝑐/𝑅𝑝. In the limit that the torus
approaches a cylinder (as 𝑅𝑐/𝑅𝑝 → 0), the critical wavelength also approaches the cylinder
behavior.

wavelength matches the classical result for a cylinder of radius 𝑅𝑐: 𝜆𝑐𝑟𝑖𝑡 = 2𝜋𝑅𝑐. If 𝜆𝑐𝑟𝑖𝑡 is

re-written with 𝐿𝑐𝑟𝑖𝑡 = 𝜆𝑐𝑟𝑖𝑡/𝑅𝑝, 𝑟 = 𝑅𝑐/𝑅𝑝, then

𝐿𝑐𝑟𝑖𝑡 =
2𝜋𝑟

(1 − 𝑟2)1/4
. (3.10)

This format makes the comparison with the classical result clearer. A plot comparing the

stability of a cylinder and a torus is provided in Figure 3-2.

3.2.4 Other perturbations

The same stability analysis can be performed for other perturbations. Perturbations in 𝑟𝑝

always lead to increasing surface area, so the torus is stable against variations in the in-plane

radius 𝑟𝑝.

If 𝑟𝑐 is replaced by 𝑅𝑐(1 + 𝜖 cos 𝑘𝜑), the torus takes on a “fluted” appearance. The second

order term in the change of surface area is

(𝑘2 − 1)𝜋2𝑅𝑐𝑅𝑝. (3.11)
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This indicates that the torus is stable against all perturbations with 𝑘 > 1. The critical

wavelength is 𝑘 = 1. When 𝑘 = 0, the torus surface is unchanged. Therefore, the torus its

self is unstable. This result is unsurprising because the torus is an unstable surface under

surface tension (unlike the cylinder, which is a metastable surface): the torus surface area

can always decrease by decreasing 𝑅𝑝 and commensurately increasing 𝑅𝑐 to conserve volume.

Thus, a torus is always driven to shrink and become a sphere.

There will be a competition between the Rayleigh instability and the “shrinking” insta-

bility. In some cases, the Rayleigh instability should outpace the shrinking rate of the torus.

However, intuition suggests that for small torii, it would shrink away to a sphere before the

Rayleigh instability has time to develop. It is not possible to derive the entire time evolution

of the torus using a stability analysis; however, the magnitudes of the growth rates in each

case can be computed to give some idea of which will dominate.

3.3 The fastest-growing perturbation on a torus

3.3.1 The Rayleigh instability

For perturbations of the same amplitude 𝜖, the longer the wavelength, the larger the decrease

in area of the torus. If mass transport is possible over long distances, such as via evaporation-

condensation, then the longest-wavelength mode possible on a torus (𝑘 = 1 or, equivalently,

𝜆 = 2𝜋𝑅𝑝) will dominate the final shape, leaving a single sphere of material behind. However,

for range-limited transport such as surface diffusion, the fastest-growing wavelength will be

a compromise between the rate of mass transport and the driving force.

Find the surface of the torus after undergoing surface diffusion for a short time

𝑑𝑡

The motion of a surface outward along its normal due to surface diffusion is given by Equa-

tion 1.8. The curvature of a parametric surface, 𝑇 (𝜃, 𝜑), is given by

𝜅 =
𝐸𝑁 − 2𝐹𝑀 + 𝐺𝐿

2(𝐸𝐺− 𝐹 2)
, (3.12)
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where 𝐸, 𝐹 , 𝐺, 𝐿, 𝑀 , and 𝑁 are the coefficients of the first and second fundamental forms:

𝐸 =
𝜕𝑇

𝜕𝜃
· 𝜕𝑇
𝜕𝜃

, (3.13)

𝐹 =
𝜕𝑇

𝜕𝜃
· 𝜕𝑇
𝜕𝜑

, (3.14)

𝐺 =
𝜕𝑇

𝜕𝜑
· 𝜕𝑇
𝜕𝜑

, (3.15)

𝐿 =
𝜕2𝑇

𝜕𝜃2
· �⃗�, (3.16)

𝑀 =
𝜕2𝑇

𝜕𝜃𝜕𝜑
· �⃗�, (3.17)

𝑁 =
𝜕2𝑇

𝜕𝜑2
· �⃗�, (3.18)

and the normal vector to the surface, �⃗�, is

�⃗� =

𝜕𝑇
𝜕𝜃

× 𝜕𝑇
𝜕𝜑

‖𝜕𝑇
𝜕𝜃

× 𝜕𝑇
𝜕𝜑
‖
. (3.19)

The Laplace-Beltrami operator is found using a matrix containing the first fundamental

forms:

𝐴 =

⎛⎝𝐸 𝐹

𝐹 𝐺

⎞⎠ , (3.20)

∆𝑠 =
−1√︀
| det𝐴|

2∑︁
𝑖,𝑗=1

𝜕

𝜕𝑥𝑖

(︁
(𝐴−1)𝑖𝑗

√︀
| det𝐴| 𝜕

𝜕𝑥𝑗

)︁
, (3.21)

where 𝑥1 is 𝜃 and 𝑥2 is 𝜑.

For an unperturbed torus, the expression ∆𝑠𝜅 simplifies substantially:

∆𝑠𝜅 =
𝑅𝑝

(︁
𝑅𝑝 cos𝜑−𝑅𝑐(−2 + cos 2𝜑)

)︁
2(𝑅𝑝 + 𝑅𝑐 cos𝜑)5

. (3.22)

For a sinusoidally-perturbed torus, the expression is cumbersome, and therefore not displayed

here.

The surface of the torus, perturbed or otherwise, after undergoing surface diffusion for a
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The shape changes of a torus due to surface diffusion

(a) (b)

Figure 3-3: (a) an initially unperturbed torus with 𝑅𝑐 = 0.25, 𝑅𝑝 = 1, is shown in cyan.
Only half of the torus is shown, for clarity. The effects of surface diffusion on the torus are
shown in magenta. The amplitude of the shape change is exaggerated. (b) a torus with
a sinusoidal perturbation of wavenumber 𝑘 = 6 and amplitude 𝜖 = 0.2 is shown in cyan.
𝑅𝑐 = 0.25 and 𝑅𝑝 = 1. The effects of surface diffusion on this surface are shown in magenta,
with an exaggerated amplitude.

short time 𝑑𝑡, becomes

𝑇 (𝜃, 𝜑, 𝑑𝑡) = 𝑇 (𝜃, 𝜑, 0) + (𝑑𝑡∆𝑠𝜅) �⃗�, (3.23)

where 𝑇 (𝜃, 𝜑, 0) is the initial surface. The initial and final torii, for both the unperturbed

and perturbed cases, are shown in Figure 3-3. To show how the torus evolves for different 𝑘

values, top-down views are shown in Figure 3-4.

The perturbation growth rate

A schematic of a perturbed torus is shown in Figure 3-5. There are four points of interest

on the surface. The velocity of the surface motion measured normal to the surface at these

points, 𝑣(𝜃,𝜑) = (∆𝑠𝜅)
⃒⃒
(𝜃,𝜑)

, is used to measure the perturbation growth rate. Using the

definitions provided in Figure 3-5, the Rayleigh perturbation growth rate is

�̇� = 𝑣(0,0) + 𝑣(0,𝜋) − 𝑣(𝜋/𝑘,0) − 𝑣(𝜋/𝑘,𝜋). (3.24)

Through non-dimensionalization, it can be found that 𝑅3
𝑐 �̇�/𝜖 is only a function of 𝑅𝑝/𝑅𝑐

and 𝑘, and it does not depend on the amplitude 𝜖, nor the characteristic length 𝑅𝑐. This

version of the growth rate is shown in Figure 3-6 for different 𝑘 values.

The places where the growth curves in Figure 3-6 cross the horizontal axis as the “critical”
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Top-down views of perturbed torii with surface diffusion

Figure 3-4: Perturbed torii are viewed top-down. The red curve is the original outline with
𝑘 = 1 (top left) through 9 (bottom right), the torus parameters are 𝑅𝑐 = 0.2 and 𝑅𝑝 = 1, and
the perturbation amplitude is 𝜖 = 0.2. The black curve is the new surface after undergoing
surface diffusion for a short time 𝑑𝑡. The amplitude of the perturbation, 𝑑𝑡, decreases with
increasing 𝑘 so the apparent amplitude of changes to the surface stays constant. For the
𝑘 = 1 curve, 𝑑𝑡 = 0.0045, and for 𝑘 = 9, 𝑑𝑡 = 0.0003.

The surface velocities used in the analysis

v(0,π) v(0,0)

v(π/k,0)

v(π/k,π)

Figure 3-5: A top-down view of a perturbed torus is shown. The four arrows indicate the four
surface velocities used to calculate the longitudinal perturbation growth rate. The subscript
on the velocity denotes the coordinates of the point-of-interest on the surface, (𝜃, 𝜑).
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The perturbation growth rates for a torus under surface diffusion
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Figure 3-6: The growth rate of perturbations on a torus as a function of the wavenumber
𝑘 is shown. Each curve is for a particular aspect ratio torus, 𝑟 = 𝑅𝑝/𝑅𝑐. These curves are
independent of the amplitude 𝜖 and the magnitude of 𝑅𝑐 or 𝑅𝑝. Torii with 𝑟 < 4.01 have no
growing perturbation modes, i.e., they are stable against longitudinal perturbations.

wavenumbers, i.e., perturbations which neither grow nor decay. The maximum of each curve

is the fastest-growing perturbation. The wavenumber 𝑘 is related to the wavelength 𝜆 by

𝜆 = 2𝜋/𝑘. The critical and fastest-growing wavelengths in the limit 𝜖 → 0 are plotted in

Figure 3-7.

Figure 3-6 shows that for torii with an aspect-ratio greater than 4.01, there are two

critical wavelengths (crossings of the x-axis). The lower critical wavelength behaves like

the that of a cylinder, and is only slightly greater than 2𝜋𝑅𝑐, as shown in Figure 3-7. The

fastest-growing wavelength follows the lower critical wavelength behavior, again approaching

the behavior of a cylinder. However, the upper critical wavelength is a property unique to

the torus.

The 𝑘 = 1 mode does not fall within the stability field for any torii, as shown in Figure 3-

6. This means that a perturbation like that shown in the upper-left of Figure 3-4 will not

grow under surface diffusion-limited kinetics. For torii with an aspect ratio less than 4.01, no

perturbations grow, so these are completely stable against longitudinal perturbations, and

will not undergo a Rayleigh instability.

If the perturbation amplitude 𝜖 has a finite value, a wider range of wavelengths are

unstable. However, the difference between the 𝜖 → 0 map, shown in Figure 3-7, and the map

for finite 𝜖, is not significant unless 𝜖 > 0.1. In the limit 𝜖 = 1, the perturbations are so large

that the torus is already broken up (i.e., the cross-sectional radius of the torus is zero at the
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A stability map for a torus under surface diffusion
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Figure 3-7: A stability map for a torus is shown. For a given perturbation of wavelength
𝜆 on a torus of aspect ratio 𝑟 = 𝑅𝑝/𝑅𝑐, the perturbation will grow if it falls in the white
region of the map, and it decays if it falls in the shaded cyan part of the map. Wavelengths
in the dark gray part of the map cannot fit at least one period on the torus, so they are not
considered. The critical and fastest-growing wavelengths are shown for the torus, as well as
for a cylinder.

minima). As 𝜖 approaches 1, the critical wavelength drops to 0, and above approximately

𝜖 = 0.5, the 𝑘 = 1 mode becomes unstable. In other words, any wavelength perturbation

can grow if the amplitude is sufficiently large.

3.3.2 The shrinking instability

The rate at which a torus will shrink, i.e., the rate of decrease of 𝑟𝑝, can be estimated

using the unperturbed torus. This is because the unperturbed torus is already unstable,

and because the perturbed torus exhibits complex three-dimensional shape changes, so it is

difficult to choose a measure of the shrinking rate.

The difference between the surface-normal velocity measured at coordinates (𝜃, 𝜑) =
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The shrinking instability
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Figure 3-8: The total surface energy of a torus can always decrease by decreasing 𝑅𝑝 and
increasing 𝑅𝑐. Ultimately, it is driven to become a sphere. The rate at which 𝑅𝑝 decreases
is the shrinking rate, 𝑟𝑝. This quantity is multiplied by 𝑅3

𝑐 so that it only depends on the
ratio 𝑅𝑝/𝑅𝑐, and it plotted on semi-log axes, above.

(0, 𝜋) and the velocity at (0, 0) (the positions of the green and pink arrows in Figure 3-5)

on the unperturbed torus gives a measure of how fast 𝑟𝑝 is decreasing. After simplification,

this yields

𝑟𝑝 =
𝑅𝑝(𝑅

4
𝑐 + 6𝑅2

𝑐𝑅
2
𝑝 + 𝑅4

𝑝)

(𝑅𝑐 −𝑅𝑝)4(𝑅𝑐 + 𝑅𝑝)4
. (3.25)

When 𝑟𝑝 is multiple by 𝑅3
𝑐 , the rate becomes independent of the specific values of 𝑅𝑐 and

𝑅𝑝 and only depends on the ratio 𝑅𝑝/𝑅𝑐. This factor in needed because when the shrinking

rate is non-dimensionalized, a factor of 1/𝐿3 remains. 𝑅𝑐 is chosen as the characteristic

length, thus the multiplication removes the units. A dimensionless plot of the shrinking rate

versus the 𝑅𝑝/𝑅𝑐 ratio is shown in Figure 3-8. The smaller 𝑅𝑝/𝑅𝑐 is initially, the faster the

torus shrinks.

3.4 Conclusions

A perturbation analysis reveals that a torus with a high aspect ratio (𝑅𝑝 >> 𝑅𝑐) behaves

much like a cylinder, being susceptible to break-up from longitudinal perturbations of suffi-

cient wavelength. However, there is an upper limit to which wavelengths lead to instability,

and the 𝜆 = 2𝜋𝑅𝑝 mode does not grow on torii. In addition, when 𝑅𝑝/𝑅𝑐 is less than 4.01,

the torus is stabile against all perturbations.
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Because the torus is an unstable geometry to begin with, it is subject to the “shrinking

instability,” where the torus moves towards a sphere by reducing 𝑅𝑝. The rate of shrinking

increases dramatically as 𝑅𝑐 approaches 𝑅𝑝.

Comparison of the Rayleigh and shrinking instabilities suggests that low aspect ratio

(𝑅𝑝/𝑅𝑐 value) torii shrink to become a single sphere, while higher aspect ratio torii undergo

a Rayleigh instability first, and break-up into several spheres. Although it is not possible to

say from this analysis at which aspect ratio the transition occurs, setting the growth rates

of each instability equal to within an order of mangitude of each other and solving gives a

transition of 𝑅𝑝/𝑅𝑐 ≈ 5 − 8.

These results are applicable not only for an isolated body, but also for a ring of material

undergoing dewetting. If the contact angle is 90∘, then the symmetry of the ring resting on

the substrate makes it identical to that of the isolated ring. The findings of this analysis

could be verified using isotropic dewetting experiments.

The Rayleigh and shrinking instabilities on a torus provide a baseline for comparison with

dewetting instabilities. The wavelength of the fastest-growing perturbation of a torus can

be compared with the finger spacings on the edge of a growing hole or on a shrinking island

of thin film to determine how much of a role the Rayleigh instability plays in the fingering

morphology. If the wavelengths match, then the Rayleigh instability may be dominating

the break-up. It also is clear from this analysis that if small islands or small holes have a

dewetting shape instability, it is not related to Rayleigh break-up.

During dewetting, the shrinking instability should collapse small features into a single

particle. The rate of collapse scales with 1/𝐻3, where 𝐻 is the film thickness, and the

collapse rate is given by Figure 3-8.
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Chapter 4

A 2D analytical model of dewetting

4.1 Introduction

One of the main features of dewetting is edge retraction. Although it has been shown

that capillary-driven surface diffusion results in a thickened rim [75], it is not clear where

mass is flowing, nor exactly how the retraction distance should scale with time. The time

scaling is typically reported as a power-law, but there is mounting evidence that it is not

so simple [96, 34, 85]. Having a reliable but simplified description of edge retraction would

enable the development of models for more sophisticated phenomena, such as the corner and

fingering instabilities.

Edge retraction was first recognized and studied by Brandon and Bradshaw [6]. They

developed a simple model of hole growth with two key assumptions: the rim is a semi-circle,

and all of the volume that has retracted away accumulates in the rim. The model predicts

that the radius of a growing hole in a thin film will increase with time to the 2/5 power.

Experiments routinely agree with the 2/5 power-law time scaling at long retraction

times [78, 34]. However, simulations show a more complicated picture. Kinetic Monte-

Carlo simulations give a scaling with 𝑡1/2 [8]. Numerical simulations of both isotropic and

fully-faceted films initially retract linearly in time, and then the exponent in the power law

gradually decreases, approaching 2/5 in the long-time limit [85, 96]. If edge retraction is not

a simple power law, then the underlying cause of this scaling is unknown.

The B&B (Brandon and Bradshaw) model has two major limitations: it was developed
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for a contact angle of 90∘ only, and the cross-section of the rim was taken to be a semi-circle.

The first assumption limits the applicability of the model to different materials. The second

assumption means that the model is only valid in the limit of long retraction times. Other

phenomena such as pinch-off [85] or fingering instabilities [37] typically occur on thin film

edges, which prevents the system from reaching the long-time limit of edge retraction in

many cases.

In this chapter, an analytical model is presented, based on the B&B approach, which

overcomes the limitations of the B&B model. The resulting model captures the transition

from linear retraction to the 2/5 power-law behavior and offers an explanation for this

phenomenology. The characteristic transition time from linear to 2/5 retraction and the

retraction rate are also provided as a function of contact angle.

4.1.1 Basis for comparison: Brandon & Bradshaw’s method ap-

plied to a straight edge

B&B developed their scaling law for a growing hole of radius 𝑟. Here, their method is

repeated for an infinite, straight edge. This was done elsewhere [23], but there was an error

in that analysis giving incorrect scaling. The straight-edge case will provide a basis for

comparison with our model, discussed in the following sections. Their notation uses 𝑥 as the

rim height, 𝑟 as the retraction distance, and 𝑑 as the film thickness. However, we replace

these with ℎ as the rim height, 𝑥 as the retraction distance, and 𝐻 as the film thickness to

be consistent with the coordinate system and definitions in our model.

The mass flux due to capillary forces is

𝐽 = −𝐷𝑠

𝑘𝑇

𝜕𝜇

𝜕𝑠
𝜈, (4.1)

where 𝐷𝑠, 𝑘, and 𝑇 are the diffusivity, Boltzmann’s constant, and temperature, 𝜇 is the

chemical potential, 𝑠 is the arc length along the film surface with 𝑠 = 0 at the triple line,

and 𝜈 is the density of mobile atoms on the surface. For an isotropic surface, the chemical

potential difference between the point at the triple line (𝑠 = 0) and for a flat film is estimated
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as

∆𝜇 = −Ω𝛾
1

ℎ
, (4.2)

where Ω is the atomic volume, 𝛾 is the surface energy density, and ℎ is the rim height.

B&B assume that the arc width of the rim is ∆𝑠 = 𝜋ℎ; i.e., the rim is a complete

semi-circle in cross section. Assuming 𝜕𝜇
𝜕𝑠

≈ Δ𝜇
Δ𝑠

, the flux can be approximated as

𝐽 = −𝐷𝑠Ω𝛾𝜈

𝑘𝑇𝜋ℎ2
. (4.3)

Consider a straight section of rim of length 𝐿. The total rate of transfer of material in

this section, 𝑑𝑉/𝑑𝑡, is 𝐽𝐿Ω. Therefore,

𝑑𝑉

𝑑𝑡
= −𝐷𝑠Ω

2𝛾𝜈𝐿

𝑘𝑇𝜋ℎ2
. (4.4)

Equation 4.4 is identical to B&B’s Equation 11.

The cross-sectional area of the rim is approximately 𝜋ℎ2/2. The volume in this section

of the rim is 𝐿(𝜋ℎ2/2). The volume of material that has been swept up due to retraction

is 𝐿𝑥𝐻, where 𝐻 is the film thickness and 𝑥 is the retraction distance. Setting these two

volumes equal gives a relationship between rim height ℎ and retraction distance 𝑥:

𝜋ℎ2 = 2𝐻𝑥. (4.5)

Substituting this relation into Equation 4.4 gives

𝑑𝑉

𝑑𝑡
= −𝐷𝑠Ω

2𝛾𝜈𝐿

𝑘𝑇2𝐻𝑥
. (4.6)

Equation 4.6 is analogous to B&B’s Equation 13.

B&B assume that when viewed in cross-section, the area of material removed from the

receding side of the rim and transferred to the advancing side is ℎ𝑑𝑥, where 𝑑𝑥 is a small

increment of retraction distance. The change in volume is therefore 𝑑𝑉 = 𝐿ℎ𝑑𝑥. Replacing
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ℎ using Equation 4.5 and dividing by 𝑑𝑡 yields

𝑑𝑉

𝑑𝑡
= 𝐿

√︂
2𝐻𝑥

𝜋

𝑑𝑥

𝑑𝑡
(4.7)

Equations 4.6 and 4.7 must be equal, so equating them and solving for 𝑑𝑥/𝑑𝑡 gives

𝑑𝑥

𝑑𝑡
=

𝐷𝑠Ω
2𝛾𝜈

2𝑘𝑇𝐻𝑥

√︂
𝜋

2𝑓𝑥
. (4.8)

Let 𝐵 = 𝐷𝑠Ω
2𝛾𝜈/(𝑘𝑇 ). Then

𝑑𝑥

𝑑𝑡
=

𝐵𝜋1/2

23/2𝐻3/2𝑥3/2
, (4.9)

and integrating gives

𝑥5/2 =
5𝐵𝜋1/2

25/2𝐻3/2
𝑡. (4.10)

This differs from B&B’s Equation 15 by a factor of 1/(2
√

2), indicating that the radius of a

hole should grow about 2.8 times faster than a straight edge should retract. Otherwise, the

scalings are identical.

4.2 Model development

4.2.1 Geometry and assumptions

The following assumptions made in the B&B model are used in our model to simplify the rim

geometry. The film is taken to be isotropic, and when cross-sectioned normal to the triple

line, the rim profile is a circular arc which meets the substrate at the equilibrium contact

angle 𝜃. There is no valley on the film, and the discontinuity where the rim meets the film

is artificial and therefore ignored in the analysis. It is also assumed that there is no mass

flow between the flat film and the rim. The rim geometry is shown in Figure 4-1.

Two key differences from the B&B model are introduced: the allowance of any contact

angle, and a more accurate treatment of the assumed geometry over time. While B&B take

the cross-section of the rim to be a semi-circle, here it is treated as a circle that is cut along

two perpendicular chords (see Figure 4-1). The horizontal cut determines the contact angle,
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The assumed cross-sectional profile of the film edge

xmax(t1)!
x=0!

v dt!

film!θ!

rim!
h(t1)!

df!
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xmax(t2)!

s!

Figure 4-1: The cross-sectional profile of the edge of the film is shown at time = 𝑡1 (top),
and at time = 𝑡2 = 𝑡1+𝑑𝑡 (bottom). Retraction proceeds at velocity 𝑣, which is a function of
ℎ(𝑡1), for a short amount of time 𝑑𝑡. The new film edge geometry can be found by assuming
that the new rim area (light shading, bottom figure) is the sum of the old rim area plus the
area 𝑑𝑓 (light shading, top figure). The 𝑥-axis is drawn below the figures, and the positions
used in the model are indicated. All length scales are normalized to the film thickness, and
the contact angle 𝜃 and arc length coordinate 𝑠 are shown on the top figure.

and the vertical cut ensures a match between the rim and bulk film, so that the rim and film

volumes do not overlap. The vertical cut enforces volume conservation, which was lacking

in B&B’s model.

4.2.2 The retraction velocity as a function of rim height

All lengths in this analysis are normalized to the film thickness 𝐻 so that all quantities are

dimensionless. The height of the rim, ℎ, is related to the rim’s radius of curvature, 𝑟, and

the contact angle, 𝜃, by

𝑟 =
ℎ

1 − cos 𝜃
. (4.11)

To compute the velocity of surface motion following Mullins [54] (see Section 1.4.1), the

second derivative of curvature along the film profile is needed. However, the curvature along

a circular arc is constant. To circumvent this issue, a finite-difference approximation is

employed, similar to B&B’s and Danielson’s approach [6, 23]. The forward finite-difference
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formula for a second derivative at the point 𝜅(𝑠)|𝑠=0, accurate to second order, is

𝜕2𝜅

𝜕𝑠2
≈ 𝜅(2∆𝑠) − 2𝜅(∆𝑠) + 𝜅(0)

∆𝑠2
, (4.12)

where ∆𝑠 represents a step size in the arc length coordinate. ∆𝑠 is chosen to be the arc

width of the rim,

∆𝑠 = 𝑟
(︁
𝜃 + arcsin

𝑥max(𝑡1) − 𝑟 sin 𝜃

𝑟

)︁
, (4.13)

and the value of 𝑥max(𝑡1) is indicated in Figure 4-1. At the triple line, the curvature is

equal to the curvature of the rim, 1/𝑟. At arc distance ∆𝑠 and 2∆𝑠 from the triple line,

the curvature is that of the flat film, 0. Substitution into Equation 1.8 using Equations 4.11

and 4.13, and projecting the normal motion into the plane of the substrate (i.e., dividing by

sin 𝜃), yields

𝑣𝑟𝑒𝑡𝑟 ≈
csc 𝜃(cos 𝜃 − 1)3

ℎ3(𝜃 + arcsin ( 1
ℎ

sin ( 𝜃
2
)
√︀

2(ℎ− 1)(1 + ℎ + (ℎ− 1) cos 𝜃)))2
. (4.14)

4.2.3 The rim height as a function of time

The rim height at a future time, ℎ(𝑡2), is computed using conservation of mass within the

rim. The old rim, with height ℎ(𝑡1), will incorporate material from the flat film with a

cross-sectional area 𝑑𝑓 , shown in Figure 4-1. This is the only way material is added to the

rim. The cross-sectional area of the rim is found by integrating the curve that describes it

from 𝑥min to 𝑥max,

rim(𝑥) =
√︀

𝑟2 − (𝑟 sin 𝜃 + 𝑥min − 𝑥)2 − 𝑟 cos 𝜃, (4.15)

where 𝑥min = 0 at time 𝑡1 and 𝑥min = 𝑣retr𝑑𝑡 at time 𝑡2. The additional volume in the

rim where 𝑥 < 𝑥min if 𝜃 > 90∘ is also integrated and added. The area of flat film that is

incorporated into the rim, 𝑑𝑓 , is simply (𝑥max(𝑡2) − 𝑥max(𝑡1)) (the film thickness is 1).

The cross-sectional area of the film is conserved, giving the equation

rim area(𝑡 = 𝑡2) − rim area(𝑡 = 𝑡1) − 𝑑𝑓 = 0. (4.16)

90



Upon substitution, this equation becomes transcendental, and cannot be used directly to

solve for ℎ(𝑡2). Therefore, it is assumed that

ℎ(𝑡2) = ℎ(𝑡1) + 𝛼𝑣𝑟𝑒𝑡𝑟𝑑𝑡, (4.17)

where 𝛼 is an unknown quantity. The left-hand side of Equation 4.16 can be linearized by

expanding to first order in 𝑑𝑡. The linearized equation is then solved for 𝛼, which describes

the rim height as a function of time. The expression for 𝛼 is lengthy, so it is not reproduced

here. While 𝛼 does depend on 𝑑𝑡, the dependence is so weak that 𝑑𝑡 must be greater than

about 107 to affect 𝛼 by a percent. Therefore, 𝑑𝑡 is set to 1 inside 𝛼 without loss of generality.

4.2.4 The retraction distance as a function of time

A differential equation for rim height ℎ(𝑡) is given by

ℎ′(𝑡) = 𝛼𝑣𝑟𝑒𝑡𝑟, (4.18)

with the initial condition ℎ(0) = 1. The solution to this equation does not have a closed form,

but it can be integrated numerically without specialized algorithms. The numerical solution

to ℎ(𝑡) is substituted into Equation 4.14 and numerically integrated to yield the retraction

distance of the film edge as a function of time. Using the built-in numerical differential

equation solver and numerical integration function in Mathematica 9 on a ca. 2011 laptop,

the total time for the numerical work takes just a few seconds.

4.3 Discussion

The edge retraction distance versus time is shown in Figure 4-2. The guide lines show that

initially, the slope of the curves is 1, and at late times, the slope is 2/5. On a log-log scale,

these respectively correspond to the retraction distance being proportional to time 𝑡, and

proportional to 𝑡2/5. The constant of proportionality increases with contact angle. Also, the

duration of the linear regime decreases with increasing contact angle. Considering the short
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The retraction distance versus time
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Figure 4-2: The retraction distance as a function of time is shown for various contact angles.
The dashed gray lines are visual guides with slope 𝑚 = 2/5 and slope 𝑚 = 1. The distance
and time are normalized using the film thickness 𝐻 and material constant 𝐵.

and long time limits allows quantification of the constant of proportionality and the time it

takes to transition from linear to power-law retraction.

4.3.1 Limiting behavior

The growth rate of the rim height is given by Equation 4.18. When the rim height is equal to

the film height (time → 0), the retraction velocity simplifies to 𝑣retr = −(cos 𝜃−1)3/(𝜃2 sin 𝜃).

In this same limit, 𝛼 goes to zero. Therefore, the rim initially does not grow in height, and

the driving force for retraction is unchanged. However, the rim is incorporating mass, so

it must be growing only in width. With constant driving force, the retraction distance is

simply proportional to the total retraction time,

𝑥(𝑡 → 0) = −(cos 𝜃 − 1)3

𝜃2 sin 𝜃
𝑡. (4.19)

In the limit of infinite time, the rim is very large, so ℎ >> 1. The rim becomes a
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The transition time from linear to power-law retraction
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Figure 4-3: The time to transition from linear retraction to 2/5 power law retraction is
shown as a function of contact angle. This curve corresponds to Equation 4.21. The time is
normalized to 𝐻4𝐵−1.

circular segment with cross-sectional area
(︀
ℎ/(1− cos 𝜃)

)︀2(︀
𝜃− (1/2) sin 2𝜃

)︀
. Setting the rim

cross-sectional area equal to the swept-up film area, 1 × 𝑥, gives an expression for the rim

height ℎ as a function of retraction distance 𝑥. With this geometry, the retraction velocity

becomes 𝑣retr = −(cos 𝜃 − 1)3 csc 𝜃/(4ℎ3𝜃2). Replacing ℎ with the expression for ℎ(𝑥) yields

𝑣retr = csc 𝜃(2𝜃− sin 2𝜃)3/2/(8
√

2𝜃2𝑥3/2). Integration gives the final result that the retraction

distance in the long time limit goes as 𝑡2/5:

𝑥(𝑡 → ∞) =
52/5

29/5

(︁
𝑡
(2𝜃 − sin 2𝜃)3/2

𝜃2 sin 𝜃

)︁2/5
. (4.20)

This expression is analogous to the Brandon & Bradshaw result, but generalized for any

contact angle, and with dimensionless units.

Finding the time when 𝑥(𝑡 → 0) equals 𝑥(𝑡 → ∞) gives an estimation of the transition

time, 𝑡trans, from linear to 2/5 power-law edge retraction. Setting Equations 4.19 and 4.20

equal yields

𝑡trans = (2𝜃 − sin 2𝜃)
251/3𝜃2 sin 𝜃

28 sin10
(︀
𝜃
2

)︀ . (4.21)

The transition time as a function of contact angle is plotted in Figure 4-3.

The retraction distance as a function of time is plotted for various contact angles in

Figure 4-4. The dashed lines correspond to Equations 4.19 and 4.20, and show the extent to

which the retraction curve deviates from the limiting behavior in the transition region. The

black line is the transition time, Equation 4.21. For contact angles greater than about 10∘,
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The limiting behavior of edge retraction versus time
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Figure 4-4: The retraction distance as a function of time (thick curve) is shown with the
limiting behavior as 𝑡 → 0 (Equation 4.19) and 𝑡 → ∞ (Equation 4.20) (dashed lines) for
various contact angles. The black curve is the transition time 𝑡trans (Equation 4.21) for all
contact angles.

the transition from linear to power-law retraction happens at a retraction distance of 0.8-8

times the film thickness, being shorter for larger contact angles.

4.3.2 Comparison with numerical simulations

The linear and 2/5 power-law regimes have been reported in the literature for isotropic [85]

and fully-faceted [96] materials. Edge retraction curves for various contact angle are shown

in Figure 4-5, with data lifted from references [85, 96]. The isotropic and fully-faceted

simulations give identical retraction curves after non-dimensionalization, so a single curve

represents the simulation results for each contact angle. Anisotropy plays no role in deter-

mining the edge retraction distance versus time. The simulations at 𝑡 < 1 are not reliable

because time steps must be extremely small to resolve retraction in this regime, and the edge

retraction rate becomes sensitive to the starting configuration.

Qualitatively, the model and simulation curves are very similar, though the model under-
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A comparison between this model and numerical simulations
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Figure 4-5: The retraction distance as a function of time for 30∘, 60∘, 90∘, 120∘, and 150∘ con-
tact angles are shown for the model developed in this chapter (solid) and both isotropic [85]
and fully-faceted [96] simulations (dashed). The isotropic and fully-faceted curves are com-
pletely overlapping, so they are shown as a single curve. The model and simulation curves
have the same trend, but they are offset relative to each other. To enable comparison be-
tween the simulation and model curve shapes, the simulation 30∘, 60∘, 90∘, 120∘, and 150∘

contact angle curves were shifted down on the log-log log scale by 0.41, 0.38, 0.36, 0.34, and
0.25, respectively. This offset indicates different constants of proportionality in the best fit,
but the scaling is the same: initially, edge retraction is linear in time, and follows a 2/5
power-law at late times. The unshifted simulation data can been seen in Figure 7-8.

estimates the retraction rate. If the simulation curves are shifted down by a constant on the

log scale (as was done in Figure 4-5), then they follow the model curves closely. The transi-

tion from linear to 2/5 power-law retraction is also underestimated by the model, indicated

by the simulation curves lying below the model curves in the linear regime.

4.4 Conclusions

The model presented here is extremely simple, but it reproduces the main features of dewet-

ting, and explains the characteristic scalings. Initially, the rim is shaped like a quarter of a
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circle. As mass is added to the rim, it initially grows in width, but not height. The driving

force for retraction is not changing, and retraction proceeds linearly with time. At very

late times, Brandon and Bradshaw’s assumptions become valid, and the mass swept up is

distributed evenly across a rim which is much taller than the film.

The transition time is very early for contact angles larger than about 45∘. This explains

why experiments often fail to detect the linear regime. For a typical metal, which often have

contact angles near 90∘, the transition time is on the order of a few seconds. However, it

is worth noting that the exponent in the power-law model still takes some time to reach

2/5 to within measurable error. The fact that edge retraction is not a power law could be

responsible for at least some of the error in fitting experimental data and its interpretation.

It is more appropriate to fit edge retraction data to the model presented here.
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Chapter 5

The Fingering Instability: a Stability

Analysis of Retracting Thin Film

Edges

5.1 Introduction

The fingering instability is introduced in Section 1.4.3. This instability leads to the formation

of finger-like projections on a retracting film edge, as depicted in Figure 5-1. In this chapter,

a morphological stability analysis is performed on the rim of a retracting thin film. Some

geometric simplifications are made so that it is possible to do the analysis analytically. A

perturbation is introduced, and the growth rate of the perturbation is calculated as a function

of wavelength. The results are interpreted in the context of the three possible underlying

mechanisms, which are defined in the following section. The analysis yields stability criteria,

and offers insight into the causes of the fingering instability and how to control finger spacings.

5.2 Possible mechanisms of the fingering instability

The cause of the fingering instability is unknown. It has been suggested that the fingering

instability is a Rayleigh-like instability of the rim [74, 40], or that it is analogous to the

Mullins-Sekerka instability [28]. However, precise definitions for “Rayleigh-like” and “Mullins-
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A schematic of the fingering instability

(a) (b)

(c) (d)

film

islandsfingers

Figure 5-1: The progression from a straight, retracting rim to a fingering instability is drawn
in (a) - (d). In (a), the film has just begin to retract and has formed a small rim. In (b),
perturbations on the rim have grown into large-scale variations in triple line position and
rim height. The thick parts of the rim retract slower, forming fingers as shown in (c). The
fingers may become long before they break up into islands, as shown in (d). After islands
break off from the fingers, the rim will look similar to figure (b), and the cycle repeats.

Sekerka like” instabilities are lacking. Therefore, definitions are presented here.

5.2.1 Rayleigh-like instability

The Rayleigh instability refers to the break-up of a cylinder into isolated spheres, driven

by surface energy minimization [67]. A cylinder is unstable against perturbations if the

wavelength of the perturbations is at least 2𝜋𝑟, where 𝑟 is the radius of the cylinder. The

wavelength of perturbation that will grow fastest under surface diffusion, and therefore dom-

inate the final state, is 2
√

2𝜋𝑟 [59]. For longer wavelengths, the growth rate approaches zero.

For the edge-instability of a dewetting film, we define “Rayleigh-like” to be a shape

instability that arises from mass transfer contained within the rim, with flux that is parallel

to the triple line. Geometric quantities, such as the rim height ℎ(𝑥), are defined in Figure 5-3.

A perturbation to the rim height, ℎ(𝑥), of sufficient wavelength should grow, and is driven

by differences in mean curvature along the rim length, just as in the classical Rayleigh result.

The mass flow that facilitates this instability is depicted in Figure 5-2(a).
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Rayleigh break-up has been modeled for an isolated cylinder partially-wetting a substrate,

analogous to the rim of a thin film [49]. Contact with a substrate can increase the minimum

wavelength for break-up in some cases [49]. The question of whether a fingering instability

could be initiated by a Rayleigh-like instability was tested by perturbing a numerically-

obtained rim profile [40]. The resulting wavelength dependence qualitatively agrees with

Rayleigh’s results. However, their analysis is only valid for a stationary rim (or for late

retraction times when the rim is very large), while fingering instabilities originate on rims

at early times, when they are highly driven to retract.

5.2.2 Divergent retraction instability

The driving force for edge retraction is the gradient in mean curvature normal to the triple

line. To first order, the mean curvature on the rim is 1/ℎ(𝑥), and the flat film has zero

curvature. The distance from the triple line to the flat film is roughly 𝜋/2ℎ(𝑥), so the

gradient goes as
(︀
ℎ(𝑥)

)︀−2. Therefore, regions with a small rim will retract faster than

regions with a large rim. The conditions under which variations in ℎ(𝑥) produce a fingering

instability in the triple line position 𝑙(𝑥) are determined below.

We define “divergent retraction” as a shape instability arising from variations in the edge

retraction driving force. Divergent retraction is facilitated by mass transfer perpendicular

to the triple line (n.b., the Rayleigh instability is defined by parallel flow). A perturbation

in ℎ(𝑥) should give rise to differences in retraction rate, causing growing variations in 𝑙(𝑥).

This instability is depicted in Figure 5-2(b).

5.2.3 Arc length instability

Isotropic edge retraction proceeds approximately normal to the triple line because this is

the direction of maximum curvature gradient. However, a perturbation in the triple line

position, 𝑙(𝑥), introduces additional curvature. As a section of triple line with negative

in-plane curvature retracts, the arc length of the triple line must increase. An instructive

example is a growing hole: the circumference of the hole increases with time, so the mass

contained in the rim must be spread over a longer arc length, which will tend to decrease
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The three mechanisms of instability

Rayleigh
flow

Divergent
retraction

Changing
arc length

(a)

(b)

(c)

thicker
thinner

faster

slower

Figure 5-2: The mechanisms of instability are depicted. In each part of the figure, the
film is retracting towards the right, exposing the underlying substrate. The perturbation
amplitudes are exaggerated for emphasis. In (a), the arrows indicate the flux of mass for a
Rayleigh-like instability on the rim. The rim will become thicker or thinner where indicated.
In (b) and (c), the yellow arrows show retraction velocities. (b) shows that where the rim is
thicker, it retracts more slowly. Likewise, the thinner rim retracts faster. The difference in
retraction velocities gives rise to a divergent retraction instability. (c) shows that negatively-
curved portions of the triple line are stretched due to retraction, leading to a thinner rim.
Regions with positive triple-line curvature develop a thicker rim. The increasing variation
in rim height is the changing arc length instability.
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the rim height relative to the rim height of a straight rim. The opposite is true for sections

of rim with a positive in-plane curvature: the arc length must decrease with retraction, so

the rim thickens relative to a straight rim which has retracted the same distance.

The “changing arc length instability” refers to a perturbation in the triple line position,

𝑙(𝑥), giving rise to variations in the rim height ℎ(𝑥). This instability derives from volume

conservation within the rim, and is depicted in Figure 5-2(c).

This type of instability could be construed as analogous to the Mullins-Sekerka insta-

bility [56]. The Mullins-Sekerka instability occurs during solidification and leads to cellular

or dendritic solid/liquid interfaces. The solid/liquid interface propagates towards the liq-

uid, and a protuberance on the interface will be affected by two competing effects. It has

increase surface area (positive curvature), and latent heat is rejected to a larger volume

of liquid. This increases the thermal gradient at the interface and enables the liquid near

the protuberance to solidify faster than that near a straight interface. However, increased

surface energy penalizes the formation of shorter-wavelength perturbations, resulting in a

characteristic wavelength. The run-away solidification of the protuberance leads to a cellular

interface.

In the case of dewetting, the substrate/film interface is propagating toward the film at

the retraction velocity. If the triple line protrudes into the unstable film, the film edge has

negative curvature and the rim material is spread over a longer arc length. This decreases the

protuberance’s rim height relative to a straight rim and drives the protuberance to dewet

faster than a straight interface. The run-away dewetting of the protuberance leads to a

finger-like morphology. The rim height is analogous to the thermal gradient in the Mullins-

Sekerka instability. However, unlike the Mullins-Sekerka instability, there is no competing

effect that eliminates the smaller wavelengths.

5.2.4 The combined effect of the three instabilities

The instability mechanisms have been described independently. However, the rim’s height

and triple line are geometrically coupled, and the instabilities interact in a non-linear fashion.

Although they cannot be separated, considering their individual effects helps to interpret the

result of the stability analysis.
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These instabilities will effectively compete with one another. For example, the Rayleigh-

like instability suppresses short wavelength perturbations, while the changing arc length

instability promotes them. Likewise, divergent retraction tends to suppress variations in rim

height, while the other two instabilities promote rim-height variations. Independent stability

analyses will reveal which instability dominates.

5.3 Methods

5.3.1 Geometry and assumptions

We treat an initially-straight edge of an isotropic film. The film is infinite in the 𝑥-direction,

semi-infinite in the 𝑦-direction, and has finite thickness in the 𝑧-direction, as shown in Fig-

ure 5-3. All lengths in the analysis are normalized to the film thickness. At the film edge, a

small rim exists with mean height 𝜂 above that of the flat film, so that the total height of

the rim is 1 + 𝜂. In a cross-section normal to the triple line, the rim profile is a circular arc

that intersects the substrate with contact angle 𝜃.

The rim height is perturbed sinusoidally with amplitude 𝜖. The rim height is taken to

be ℎ(𝑥) = (1 + 𝜂) + 𝜖(1 − cos 𝑘𝑥), where 𝑘 is the wavenumber of the perturbation. This

perturbation also leads to a perturbation of the triple line position, 𝑙(𝑥) = 𝑦0 + 𝜖
sin 𝜃

cos 𝑘𝑥,

where 𝑦0 is the mean triple line position. Throughout the analysis, both the rim height ℎ(𝑥)

and triple line position 𝑙(𝑥) are considered to be susceptible to instability.

In the model, there is no valley (i.e., the film is not thinned) between the rim and the bulk

film. This assumption is justified by the valley depth always being small compared to the

rim height [75, 85], so the curvature gradients produced by the valley should be negligible.

In the analysis, the 𝑥-coordinate is used interchangeably with the arc length coordinate

𝑠1, as defined in Figure 5-3. This “small-perturbation” approximation should be valid when

slopes are small, i.e., for small perturbations.

It is assumed that all of the rim’s mass increase comes from retraction; there is no

mass transfer between the rim and bulk film. This assumption is consistent with numerical

simulations which show that the total mass flux between the rim and the film is small
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The assumed geometry of the rim
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substrate

z
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y
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Figure 5-3: The cartesian coordinates, 𝑥, 𝑦, 𝑧, and arc length coordinates, 𝑠1 and 𝑠2, are
shown with a perturbed rim. Curves indicate the rim height ℎ(𝑥) and triple line position
𝑙(𝑥). The contact angle 𝜃 is measured inside the material.

compared to the flux within the rim [85, 96].

The assumption that the rim cross-section is a circular arc should not significantly in-

fluence the rim stability. McCallum et al. [49] and Kan & Wong [40] found that instability

conditions do not have a strong dependance on rim cross-section.

The two-dimensional model presented in the previous chapter incorporates very similar

assumptions. The main difference is that in this chapter, the rim is 3D, not 2D, and further

effort must be made to capture the additional dimension. The 2D model’s success in cap-

turing the dynamics of edge retraction suggests that this simplified geometry captures the

essential physics of thin film kinetics.

5.3.2 The triple line perturbation growth rate, GRTL

The retraction velocity

The retraction velocity of the triple line is

𝑣retr =
1

sin 𝜃
𝑣𝑛
⃒⃒
𝑠1=𝑙(𝑥),𝑠2=0

, (5.1)

where 𝑣𝑛 is the dimensionless capillary-driven surface diffusion normal velocity, defined in

Equation 1.8. 𝑣retr is the projection of the normal velocity into the plane of the substrate.
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The goal of this section is to find 𝑣retr by computing 𝜕2𝜅
𝜕𝑠21

⃒⃒
𝑠1=𝑙(𝑥),𝑠2=0

and 𝜕2𝜅
𝜕𝑠22

⃒⃒
𝑠1=𝑙(𝑥),𝑠2=0

from

the prescribed geometry.

An expression for 𝜅(𝑙(𝑥), 0) in needed. Consider the curvature in the 𝑠1 direction. The

axis of symmetry of the rim is taken to be at 𝑦 = 0. The small-perturbation approximation

allows the 𝑠1 coordinate to be replaced with the 𝑥-coordinate. The triple line position 𝑙(𝑥)

is the intersection of the rim and the substrate:

√︀
𝑟(𝑥)2 − 𝑙(𝑥)2 − 𝑟(𝑥) cos 𝜃 = 0 (5.2)

𝑙(𝑥) = −
√︂

−ℎ(𝑥)2 +
2ℎ(𝑥)2

1 − cos 𝜃
. (5.3)

The negative square root is chosen because the rim is centered on 𝑦 = 0, and the bulk film

lies on the positive 𝑦 side of the rim. The second derivative of the triple line position, 𝜕2𝑙(𝑥)
𝜕𝑥2 ,

gives the curvature of the triple line. Next, consider the 𝑠2 coordinate. The rim profile is

taken to be a circular arc, so the curvature is 1/𝑟(𝑥). The radius of curvature of the rim,

𝑟(𝑥), is

𝑟(𝑥) =
ℎ(𝑥)

1 − cos 𝜃
=

1 + 𝜂 + 𝜖(1 − cos 𝑘𝑥)

1 − cos 𝜃
. (5.4)

Summing the curvatures in the 𝑠1 and 𝑠2 directions gives the mean curvature of the rim

along the triple line:

𝜅
(︀
𝑥, 0
)︀
≈ cos 𝜃 − 1

1 + 𝜂 + 𝜖(1 − cos 𝑘𝑥)
+ 𝜖𝑘2 cos 𝑘𝑥 cot

𝜃

2
. (5.5)

The second derivatives of the mean curvature must be computed to obtain the retraction

velocity. 𝜕2𝜅
𝜕𝑠21

is simply 𝜕2𝜅(𝑥,0)
𝜕𝑥2 , due to the small-perturbation approximation. 𝜕2𝜅

𝜕𝑠22
must be

obtained indirectly because 𝜅 has no explicit dependence on 𝑠2, due to the assumption that

the rim is a circular arc. A forward finite-difference scheme is used to estimate 𝜕2𝜅
𝜕𝑠22

, just as

in the previous chapter:

𝜕2𝜅

𝜕𝑠22
≈ 𝜅(𝑠1, 2∆𝑠2) − 2𝜅(𝑠1,∆𝑠2) + 𝜅(𝑠1, 0)

(∆𝑠2)2
, (5.6)

where ∆𝑠2 is the arc length from the triple line to the point where the rim and flat film
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meet. ∆𝑠2 is found using the known geometry of the rim. 𝜅(𝑠1, 0) is the curvature at the

triple line, given by Equation 5.5. 𝜅(𝑠1,∆𝑠2) is the curvature of the film just beyond the

point where the rim and film meet, and 𝜅(𝑠1, 2∆𝑠2) is the curvature measured even further

into the flat region. Therefore, 𝜅(𝑠1,∆𝑠2) and 𝜅(𝑠1, 2∆𝑠2) are equal to zero. Equation 5.6

becomes

𝜕2𝜅

𝜕𝑠22
≈ 𝜅(𝑥, 0)

(∆𝑠2)2
=

(cos 𝜃 − 1)2
(︀

1−cos 𝜃
1+𝜂+𝜖−𝜖 cos 𝑘𝑥

− 𝜖𝑘2 cos 𝑘𝑥 cot 𝜃
2

)︀(︂
𝜃 + arctan

(1−cos 𝜃)
√︁

(𝜂+𝜖−𝜖 cos 𝑘𝑥)(2+𝜂+𝜖−𝜖 cos 𝑘𝑥+cos 𝜃(𝜂+𝜖−𝜖 cos 𝑘𝑥))
1−cos 𝜃

1+cos 𝜃(𝜂+𝜖−𝜖 cos 𝜃)

)︂2

(1 + 𝜂 + 𝜖− 𝜖 cos 𝑘𝑥)2

(5.7)

The triple line perturbation growth rate, GRTL

With expressions for 𝜕2𝜅
𝜕𝑠21

(the second derivative with respect to 𝑥 of Equation 5.5) and 𝜕2𝜅
𝜕𝑠22

(Equation 5.7), the retraction velocity is obtained by substitution into Equation 5.1. The

triple line perturbation growth rate is

GRTL = �⃗�retr|𝑥=0 − �⃗�retr|𝑥=𝜋/𝑘. (5.8)

This is a measure of how quickly the thin part of the rim retracts, relative to the thick part

of the rim. GRTL is plotted in Figure 5-5.

5.3.3 The rim height perturbation growth rate, GRRH

The change in rim height with time

The mass swept up by the advancing rim during retraction must be incorporated into the

rim. Knowledge of the mass incorporated via retraction, along with any flows contained

within the rim, allows the change in rim height, 𝑑ℎ(𝑥), to be calculated as a function of

retraction distance, 𝑑𝑙(𝑥). The geometry and definitions are shown in Figure 5-4. The crux

of this calculation is satisfying the condition of volume conservation.

The equation for 𝑑ℎ(𝑥)
𝑑𝑙(𝑥)

is continuous, but it is useful to think about a short section of

the rim of arc width 𝑠 with uniform curvature. This section of rim initially has volume 𝑉r1.

After edge retraction for a distance 𝑑𝑦 = 𝑣retr𝑑𝑡, the rim section has volume 𝑉r2.
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The volume of the rim is

𝑉r =
𝑠

𝑅(𝑥)

∫︁ 𝑦UB

𝑦LB

𝑦(
√︀

𝑟(𝑥)2 − (𝑅(𝑥) − 𝑦)2 − 𝑟(𝑥) cos 𝜃) 𝑑𝑦, (5.9)

Where the multiplication by 𝑦 makes this the expression for a volume of revolution. This

can be imagined as finding the volume of a portion of a torus. 𝑟(𝑥) is the local radius of

rim curvature, and 𝑅(𝑥) is the radius from the axis of revolution to the midpoint of the

torus, which is 1/𝑙′′(𝑥) + 𝑟(𝑥) sin 𝜃 for a negative in-plane curvature, and 1/𝑙′′(𝑥)− 𝑟(𝑥) sin 𝜃

for positive in-plane curvature. 𝑦LB and 𝑦UB are where the rim intersects the substrate and

bulk film, respectively, for negative in-plane creature, and vice-versa for positive in-plane

curvature, as indicated in Figure 5-4.

The volume of the bulk film that is incorporated during retraction is equal to

𝑉f =
𝑠

2
(𝑦2UB2 − 𝑦2UB1). (5.10)

All of the volumes can be expressed in terms of: the rim height before retraction (ℎ1(𝑥)),

the rim height after an increment of retraction (ℎ2(𝑥)), the retraction distance (𝑑𝑙(𝑥)), the

contact angle (𝜃), the perturbation amplitude (𝜖), and the perturbation wavenumber (𝑘).

Sufficiently small retraction distances can be linearized in time: 𝑑𝑙(𝑥) = 𝑣retr𝑑𝑡. In the

volume expressions, dependance on 𝑑𝑙(𝑥) can therefore be replaced by dependance on 𝑑𝑡.

Furthermore, the new rim height, ℎ2(𝑥), can be re-expressed as ℎ1(𝑥) + 𝛼(𝑥) 𝑑𝑙(𝑥), where 𝛼

is an unknown function. To solve for 𝛼 at a given place on the rim, the volume expression,

𝑑𝑉 = 𝑉r2 − 𝑉r1 − 𝑉f, (5.11)

is expanded to first order in 𝑑𝑡. The linearization is necessary to obtain a result which

is not transcendental. By comparison with numerically-obtained solutions to 𝑑𝑉 = 0, the

linearization introduces negligible error. The first-order approximation to 𝑑𝑉 , 𝑑𝑉 (1), is then

set equal to zero and solved for 𝛼.
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The geometry for the volume conservation calculation
(a) (b)

�	  

�	  

�	  

�	  

r1(x)

r2(x)
R2(x) R2(x)

R1(x) R1(x)

vretr(x) dt

Positive in-plane 
curvature

Negative in-plane 
curvature

1   
|l’’(x)|

r1(x) sinθ

r2(x) sinθ

Vr1
Vr1

Vr2
Vr2

Vf
Vf

1   
l’’(x)

bulk film bulk film

film 
thickness

rim
rim

y=0 yLB1 yLB2 yUB1 yUB2 y=0yUB2yUB1 yLB2yLB1

h1(x) h1(x)

h2(x) h2(x)

r1(x)

r2(x)

vretr(x) dt
r2(x) sinθ

r1(x) sinθ

Figure 5-4: The geometry for the volume conservation calculation is shown. The edge of
the film may have non-zero in-plane curvature, 𝑙′′(𝑥). The top part of each diagram, with
subscript 1, is the starting geometry, which is prescribed by the applied perturbation. The
bottom part of each diagram, with subscript 2, is the geometry after a small increment of
edge retraction, 𝑑𝑙(𝑥) = 𝑣retr(𝑥)𝑑𝑡. The goal is to find ℎ2(𝑥). The radial coordinate, 𝑦, is
shown at the bottom of each diagram, and 𝑦-values for Equations 5.9 and 5.10 are indicated.
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The rim height perturbation growth rate, GRRH

In time 𝑑𝑡, the edge retracts a distance 𝑑𝑙(𝑥) = 𝑣retr(𝑥)𝑑𝑡. The rim height increases in

this time by an amount 𝛼(𝑥)𝑑𝑙(𝑥). Therefore, the rate of rim height increase with time is

𝛼(𝑥)𝑣retr(𝑥).

The growth rate of perturbations to the rim height, GRRH, is the growth rate of the thick

part of the rim, minus the growth rate of the thin part of the rim:

GRRH =
(︁
𝛼(𝑥) 𝑣retr(𝑥)

)︁⃒⃒⃒
𝑥=𝜋/𝑘

−
(︁
𝛼(𝑥) 𝑣retr(𝑥)

)︁⃒⃒⃒
𝑥=0

. (5.12)

The perturbation growth rate depends only on 𝜖, 𝜃, and 𝑘. GRRH is plotted in Figure 5-5.

5.3.4 The perturbation growth rates for the three instabilities

The Rayleigh-like instability is defined to arise from mass flow parallel to the triple line.

Therefore, the perturbation growth rate due to the Rayleigh-like instability in the absence

of the other effects is

GRRayleigh-like =
1

sin 𝜃

(︁𝜕2𝜅

𝜕𝑠21

⃒⃒⃒
𝑥=0,𝑠2=0

− 𝜕2𝜅

𝜕𝑠21

⃒⃒⃒
𝑥=𝜋/𝑘,𝑠2=0

)︁
. (5.13)

This expression is similar to GRTL, defined in Equation 5.8, except that the contribution

from mass flow normal to the triple line has been dropped. The 1/ sin 𝜃 term is present for

same reason it occurs in Equation 5.1 - it projects the velocity normal to the surface into

the plane of the substrate.

The divergent retraction instability arises from the mass flow normal to the triple line,

within the rim:

GRDivergent retraction =
1

sin 𝜃

(︁𝜕2𝜅

𝜕𝑠22

⃒⃒⃒
𝑥=0,𝑠2=0

− 𝜕2𝜅

𝜕𝑠22

⃒⃒⃒
𝑥=𝜋/𝑘,𝑠2=0

)︁
. (5.14)

This expression compares the retraction rate at the thick part of the rim with the retraction

rate at the thin part of the rim. The definition is similar to GRTL (Equation 5.8), but in

this case there is no flux parallel to the rim.
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The changing arc length instability arises only from the motion of the triple line, and does

not require long-range diffusive mass transport. Its behavior can be studied in the absence of

the other instabilities by computing GRRH, given by Equation 5.12 which includes all three

effects, without the differences in height along the rim. With no differences in rim height,

the Rayleigh-like and divergent retraction instabilities cannot operate. Thus, the effects of

the changing arc length instability are described by

GRchanging arc length =
(︁
𝛼(𝑥) 𝑣retr(𝑥)

)︁⃒⃒⃒
ℎ(𝑥)=1+𝜂, 𝜅(𝑥)=+𝜖𝑘2

−
(︁
𝛼(𝑥) 𝑣retr(𝑥)

)︁⃒⃒⃒
ℎ(𝑥)=1+𝜂, 𝜅(𝑥)=−𝜖𝑘2

.

(5.15)

5.4 Results and discussion

5.4.1 Properties of the perturbation growth rate

The two perturbation growth rates that define the fingering instability, GRTL and GRRH,

are shown in Figure 5-5. All plots use the wavelength 𝜆 instead of the wavenumber 𝑘,

with 𝜆 = 2𝜋/𝑘. Generally, small wavelength perturbations decay (i.e., have a negative

growth rate), and long wavelength perturbations grow. Additionally, the amplitude of the

perturbation growth rate scales with
√
𝜖; i.e., the larger the perturbation, the faster it grows

(or decays). Figure 5-5 also shows that the perturbation grows 3-4 times faster on top of the

rim than at the triple line.

In the limit of long wavelengths, the growth rates approach non-negative, finite values.

These values are shown as a function of contact angle in Figure 5-6. Scaling the growth

rates by 1/
√
𝜖 reveals limiting behavior as 𝜖 goes to zero. The higher the contact angle (i.e.,

the higher the interfacial energy between the film and substrate), the faster the instability

grows.

The wavelength at which GR = 0 is the critical wavelength, 𝜆critical. Only wavelengths

greater than 𝜆critical can grow. The perturbation with the largest growth rate (i.e., the 𝜆 at

which 𝜕
𝜕𝜆

(GR) = 0) is 𝜆fastest. 𝜆critical and 𝜆fastest are plotted in Figure 5-7.

The fastest-growing wavelength is not sensitive to the value of 𝜖, so a single curve is shown

in Figure 5-7. However, the critical wavelength nearly matches the Rayleigh-like instability
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The perturbation growth rates
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Figure 5-5: The perturbation growth rates for different values of 𝜃 and 𝜖 are shown. The
horizontal axis is the perturbation wavelength, normalized to the film thickness and divided
by 2𝜋, with 𝜆/2𝜋 = 1/𝑘. The vertical axis is the perturbation growth rate on the triple line
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cases, the shape of the 170∘ and 179∘ curves is the same as the smaller contact angles, but
the magnitude is too large to show on the same axes.
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Perturbation growth rates in the long-wavelength limit
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(discussed in the following section) when 𝜖 is large, and approaches zero for all contact angles

in the limit 𝜖 → 0.

The dependence of the perturbation growth rate on the initial film height, 1+𝜂, is shown

in Figure 5-8. When 𝜂 > 𝜖, the growth rate goes to zero. When 𝜂 < 𝜖, the growth rate is

essentially that when the rim height equals the film thickness. In other words, perturbations

only grow at the onset of retraction, and do not grow once the rim has thickened.

5.4.2 The contributions of the three instabilities

The perturbation growth rates for the three underlying instabilities—Rayleigh-like, diver-

gent retraction, and changing arc length—are plotted with the overall triple line and rim

height perturbation growth rates in Figures 5-9 and 5-10. The conditions under which each

instability dominates the fingering instability are discussed in this section.

The properties and influence of the Rayleigh-like instability

The orange, dashed curves in Figures 5-9 and 5-10 show the wavelength dependence of the

Rayleigh-like instability. The shape of the growth rate curve is the same as for an isolated

cylinder. At short wavelengths, the perturbation increases the total surface area, so these

perturbations decay. The fastest-growing perturbation is
√

2 times the critical wavelength,

and the growth rate goes to zero for long wavelength perturbations.

When the contact angle is 90∘, the Rayleigh-like instability behaves identically to the

classical (cylindrical) case: 𝜆critical = 2𝜋𝑟 and 𝜆fastest = 2
√

2𝜋𝑟, where 𝑟 is the radius of

curvature of the rim. This is because the symmetry of the 90∘ contact angle case is identical

to a cylinder.

The Rayleigh-like instability plays a central role in determining 𝜆critical for the fingering

instability. In Figure 5-7, the orange, dashed curves are the critical wavelengths for the

Rayleigh-like instability. For large perturbations, the critical wavelength behavior of the

fingering instability resembles the Rayleigh-like instability.

The Rayleigh-like instability is also responsible for the existence of a 𝜆fastest for the fin-

gering instability. No other underlying instability exhibits a finite extremum in its growth
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The critical and fastest-growing wavelengths
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Figure 5-7: The critical and fastest-growing wavelengths for (a) the triple line, and (b) the
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The influence of rim height on perturbation growth
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Figure 5-8: The dependence of the perturbation growth rate on the initial rim height 1 + 𝜂.
When 𝜂 = 0, the average rim height is 1 + 𝜖. When log 10𝜂 = 0, the rim height is 2 + 𝜖. The
growth rate is multiplied by 1/

√
𝜖 so that the vertical scale is independent of 𝜖. Each curve is

labeled with the corresponding value of 𝜖, and the vertical dashed line which passes through
the label is where 𝜂 = 𝜖. The figure is plotted for the rim-height perturbation growth-rate
with 𝜃 = 90∘, but the curves are qualitatively independent of 𝜃 and whether they are for the
rim height or triple line perturbation.

rate curve. However, 𝜆fastest disappears with decreasing 𝜖, and with decreasing contact angle.

This is because with decreasing perturbation amplitude, the contribution of the Rayleigh-like

instability decreases faster than divergent-retraction, as shown in Figures 5-10 and 5-9. Phys-

ically, this means that a perturbation to the rim affects flows normal to the triple line much

more than flows parallel to the triple line. For a small enough perturbation, the Rayleigh-

like component of the flow is overwhelmed by other flows, and the fastest-wavelength peak

disappears.

The properties and influence of the divergent retraction instability

The green, dashed curves in Figures 5-9 and 5-10 show the wavelength dependence of the

divergent retraction instability. This instability grows fastest at long wavelengths. This can

be understood by considering the limit of infinite perturbation wavelength: in this case, the

instability growth rate reduces to comparing the retraction rates of two uncoupled, infinitely-

long, straight rims. The thicker rim has height 1 + 𝜂 + 2𝜖, and retracts more slowly than

the thinner rim with height 1 + 𝜂, due to a difference in driving force. No long-range mass

transport is necessary to accommodate a difference in retraction rate.
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At first glance, it may appear that the divergent retraction instability should be inde-

pendent of wavelength. If the triple line position was not perturbed, but the rim height was

perturbed, the divergent retraction instability would be independent of wavelength. How-

ever, the prescribed perturbation (illustrated in Figure 5-3) advances the triple line wherever

the rim is thin. The resulting curvature along the triple line affects the driving force for re-

traction and introduces the wavelength dependence.

Divergent retraction dominates the critical wavelength behavior for small perturbations.

In the limit of small 𝜖, the critical wavelength for the divergent retraction instability goes to

zero. This same behavior occurs for the fingering instability, as shown in Figure 5-7.

The fastest-growing perturbation for divergent retraction is in the limit of long wave-

lengths. For small contact angles, the fingering instability exhibits this behavior as well.

At larger contact angles (𝜃 > 57.4∘), there is a fastest-growing wavelength at finite values.

This occurs due to the Rayleigh-like instability; however, 𝜆fastest is at significantly higher

wavelengths than the Rayleigh-like case. Divergent retraction is primarily responsible for

this shift to longer wavelengths.

The properties and influence of the changing arc length instability

The blue, dashed curves in Figures 5-9 and 5-10 show the wavelength dependence of the

changing arc length instability. This instability is only significant at very short wavelengths.

When the wavelength of the perturbation is less than 𝒪(𝜖), the thin portion of the rim gets

even thinner during retraction, rather than thickening. This is because the triple line is

lengthening so rapidly that the volume swept up by the rim during retraction is less than

the the amount required to lengthen the rim and maintain its height.

The arc length instability only makes a small numerical contribution to the net instability.

However, the arc-length instability is expected to become more important when the interface

energies are anisotropic (see Chapter 6).
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The perturbation growth rates for the three underlying instabilities and the
fingering instability for different 𝜃
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Figure 5-9: The perturbation growth rates on the triple line (Equation 5.8) and rim height
(Equation 5.12), as well as for Rayleigh-like (Equation 5.13), divergent retraction (Equa-
tion 5.14), and changing arc length (Equation 5.15) instabilities are shown. The horizontal
axis is the perturbation wavelength, normalized to the film thickness and divided by 2𝜋. The
vertical axis is the perturbation growth rate. (a) is for a contact angle of 45∘, and (b) is for
135∘. The Rayleigh flow and divergent retraction curves are scaled so that they appear at a
similar magnitude to the other curves. Both figures are for 𝜖 = 10−3.
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The perturbation growth rates for the three underlying instabilities and the
fingering instability for different 𝜖
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Figure 5-10: The perturbation growth rates on the triple line (Equation 5.8) and rim height
(Equation 5.12), as well as for Rayleigh-like (Equation 5.13), divergent retraction (Equa-
tion 5.14), and changing arc length (Equation 5.15) instabilities are shown. The horizontal
axis is the perturbation wavelength, normalized to the film thickness and divided by 2𝜋. The
vertical axis is the perturbation growth rate. (a) is for 𝜖 = 10−3, and (b) is for 𝜖 = 10−6.
The Rayleigh-like and changing arc length instability curves are scaled differently in each
figure. Both figures are for a contact angle of 90∘.
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5.4.3 Discussion

The growth rate of the instability increases with contact angle (Figure 5-6). Therefore, the

instability is more likely to be observed for films with high contact angles.

The perturbation growth rate is essentially constant for 𝜆 > 𝜆fastest (Figure 5-5). However,

this does not imply that extremely large finger spacings are expected. Rather, it suggests that

the distance between peaks should be 𝜆fastest < 𝜆 < 2𝜆fastest. This is because if 𝜆 > 2𝜆fastest,

then another wavelength with a large, positive growth-rate could fit between the existing

peaks and reduce the apparent wavelength.

Increasing rim height leads to an overall reduction in the perturbation growth rates

(Figure 5-8). This implies that once fingers begin to grow, no new fingers should develop.

However, the fingers may merge with time, resulting in a larger finger spacing.

Figure 5-7 shows that 𝜆critical increases with the perturbation size. A larger perturbation

being less likely to grow may seem counter-intuitive, but it arises from the Rayleigh-like

behavior dominating over divergent retraction as 𝜖 increases. This is an important consid-

eration when patterning an initial perturbation to achieve a particular finger spacing. For

example, if the film thickness is 𝑓 with contact angle 90∘, and the triple line position is

deliberately perturbed by a distance ±0.1𝑓 , then the minimum wavelength that can grow is

6.2𝑓 . If it is perturbed by ±0.01𝑓 , then the minimum wavelength is 4.5𝑓 .

5.4.4 Comparison with other models and experiments

In contrast with our results, Kan & Wong concluded that in the limit of long wavelengths,

the perturbation growth rate goes to zero [40]. However, their analysis does not include

the influence of retraction on the instability, so it cannot account for divergent retraction,

nor changing arc length. Additionally, their results are only valid in the limit of long times

(i.e., when retraction is negligibly slow), while ours are only valid at short times (i.e., for

small rims and negligible valleys). The difference in modeled time regimes may explain the

different conclusions.

Our results can be tested experimentally. If the fingering instability arose from the

Rayleigh-like and/or arc length instabilities, then perturbations longer than ≈ 2
√

2𝜋𝑟, where
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𝑟 is the radius of curvature of the rim, would not grow fast enough to be observed. How-

ever, if the divergent retraction mechanism indeed dominates the character of the fingering

instability, then finger spacings much greater than the 2
√

2𝜋𝑟 should be seen.

While there are many publications which show fingers, there are none to the author’s

knowledge that show the film edge at early times with the initial perturbation. Fingers

are known to evolve to a steady-state geometry (studied elsewhere ??), which may have a

different characteristic wavelength than the initial, fundamental instability. The different

mechanisms inherent to the initial fingering instability and subsequent steady-state finger

geometry mean that comparing the predictions of this work with steady-state finger spacings

is meaningless.

5.5 Conclusion

We identify three underlying mechanisms of the fingering instability:

1. Rayleigh-like instability: This instability arises when variations in rim height would

lead to a reduction in the total surface area of the rim. Gradients in mean curvature

parallel to the triple line drive mass transport.

2. Divergent retraction instability: The driving force for retraction is greater for thinner

rims, so they will retract faster than thicker rims. Mass flows normal to the triple line.

3. Changing arc length: The rate of change of rim arc length during retraction is a

function of the in-plane curvature of the triple line. Positively-curved sections of rim

thicken faster than a straight rim because the mass contained in the rim must fit into

an ever-shorter length, and vice-versa.

These mechanisms all play a part in the shape evolution of dewetting thin film edges. The

mechanisms are coupled, but an analysis which artificially separates them reveals that the

divergent retraction instability is the underlying cause of the fingering instability (Figures 5-

9, 5-10). The Rayleigh-like and changing arc length instabilities affect the critical and fastest-

growing wavelength values, but only when the perturbation is large.
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Poorly-wetting (large contact angle) films are much more susceptible to the fingering

instability than highly-wetting (small contact angle) films (Figure 5-5). As the contact angle

increases, the critical wavelength decreases, so shorter wavelength perturbations can grow

(Figure 5-7). Simultaneously, the perturbation growth rate increases with contact angle, so

perturbations will grow into fingers much more quickly (Figure 5-6).

Dewetting is often used to create arrays of particles [50, 19, 65, 64, 70]. There has recently

been interest in tempting the substrate to achieve particular particle spacings [20, 87, 30].

However, an easier approach would be to control finger spacings to achieve the desired

spacing. This work suggests that intentionally perturbing the film edge prior to annealing

is sufficient to control the finger spacing. A large range of wavelengths will grow (Figure 5-

7), and the growth rate increases with the perturbation size, so the prescribed wavelength

should dominate over random fluctuations. Furthermore, only the perturbations which are

initially present should grow because growth rates go to zero for small perturbations once

the rim is thicker than the perturbation amplitude (Figure 5-8).
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Chapter 6

The Corner Instability: An Analytical

Model and Underlying Mechanisms

6.1 Introducion

The corner instability is introduced in Section 1.4.3. It occurs on anisotropic films, where

two straight edges meet. Initially, the corner retracts at the same rate as the edges. However,

at some point, the retraction rate at the corners becomes constant, while the retraction rate

of the edges continues to decrease over time [18]. The difference in retraction rates arises

from a constant rim height at the corner, while the rims along the edges thicken with time

in a similar fashion to a retracting infinite, straight edge [18].

No quantitative approach has been present to explain this phenomenology. Previous work

has suggested that the corner instability is associated with mass flow away from the tip of the

retracting corner. Ye and Thompson [88, 78] proposed that the corner instability arises due

to mass flow away from the corner tip, onto the flat film. It is supposed that near the corner,

there is a two-dimensional diffusion field, while along the edge, there is a one-dimensional

diffusion field (such flows are depicted in Figure 2 of reference [88]). The two-dimensional

field implies transport to a larger area, and therefore enables faster retraction near corners.

However, there is no evidence supporting this proposed mass flow. The film is not observed to

thicken ahead of the retracting rim in experiments [63]. Also, isotropic models of dewetting

show no net mass flow onto the flat film at all [75, 85], and anisotropic models show a small
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mass flow in the opposite direction, leading to thinning of the bulk film [96]. Rabkin et

al. [63] suggested that mass rejected from corners flows along the thickening rim towards the

centers of the straight edges, leading to a constant rim size at the corner while the centers

of the edges accumulate mass. However, no evidence of this mass flow has been presented.

In this chapter, an alternative mechanism for the corner instability is presented, which is

based on the results of a model and comparison with experiments. The geometric assump-

tions in the model are consistent with the observed structure near a corner. The model and

experiments are in quantitative agreement, showing that the mechanism found in the model

is a plausible explanation for the corner instability.

6.2 Summary of experimental results

Experiments to study the onset of the corner instability were performed by Gye-Hyun

Kim [95]. He investigated 130 𝑛𝑚-thick, single-crystal (001) Ni films on a (001) MgO sub-

strate at 890∘C. Initially-square holes either formed naturally during annealing, or were

patterned by photolithography.

Figure 6-1 is reproduced from reference [95], and shows the development of a corner

instability for a natural hole. The hole is bounded by [110] facets. Initially, the hole grows

and remains square, but after some time, the corners retract faster than the hole edges. To

accommodate the shape change to the hole after the instability develops, [010]-type facets

appear as well. The hole has a roughly uniform rim height along most of the edge, which

is connected by a sloped, straight section to the tip. Henceforth, the “tip” will be used to

refer to the <1 𝜇𝑚-sized region where the rim height is uniform and the triple line has a

large, negative curvature. The “transition” region refers to the sloped, straight section of

rim on either side of the tip. The term “edge” refers to the central section of the rim which

is roughly straight and has a uniform height; however, the triple line along the edge often

develops a positive curvature after the corner instability forms. The tip, transition, and edge

are schematically drawn in Figure 6-2. A similar rim structure around polygonal holes has

been observed previously [76, 18, 63].

To analyze the mass accumulation trend at the tip and the center of the edge, the cross-
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Figure 6-1: This figure is reproduced from reference [95]. (a) A top-down AFM image
of a natural hole after 12 hours of annealing, showing that a corner instability has not yet
developed. (b) A top-down AFM image of a natural hole after 24 hours of annealing, showing
the early stages of a corner instability, with the corners retracting faster than the edges. (c)
A three-dimensional view of a natural hole after the corners became unstable, showing that
central regions of the rims at edges have uniform heights, while regions adjacent to the tip
have a constant slope. (d) A cross-sectional AFM profile of the edge and the tip at the
corner of a natural hole after a 12-hour anneal, showing that the rim is much taller on the
edge. (e) A cross-sectional AFM profile of the edge and the tip at the corner of a natural
hole after a 24-hour anneal, showing that the tip rim has not changed from (d), but that
the rim at the edge is even taller and thicker. (f) The cross-sectional rim area at the edge
and the tip of a natural hole at different retraction distances (distance is measured from the
center of the hole). The dashed line is a linear fit for the first three data points for the edge,
and is intended as a visual guide. The annealing time for each data point is indicated in the
figure. Samples were annealed at 890∘C.
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sectional area of the accumulated rim was quantified at the tip and the center of the edge

using the AFM scans [95]. This is illustrated in Figures 6-1(d)-(e). Cross-sectional SEM

images (not shown) indicate that the contact angle is approximately 90ą. However, non-90ą

contact angles are observed in the profiles due to the 75ą AFM tip angle. This is more

significant at the tips, where the tip is confined on two sides.

Figure 6-1(f) shows the cross-sectional rim areas at the edge and the tip of natural holes

at different retraction distances. Increasing retraction distance corresponds to increasing

annealing time. The dashed line serves a basis for comparison. If all of the material swept

up due to retraction were incorporated into the rim, and no mass transfer occurred parallel

to the rim, the rim cross-sectional area should grow linearly with retraction distance with a

slope equal to the film thickness. The edge data follow a linear trend, to within experimental

error, with the exception of the last two data points. However, the tip data follow a sublinear

trend, and at late times, the cross-sectional area approaches a constant value. This indicates

that at that point the rim at the tip does not change its shape with time. The late stage data

were collected well after the corners became unstable and the edges of the hole underwent

significant bending. The ÒnotchÓ visible at the midpoint of each edge in Figure 6-1(b)

occurs through a combination of faceting along the triple line and interactions between the

rim regions on either side of the midpoint. Therefore, the last two data points for the edge

of the hole show effects that are not directly related to the onset of the corner instability.

Square holes of various sizes were patterned and also annealed [95]. The length of the

transition region is independent of the size of the patterned holes, and found to be 5.6𝜇𝑚±

0.61𝜇𝑚. Only the holes with edge lengths less than two times the transition region length

show a size effect. Therefore, retraction distances are at most weakly dependent of the initial

hole size. These size-independent characteristics imply that the corner instability is a local

phenomenon.

6.3 Corner instability model

To determine the underlying mechanism for the corner instability, we present a simple model.

A core assumption of this model is based on fundamental results from prior modeling efforts:
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the material contained in the rim is taken to be equal to the amount swept up during

edge retraction. For isotropic materials (materials with both isotropic surface energies and

diffusivities) rims develop an oscillatory cross-sectional profile, in which a set of valleys with

rapidly decreasing depth forms ahead of the advancing rims ??. This implies that some

mass from the first valley flows toward the rim, but this is a small fraction of the total mass

incorporated due to retraction, and can be neglected. Similarly, for anisotropic films lacking

a valley, an additional mass flow from the bulk film toward the rim is present. However, it is

negligibly small over the relevant time scales, comprising at most a few percent of the total

rim mass [96].

Another assumption of the model is that the rim is semi-circular in cross-section. The

actual rim profile is not described by a closed-form function, and varies with time, as shown

in Figure 6-1(d) and (e). This complexity is difficult to capture in an analytical model, so a

semi-circle is assumed to make calculations of volume within the rim straightforward.

The two-dimensional model presented in Chapter 4, and the fingering instability analysis

in Chapter 5, use very similar assumptions. However, the rim geometry used to model the

corner instability includes additional complexity to describe the corner evolution.

6.3.1 Model geometry

The geometry assumed for the model is informed by experimental results. The three re-

gions near the corner identified in Figure 6-1, the “tip,” “transition,” and “edge,” are shown

schematically in Figure 6-2. In the model, all lengths are normalized to the film thickness 𝐻,

and the contact angle is 90∘, to be consistent with the observed contact angle. This contact

angle indicates that the surface energy of the substrate in contact with the vapor phase is

equal to the interfacial energy of the substrate-film interface.

The tip of the corner is not perfectly sharp, but instead has uniform curvature along the

triple line. The radius of curvature, 𝑏tip, is on the order of a few times the film thickness.

𝑏tip is fixed by a combination of the surface energy anisotropy and corner energy of the Ni

film, and its value is observed to be independent of time. The rim also has a uniform height

in this region, 𝑟tip. Therefore, the tip area will be modeled as a portion of a torus, as drawn

in Figure 6-2. The inner radius of the torus is 𝑏tip and the cross-sectional radius is 𝑟tip.
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A schematic of the corner geometry

redge
H=1

substrate

film
edge
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α

btip rtip
transition tip

Figure 6-2: The assumed geometry of the corner of a hole is shown. All distances are
normalized to the film thickness 𝐻. The rim has height 𝑟tip at the tip of the corner and
height 𝑟edge along the majority of the edge of the hole. The rim height gradually increases
from 𝑟tip to 𝑟edge over a distance 𝐿. The anisotropy of the film material holds the apparent
angle of the corner, 𝛼, and the radius of curvature of the triple line at the tip, 𝑏tip, at constant
values.

The rim on the edge of the hole has a uniform height. However, the observed rim width

varies. For the purposes of the model, the variation in rim profile is neglected, and the

rim height is taken as 𝑟edge. This assumption is made because the variation in rim width is

only significant after the corner instability has developed. The model is intended to capture

the behavior which causes the instability, rather than subsequent behavior (including notch

formation). Therefore, it is also assumed that the edge is straight. It also turns out that

accounting for curvature of the edge does not significantly affect the model results, so it is

acceptable to neglect it.

Detailed AFM scans of the transition region of the rim revealed a linearly-increasing rim

height from 𝑟tip to 𝑟edge. The triple line in this region is straight. Both of these observations

are incorporated into the model. The length of the sloped region is taken to be 𝐿, as shown

in Figure 6-2. The angle between the transition regions on either side of the tip is 𝛼. For

the (001)Ni-on-MgO system, 𝛼 = 90∘, and is set by the facets bounding the hole.
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6.3.2 Retraction velocity

The retraction velocity, 𝑣retr, is simply the dimensionless capillary-driven surface diffusion

normal velocity, 𝑣𝑛 (Equation 1.8), at the triple line:

𝑣retr =
(︁𝜕2𝜅

𝜕𝑠21
+

𝜕2𝜅

𝜕𝑠22

)︁
. (6.1)

The curvature of the triple line at the corner tip is 𝜅tip = 1/𝑟tip − 1/𝑏tip, with 𝑟tip and

𝑏tip defined in Figure 6-2. The curvature of the triple line at the edge is 𝜅edge = 1/𝑟edge

(assuming that the edge is straight, or that the radius of curvature for the triple line is much

greater than 𝑟edge, which is the case in all experimental results discussed above).

To find the retraction velocity, a finite-difference approximation is used to estimate the

second derivatives of curvature. The forward finite-difference formula for a second derivative

at the point 𝑓(𝑥)|𝑥=0, accurate to second order, is

𝜕2𝑓

𝜕𝑥2
≈ 𝑓(2∆𝑥) − 2𝑓(∆𝑥) + 𝑓(0)

∆𝑥2
. (6.2)

The value of 𝑠1 at the tip of the corner is defined as zero, and the value of 𝑠2 is defined

as zero at the triple line, as shown in Figure 6-3. Using Equation 4.12, 𝜕2𝜅/𝜕𝑠21 can be

estimated as

𝜕2𝜅

𝜕𝑠21
≈ 𝜅(2∆𝑠1, 0) − 2𝜅(∆𝑠1, 0) + 𝜅(0, 0)

∆𝑠21
=

(1/𝑟*) − 2(1/𝑟tip) + (1/𝑟tip − 1/𝑏tip)

(𝑏tip𝛼/2)2
, (6.3)

where 𝛼 is the angle of the tip, ∆𝑠1 is the arc length from the midpoint of the tip to

the beginning of the transition region, and 𝑟* is the rim radius of curvature a distance

2∆𝑠1 = (𝑏tip𝛼) away from the tip, as indicated in Figure 6-3. Taking into account the linear

increase in rim height across the transition region, 𝑟* is given by

𝑟* = 𝑟tip +
𝑟edge − 𝑟tip

𝐿
𝑏tip

𝛼

2
. (6.4)

Equation 6.3 accounts for mass flow towards or away from the tip, parallel to the rim.
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The arc length coordinates
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Figure 6-3: The arc length coordinates 𝑠1 and 𝑠2 are shown on the corner geometry schematic.
The origin is at the midpoint of the corner tip, and the points used to calculate 𝜕2𝜅

𝜕𝑠21
and 𝜕2𝜅

𝜕𝑠22
,

∆𝑠1 and ∆𝑠2, are marked.

𝜕2𝜅/𝜕𝑠22 at the tip midpoint can be estimated as

𝜕2𝜅

𝜕𝑠22
≈ 𝜅(0, 2∆𝑠2) − 2𝜅(0,∆𝑠2) + 𝜅(0, 0)

∆𝑠22
=

(1/𝑟tip) − (1/𝑏tip)(︀
𝜋𝑟tip − 𝑟tip sin−1 (1/𝑟tip)

)︀2 , (6.5)

where ∆𝑠2 is the arc length from the triple line to the flat film at the center of the tip,

𝜅(0,∆𝑠2) is measured on the flat film just beyond where it meets the rim, and 𝜅(0, 2∆𝑠2) is

measured further out on the flat film. 𝜅(0,∆𝑠2) = 𝜅(0, 2∆𝑠2) = 0, as shown in Figure 6-3.

Equation 6.5 accounts for the driving force for the corner to retract.

Equations 6.1, 6.3, and 6.5 together provide the retraction velocity, 𝑣retr,tip. With 𝛼 = 90∘,

for a given rim height and tip sharpness, 𝑏tip,

𝑣retr, tip =
4

𝐿2

(︁ 1

𝑟tip
+

1

𝑟edge
− 4

𝑟tip + 𝑟edge
− 1

𝑏tip

)︁
+

𝑏tip − 𝑟tip

𝑟3tip𝑏tip
(︀
𝜋 − sin−1 1

𝑟tip

)︀2 . (6.6)

In Equation 6.6, the first term is negligible (less than 2% of the second term) when 𝐿 >≈ 25.

Experiments give 𝐿 = 47 (in dimensionless units), so it can be expected that 𝐿 has little to

no effect on the retraction velocity.

The same method as above can be applied to arrive at the equation describing the

retraction velocity on the edge of the hole. It is assumed that the edge is roughly straight
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near the midpoint, so 𝜕2𝜅/𝜕𝑠21 = 0. Therefore,

𝑣retr, edge =
1

𝑟3edge

(︀
𝜋 − sin−1 1

𝑟edge

)︀2 . (6.7)

6.3.3 Rim height as a function of time

The change in the rim height as a function of time can be calculated by enforcing volume

conservation within the rim. As the rim retracts at the corner tip, the arc length must

increase, and a portion of the flat film will be incorporated into the rim. Figure 6-4 shows a

schematic of the tip at time 𝑡 and at time 𝑡 + 𝑑𝑡. The volume contained in the rim at time

𝑡 + 𝑑𝑡 must equal the volume contained in the rim at time 𝑡, plus the volume of flat film

swept up due to retraction.

Given 𝑟tip,1 and 𝑏tip, the volume in the rim at the tip can be found; this is equivalent to

finding the volume of a portion of a torus. With these parameters, the retraction velocity is

also known. Thus, the distance the film retracts in time 𝑑𝑡 is equal to 𝑣retr,tip𝑑𝑡.

The portion of flat film swept up during retraction has width 𝑤, as shown in Figure 6-4.

𝑤 can be found in terms of 𝑟tip,2. Setting the total change in volume to zero provides an

equation for 𝑟tip,2. However, it is transcendental. To arrive at an analytical answer, it is

assumed that 𝑟tip,2 = 𝑟tip,1 + 𝜖𝑣retr,tip𝑑𝑡, where 𝜖 is an unknown, dimensionless parameter.

The equation for 𝑟tip,2 is expanded as a Taylor series in 𝑑𝑡 to first-order. The first-order

expansion can be solved for 𝜖:

𝜖tip =
(︁
− 2 + 4𝑟tip

√︁
𝑟2tip − 1 + 𝑟2tip(2 − 𝜋

√︁
𝑟2tip − 1) + 4𝑏tip

√︁
𝑟2tip − 1

− 2𝑟2tip

√︁
𝑟2tip − 1 tan−1

√︁
𝑟2tip − 1

)︁⧸︁(︁
2 + 𝑟2tip(−2 + 3𝜋

√︁
𝑟2tip − 1) − 4𝑏tip

√︁
𝑟2tip − 1

+ 2𝑟tip

√︁
𝑟2tip − 1(𝜋𝑏tip − 4) + 2𝑟tip

√︁
𝑟2tip − 1(3𝑟tip + 2𝑏tip) tan−1

√︁
𝑟2tip − 1

)︁
. (6.8)

A differential equation for 𝑟tip(𝑡) is provided by computing (𝑟tip,2 − 𝑟tip,1)/𝑑𝑡, which equals

𝜖𝑣retr, tip.
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The discretized time evolution of the corner tip
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tip
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Figure 6-4: A detailed schematic of the tip geometry is shown. Part (a) shows the film at
time 𝑡. Part (b) shows the film at time 𝑡 + 𝑑𝑡. The initial rim height, 𝑟tip,1, is known, and
𝑏tip is constant. The new rim height, 𝑟tip,2, is found by volume conservation: the volume in
the rim at time 𝑡 plus the volume of film swept up in the time 𝑑𝑡 must equal the volume
in the rim at time 𝑡 + 𝑑𝑡. The volume swept up during retraction is that contained in the
region of radial thickness 𝑤, shown in (a). Part (c) also shows the film at time 𝑡 + 𝑑𝑡. The
dark-shaded portions of the rim are now part of the transition region, and are no longer
part of the corner tip. This is because 𝑏tip is fixed by the anisotropy of the film material,
preventing the arc length of the tip region from increasing with time.
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The same method can be applied to find 𝑟edge(𝑡). 𝜖edge is given by

𝜖edge =
1

−1 + 𝜋𝑟edge − 𝑟edge sin−1 1
𝑟edge

. (6.9)

The differential equations for 𝑟tip(𝑡) and 𝑟edge(𝑡) are coupled because 𝑑𝑟tip/𝑑𝑡 = 𝜖tip𝑣retr,tip,

and 𝑣retr,tip depends on both 𝑟tip(𝑡) and 𝑟edge(𝑡).

The differential equations for 𝑟tip(𝑡) and 𝑟edge(𝑡) do not have closed-form solutions. How-

ever, they can be integrated numerically. Using the built-in numerical differential equation

solver and numerical integration function in Mathematica 9 on a ca. 2011 laptop, the total

time for the numerical work takes just a few seconds. The initial conditions are at 𝑡 = 0,

𝑟tip = 1 and 𝑟edge = 1. Plots of 𝑟tip(𝑡) and 𝑟edge(𝑡) are shown in Section 5.4.

6.3.4 The steady-state rim height at the tip

While the rim height on the edge of the hole always increases with time, the rim height at

the tip may increase or decrease. This is possible because mass is added to the rim during

retraction, but the arc length of the tip must increase due to high curvature of the triple line

at the tip. This effect is analogous to a Poisson’s ratio of 0.5: lengthening the rim parallel

to the triple line requires the height to decrease. This can be seen in Figure 6-4.

When the volume of flat film swept up due to retraction is exactly balanced by the volume

“lost” due to lengthening of the rim, the rim height stays constant. This balance occurs when

𝜖tip is equal to zero. 𝜖tip = 0 when 𝑏tip equals the critical value 𝑏critical:

𝑏critical =
1

4

(︁
− 4𝑟tip +

2√︁
𝑟2tip − 1

+ 𝑟2tip(𝜋 − 2√︁
𝑟2tip − 1

) + 2𝑟2tip tan−1
√︁

𝑟2tip − 1
)︁

(6.10)

A contour plot of 𝜖tip is shown in Figure 6-5. The black line is the trace of Equation 6.10,

and provides the steady-state value of 𝑟tip, 𝑟*tip, for a given value of 𝑏tip. The rim height 𝑟*tip

is at a stable equilibrium because a rim height greater than 𝑟*tip will decrease with time, and

vice-versa.
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Stability of the corner tip
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Figure 6-5: A contour plot of the rate of rim height change at the tip is shown. Warm colors
indicate that the rim is thickening with time for a given 𝑟tip and 𝑏tip; cool colors indicate
that the tip rim thins with time. The heavy black line is the steady-state rim height at the
tip, 𝑟*tip.
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6.4 Discussion

6.4.1 The mechanism of the corner instability

The main result from the model is that the corner instability arises from two competing

effects: the mass swept up due to retraction tends to increase the rim height, while the

increasing arc length of the hole tends to decrease the rim height. These two effects are

shown in Figure 6-4. When these effects are in equilibrium, the rim height at the tip remains

constant.

Note that no long-range mass transport is necessary for a corner instability to develop.

The effect is entirely local, and the only mass transport needed is contained with in the rim

at the corner tip. The only condition for the instability to occur is the pre-existence of a

sharp corner in the film edge so that arc length increases are localized to the curved portion

of the triple line. Therefore, the corner instability can occur in patterned isotropic films as

well.

For a circular hole, as modeled by Brandon and Bradshaw [6], the mass swept up always

dominates over the increasing arc length effect. Therefore, the rim height increases with

time. However, a polygonal hole is fundamentally different. The edges remain straight, and

so their arc length does not increase over time. All of the increase in arc length must occur

at the tip. Edge retraction is driven in the direction locally-normal to the triple line, so the

radius of curvature at the corner tip tends to increase, as shown in Figure 6-4(b). However,

anisotropy straightens out the material at the edges of the tip, correcting the increase in

radius of curvature. The material at the edges of the tip joins the transition region, as

shown in Figure 6-4(c).

6.4.2 Evidence against other mechanisms for the instability

A simple estimation casts doubt on the mechanism proposed by Rabkin et al. [63]. They

suggest that the corner instability occurs by a mass flow, within the rim, from the tip region

towards the edges. However, the following calculation demonstrates that the driving force

for mass flow points in the opposite direction, which should, if anything, inhibit the corner
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instability (this flow is accounted for in our model).

The curvature at the tip is estimated to be 𝜅tip = 1/𝑟tip−1/𝑏tip, with 𝑟tip and 𝑏tip defined

in Figure 6-2. The curvature at the edge is 𝜅edge = 1/𝑟edge. The chemical potential, 𝜇, for a

system whose only contribution to the free energy is surface tension, is 𝜇 = Ω𝛾𝜅, where Ω is

the atomic volume and 𝛾 is the surface energy. The mass flux is 𝐽 = (−𝐷𝑠𝜈)/(𝑘𝑇 )𝜕𝜇/𝜕𝑠,

where we take the 𝑠 coordinate to be parallel to the rim, and all other parameters have the

usual meaning. The gradient in chemical potential, parallel to the rim, can be estimated as

𝜕𝜇

𝜕𝑠
≈ ∆𝜇

∆𝑠
=

𝜇tip − 𝜇edge

𝑠tip − 𝑠edge
= Ω𝛾

𝜅tip − 𝜅edge

𝐿
=

Ω𝛾

𝐿

(︀ 1

𝑟tip
− 𝑟edge + 𝑏tip

𝑟edge𝑏tip

)︀
. (6.11)

Therefore, the mass flux becomes

𝐽 =
𝐷𝑠𝜈Ω𝛾

𝐿𝑘𝑇

(︀𝑟edge + 𝑏tip
𝑟edge𝑏tip

− 1

𝑟tip

)︀
. (6.12)

If the flux is positive, then the chemical potential is higher at the edge than at the tip, so

mass flows from the edge towards the tip, and vice versa.

Using the experimentally-obtained value of 𝑏tip = 3.89 and the model values for 𝑟tip and

𝑟edge shown in Figure 6-6, the mass flux is expected to initially be positive, indicating that

material flows from the edge towards the tip. The flux decreases slowly with time, and

will only reverse after the corner instability is already established, when 𝑟tip = 2.32 and

𝑟edge = 5.75, which corresponds to a dimensionless time of 29,000. Using the experimentally-

obtained values of 𝑟tip and 𝑟edge, the flux does not reverse during the experiment. If the triple

line along the edge is bent like in Figure 6-1, it increases the flux towards the tip and further

delays the sign change. Therefore, mass flow parallel to the triple line is not responsible for

the corner instability.

6.4.3 Comparison of the model and experimental results

The steady-state rim height at the tip predicted by the model matches the experimental

results to within experimental error. The experimental value of 𝑟*tip is 2.3 ± 0.2, and 𝑏tip is

3.89±0.2 (both quantities are normalized to the film thickness of 130 nm). Using 𝑏tip = 3.89
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Comparison of model and experimental results
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Figure 6-6: Experimental and model results for the rim height and retraction distance as
a function of time are shown. The red data and curves are for the edge of the hole, and
the blue data and curves are for the tip. The model was run with experimentally-obtained
values for 𝑏tip and 𝐿. The model and experimental results at the tip are in good agreement.
The model over-estimates the height of the rim at the edge, and therefore underestimates
the retraction distance at the edge.

in Equation 6.10 gives 𝑟*tip as 2.32, which is in excellent agreement with the observed value.

Furthermore, Equation 6.6 gives the relationship between 𝑟tip, 𝑏tip, 𝐿, and the retraction

velocity of the tip. When 𝐿 is large (> 25), the dependence on 𝐿 is negligible, and the

corner tip retraction velocity simplifies to

𝑣retr, tip =
𝑏tip − 𝑟tip

𝑟3tip𝑏tip
(︀
𝜋 − sin−1 1

𝑟tip

)︀2 . (6.13)

Using the experimental value for 𝑏tip, the corner tip velocity should be 4.4 × 10−3𝐵𝐻−3,

which is 221 nm/hr. Fitting the last 4 data points for the corner retraction distance vs. time

(shown in Figure 6-6) with a line gives a corner tip velocity of 204 nm/hr, which is only an

8% mismatch with the model.

The rim height as a function of time from experiments and the model are shown in

Figure 6-6. At the tip, the model and experiment agree to within experimental error. At the

edge, the model overestimates the rim height, and therefore underestimates the retraction

distance. However, the model qualitatively follows the trend of the data.

The discrepancies between the model and experiment at the hole edge may be due to the
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assumption of a straight rim along the edge with uniform width. Figure 6-1 shows that the

rim height is constant along the edge, but the width and retraction distance vary after the

corner instability takes effect. In Figure 6-1(b), a notch is visible at the center of each edge

of the hole. The rim is sufficiently wide at the notch that parts of the rim on either side of

the midpoint will interact, which is not counted for in the model.

The over-estimate of rim height on the hole edge could be also due to the anisotropy of

the real system. The top of the rim on the hole edge is faceted, as shown in Figure 6-1(c)-(e).

This facet may decrease the rimÕs mean curvature relative to the assumed semi-circular rim,

which would cause it to retract more slowly than the model rim.

6.5 Conclusion

Holes in single-crystal thin films may be faceted. The corners where facets meet rapidly

evolve to and maintain a characteristic in-plane radius of curvature. For Ni (100) films [95],

the radius of curvature was observed to be constant throughout the dewetting process. The

rim at the tip itself is uniformly thin, and connects to the thicker rim along the edges of

the hole via a straight, linearly-sloped transition section of rim. These two observations are

sufficient to define the geometry for a model that reproduces the corner instability.

In addition to the geometric constraints, the model contains two assumptions: the rim

cross-sectional profile is simplified to a circular arc, and mass does not leave the rim, and can

only enter it by being swept up due to retraction. These assumptions lead to the conclusion

that the corner instability arises due to a balance of mass flows. The addition of mass by

retraction tends to increase the rim height, while the need to increase the perimeter of the

hole tends to thin the rim as mass is spread over a longer length. The thinning effect only

occurs at the tip because this is the only region of the triple line with in-plane curvature.

In the early stages of hole growth, the rim at the tip of the corner grows because it is

still thin enough that additional mass can compensate for elongation of the rim adjacent

to the tip. However, as the rim at the tip becomes thicker, an increasing fraction of the

incoming mass is needed for elongation of the rim adjacent to the tip. Eventually, a steady

state is reached, and the rim height stays constant. A constant rim height implies a constant
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retraction rate, which is observed experimentally. This is in contrast to what happens on the

straight edges of the hole, where there is no arc length increase. There is only addition of

mass to the rim due to retraction, so the rim always grows with time, and thus the retraction

rate decreases with time.

The model and experiments are in good quantitative agreement, particularly in the value

of the equilibrium rim height at the tip and the velocity of the tip. The model over-estimates

the rim thickness at the edge of the hole, but this is probably due to anisotropy, which is

not accounted for in the model. Experiments on pre-patterned holes demonstrate that the

on-set of the corner instability and edge bending are not coupled. Experiments also show

that the corner instability does not depend on the hold size, confirming the model result that

no long-range mass transport is involved in the corner instability. Only mass flow within the

corner tip region its self is necessary for the instability.
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Chapter 7

A 2D model for dewetting of a

fully-faceted thin film

7.1 Introduction

The evolution of fully-faceted shapes due to capillarity-driven surface diffusion in two di-

mensions was treated by Carter et al. [15]. They present the framework for developing the

equations of motion, as well as an algorithm to simulate surface diffusion for fully-faceted

materials. Klinger et al. [43] applied their method to test the stability of valley formation

during dewetting, and found that it is not favorable for a valley to form when a limited num-

ber of facet orientations is available, consistent with experimental observations in strongly-

anisotropic systems [27, 8, 43, 34]. The model in this chapter modifies that of Carter et al.

to include the effects of the substrate to simulate dewetting. Topological changes, such as

the introduction of new facets, are included. Simulations using this model offer an under-

standing of which material properties determine dewetting kinetics, and of the underlying

mass flows that generate the characteristic dewetting morphology.

The method begins with the definition of weighted-mean curvature (𝜅𝛾, defined in Chap-

ter 1), the definition of chemical potential, and Fick’s first law. These are combined with the

condition that volume is conserved, and that for a moving facet to remain flat, the velocity

on that facet must be uniform for all 𝑠 on that facet. Solving these equations and constraints
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together gives

𝜇𝑖(𝑠) = 𝜇0
𝑖 −

𝐽𝑖
𝑀𝑖

𝑠 +
𝑣𝑖

2𝑀𝑖

𝑠2, (7.1)

where 𝑠 is taken to range from zero to the facet-length 𝐿𝑖 on each facet, 𝜇0
𝑖 is the chemical

potential on facet 𝑖 at 𝑠 = 0 (units of 𝐽𝑚−2), 𝐽𝑖 is the flux on the facet at 𝑠 = 0 (units of

𝑚𝑠−1), 𝑀𝑖 is the mobility on the facet times the atomic volume, 𝑀𝑖 = 𝐷𝑖Ω
𝑘𝑇

, where 𝐷𝑖 is the

diffusivity (yielding units of 𝑚4𝐽−1𝑠−1), and 𝑣𝑖 is the normal velocity of the facet, in units

of 𝑠−1. Multiplying the velocity by the atomic size gives a velocity in 𝑚/𝑠.

The boundary conditions on facet 𝑖 are used to find 𝜇0
𝑖 , 𝐽𝑖, and 𝑣𝑖. The flux of atoms

leaving the adjacent facet, 𝑖− 1, must equal the flux entering facet 𝑖. Similarly, the chemical

potential must be smooth and continuous from one facet to the next. For a shape with 𝑁

facets, these three conditions provide 3𝑁 equations for 3𝑁 unknowns, and thus the shape

evolution is known, with [15]

𝑣𝑖 =
6𝑀𝑖(𝜅

𝛾
𝑖 − 𝜇𝑖) + 3𝐽𝑖𝐿𝑖

𝐿2
𝑖

. (7.2)

The requirements that the mass flux is continuous and that the chemical potential is smooth

and continuous provide topological constraints on the shape evolution. These constraints

are useful for bounding the possible topologies, discussed below.

For a smooth evolution, the driving force, and therefore the chemical potential, must be

finite. This implies that the neighbors of a facet 𝑖 must have the same orientation as the

facet either immediately preceding or following the equivalently-oriented facet on the Wulff

shape. If this were not the case, the WMC (weighted-mean curvature) of intervening facets,

with length zero, would be infinite unless 𝜎𝑖 = 0. If a body were fashioned with a corner

that is too sharp, the missing facets would instantaneously appear (above 0K) and blunt the

corner. This “neighbor constraint” limits the possible geometries.

During shape evolution, the topology may change due to the formation of new facets

or removal of existing facets. The former is referred to as “stepping,” while the later is

“merging.” The formation of a step may be thought of as the accumulation of many atomic

ledges. During these topological changes, the chemical potential must change continuously

with time. If the chemical potential did not change continuously with time, there would be
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an instantaneous change in the shape morphology, an infinite driving force, and an infinite

flux, which is not physically possible. To satisfy continuity, if a new facet is introduced, it

must initially have zero length. Because the WMC is inversely related to 𝐿𝑖 and Λ𝑖 is a

positive constant, 𝜎𝑖 must be zero to avoid a singularity. Thus, all new facets must have

𝜎𝑖 = 0, as in Figure 1-2(b). Similarly, all facets that disappear must have 𝜎𝑖 = 0 so their

length can go to zero, and the adjacent facets merge.

Another constraint is that steps can only form at places on existing facets where the

chemical potential goes through zero. Introducing a zero length facet where the chemical

potential is zero has no detectable effect, and the step can then grow to finite length in the

next time instant without discontinuous changes in the chemical potential or morphology.

Finally, steps can only form when

𝜎𝑖

∫︁ 𝐿𝑖

0

𝜇𝑖(𝑠)𝑑𝑠 ≥ Λ𝑖 (7.3)

is satisfied for both pieces of the original facet. If this inequality is not satisfied, the pieces

of the original facet will have relative velocities driving them to re-merge.

The work by Carter et al., summarized above, provides a complete description the evo-

lution of fully-faceted bodies via surface diffusion in 2D, which we implement in this work

to describe retraction of the edges of thin films.

7.2 Model implementation

The model developed by Carter et al. was implemented in Wolfram Mathematica. The

equilibrium shape for the film, the diffusivity on each facet, and the initial film configuration

are the inputs. To treat dewetting, the equilibrium shape of the film was taken to be the

Winterbottom shape [83], which is essentially the Wulff construction, but incorporating the

substrate-film interfacial energy. The surface energy per unit area on the substrate-film

interface is 𝛾𝑆𝐹 −𝛾𝑆𝑉 , where 𝑆𝑉 refers to the substrate-vapor interface and 𝑆𝐹 refers to the

substrate-film interface. This is the relevant quantity because for every unit of 𝑆𝐹 interface

removed during dewetting, a unit of 𝑆𝑉 is created.
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To iterate through time, the chemical potential on each facet is computed using Equa-

tions 7.1 and 7.2 and a step is introduced at all points where the chemical potential is zero.

The “sense” of the step (whether its normal is that of the preceding facet or the following

facet on the equilibrium shape) is opposite the derivative of the chemical potential at the

zero point [15]. To ensure that the step is allowed, Equation 7.3 is computed for each half of

the host facet. The step is kept only if the inequality is satisfied for both halves. Any steps

on the film-substrate interface are discarded.

The surviving steps are checked again, this time for stability with respect to time. If the

equality in Equation 7.3 is exactly satisfied, the relative velocities of the two halves are zero.

Only steps which will grow in length are kept; steps which would shrink and disappear in

the subsequent time step are discarded. This leaves only the steps which are stable. The

exact placement of these steps is found using a binary search to choose the position that will

make their initial velocity zero.

The stable steps are incorporated into the shape, and the chemical potential, velocity,

and flux are recalculated for each facet. If the velocities of adjacent facets will cause them to

become coplanar, then the intervening facet must reach zero length and the adjacent facets

will merge. This is tested two ways: either the two adjacent facets are separated by a very

small distance and have velocities such that they will become coplanar, or the two adjacent

facets actually “overshoot” being coplanar, which would cause the intervening facet to change

“sense.” In either case, a merge occurs.

Finally, the shape is checked for major topological changes, or “breaking.” If two corners

or edges, which are not adjacent along the s coordinate, are touching (or within a few atomic

radii of each other), the film is split into two or more disconnected parts. This occurs, for

example, during pinch-off due to film thinning.

With stepping, merging, and breaking complete, the chemical potential, velocity, and

flux are again recalculated for each facet. The time step 𝑑𝑡 is set by the Courant-Friedreichs-

Lewy (CFL) condition, i.e., 𝑑𝑡 cannot exceed 1/𝑣max to ensure numerical stability, where

𝑣max is the speed of the fastest-moving facet on the shape at the current time, in units of

𝑠−1. This choice of time step, multiplied by a “safety factor” of 0.001 to ensure numerical

convergence, guarantees volume conservation. Each facet is then moved along its normal by
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an amount 𝑣𝑖𝑎0𝑑𝑡, where 𝑎0 is the atomic size, and the whole process is repeated.

In practice, stepping, merging, and breaking are quite rare. Stepping usually occurs in

the first time step because the film is far from equilibrium, and the creation of new facets is

necessary to accommodate the tremendous flux of material from the film edges onto the top

of the film. Merging typically occurs near the end of the evolution, as the two ends of the

retracting film meet. Breaking may or may not occur, and depends on a variety of factors,

including relative diffusivity values for different facets and the initial aspect ratio of the film,

discussed in more detail below.

7.3 Reference film

Edge retraction is discussed below for a reference film with an octagonal Wulff shape (Fig-

ure 7-1). This shape is chosen because FCC and BCC materials usually have Wulff shapes

which are octagonal in cross-section, i.e., shapes composed of (100), (111), and (110)-type

facets. The equivalent contact angle of the film on the substrate is taken to be 90∘, resulting

in an equilibrium shape equivalent to the Wulff shape truncated at its center (Figure 7-

1) [83]. The reference diffusivity is taken to be that of Ni at 900∘C on the (100) facet,

𝐷0 = 5.53× 10−11𝑚2/𝑠 [48]. This value was chosen because it falls roughly in the middle of

the range observed for FCC materials [2]. The diffusivity of the substrate-film interface was

taken to be 10−5𝐷0 because interfacial diffusivities are usually several orders of magnitude

smaller than surface diffusivities, and the model is insensitive to this value as long at it is

less than ≈ 10−2𝐷0. The reference surface energy is taken to be 2.0 𝐽/𝑚2. This was cho-

sen because solid-vapor interfaces for metals typically have surface energies on the order of

0.4 − 4 𝐽/𝑚2 [81], and 2 𝐽/𝑚2 falls in the middle of this range. The reference film shape is

100 𝜇𝑚 wide and 100 𝑛𝑚 thick. This size was chosen for comparisons with the experiments

of Kim et al. [34]. The reference annealing time is 24 hours.
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Reference equilibrium shapes

side

angledtop

side

angled

top

substrate

Figure 7-1: The reference equilibrium shapes are shown. Left: the Wulff shape is assumed
to be octagonal. There are three crystallographically-distinct facets present: the side facet,
the angled facet, and the top facet. Right: the Winterbottom shape for the film. The Wulff
shape of the film material is truncated through its inversion center to achieve an equivalent
wetting angle of 90∘.

The retraction of an anisotropic film edge with time
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Figure 7-2: The reference film edge profile is shown for various times after the annealing
begins. The aspect ratio is 1:1, and the units of both the vertical and horizontal scale are
micrometers.

7.4 Results and discussion

7.4.1 Reference film retraction

The evolution of a fully-faceted thin film begins with a change in topology. At time 𝑡 = 0, a

step is introduced on the top facet 2̃00 𝑛𝑚 from each of the film edges. This step initiates

the formation of a rim. Subsequently, the rim expands both in height and width as the edges

retract (Figures 7-2 and 7-3). The bulk of the film thins linearly with time as material is

driven towards to rims. The thinning has a slope of −1.24 × 10−4/hr, where the current

height is normalized to the initial height. Integrated over the first hour of retraction, the

bulk film contributes an area of 0.0061 𝜇𝑚2 to the rim, representing just 3% of the total

rim area. The formation of a localized valley is not favorable, and even if one is artificially

inserted, it quickly fills and disappears.
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Time scalings of an anisotropic retracting film edge
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Figure 7-3: The retraction distance, the rim height, and the rim width for the reference film
as a function of time. The 𝑐𝑡𝑛 fit is shown adjacent to each curve. The rim height fit has
the constant included because the rim height at 𝑡 = 0 is 0.1 𝜇𝑚.

7.4.2 Numerical sensitivity

The evolution is initially fast and slows with time. Therefore, the model has a tendency to

over-estimate the retraction distance, due to the explicit discretization in time. However, if

the CFL condition is satisfied, this overestimation is generally less than a percent, and has

first-order convergence as the time step is decreased.

7.4.3 The influence of film parameters on the rate of retraction

Diffusivity anisotropy

Diffusivities were varied for the facets present on the reference film to investigate the influence

of diffusivity anisotropy on edge retraction. The results were fit to 𝑥𝑜 = 𝑐𝑡𝑛, where 𝑥𝑜 is the

retraction distance, 𝑡 is time, and 𝑐 and 𝑛 are constants, as shown in Figure 7-3. Changes

in the diffusivities have strong effects on the absolute magnitudes of the retraction distances

(𝑐), but have relatively weak effects on the scaling exponent 𝑛. Using the nomenclature in

Figure 7-3, the diffusivity on the top facet has the biggest impact on 𝑐, the diffusivity of the

angled facet has roughly half the effect of the top facet, and the diffusivity on the side facet

is inconsequential. These dependancies are illustrated in Figure 7-4. If the diffusivities on

the top and side facets are adjusted together, such as in the case of 4-fold symmetry, the
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The effect of diffusivity on edge retraction
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Figure 7-4: The diffusivity on each set of symmetrically-related facets was changed to show
its effects on the retraction distance vs. time. The 𝑐𝑡𝑛 fit parameters for each curve are
listed in Table 7.1.

retraction distance is not significantly different from the case in which the diffusivity on only

the top facet is adjusted.

To identify which individual facet has the greatest effect on the retraction rate, the

symmetry was broken, and the diffusivity of each facet was adjusted independently. The

results are shown in Figure 7-5. The diffusivity on the facet at the top of the rim has the

largest influence, followed by the ramp, angled, side, and bulk facets. This ordering can be

understood by considering the relationship between the chemical potential and the mass flux,

as shown in Figure 7-6. The chemical potential profile evolves to the shape of the one shown

in this figure within a few minutes of the start of retraction, and gradually decreases in peak

magnitude with time. The diffusivity on the facet which must accommodate the highest flux

will set the retraction rate. The larger the chemical potential gradient, the higher the flux,

and therefore the more sensitive the retraction rate is to the diffusivity on that facet.

The diffusivity on the bulk facet has almost no effect on the retraction rate, despite being

orders of magnitude larger than the other facets. However, its effects are reversed from the

rest of the facets. Slowing the bulk facet diffusivity accelerates retraction because the flux

of material from that facet is towards the rims. Feeding the rim with material from the bulk

offsets diffusion from the triple line.
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The diffusivity on each facet and fit parameters for the curves in Figure 7-4
Curvel label 𝐷top/𝐷0 𝐷angled/𝐷0 𝐷side/𝐷0 𝑐 𝑛
Reference 1 1 1 1.740 0.436
All fast 10 10 10 4.795 0.419
All slow 0.1 0.1 0.1 0.585 0.464
Fast top 10 1 1 2.835 0.394
Slow top 0.1 1 1 0.701 0.457

Fast angled 1 10 1 1.996 0.440
Slow angled 1 0.1 1 1.076 0.414
Fast sides 1 1 10 1.745 0.436
Slow sides 1 1 0.1 1.705 0.438

Fast top & sides 10 1 10 2.838 0.394
Slow top & sides 0.1 1 0.1 0.672 0.465

Table 7.1: The diffusivity on each facet and fit parameters for each curve shown in Figure 7-4
are listed.

The effect of each facet on edge retraction
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Figure 7-5: The effect of changes in the diffusivity on individual facets on the retraction
distance vs. time. The labeling convention is shown in the schematic above the plot. “Slow”
corresponds to a diffusivity of 0.1 𝐷0 on the facet of interest and 1 𝐷0 on all other facets,
while “fast” corresponds to 10 𝐷0 on the facet of interest. The fit parameters to each curve
are tabulated in Table 7.2.
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The chemical potential and mass flux on the film edge
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Figure 7-6: The chemical potential and mass flux as a function of the arc length at 𝑡 = 24
hours. The curves are divided into four segments corresponding to the four facets shown
in the small figure above the plot. Chemical potential is zero on an infinitely long facet.
The chemical potential varies parabolically on each facet with curvature proportional to the
normal velocity of the facet. The mass flux is proportional to the derivative of the chemical
potential with respect to arc length. The curves for the bulk facet and substrate interface
are not shown because they are orders of magnitude larger in length and have fluxes that
are several orders of magnitude smaller than the four facets shown. These data are for the
reference film.
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The diffusivity on each facet and fit parameters for the curves in Figure 7-5
Curvel label 𝐷side/𝐷0 𝐷angled/𝐷0 𝐷top/𝐷0 𝐷ramp/𝐷0 𝐷bulk/𝐷0 𝑐 𝑛
Reference 1 1 1 1 1 1.740 0.436
Fast sides 10 1 1 1 1 1.745 0.436
Slow sides 0.1 1 1 1 1 1.705 0.438
Fast angled 1 10 1 1 1 1.826 0.443
Slow angled 1 0.1 1 1 1 1.144 0.410

Fast top 1 1 10 1 1 2.838 0.412
Slow top 1 1 0.1 1 1 0.701 0.457
Fast ramp 1 1 1 10 1 1.877 0.432
Slow ramp 1 1 1 0.1 1 1.309 0.453
Fast bulk 1 1 1 1 10 1.740 0.422
Slow bulk 1 1 1 1 0.1 1.740 0.438

Table 7.2: The diffusivity on each facet and fit parameters for each curve shown in Figure 7-5
are listed.

Value of surface energies

The relative values of surface energy of each facet must fall within a narrow range of each

other because the Wulff construction excludes orientations with significantly different ener-

gies. For the octagonal Wulff shape explored here with = 𝛾top, both facets appear only if

1/𝑠𝑞𝑟𝑡2 ≈ 0.707 < 𝛾angled/𝛾top <
√

2 ≈ 1.414. As a result, changing the relative surface

energies has a relatively weak effect on the retraction distance. The retraction distance for

𝛾angled/𝛾top = 1.3 is about 1.24 times faster than that for 𝛾angled/𝛾top = 0.8. The expo-

nent is even more weakly affected by surface energy changes in this range, 𝑛 = 0.442 for

𝛾angled/𝛾top = 1.3 and 𝑛 = 0.426 for 𝛾angled/𝛾top = 0.8.

The effect of relative surface energy is secondary to the effect of differences in diffusivity.

Changing the relative surface energy changes the length of each facet exposed during the

retraction, allowing the longer facet’s diffusivity to have a stronger effect.

While the relative values of the surface energies have a weak effect on the retraction rate,

the absolute values of the surface energies have a stronger effect. However, in nature, surface

energies generally fall in the range ≈ 0.5 𝐽/𝑚2 to 4 𝐽/𝑚2. The effects of changing 𝛾0 over

this range are shown in Figure 7-7. Again, the exponent is only very weakly affected.
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The effect of surface energy on edge retraction
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Figure 7-7: The influence of the absolute value of surface energy on the film edge retraction
distance vs. time. Each curve is labeled with the surface energy in 𝐽/𝑚2. The 𝑐𝑡𝑛 fit to each
curve is shown in Table 7.3.

The 𝑐𝑡𝑛 fit parameters for each curve in Figure 7-7
Curve label 𝑐 𝑛
0.4 𝐽/𝑚2 0.794 0.468
1 𝐽/𝑚2 1.231 0.455

Reference, 2 𝐽/𝑚2 1.697 0.447
3 𝐽/𝑚2 2.041 0.443
4 𝐽/𝑚2 2.323 0.440

Table 7.3: The 𝑐𝑡𝑛 fit parameters for each curve in Figure 7-7 are listed.
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Effective wetting angle: cos−1 𝛾𝑆𝑉 −𝛾𝑆𝐹

𝛾𝐹𝑉

The retraction rate is extremely sensitive to 𝛾𝑆𝑉 −𝛾𝑆𝐹 , where 𝛾𝑆𝑉 is the surface energy of the

substrate in contact with vapor and −𝛾𝑆𝐹 is the substrate-film interfacial energy. Although

the physical contact angle between the film and the substrate is highly constrained by the

anisotropy, an equivalent to the isotropic contact angle can be defined as cos−1 𝛾𝑆𝑉 −𝛾𝑆𝐹

𝛾𝐹𝑉
, where

𝛾𝐹𝑉 is the surface energy of the top facet. Figure 7-8 shows the results of systematically

varying 𝛾𝑆𝑉 − 𝛾𝑆𝐹 . The film retraction accelerates for higher equivalent contact angles, and

approaches zero as the equivalent contact angle goes to zero. The power-law exponent is 1

in the limit of complete wetting and at short times, and approaches 2/5 at long times. The

latter is in excellent agreement with the isotropic model [85].

For contact angles less than 65.5∘, the Winterbottom shape is trapezoidal, and the side

facets are absent. Similarly, for contact angles greater than 114.5∘, the Winterbottom shape

has eight sides and includes the angled facets below the sides. However, the abrupt transition

in topology as the contact angle changes does not cause an abrupt change in the retraction

rate. This is because the influence of each facet is proportional to the length of that facet

on the Winterbottom shape, so the transition is smooth.

Film thickness

If the width of the film is fixed and the thickness is varied, a strong effect on the retraction

rate is observed (Figure 7-9). The total retraction distance per unit time scales as 𝐻−1/2,

where 𝐻 is the film thickness. The exponent is slightly time-dependent, being -0.520 at 𝑡 = 1

hour and -0.483 at 𝑡 = 24 hours. F or the thinnest film, the exponent in the 𝑐𝑡𝑛 fit is 0.382

for the 10 𝑛𝑚-thick film immediately before it undergoes pinch-off by film thinning after 56

hours of retraction. This indicates that 2/5 is not the minimum value the exponent may

have.

Film width

The retraction rate is largely insensitive to the initial width of the film. However, the

exponent and retraction rate do increase slightly as the film width increases. The retraction
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The effect of contact angle on edge retraction
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Figure 7-8: The effect of changing the 𝛾𝑆𝑉 − 𝛾𝑆𝐹 on the retraction distance vs. time. Each
curve is labeled with the equivalent contact angle, cos−1 𝛾𝑆𝑉 −𝛾𝑆𝐹
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The effect of film thickness on edge retraction

Re
tra
ct
io
n
D
ist
an
ce
Hmm
L

Time HsecondsL0.1 1 10 102 103 104 105 106
0.001

0.01

0.1

1

10

10
25

50
75
100 150 200 300 400

2
5

Figure 7-9: The effect of changing the thickness of the film on the retraction distance as a
function of time. Each curve is labeled with the thickness of the film, in nanometers.
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distance of a 25 𝜇𝑚-wide film is only 8.8% less than that of an 800 𝜇𝑚-wide film. The

exponent is 0.418 for the 25 𝜇𝑚-wide film, and 0.443 for the 800 𝜇𝑚-wide film. The width

dependence is due to the flux of material from the bulk into the rims. If the diffusivity of

the bulk facet is set to 10−5𝐷0, there is no width dependence. This follows because the two

retracting edges are independent until they impinge. The case of zero diffusivity on the bulk

facet represents an “infinitely wide” film. The 𝑐𝑡𝑛 power-law fit for 24 hours of retraction is

𝑐 = 1.742 and 𝑛 = 0.438. For 250 -1000 hours of retraction, the power law fit is 𝑐 = 1.903

and 𝑛 = 0.415.

Facet orientation

The orientation of the normal to the angled facet (Figure 7-1) can be changed to represent

different crystallographic orientations. The reference film has a 45∘ normal, as would be the

case for a cubic crystal with (001) as the top facet, (110) as the angled facet, and (100) as

the side facet. As an example of another common orientation, if the normal is 62.6∘ above

the horizontal, this could represent a slice through a cubic material with (011) as the top

facet, (111) as the angled facet, and (100) as the side facet. The model was found to be

completely insensitive to the orientation of the angled facet. The exponent in the power

law fit was changed by less than 0.1% by changing the orientation. The retraction distance

was changed by less than 1%. This follows because the model is essentially one dimensional,

tracking properties along the surface coordinate only.

Film edge geometry

The model is insensitive to the initial geometry of the film edge. A nearly rectangular film

edge was constructed, having an angled facet which is 4 𝑛𝑚 in length and a side facet 96 𝑛𝑚

long, and was compared to a nearly trapezoidal film edge, having an angled facet which was

133 𝑛𝑚 long and a side facet 6 𝑛𝑚 long. After 24 hours of retraction, the retraction distance

differed by less than 0.4% due to changes in the film edge profile. This is because the film

edge reaches the shape shown in Figure 7-2 very quickly, within about 5 minutes, so it has

little time to influence the retraction rate.
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Number of facets

The model is insensitive to the number of facets present on the equilibrium shape. The

retraction distance of materials with square, hexagonal, and 16-gonal Wulff shapes was found

to vary by less than 4% from the retraction distance of a film with the octagonal reference

Wulff shape after 24 hours. The exponent of retraction is unchanged. The only systematic

differences are that the bulk of the film thins faster and the rim is taller when more facets

are present. This implies that in the limit of infinite facets (isotropy), the bulk film would

be driven to thin at a high rate and one might expect a valley to form as diffusion can no

longer supply material fast enough to achieve uniform thinning.

7.4.4 Comparison with experiments

The properties of Ni at 890∘C were input into this model and compared with experimental re-

sults for the retraction of 130 𝑛𝑚-thick Ni films on MgO for four crystallographically-distinct

orientations. The results of this study are discussed at length in Kim et al., summarized

in Figure 3 [34]. Both experiments and the model showed retraction distances varying by

nearly a factor of 2, depending on the edge orientation. The model matched experimental

results to within 10% for a (001) film with an edge retracting in the [100] direction, and

a (011) film with an edge retracting in the [100] direction. The model over-estimated the

retraction distance for a (001) film retracting in the [110] direction by nearly a factor of 2,

and under-estimated the retraction of a (011) film retracting in the [110] direction by about

50%. The discrepancy between the model and experiment can be accounted for by error in

the reported values of diffusivities for Ni on the facets present, and the uncertainty in the

interfacial energy between Ni and the MgO substrate.

7.4.5 Pinch-off

This model predicts that localized valleys do not form ahead of the retracting rim with a flat

top surface, which is distinct from isotropic and non-fully faceted anisotropic models [85, 27].

Experiments indicate that for fully-faceted films, valleys are absent, in agreement with this

model [27, 8, 43, 34]. Even if valleys are artificially introduced in the model at 𝑡 = 0, they
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Pinch-off due to bulk film thinning
t = 0

10 hr
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Figure 7-10: Profiles of a (a) 40 𝑛𝑚-thick and (b) 30 𝑛𝑚-thick 100 𝜇𝑚-wide film dewetting
until equilibrium is reached. The 40 𝑛𝑚-thick film thins during dewetting, but the rims
interact before pinch-off is achieved. The 30 𝑛𝑚-thick film thins until the bulk of the film
has zero thickness. The time shown is the number of hours after the initiation of dewetting.

quickly fill in and disappear because they are not stable morphologies. However, the bulk

film is thinning, and if the aspect ratio of the film is sufficiently high, the film can thin to

zero thickness before the retracting edges meet (Figure 7-10(b)). Bulk thinning means that

the film acts as one large valley, donating material to both rims.

For a 100 𝜇𝑚-wide film, pinch-off by film thinning takes a few hundred hours. The

thickness for which pinch-off occurs by film thinning in a 100 𝜇𝑚-wide film is between 30

and 40 𝑛𝑚. For thicker films, the rims interact before pinch-off occurs (Figure 7-10(b)) and

the thickness at the center begins to go up (Figure 7-11). In this case, the rims merge.

7.4.6 Valley formation

A valley can be produced with this model if there is no equilibrium facet parallel to the

substrate, so that the top of the film instead has a sawtooth morphology (Figure 7-12).

Such a geometry could be generated if the top surface of a thin film underwent a faceting

instability. A faceting instability occurs when a flat physical surface does not correspond to

an equilibrium facet (a facet on the Wulff shape). In this case, the originally flat surface

becomes composed of alternating equilibrium facets [71, 25].

If the top of the film has a sawtooth morphology, then as the edge retracts, a valley

develops (Figure 7-12). The film is initially 100 𝑛𝑚 thick on average, and is identical to the
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The rate of bulk film thinning
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Figure 7-11: The bulk film height normalized to the initial film thickness as a function of
time is shown for a 100 𝜇𝑚-wide film. The 30 𝑛𝑚-thick film undergoes pinch-off after 319
hours, and leaves 2 lines of material. The 40 𝑛𝑚 thick film initially thins, but as the two
rims approach the center, they begin to interact and cause thickening, ultimately merging
and leaving a single line of material. The final height of the 40 𝑛𝑚-thick film is 38.6 times
its original height.

reference film, except that the octagonal Wulff shape was rotated by 22.5∘ so that a vertex,

not a facet, is at the top of the film. Pinch-off by valley formation is achieved after 57.3

minutes. The final morphology and time to pinch-off is insensitive to the length scale of the

sawtooth pattern of facets. The retraction rate up until pinch-off is very similar to that of

the reference film. The film profile shows not only a rim and a valley, but also a secondary,

smaller rim and valley. This is similar to the isotropic case, which has a decaying, undulatory

profile [85].

7.5 Summary and conclusions

A two-dimensional model for the capillarity-driven evolution of bodies with fully-faceted

shapes developed by Carter et al. [15] was adapted to modeling of solid-state dewetting of

fully-faceted thin films. Capillarity-induced retraction of a film edge was studied in detail,

and the effects of adjusting various physical parameters on the retraction rate were explored.

The major factors which determine the retraction rate of a thin film, according to this

model, are: the film thickness, the atomic diffusivity on the top facet and the angled facet,
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Anisotropic edge retraction with a faceting instability on the top surface
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Figure 7-12: The retraction of a film with a sawtooth morphology on the top surface. The
scale bar at the bottom is in micrometers.

the equivalent contact angle of the film on the substrate, and the absolute value of the surface

energy. The edge retraction distance scales with the film thickness 𝐻 as 𝐻1/2.

Although it is not a bad approximation, edge retraction does not obey a power-law

because the rim geometry is not self-similar over time. Instead, the length scale of the rim

grows relative to the original thickness of the film. The bulk thinning of the film adds to

this effect. The same is true for isotropic films, as discussed in Chapter 4. Therefore, no

universal value of the power-law exponent 𝑛 is expected.

When applied to a real system, this model shows good agreement with experimental edge

retraction results for the Ni on MgO system, discussed at length by Kim et al. [34]. In this

case, the retraction distance scales with time as 𝑐𝑡𝑛, where 𝑐 is a constant and 𝑛 ≈ 2/5.

The increase in the thickness of the rim and the rim width scale with 𝑛 ≈ 1/5. These

scaling parameters are not affected by reasonable variations in facet surface energies or the

diffusivities on the facets. However, the proportionality constant 𝑐 is strongly affected by the

diffusivities, especially on the top facet. The energy per area of the film substrate interface,

which affects the equivalent contact angle, can strongly affect 𝑛.

In isotropic models, valleys form ahead of retracting rims and can eventually lead to

pinch-off. In experimental studies of single-crystal films, valleys are often absent at retracting

edges. The model presented here predicts that pinch-off does not occur through localized
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valley formation in fully-faceted films when the top facet is an equilibrium facet. Instead,

the entire bulk film acts as the valley, donating material to the rims. However, if a non-

equilibrium top facet decomposes due to a faceting instability, valleys do form ahead of the

rim and can lead to pinch-off.
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Chapter 8

A phase field model for dewetting

8.1 Introduction

Mullins [54] developed an expression that describes the motion of a surface due to capil-

larity. This equation of motion can describe dewetting by selecting appropriate boundary

conditions [75, 85]. Carter et al. [15] developed the equivalent equations of motion for a

strongly-anisotropic surface, and Zucker et al. [96] developed the corresponding dewetting

boundary conditions. In general, the governing equations of motion for the surface have no

closed-form solution, and must be solved numerically.

Surface diffusion can drive two separate objects to merge, or a split into separate bodies

(see Figure 8-1). When anisotropy is present, it may also be necessary to introduce new

facets or to remove existing ones. In two dimensions, these topological changes can be

managed [85, 96]. However, in three dimensions, the number of possible topological changes

becomes intractable.

Using a phase-field method circumvents the issue of managing topological changes. The

phase-field method (and the closely-related level-set method) do not explicitly track the

position of the interface. Instead, they re-formulate the problem in a higher-dimensional

space. The equations of motion apply to every point in the higher-dimensional space, and

the interface is represented by a contour, as shown in Figure 8-1. In a phase field, topological

changes are trivial. Such changes correspond to a smooth, continuous change of height,

rather than a fundamental change in the domain of the problem. The “price” paid for easily
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Topological changes in phase field versus explicit interface models

Phase field

Real geometry

Figure 8-1: A schematic of two example geometries and the corresponding phase field repre-
sentations are shown. The heavy black line is the interface. The drawings on the left versus
on the right show the system before and after a topological change. The phase field does not
undergo a topological change, even though the contour line has.

managing topological changes is that the computational domain increases in size: a problem

originally confined to a 2D surface becomes a problem in an entire 3D space. In addition,

the interface becomes diffuse, rather than sharp, and the equations of motion and boundary

conditions must be represented in the phase-field space. The phase-field formulation for

dewetting is discussed in the following section.

8.2 Phase-field formulation for dewetting

8.2.1 Isotropic equations of motion

In the case of a sharp interface, the total energy due to capillarity is

𝐸 =

∫︁
𝐴

𝛾(𝐴)𝑑𝐴, (8.1)

where 𝐴 is the interface area and 𝛾(𝐴) is the surface energy density of the interface. For

an isotropic material, there are three possible values of 𝛾(𝐴): 𝛾𝐹𝑉 , the film-vapor interface;

𝛾𝑆𝑉 , the substrate-vapor interface; and 𝛾𝐹𝑆, the film-substrate interface. The total energy
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becomes

𝐸 = 𝛾𝐹𝑉

∫︁
𝐹𝑉

𝑑𝐴 + 𝛾𝑆𝑉

∫︁
𝑆𝑉

𝑑𝐴 + 𝛾𝐹𝑆

∫︁
𝐹𝑆

𝑑𝐴, (8.2)

where 𝐹𝑉 , 𝑆𝑉 , and 𝐹𝑆 are the film-vapor, substrate-vapor, and film-substrate interfaces.

However, the above expression only works for a sharp interface model. In a phase-field

approach, the position of the interface is not known. Therefore, the integral must be taken

not just over the surface, but over the entire phase-field domain. An equivalent expression

for the total energy is sought that applies for a diffuse interface.

The phase-field parameter 𝜑 is (arbitrarily) assigned a value of 1 inside the film and 0 in

the surrounding vapor. Near the interface, 𝜑 transitions from one value to the other over a

region of characteristic size 𝜖. To compute a total energy over the entire phase-field domain

that is consistent with the expression for 𝐸 above, the integrand must be zero where 𝜑 is

constant. Furthermore, the form of the integrand must converge to Equation 8.2 as 𝜖 goes

to zero.

The energy functional

𝐸𝐹𝑉 =

∫︁
Ω

𝑓𝐹𝑉 𝑑Ω, (8.3)

where Ω is the phase-field domain, converges to 𝛾𝐹𝑉

∫︀
𝐹𝑉

𝑑𝐴 in the small-𝜖 limit when 𝑓𝐹𝑉 is

equal to

𝑓𝐹𝑉 =
3
√

2𝛾𝐹𝑉

4

(︁1

𝜖
𝑓(𝜑) +

𝜖

2
|∇𝜑|2

)︁
. (8.4)

𝑓𝐹𝑉 is the Ginzburg-Landau energy density. The prefactor is the “mixing” energy density,

i.e., the energy density in the diffuse interface region [51]. The first term that depends on 𝜑

is the “double-well potential,”

𝑓(𝜑) =
1

4
𝜑2(𝜑2 − 1). (8.5)

It represents the free energy density of a spatially-homogeneous region, and its minima

are at 1 and 0 to correspond with the chosen phase-field values in the film and vapor.

This homogeneous term effectively penalizes chemical mixing, which drives the film-vapor

interface to become thinner. The second term in Equation 8.4 that depends on 𝜑 is the

gradient energy term. It represents the free energy of a spatially-inhomogeneous region,

and the faster the change in composition, the larger the penalty. This inhomogeneous term
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prevents abrupt changes in phase, which drives the interface to become thicker.

The competition between the homogeneous and inhomogeneous terms in 𝑓𝐹𝑉 leads to an

equilibrium profile across the interface

𝜑 =
1

2

(︁
1 + tanh

𝑑

2
√

2𝜖

)︁
, (8.6)

where 𝑑 is the signed distance to the center of the interface [79]. This expression shows that

the characteristic width of the diffuse interface is
√

2𝜖.

Equation 8.3 only accounts for the film-vapor interfacial energy. The energy contribu-

tion from the substrate interface is found following Jiang et al. [36]. The substrate energy

integrand 𝑓𝑆 must be chosen so that 𝑓𝑆 = 𝛾𝐹𝑉 where 𝜑 = 0 and 𝑓𝑆 = 𝛾𝐹𝑆 where 𝜑 = 1. The

derivative of 𝑓𝑆 with respect to 𝜑 should also vanish far from the triple line so that the free

energies of the bulk phases are unaffected by the presence of the substrate. The expression

𝑓𝑆 =
𝛾𝑆𝑉 + 𝛾𝐹𝑆

2
+

4𝜑3 − 6𝜑2 + 1

2
(𝛾𝑆𝑉 − 𝛾𝐹𝑆) (8.7)

meets these requirements [35, 91].

In all, the total energy functional for isotropic dewetting is

𝐸 =

∫︁
Ω

𝑓𝐹𝑉 𝑑Ω +

∫︁
Γ

𝑓𝑆𝑑Γ, (8.8)

where Γ is the substrate surface (this is taken to be the bottom edge of the domain Ω).

The chemical potential 𝜇 is the change in energy of a system with change in the volume

of a phase. The substrate terms do not contribute to changes in 𝜇 because the substrate is

immobile. 𝜇 should also be independent of the mixing energy density value. Therefore, 𝜇

is the first variational derivative of Equation 8.3 with respect to 𝜑, divided by the mixing

energy density:

𝜇 =
4

3
√

2𝛾𝐹𝑉

𝛿𝐸𝐹𝑉

𝛿𝜑
=

1

𝜖
𝑓 ′(𝜑) − 𝜖∆𝜑. (8.9)

Following Fick’s first law, the mass flux �⃗� is

�⃗� = −𝑀∇𝜇, (8.10)
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where 𝑀 is the mobility. 𝑀 must be chosen so that only surface atoms can move. With 𝑀

having the form

𝑀(𝜑) =
4

𝜖
𝜑(1 − 𝜑), (8.11)

the phase-field equations converge to motion by capillary-driven surface diffusion as 𝜖 goes

to zero [11].

Finally, Fick’s second law gives the change in the phase field with time,

𝜕𝜑

𝜕𝑡
= −∇ · �⃗� = ∇ · (𝑀(𝜑)∇𝜇). (8.12)

Equations 8.9 and 8.12 together are the equations of motion, and they are equivalent to the

Cahn-Hilliard equation, except that the scalar mobility is replaced with a function of 𝜑 [11].

8.2.2 Isotropic boundary conditions

Jiang et al. provide the boundary conditions to treat solid-state dewetting with the above

phase-field formulation [36]. There are two boundary conditions on each edge of the compu-

tational domain Ω. First, material cannot leave or enter the domain across any boundary,

which is enforced when ⃒⃒ 𝜕𝜇
𝜕𝑛𝑏

⃒⃒
= 0, (8.13)

where 𝑛𝑏 is the normal vector to the boundary of the domain. The second boundary condition

fixes the gradient in the phase field variable. On the substrate surface, the Young’s condition

is maintained by satisfying ⃒⃒ 𝜕𝜑
𝜕𝑛𝑏

⃒⃒
= −𝜑(𝜑− 1)√

2𝜖
cos 𝜃, (8.14)

where 𝜃 is the equilibrium contact angle between the film and substrate, measured inside

the film. The factor of 𝜑(𝜑 − 1) ensures that 𝜕𝜑
𝜕𝑛𝑏

is zero far from the interface, so that the

substrate does not affect the chemical potential of the bulk phases. The factor of
√

2𝜖 is the

characteristic width of the interface. This boundary condition is depicted in Figure 8-2.

On all other boundaries, periodic boundary conditions are chosen, which is equivalent to
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The dewetting boundary condition in a phase field

θ ϕ=1

ϕ=0

∂ϕ
∂nb

√2 ε
vapor

film

substrate

Ω

Γ
Figure 8-2: The region of the phase field near the triple line (i.e., where the substrate, film,
and vapor phases meet) is shown. The substrate is outside the domain volume Ω, and Γ is
the edge of Ω that coincides with the substrate surface. The contact angle 𝜃 is shown, as is
the relevant vector for computing boundary conditions, 𝜕𝜑

𝜕𝑛𝑏
. The characteristic width of the

interface is
√

2𝜖.

a 90∘ contact angle: ⃒⃒ 𝜕𝜑
𝜕𝑛𝑏

⃒⃒
= 0. (8.15)

8.2.3 Anisotropic regularization

Anisotropic surface energies give rise to non-spherical equilibrium shapes. “Weak” anisotropy

refers to the case when the surface energy as a function of orientation, 𝛾(𝑛), is convex

everywhere. All orientations are present on the equilibrium shape. “Strong” anisotropy

refers to the case when 𝛾(𝑛) is non-convex, i.e., 𝑑𝛾/𝑑𝑛 < 0 for some orientations. Sharp

edges or corners are present on the equilibrium shape, representing discontinuities in the

surface orientation.

In a numerical method, discontinuities cannot be represented due to finite spatial resolu-

tion, and they cause numerical instability. Therefore, the sharp edges in strongly anisotropic

systems must be removed. Rounding the corners can be achieved by the addition of a term

to the energy functional that penalizes abrupt changes in orientation.

The Willmore energy is a measure of how much a surface differs from a sphere. For a
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closed surface, it is the integral of the square of the Gaussian curvature 𝐻, 𝐸𝑊 =
∫︀
𝑠
𝐻2𝑑𝐴.

Including this energy in the phase field formulation does not significantly alter smooth por-

tions of the geometry, but it does prohibit the formation of sharp corners. Rätz et al.

developed the phase-field representation of this energy, following De Giorgi:

𝐸𝑊 =
𝛽

2𝜖3

∫︁
Ω

𝐻2𝑑Ω =
𝛽

2𝜖3

∫︁
Ω

(︀
𝑓 ′(𝜑) − 𝜖2∆𝜑

)︀2
𝑑Ω, (8.16)

where
√
𝛽 is a small length scale over which the corner is rounded [31, 66]. When simulating

strongly anisotropic dewetting, this term is added to the total energy functional to achieve

stability.

8.2.4 Anisotropic equations of motion

For isotropic capillary-driven surface diffusion, the film-vapor component of the energy func-

tional (the first term in Equation 8.8) can be written

𝐸[𝜑] =

∫︁
Ω

1

𝜖

(︁
𝑓(𝜑) +

𝜖2

2
|∇𝜑|2

)︁
𝑑Ω, (8.17)

where 𝑓(𝜑) is the double-well potential. The natural approach for including anisotropy

results in [44]

𝐸[𝜑] =

∫︁
Ω

1

𝜖

(︁
𝑓(𝜑) +

𝜖2

2
|𝛾(𝑛)∇𝜑|2

)︁
𝑑Ω. (8.18)

However, if this energy functional is used, the interface width varies with orientation. This is

a problem in the case of strong anisotropy because the Willmore regularization affects each

orientation differently.

Torabi et al. achieve uniform interfacial thickness by multiplying the entire Ginzburg-

Landau energy by the surface energy [79]:

𝐸[𝜑] =

∫︁
Ω

𝛾(𝑛)

𝜖

(︁
𝑓(𝜑) +

𝜖2

2
|∇𝜑|2

)︁
𝑑Ω. (8.19)

Multiplying 𝑓(𝜑) by 𝛾(𝑛) still results in convergence to surface diffusion in the small 𝜖 limit,

and it has a negligible quantitative effect on the numerical results. In the case of strong
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anisotropy, the Willmore regularization is included in the energy functional

𝐸[𝜑] =

∫︁
Ω

𝛾(𝑛)

𝜖

(︁
𝑓(𝜑) +

𝜖2

2
|∇𝜑|2

)︁
+

𝛽

2

1

𝜖3

(︁
𝑓 ′(𝜑) − 𝜖2∆𝜑

)︁2
𝑑Ω. (8.20)

Through asymptotic analysis, Torabi et al. showed that 𝑓(𝜑) is approximately equal to

(𝜖/2)|∇𝜑|2 near the interface. Using this approximation, the equations of motion become [79]

𝜕𝜑

𝜕𝑡
=

1

𝜖
∇ ·
(︀
𝑀(𝜑)∇𝜇

)︀
, (8.21)

𝜇 =
1

𝜖

(︁
𝛾(𝑛)𝑓 ′(𝜑) − 𝜖2∇ ·𝑚

)︁
+ 𝛽

1

𝜖2

(︁
𝑓 ′′(𝜑)𝜅− 𝜖2∆𝜅

)︁
, (8.22)

where

𝑚 = 𝛾(𝑛)∇𝜑 + |∇𝜑|𝑃∇𝑛𝛾(𝑛), (8.23)

𝜅 =
1

𝜖

(︁
𝑓 ′(𝜑) − 𝜖2∆𝜑

)︁
, (8.24)

𝑛 is the outward normal vector

𝑛 = − ∇𝜑

|∇𝜑|
, (8.25)

and 𝑃 is the projection matrix

𝑃 = 𝐼 − 𝑛⊗ 𝑛. (8.26)

Even with the simplifying approximation, the system converges to surface diffusion in the

small 𝜖 limit [79]. However, the cost of regularization is an increase in the order of the

equations of motion from 4th order to 6th order.

8.2.5 Anisotropic dewetting boundary condition

For isotropic systems, the contact angle between the film and substrate is simply a number,

𝜃. For anisotropic systems, the apparent contact angle will be a function of the normal to

the interface. Thus, the contact angle 𝜃 is replaced by 𝜃(𝑛).

For example, consider a four-fold symmetric surface energy

𝛾(𝑝, 𝑞) = 1 + 𝜒(sin4 𝑝(cos4 𝑞 + sin4 𝑞) + cos4 𝑝), (8.27)
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𝛾, 𝜉, and the anisotropic phase field boundary condition
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Figure 8-3: The 𝛾-plot (blue), 𝜉-plot (orange), truncated 𝜉-plot (transparent orange), and
contact angle (blue curve) for 𝜒 = -0.5 (top row) and 𝜒 = 2 (bottom row) are shown. In
figures c) and g), the plane of the substrate is shown with an equivalent contact angle of
120∘. The heavy black line is the intersection between the 𝜉-plot and the substrate plane.
The green arrow is an example of 𝜕𝜉

𝜕𝑝
evaluated at the 𝜉-substrate intersection. This arrow

is dotted with the substrate normal 𝑛𝑏 to find the contact angle as a function of the phase
field interface orientation 𝑛.

where 𝜒 is the anisotropy parameter and 𝑝 and 𝑞 are the “latitude” and “longitude” spherical

coordinates, respectively. 𝑝 and 𝑞 are used instead of the traditional 𝜃 and 𝜑 to avoid

confusion with the contact angle and phase-field parameter, respectively.

The equilibrium shape defined by this 𝛾-plot will be the convex region on the correspond-

ing 𝜉-vector. It is defined as

𝜉 = ∇𝛾ext, (8.28)

where

𝛾ext = |�⃗�|𝛾(𝑛) = |�⃗�| 𝛾
(︂

�⃗�

|�⃗�|

)︂
(8.29)

is an extensive measure of surface energy that scales with the area of the surface. The area

vector is defined �⃗� = 𝐴𝑛, with 𝐴 being the area of the surface. Example 𝛾- and 𝜉-plots are

shown in Figure 8-3.

The 𝜉-plot requires modification to satisfy the contact angle of the film on the substrate.
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According to the Winterbottom construction [83], the center of the 𝜉-plot is displaced relative

to the substrate surface by a distance 𝑑 = 𝛾𝑆𝑉 − 𝛾𝑆𝑃 , where the 𝛾’s are surface free energy

densities for the substrate-vapor interface (𝑆𝑉 ) and substrate-particle interface (𝑆𝑃 ). Any

portion of the 𝜉-plot that falls below the substrate plane is truncated.

In practice, 𝛾𝑆𝑉 and 𝛾𝑆𝑃 are rarely known. Instead, the equivalent contact angle is

typically reported, in degrees. The equivalent contact angle, defined by Zucker et al. [94], is

𝜃equiv = cos−1 𝑑
𝛾𝑃𝑉

, where 𝛾𝑃𝑉 is the surface free energy of the particle-vapor interface. 𝛾𝑃𝑉

is defined as the distance from the center of the 𝜉-plot to the lowest surface of the 𝜉-plot

(i.e., the 𝜉 value that would appear on the equilibrium shape, rather than on the “ears” of

the 𝜉-plot), measured in the direction normal to the substrate, 𝑛𝑏.

As an example, let the equivalent contact angle be 120∘. Following from Equation 8.27,

𝛾𝑃𝑉 = 1 + 𝜒, so 𝑑 = −1+𝜒
2

. Therefore, the center of the 𝜉-plot should be raised a distance
1+𝜒
2

above the substrate plane.

To find the intersection of the 𝜉-plot with the substrate plane, the 𝑧-component of the

𝜉-vector is set equal to 𝑑, and solved for 𝑝. This particular value of the coordinate 𝑝, 𝑝*, will

depend on 𝑞 and 𝜒. The resulting parametric curve, 𝜉(𝑝*(𝑞, 𝜒), 𝑞, 𝜒), is shown as the heavy

black curve in Figures 8-3(c) and 8-3(g).

The displaced 𝜉-plot can be used to construct the dewetting boundary condition. The

derivative of 𝜉 with respect to 𝑝 is evaluated when 𝑝 = 𝑝* to give the tangent vector to the

𝜉 surface that is normal to the intersecting curve 𝜉(𝑝*(𝑞, 𝜒), 𝑞, 𝜒). Examples of this tangent

vector are shown as the green arrow in Figures 8-3(c) and 8-3(g). Finally, the apparent

contact angle as a function of interface orientation, 𝜃(𝑛), is

𝜃(𝑛) =
𝜋

2
± cos−1

(︃(︁𝜕𝜉
𝜕𝑝

)︁
𝑝=𝑝*

· 𝑛𝑏

)︃
. (8.30)

The addition of 𝜋/2 makes the contact angle relative to the substrate plane, instead of the

normal to the substrate plane. If the effective contact angle 𝜃 is less than 90∘, then a minus

sign is used in Equation 8.30. For larger contact angles, a plus sign is used.

The end result is the dewetting boundary condition for anisotropic materials. On the
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substrate surface, the equivalent contact angle condition is maintained by satisfying

⃒⃒ 𝜕𝜑
𝜕𝑛𝑏

⃒⃒
= −𝜑(𝜑− 1)√

2𝜖
cos
(︀
𝜃(𝑛)

)︀
(8.31)

8.3 Numerical method

8.3.1 Challenges

The governing equations for dewetting are non-linear, fourth-order PDEs (partial differential

equations). With strong anisotropy, the governing equations are sixth-order. The high

order of the governing equations eliminates finite difference and finite volume numerical

approaches. For a typical scheme such as the explicit finite-difference method, the maximum

time step allowable that maintains numerical stability scales with the grid size, ∆𝑥, raised

to a power equal to the order of the equations. In this case, ∆𝑡 ≈ ∆𝑥4 or ∆𝑥6. When the

grid size is small enough to resolve the surface evolution accurately, the time steps become

miniscule, and the total computation time becomes impractical. The finite element method

scales better for higher order equations, so it is the most practical approach for dewetting

problems.

Implicit solvers (numerical methods which assume the new value at time 𝑡+∆𝑡 is a func-

tion of the new value) generally offer larger stable time steps that explicit solvers (numerical

methods which assume the new value at time 𝑡 + ∆𝑡 is a function of the old value only).

However, only linear terms (i.e., terms which are invertible when written as a matrix) can

be made implicit, and none of the terms in the phase-field dewetting scheme are linear. At

best, surface diffusion problems can be solved semi-implicitly. Including implicit stabilization

terms that penalize large changes in 𝜑 with time have also been successfully implemented to

increase the time step size, without affecting the shape evolution [36].

There are other tools available to overcome the inherent speed problems for simulating

dewetting. Adaptive meshing, which increases the density of grid points only near the

interface, significantly reduces computation time. Adaptive time steps, which are small when

a topological change happens and large in between events, can also dramatically improve

computation time. Finally, parallelization allows several processors to share the problem,

169



which is especially effective for problems requiring a large spatial domain.

In summary, simulating capillary-driven surface diffusion requires start-of-the-art math-

ematical and numerical techniques, and even then, it requires significant computational

resources. Using an adaptive grid, adaptive time-stepping, parallelization, implicit stabiliza-

tion, and Willmore regularization, all within an efficient finite-element scheme, it is possible

to simulate dewetting.

8.3.2 Discretization of the governing equations

Equations 8.21, 8.22, and 8.24 together form a system of coupled second-order equations.

They can be written semi-implicitly as follows:

𝜑𝑛 − 𝜑𝑛−1

𝜏𝑛
=

1

𝜖
∇ ·
(︀
𝑀(𝜑𝑛−1)∇𝜇𝑛

)︀
, (8.32)

𝜇𝑛 =
1

𝜖
𝛾(𝑛𝑛−1)𝑓 ′(𝜑𝑛)−𝜖∇·

(︀
𝛾(𝑛𝑛−1)∇𝜑𝑛

)︀
−𝜖∇·

(︀
|∇𝜑𝑛−1|𝑃∇𝑛𝑛−1𝛾(𝑛𝑛−1)

)︀
+𝛽

1

𝜖2
(︀
𝑓 ′′(𝜑𝑛−1)𝜅𝑛−𝜖2∆𝜅𝑛

)︀
,

(8.33)

𝜅𝑛 =
1

𝜖
𝑓 ′(𝜑𝑛) − 𝜖∆𝜑𝑛, (8.34)

where the superscripts refer to the value at timestep 𝑛 or 𝑛− 1, and 𝜏𝑛 is the time step size.

The term 𝑓 ′(𝜑𝑛) can be linearized: 𝑓 ′(𝜑𝑛) = 𝑓 ′(𝜑𝑛−1) + 𝑓 ′′(𝜑𝑛−1)
(︀
𝜑𝑛 − 𝜑𝑛−1

)︀
[69]. Making

this substitution and re-arranging results in the following linear equation⎛⎜⎜⎜⎝
1
𝜏𝑛

𝐴 0

𝐵 1 𝛽
𝜖
𝐶

𝐶 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝜑𝑛

𝜇𝑛

𝜅𝑛

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝜑𝑛−1

𝜏𝑛

𝐷

𝐸

⎞⎟⎟⎟⎠ (8.35)

where

𝐴 = −1

𝜖
∇ ·
(︀
𝑀(𝜑𝑛−1)∇

)︀
(8.36)

𝐵 = −1

𝜖
𝛾(𝑛𝑛−1)𝑓 ′′(𝜑𝑛−1) + 𝜖∇ ·

(︀
𝛾(𝑛𝑛−1)∇

)︀
(8.37)

𝐶 = 𝜖∆ − 1

𝜖
𝑓 ′′(𝜑𝑛−1) (8.38)
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𝐷 = −𝜖∇ ·
(︀
|∇𝜑𝑛−1|𝑃∇𝑛𝑛−1𝛾(𝑛𝑛−1)

)︀
+ 𝛾(𝑛𝑛−1)𝐸 (8.39)

𝐸 =
1

𝜖

(︀
𝑓 ′(𝜑𝑛−1) − 𝑓 ′′(𝜑𝑛−1)𝜑𝑛−1

)︀
. (8.40)

This is equivalent to the scheme found by Salvalaglio et al. [69]. For weak anisotropy, the

third row is dropped and 𝛽 = 0.

8.3.3 Computation

To implement a finite-element numerical method, we chose to use AMDiS [80]. AMDiS is a

general C++ library to solve PDEs which includes adaptive grids, adaptive time steps, and

parallelization.

Several minor modifications were made to the model to improve numerical stability.

In Equation 8.35, the “1” in position (2, 2) of the matrix is replaced by 30(𝜑𝑛−1)2
(︀
1 −

(𝜑𝑛−1)2
)︀2. This modification ensures that the chemical potential is zero away from the

interface [42, 66, 69]. To include the stabilizing term ∆(𝜑𝑛−1 − 𝜑𝑛), the Laplacian operator

is added to the “1/𝜏𝑛” term in position (1, 1) of the matrix in Equation 8.35, and to the

“𝜑𝑛−1/𝜏𝑛” term in the first position of the vector on the right-hand side of the equation.

This stabilizing term prevents rapid changes in the value of 𝜑 [36]. The mobility 𝑀(𝜑) =

4/𝜖 𝜑(1 − 𝜑) was replaced by 𝑀(𝜑) = 4/𝜖
√︀

16𝜑2(1 − 𝜑)2 + 10−6 to keep the mobility from

going to zero, which is problematic when dividing by 𝑀 [79].

8.4 Results and Discussion

The phase field method produces the correct equilibrium shape, as shown in Figure 8-4. The

example shape has anisotropy factor 𝜒 = 0.25 in the 𝛾-function, given by Equation 8.27,

and the equivalent contact angle is 120∘. The triple line from the simulation is shown in

blue in Figure 8-5, and it matches the exact solution for the triple line position (black). If a

constant contact angle of 120∘ was chosen, the mean radius of the triple line would be much

larger than it should, and the equilibrium shape would be badly distorted. The red curve

in Figure 8-5 is for a constant contact angle equal to the average contact angle given by

Equation 8.30. While it is better than using the equivalent contact angle, a constant contact
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An anisotropic equilibrium shape calculated with phase field in 3D

Exact Phase field

Figure 8-4: A sphere was evolved using the method described in this chapter to obtain the
equilibrium shape. The exact solution for the Winterbottom shape is shown for comparison.

angle still introduces error.

Figure 8-6 shows the development of a perturbed rim into a fingering instability. This

simulation is isotropic and has a 90∘ contact angle, the film edge initially has a sinusoidal

perturbation with amplitude 0.2, and the film thickness is 1. A half-wavelength is shown,

and the mirror boundary conditions make this equivalent to an infinite, straight film edge

with a perturbation wavelength of 20 times the film thickness. At first, the amplitude of

the perturbation decreases as the shape of the film edge adjusts. At a dimensionless time

of about 0.3, the amplitude of the perturbation starts to increase, and after a dimensionless

time of about 2.0, the perturbation amplitude is positive and increases linearly with time.

This behavior is independent of the initial perturbation size.

Figure 8-7 shows the Rayleigh instability on a perturbed cylinder. This simulation is

isotropic and has a 90∘ contact angle, the cylinder radius is initially 1, with a perturbation

amplitude of 0.1. The mirror boundary conditions have been applied to visualize several

repeats of the cell. The perturbation wavelength is 9, which is very close to the fastest-

growing wavelength for a Rayleigh instability in this case, 2
√

2𝜋 ≈ 8.9. The cylinder breaks

up due to surface area minimization and evolves to the equilibrium shape (a hemisphere) by

surface diffusion.

Figure 8-8 shows the influence of weak anisotropy on the rim profile. The 𝛾-function

has the form shown in Equation 8.27, restricted to two dimensions. The valley is broad and

shallow for the square Wulff shape, and the valley is narrow and deep for the diamond Wulff
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The triple line at equilibrium
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Figure 8-5: The triple line of the equilibrium shape is plotted for the exact solution (black), a
constant contact angle of 127.95∘ (red), and a variable contact angle following Equation 8.30,
which corresponds to an equivalent contact angle of 120∘ (blue).

shape. Relative to the isotropic film, pinch-off happens earlier for the diamond and later for

the square. As the anisotropy factor 𝜒 increases in magnitude, the valley width increases

and depth decreases for the square case. This seems to agree with the limiting case of strong

anisotropy (see Chapter 7), where the valley width goes to infinity.

Figure 8-9 shows a film edge with strong anisotropy (i.e., it has missing orientations). The

film undergoes a faceting instability, unlike the weakly-anisotropic diamond case in Figure 8-

8, which differs only in the value of 𝜒. The faceting instability first propagates ahead of the

retracting edge with a wavelength of 2.04. After a dimensionless retraction distance of

about 5, the entire film spontaneously and rapidly undergoes a faceting instability with a

wavelength of 2.60. The difference in wavelength shows that the spontaneous instability is

not related to a perturbation originating from the retracting edge.

The faceting instability is the result of spinodal decomposition of an unstable surface

orientation into two or three orientations which appear on the Wulff shape [10]. The faceting

instability wavelength is governed by the ratio of the excess free energy associated with

sharp edges or corners, 𝐶(𝜃), to the surface energy and stiffness of the unstable orientation,
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Phase field simulation of the fingering instability
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Figure 8-6: An initially-perturbed rim, (a), and its subsequent evolution, (b and c), is shown.
In (b), the rim height is nearly uniform, while in (c), the rim is thinner where it has retracted
further, consistent with a fingering instability. The adaptive grid is shown in blue. In (b) and
(c), the film surface its self is colored by chemical potential. The lower bound of the domain
is the substrate surface, and it is blue where it contacts vapor and red where it contacts the
film.
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Phase field simulation of the Rayleigh instability
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Figure 8-7: A cylinder is initially perturbed and breaks up due to the Rayleigh instability
by surface diffusion. The surface is colored by chemical potential. The time between images
is not uniform.
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Figure 8-8: A thin film edge at the same dimensionless time for three different Wulff shapes is
shown. The green curve is isotropic, the pink curve has a square Wulff shape with anisotropy
factor -0.15, and the orange curve has a diamond Wulff shape with anisotropy factor 0.15.
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Phase field simulation of a faceting instability

Figure 8-9: A thin film edge with a strongly-anisotropic Wulff shape (𝜒 = −0.6) retracts
and undergoes a faceting instability. The facets that form ahead of the retracting rim have
a wavelength of 2.04 times the film height, while the facets that form spontaneously have a
wavelength of 2.60 times the film height. The film is colored by the value of the phase field
variable 𝜑 to show the interface thickness. The time between frames is not constant.

𝛾(𝜃) + 𝛾′′(𝜃). Wavelengths longer than 𝜆crit = 2𝜋
√︀
𝐶(𝜃)/|𝛾(𝜃) + 𝛾′′(𝜃)| are unstable, and

√
2𝜆crit is the fastest-growing wavelength [26]. While it is extremely difficult to measure the

corner energy and stiffness experimentally, these are known in the phase field simulation. For

the simulation in Figure 8-9, the critical faceting wavelength is 1.72, and the fastest-growing

wavelength is 2.43. The spontaneous instability wavelength is close to (but slightly larger

than) the expected wavelength.

8.4.1 Limitations of the phase field approach

Premature pinch-off

In real systems, the interface width is on the order of a few atomic layers, which is usually

several orders of magnitude smaller than the body. In the phase field simulation, the interface

must have a thickness that can be resolved by the mesh. Even with adaptive grids, to obtain

simulation results on reasonable timescales (e.g. a few days on several cores), the interface

width 𝑤 should be on the order of 0.1 times the film thickness. This thick interface is

problematic for topological changes and near the boundaries of the simulation domain. Two

material surfaces which should have no interaction at all begin to interact over a distance

of about 2𝑤, and the film interacts with the domain boundary over a distance 𝑤. The large
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curvatures that occur during topological changes accelerate merging and breaking of bodies

in the simulation, leading to an under-estimation of the time until the topological change.

An example of this limitation occurs in the geometry shown in Figure ??. When the film

thins under the valley to less than about 0.2 of the original film thickness, interactions with

the substrate accelerate film thinning. Pinch-off occurs far earlier than it should, compared

with explicit interface models ??. The time to pinch-off depends on the interface width,

which is purely an artifact of the method.

Small time step required

The convergence of the phase field simulation is first order as the time step size goes to zero.

Furthermore, the interface width and maximum stable time step are linked. This means that

the simulation may be numerically stable, but quantitative information which depends on

time, such as the retraction rate versus time, or processes that depend on interface width,

such as pinch-off, can be unreliable, even with the adaptive time step algorithm. It is

possible to do all simulations with sufficiently small time steps and thin interface widths to

obtain quantitative information, but each run would take weeks on 4-12 cores. Therefore, it

is preferable to obtain qualitative information about dewetting morphologies using a large

time step so that each run takes hours or a few days on the same number of cores, but the

time scaling in these cases is meaningless. If quantitative information is desired, then it is

only practical to run the simulation for a few time steps. For example, simulations which

give the growth rates of perturbations to the film surface are attainable because only the

initial surface velocities are needed to make a comparison with theoretical growth rates.

8.5 Conclusions

The boundary condition for anisotropic dewetting was previously unknown. Comparison

between simulations and the exact solution show that the boundary condition developed in

this work successfully reproduces the Winterbottom shape in a phase field simulation and

accurately places the triple line.

The phase field method can be used to simulate dewetting with weak and strong anisotropy
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in two and three dimensions. Only a few examples are presented here. Despite the limitations

of a diffuse-interface model, several dewetting phenomena have been successfully simulated.

Future work includes systematic, quantitative studies of dewetting features, including shape

instabilities and the influence of anisotropy on shape evolution.
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Chapter 9

Conclusions

The models presented in this thesis are interlinked. Thermodynamic study (Chapter 2)

provides the framework to understand the final state of dewetting. Quantifying the driving

forces during surface diffusion, which is done in every chapter in this work, is only possible

with knowledge of the equilibrium state. The polygonal geometry of fully-faceted films

(Chapter 7) makes it especially easily to visualize and quantify driving forces and mass flows.

The insights gained from the fully-faceted model became core assumptions in the geometric

model of edge retraction (Chapter 4), the fingering instability analysis (Chapter 5), and

the corner instability model (Chapter 6). The expectations derived from these analytical

models determined which geometries to investigate with phase field simulations (Chapter 8).

Simulations provide definitive comparisons with experiments, but they are expensive, so

iteration between simple models, simulations, and experiments provided an efficient route to

study dewetting phenomenology.

In addition, two themes emerge from this work which can be applied to geometries other

than thin films:

Processes facilitated by surface diffusion are local. Phenomena which were

previously assumed to be driven by long-range mass transport (e.g. the fingering [75,

40] and corner [88, 78, 63] instabilities) are better explained by mechanisms which

require only local, short-range transport, as shown in Chapters 5 and 6. The hill-and-

valley geometry (Chapters 4 and 7) is a hallmark of surface diffusion, a consequence
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of its local character, and can be seen on other geometries such as isolated bodies [15],

wires or pillars [5], channels [62], and pyramids or microfacets [84, 79].

Isotropic and anisotropic systems behave similarly. Although it is easy to focus

on the differences between isotropic and anisotropic systems because they have such

different overall behavior (e.g., isotropic dewetting is dominated by periodic pinch-off,

while anisotropic dewetting is dominated by corner instabilities), all mechanisms are

present in both the isotropic and anisotropic limit, and the only difference is the rate

of each mechanism. For example, anisotropic materials have valleys too, but because

they are not very deep, pinch-off is so slow (as discussed in Chapters 7 and 8) that

other mechanisms have time to dominate instead. When it comes to the edge retraction

rate and underlying mass flows, isotropic and anisotropic films are indistinguishable

(Chapter 4). Meanwhile, the mechanism of the corner instability is not unique to

anisotropic films, but anisotropy enhances the effect (discussed in Chapter 6).

9.1 Edge retraction and valley formation

Chapters 4 and 7 reveal the underlying dynamics of edge retraction. Capillarity drives mass

to flow from the triple line towards the advancing side of the rim. The mass within the rim

never leaves the rim, and the rim mass originates almost entirely as the material that has

been swept up during retraction. The remaining portion of the rim volume is mass rejected

from the valley. However, mass from the valley contributes only a few percent of the total

rim volume (Chapter 7), and it can be neglected over short time scales.

For fully-faceted materials, it is often reported that there is no valley ahead of the rim

(Chapter 7). However, an alternative way of thinking unifies the isotropic and anisotropic

cases. Phase field simulations (Chapter 8) show that the valley width increases as the

anisotropy strength increases (as long as there is a facet parallel to the substrate). In the

limit of perfect anisotropy (Chapter 7), the valley width goes to infinity, so the bulk, flat

film acts as the valley and thins over time. The continuum between isotropic and anisotropic

materials thus becomes clear: there is always a valley, though its width can become as large

as the entire film.
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At early times, edge retraction is linear with time, and at late times, the retraction

distance goes as time to the 2/5 power. However, for relevant time scales in engineering

applications, edge retraction follows an intermediate scaling. This overall behavior is ob-

served for both isotropic and anisotropic materials (Chapters 4 and 7). The linear scaling

arises at early times because the rim becomes wider as it retracts, rather than growing taller.

The driving force scales with rim height, so retraction proceeds at a constant rate. The 2/5

scaling regime arises from the rim growing in height and width commensurately. The driv-

ing force decreases with time, and retraction slows. The transition between linear and 2/5

retraction regimes depends only on the contact angle 𝜃. The larger the contact angle, the

earlier the 2/5 scaling sets in. It is possible that a power-law fit for edge retraction gives an

exponent slightly less than 2/5 at late times, due to the flux from the valley (Chatper 7).

9.2 Film edge instabilities

There are five mechanisms of film break-up during dewetting: natural hole formation, pinch-

off, the fingering instability, the Rayleigh instability, and the corner instability. Capillarity

alone cannot explain natural hole formation [55], and it is therefore beyond the scope of this

work. However, the remaining mechanisms, or collectively the “edge instabilities,” can be

explained with capillarity. Edge instabilities dominate dewetting morphologies. Once a hole

has formed either artificially or naturally, the distribution of particles produced by dewetting

is controlled by these four processes.

The pinch-off mechanism is intimately related to the valley shape. A narrow, deep valley

will lead to pinch-off much faster than a broad, shallow valley (Chapter 8). In the limit of

a valley which is as broad as the film its self, the pinch-off time becomes much larger than

engineering timescales, and so it will not be observable unless the film is small in extent

(Chapter 7). Relative to an isotropic film, anisotropic films can have deeper or shallower

valleys; however, the usual case is that the top of the film corresponds with a stable facet

orientation. In this case, anisotropy leads to broad valleys and increased times to pinch-off

(Chapter 8). After pinch-off, the remaining strips of material (which may be straight or

curved) break up by a Rayleigh instability (the curved case is discussed in Chapter 3).
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The fingering instability in isotropic materials is driven by the divergent retraction in-

stability (defined in Chapter 5). The characteristic wavelength of the fingering instability

is much larger than for a Rayleigh instability (Chapter 3), and the distribution of possible

wavelengths is much larger. Therefore, it is possible to distinguish between Rayleigh and

fingering instabilities by the final particle spacing. However, they often work cooperatively,

as the finger spacing determines the particle spacing normal to the retraction direction, while

the Rayleigh instability breaks up the fingers themselves and sets the particle spacing parallel

to the retraction direction.

Patterning the initial edge morphology to achieve particular finger spacings should be

quite easy because of the wide range of perturbation wavelengths that will grow. This is in

stark contrast to break-up via a Rayleigh instability, which only tolerates a very narrow range

of patterned wavelengths centered around 2
√

2𝜋𝑟, where 𝑟 is the radius of rim curvature,

because the growth rates of perturbations far from this value are near zero, or negative

(Chapter 3).

The corner instability (Chapter 6), which is common in strongly-anisotropic films, is

driven by the changing arc-length instability (defined in Chapter 5). It is responsible for the

“star-like,” “dendritic,” or “x”-shaped morphologies routinely observed following anisotropic

dewetting. As long as film edges are composed of straight facets, the instability is unavoid-

able. Each corner or jog on the film edge with negative in-plane curvature is susceptible to

it, which explains the dendritic morphology: the instability occurs at all of these points, not

just at corners. The mechanism is not restricted to anisotropic films, so corner instabilities

are possible for isotropic films too, if a sharp corner is patterned into the film. However, the

corner will blunt over time in the absence of anisotropy.

9.3 Outlook

In this work, many of the features of dewetting have been explained. However, questions

remain to complete the picture of dewetting dynamics.

It is not clear why some systems undergo a fingering instability and other systems un-

dergo pinch-off. However, it is possible to speculate. At the time of publication, there
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are no studies of dewetting on isotropic materials whose kinetics are dominated by surface

diffusion (polymer, liquid, and glass films follow different kinetics), so it is impossible to

know whether isotropic films undergo pinch-off or a fingering instability first (though phase

field simulations in Chapter 8 suggest both cases are possible, depending on the initial per-

turbation size). Fingering instabilities are only reported experimentally for polycrystalline

films or strongly anisotropic single-crystal films. The grain structure of polycrystalline films

builds in variations in rim height and mobility from the onset of dewetting, which could act

as a large-amplitude perturbation that seeds the fingering instability. The finger periodicity

seems to match the grain size, suggesting that the grains act as the seed perturbation [53, 38].

Film stress can cause grain pop-up or subsidence, and variation in height could also vary the

retraction rate from grain to grain (see [4]). The stability analysis in Chapter 5 suggests that

all but the shortest wavelengths will grow, so it is plausible that the fingering wavelength

matches the grain size. However, a connection between finger spacing and grain size has not

been definitively shown.

In the case of strongly-anisotropic films, the instability on straight film edges may not

be a fingering instability. A periodic corner instability on an edge which is straight (on

average) gives the appearance of a fingering instability, but is mechanistically unrelated. Ye

et al. show that for strongly-anisotropic films, most orientations decompose into kinetically-

stable facets [89], leading to a “zig-zag” morphology. A corner instability is expected, based

on the mechanism identified in Chapter 6, at each negatively-curved jog along the edge.

Furthermore, Leroy et al. show that the “fingering” instability occurs in silicon (which is

strongly anisotropic) only on unstable edges which undergo the faceting instability [47].

Therefore, the periodicity of the decomposition into kinetically-stable facets determines the

periodic corner instability wavelength. The wavelength of the faceting instability is discussed

in Chapter 8. If the edge instability on strongly-anisotropic films is in fact a periodic corner

instability, then the faceting instability should be investigated to find ways of controlling the

spacing between fingers.

In summary, it is possible that the only “true” fingering instability occurs on polycrys-

talline films, where the grain structure sets the fingering wavelength. In the absence of a large

initial perturbation, pinch-off is likely to be the faster mechanism. However, it remains to be
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shown how large (or small) the perturbation must be for fingering to overtake pinch-off. On

strongly-anisotropic films, the instability mechanism may instead be a faceting instability,

followed by corner instabilities.
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