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Abstract

Shale gas and tight oil are energy resources of growing importance to the U.S. and the world.
The combination of horizontal drilling and hydraulic fracturing has enabled economically fea-
sible production from these resources, leading to a surge in domestic oil and gas production.
This is providing an economic boon and reducing reliance on foreign sources of energy in the
U.S., but there are still a number of environmental, economic, and technical challenges that
must be overcome to unlock the resource’s full potential.

One key challenge is understanding variability in individual well performance—in terms of
both drilling time (a key driver of well cost) and well productivity—which has led to greater
than anticipated economic risk associated with shale gas and tight oil development. Thus
far, more reliable forecasting has remained elusive due to its prohibitive cost and the poorly
understood nature of the resource. There is an opportunity to make use of available drilling
and production data to improve the characterization of variability. For my analysis, I use
publicly-available well production data and drilling reports from a development campaign.

In order to characterize variability, I use a combination of graphical, statistical, and data
analytics methods. For well productivity, I use probability plots to demonstrate a univer-
sality to the distribution shape, which can accurately be described as lognormal. Building
on this distributional assumption, I demonstrate the utility of Bayesian statistical inference
for improving estimates of the distribution parameters, which will allow companies to better
anticipate resource variability and make better decisions under this uncertainty. For drilling,
I characterize variability in operations by using approximate string matching to compare
drilling activity sequences, leading to a metric for operational variability. Activity sequences
become more similar over time, consistent with the notion of standardization. Finally, I
investigate variability of drilling times as they progress along the learning curve, using prob-
ability plots again. I find some indication of lognormality, with implications for how learning
in drilling should be measured and predicted.

This thesis emphasizes the relevance of data analytics to characterizing performance
variability across the spectrum in shale gas and tight oil. The findings also demonstrate the
value of such an approach for identifying patterns of behavior, estimating future variability,
and guiding development strategies.

Thesis Supervisor: Francis M. O’Sullivan
Title: Director of Research, MIT Energy Initiative
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Chapter 1

Setting the stage

1.1 Preview

In recent years, development of shale gas and tight oil resources has proceeded at a rapid
pace. However, they have thus far been associated with widely varying development costs and
initial production rates. These factors, combined with their rapid decline rates in production,
make development of these resources an economically risky business, often only profitable at
relatively high oil and gas prices. The nature of economic risk in these unconventional fields
is still poorly understood, and in recent years this has led to a number of operating companies
writing-down or selling shale assets due to highly variable, disappointing development results.
There is a need to improve the process for characterizing uncertainty in these resources and
ultimately forecasting the variability of their economic performance.

Alongside the development of these new and challenging resources, there is a growing
interest in the answers that may be found in prolific field-generated data. Specialized tech-
niques and expertise for extracting useful patterns from field data are still in their nascency
though. This thesis aims to address some of the immediate questions about variability in
shale gas and tight oil development, while also demonstrating the relevance of data analytics
to this endeavor. I consider two distinct areas—well productivity and operations involved
in drilling wells—which helps to illustrate the breadth of opportunity across many different
aspects of shale gas and tight oil development.

In this chapter, I provide a brief background on the growth of shale gas and tight oil
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production in North America and discuss some of the important implications and challenges
associated with this. In this context, I discuss the general motivation behind my thesis
question—how to characterize performance variability in these resources.

In Chapter 2, I provide additional background on shale gas and tight oil development and
on characterizing and managing performance variability. I first describe the basic aspects
of the development process, which are important to be cognizant of throughout this thesis.
Then I discuss past philosophies and techniques for characterizing variability in conventionals
and how these have been extended to unconventionals (a somewhat more general term that
I will use interchangeably with “shale gas and tight oil”). In many ways, unconventionals are
of a different nature than the conventional oil and gas resources dominant in the past. As
I discuss, they require a different set of development strategies due to the unique economic
and technical challenges associated with them, and these strategies are still evolving in the
industry. Finally, I elaborate on the role of empirical models in both resource types and
delve deeper into some of the motivations for improving our understanding of variability.

Chapter 3 introduces and defines a probability distribution of initial production rates in
shale gas and tight oil—both between and within areas of a field. This new paradigm for pro-
duction variability has implications for how operating companies approach the early stages
of development, in which they acquire costly information to inform development campaign
decision-making. To demonstrate the power of this variability characterization, I develop
an application of Bayesian statistical inference that improves the ability to estimate acreage
quality.

In Chapter 4, I investigate different aspects of performance variability, specifically the
operational consistency and time-based performance of drilling unconventional wells. Or-
ganizational learning leads to variation of drilling procedures and improvement of efficiency
over time and the learning curve has thus far proved an important framework for under-
standing performance improvement in the development process. It is important to develop
additional performance indicators for abstract dimensions of the learning process. As an
example, I turn to the phenomenon of “standardization,” by which experimentation with
drilling procedures over time yields standard operating procedures that are more uniform

from one well to the next. I present a new technique for measuring standardization, which
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also illustrates the importance of bringing analytics techniques from disparate disciplines to
oilfield data, a hitherto under-utilized resource in the petroleum engineering discipline. I
also discuss the challenges associated with measuring progress along the learning curve from
an empirical perspective since literature in this area appears to be limited in its application
to real world data and the natural variability that comes with it. I analyze the variability, or
“noise,” within the learning curve and discuss how consideration of this source of uncertainty
can improve current attempts to measure progress.

Chapter 5 serves as a concluding section to the thesis. I discuss the important elements
of a more general framework for unconventional performance variability and I re-emphasize
the importance of such considerations in light of the findings in this thesis. I include some
general recommendations for the industry, public policymakers, and researchers based on
the salient role of variability in managing the development of these resources.

This thesis answers one fairly abstract question but raises a number of other practical
challenges that will require insight from a range of often silo-ed disciplines. Characterizing
variability is really about charting a path toward promising ways to improve the management
of variability. In this way, my thesis is not a conclusion of investigation but a jumping off

point for the topic.

1.2 The growing importance of shale gas and tight oil

In the last ten years, the combination of horizontal drilling and hydraulic fracturing has
pushed production from North American shale gas and tight oil plays to new levels and
greatly expanded known domestic hydrocarbon resources [50, 126]. As a result, over the
past decade US tight-oil production has increased six-fold while shale gas production has
increased by more than a factor of four [50]. All of this has led many to predict a more
hydrocarbon abundant future and to forecasts of the US becoming a net exporter of natural
gas by 2018 and even a net oil exporter by 2030 [50, 36, 154, 87, 70].

The technical innovations that brought about this energy revolution about are in fact
quite old. Horizontal drilling is a technique that allows drillers to gradually turn the direction

of a well ninety degrees after drilling down thousands of feet vertically, and continue drilling
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a well by a mile or more in the horizontal direction [152, 102]. Horizontal drilling was first
accomplished in 1929 and became more widely used in the 1980s; its importance in shale gas
development comes from drastically improving the economics of a well by accessing more of
the resource, which is trapped within thin horizontal layers of rock formation [102].

Hydraulic fracturing is the other key enabler. It involves pumping large volumes of
water mixed with chemicals and solids, at high pressures into a well to fracture rock within
the formation, providing conduits for gas and oil to flow [152]. This reservoir stimulation
technology has been used extensively since its first commercial application on a Kansas
well in 1947 [102]. It is critical to shale gas production because of the extraordinarily
low rock permeability (a measure of a rock’s ability to allow fluid flow) found in these
shale and “tight” (impermeable) sandstone formations [102]. It has been recognized for
decades that prolific resources were present in these rocks but because of the extremely
low rock permeability it was generally considered inaccessible (at least commercially) until
recently [102]. Strong policy support for shale gas development combined with years of high
domestic gas prices set the stage, but it was George Mitchell, a Texas entrepreneur who
ignored industry naysayers and invested millions of dollars into years of experimentation in
the Barnett shale of North Texas [139, 102, 42]. Eventually, his efforts paid off and he found
a combination of horizontal drilling and hydraulic fracturing that made economic production
of shale gas possible [102, 42]. Having already made a fortune, he abstained from patenting
the process for developing these resources because he saw the potential good this knowledge
could accomplish in the world as part of the public domain [42]. Thus was born one of the
largest resource booms in recent history.

The economic benefits of these newly accessible resources are substantial, including lower
energy prices for consumers, increased state revenues, reduced national energy imports,
and even a shift toward some additional exporting of liquefied natural gas (LNG) and oil
condensates [81, 115]. Furthermore, historically low natural gas prices in the United States
are leading to a resurgence of manufacturing and associated jobs. Cheaper natural gas-
derived feedstocks and low energy prices will increase domestic chemical and energy-intensive
manufacturing by an estimated 20% over the next decade [37]. Additionally, oil prices have

fallen by around half in the past year, driven in large part by surging U.S. oil production
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from tight oil [43]. The windfall to consumers created by this leads to an estimated 0.2%
boost in the world GDP for every 10% drop in the oil price [46]. Of course, the economic
benefit is primarily for oil importing countries, while oil exporting nations like Venezuela
and Russia are being fiscally pummeled by this price change, and find themselves with a
diminished influence abroad [46, 9]. Low oil prices also present an excellent opportunity for
fuel subsidies to be phased out, as they recently have been in Indonesia [9, 46, 45].

Another trend driven by the surge in shale gas production is a shift in electricity genera-
tion in the U.S. from coal to natural gas [50]. Although natural gas emits half as much CO,
per unit of energy as coal, some of this climate benefit may be offset by fugitive methane
emissions [86, 16]. There is currently a great deal of uncertainty about the amount of fugitive
methane emissions emitted at the well site or at various stages within the natural gas supply
chain [16]. Because of the large global warming potential of CHy relative to COs, this may
erode or even undermine the climate benefit for certain end uses [16, 47]. Still, many argue
that natural gas has an important role to play as a “bridge” fuel, easing the transition away
from coal and complementing the intermittent nature of solar and wind energy due to its
flexibility as a generation source [86, 136].

The shift from coal to natural gas will also lead to a reduction in mercury, NO,, SO,
black carbon, CO, and particulates emitted from the power sector, thereby reducing as-
sociated illnesses and deaths and generally improving public health [86]. However, there
are substantial concerns regarding local environmental risks associated with the extraction
process including potential groundwater and surface-water contamination, local air quality
issues, and induced seismicity from wastewater disposal in injection wells [83, 149, 72, 156].
It is essential that industry, researchers, and policymakers continue to work toward a better
understanding and management of these risks through improved technologies and regulation.

In contrast to the growing role of shale gas and tight oil production in the U.S., efforts to
build a similar unconventional boom elsewhere have so far foundered [24, 129]. Nevertheless,
this resource has been touted as a world game-changer economically, environmentally, and
geopolitically, given the widespread unconventional basins of the world (such as in China,
Poland, and Argentina) and the world’s insatiable appetite for inexpensive and secure sources

of energy [44, 106, 49, 84].
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1.3 Variability and economic risk

1.3.1 Under-appreciated variability and economic risk

In spite of this hubris about the resource potential, concerns abound regarding the long-
term economic viability of shale gas and tight oil development [144, 100, 74, 80, 27]. There
is now growing concern about the variability of well productivity and rapid production
decline rates, which necessitate huge capital-expenditure on drilling campaigns to maintain
rates of production [100, 80, 27]. It has recently been estimated that as many as 40% of
unconventional wells in the U.S. are uneconomical due to variability of drilling, completion
practices, and reservoir characteristics [54]. There is a wide range of production variability in
fields, persisting even in recent years with supposedly “mature” development practices [54].
These production challenges have contributed to some major operating companies writing
down the value of unconventional assets and even exiting from major plays [75, 145, 123].
Internationally, there have also been signs of tapering expectations, including an exodus
of energy companies from Poland, and China halving its shale gas production targets for
2020 [24, 129]. The recent plummet in oil prices is casting additional doubts on the extent
to which industry will continue to invest in developing these resources [1].

Despite the mounting evidence that economic risk in shale gas and tight oil development
has thus far been under-appreciated, the nature of performance variability is still poorly
understood. Increasing economic pressure from low oil and gas prices means it will be
necessary to improve forecasting and decision-making in fields early on, taking into account
this performance variability and making greater use of available data [55, 71]. Deterministic
forecasting of expected field performance (even if this is scaled up and down to provide a
spread of economic outcomes) is misleading because of important statistical features like
distribution skewness [67]. More transparent models of field performance variability are also
needed to aid decision-making in light of nuances like physical production constraints (i.e.
shared pipeline capacity) and the non-linearity of value with shifts in variables [67]. Decision-
making in unconventional development campaigns should be guided not only by traditional
engineering, geological, and economic assessments but also by simple, short-term predictive

performance metrics that allow visualization and description of variability patterns within
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large datasets [147].

1.3.2 Key drivers of resource economics

A major driver in the economics of unconventional wells is development cost, including the
cost of drilling and completions (hydraulic fracturing) [35]. Well construction is the highest
cost in onshore oil and gas development ( 70-90% of overall costs) and is one of the main
areas for onshore operating companies to compete with each other on extracting petroleum
resources at the lowest per-unit cost [89]. The horizontal wells necessary in unconventional
fields are much more expensive to drill than vertical wells, in part because the specialized
drilling equipment and techniques required present numerous technical challenges and signif-
icant outcome variability [89]. In fact, well cost is lognormally distributed and unpredictable
due in large part to the costly unplanned activity needed to address equipment failures,
geological uncertainties, and inconsistency of implementation in drilling operations [89]. Be-
tween 2007 and 2012, the average cost to drill and complete a well in the Haynesville shale
play was $9.8 million with a standard deviation of $2.0 million [89]. Average drilling costs
per well were around 45% of these costs but the unitized risk, or coefficient of variation,
was higher for drilling than completions (0.3, compared with 0.24) [89]. The variation in
completions cost is also more likely than the variation in drilling costs to have been planned
and expected by operators.

Learning is critical for improving the efficiency of well construction in shale gas and tight
oil development campaigns. An analysis of over 200 horizontal wells drilled in the Eagle
Ford shale play by 31 different operators between 2008 and early 2011 found a trend toward
decreased drilling days per footage over time, but there was large variation in total drilling
days for similar well depths and and trajectories [62]. This suggests that greater consistency
of implementation may lead to even larger improvements [62]. Indeed, a focus on greater
consistency of learning efforts led Shell to work toward improving the organizational structure
for capturing and sharing drilling best practices, allegedly reducing well delivery times by
a factor of three in a relatively short time [148]. The specific levers behind the “learning
curve’—which describes increased efficiency with increased experience—are not clear, but the

process generally involves experimentation to adapt to local conditions, and standardization
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of the drilling approach [148]. The ability to spread learning from one rig or field to another
and to quantify high-level metrics of performance improvement and consistency are critical
steps toward effectively managing this temporal reduction in drilling costs [17, 148].
Another major source of uncertainty about economic success is the production profile
of a well. The initial production rate and the rate at which the production declines from
the peak rate achieved during the first few months of the well’s life are highly variable and
challenging to predict [35]. As much as two-thirds of the uncertainty about a well’s net
present value may be related to the production profile [68]. A well that has begun producing
still has uncertainty about the future rate of decline in production, but is also a significant
source of information about the area in which it was drilled. In addition to any well log
data and core samples collected during drilling, there is immediately available information
in the form of production data, which can be used to assess the acreage quality and evaluate
completions techniques. Production from an early well can be used to support the critical
decision of whether to continue drilling additional wells or abandon an area (the “go/no-go
decision”) [68]. However, even wells drilled from the same well pad may have widely different
results, and the “data point” the well provides is useless for decision making if it is not

considered more broadly within the potential variability of the area [116].

1.3.3 The need for new policies

The current shortcomings at understanding and managing variability may partly stem from
an inability to adapt a “conventional mindset” for oil and gas development to the new chal-
lenges presented by unconventionals [55]. Economic success in shale plays requires a combi-
nation of efficiency (low development costs) and effectiveness (high well productivity) [54].
Many in industry have focused primarily on the need for greater efficiency by advocating a
“factory approach” to development [53]. This philosophy may have some merits, but taken
alone, it gives inadequate consideration to the consistency of the product. A fantastically
efficient factory that is unpredictable and delivers widely varying results should hardly be an
aspiration for the oil and gas industry. Indeed, in this sustained downturn in oil prices, ques-
tions have been raised as to whether a factory-inspired approach to drilling a large number of

wells at the lowest cost possible is really a better strategy than focusing on achieving fewer,
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more-productive wells [55]. Part of this shift will require a replacement of unsystematic field
experimentation with thorough analysis and planning [55].

The continued success of unconventional resource development within the U.S. and the
spread of development to other parts of the world depends in large part on the ability to
characterize, forecast, and manage the variability associated with these resources. Further
development of this capability will support reliable assessments of a field’s economics early

on, more optimal planning, and faster learning during a field development campaign.

1.4 Thesis question

Concern about this important and poorly understood dimension of shale gas and tight oil
development leads me to my thesis question: How should an operating company characterize
the variability of drilling and production performance of wells using existing field data? There
is a substantial opportunity to develop approaches that makes use of “free” unused field
data to supplement and guide other more costly approaches, improve forecasting early in
a development campaign, and provide a foundation for more advanced understandings of
uncertainty and techniques for mitigation. This thesis makes an important contribution to
this area by identifying some key patterns of variability and providing tools for assessing

them.

1.4.1 Metrics

There are many ways in which this topic could be taken on. At this point though, I should
define clearly the performance metrics I use, with some justification for each. These metrics
attempt to address some important aspects discussed in the previous section, while also
making use of the data that I had access to.

For production performance, I focus on the peak production rate of a well, which typi-
cally occurs within the first few months of production. Peak production is correlated with,
and is commonly used as a proxy, for early-life production, and to a lesser degree, lifetime
production [147, 125, 100]. Due to the rapid decline rates in production and the discounting

of revenue from future production, early life production is critical to shale gas and tight oil
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resource economics® [147]. Initial production rates may be more indicative of the quality
of the stimulated fracture network created than the underlying reservoir quality, but it’s
economic importance is still key. I have also considered an alternative metric for production
performance—production in the first 12 months, which is likely more reflective of the under-
lying reservoir quality—and Appendix B includes a handful of figures extending my analysis
to this.

For drilling performance I rely first upon drilling time (or, in some cases, time per footage
of well drilled). More broadly, I am interested in variability of cost, but drilling time is a
particularly important and substantial source of variability for this. Rig rental is the largest
component, of drilling costs (followed by labor, which could also be thought of as having a
“daily” cost) [89]. Haynesville rigs between 2008 and 2012 had a base day-rate of $12,500-
$22,000, excluding fuel and add-on costs? [89]. The only larger component of an overall well’s
costs is stimulation and sand control (associated with completions, not drilling) but these
are static material inputs less susceptible to change over time or unpredictability. Reduction
of these inputs might also negatively impact production whereas a well can be drilled just as
effectively in different amounts of time depending on the efficiency of operations. Analysis
of drilling time also allows me to investigate learning effects. Time is considered a better
proxy of learning than directly measuring cost since it is not confounded by changing rig or
equipment day-rates [17, 89].

Finally, I develop an additional metric for drilling performance that addresses the con-
sistency of drilling procedures from one well to the next. I call this “operational variability”
and use it to detect procedural “standardization” which takes place during the learning pro-
cess. Additional work will be needed to realize the full potential for field deployment of this
metric, but nevertheless it provides an interesting example of how analytics can be used to
visualize hidden behaviors in a sociotechnical system and allows for immediate insights into

how the drilling process changes over time in a field development campaign.

'Production flow rates in wells fall by around 50% in the first year, and substantially more after three
years—by some estimates, to as low as 5-20% of the peak production rate {142, 74].

2The “effective” day rate for drilling (including all drilling costs divided by days of drilling) ranges from
$71,000 to $92,000/day [89].
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Chapter 2

The background

Unconventionals present the oil and gas sector with a fundamentally different type of eco-
nomic risk than it is used to dealing with [74, 80, 27]. The high degree, and distribution of
well-to-well production variability means companies are exposing themselves to appreciable
economic risk each time they roll the die by drilling a well, even after many nearby wells
have been drilled. This contrasts with economic risk in conventional oil and gas development,
which is driven more by uncertainty about the size and presence of hydrocarbon accumu-
lations and can be mitigated by geological data collection and reservoir simulation carried
out during exploration [131, 143]. Characterizing the distribution of well productivity in
shale gas and tight oil fields is critical to better understanding the production variability—a
major factor in the economic risk associated with these resources [116].

Furthermore, observed variability of drilling operations and time-based performance sug-
gests companies are often investing significantly more capital over the course of a field’s
development than would be necessary with greater operational consistency and faster orga-
nizational learning [148, 89]. Better understanding the nature of the variability present in
the drilling process will improve the ability to forecast future drilling costs in a field, pro-
mote best practices and measure learning within a development campaign, leading to greater
efficiency and effectiveness at earlier stages of development.

This chapter reviews some relevant literature to the issues of performance variability
facing developers of unconventional assets in North America today. Because of the broad,

systems perspective of my thesis, a breadth of interrelated topics are involved, and in re-
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viewing them here I can only skim the surface of these prolific areas of existing knowledge
and ongoing research. As in the rest of this thesis, precise causal relationships and full ap-
preciation of the many involved nuances is of less concern than framing the bigger picture
question, of how generally to think about the issue of variability in production and drilling
performance in unconventionals and develop new techniques that can be incorporated into

the overall development process to improve its management.

2.1 Background on development process

In this section I provide a basic overview of the operations for drilling and completing a
massively hydraulic-fractured horizontal well typical in North American shale oil and gas
fields. I then discuss some of the differences between the geology and development strategy
of unconventionals and conventionals and the challenge that this is presenting to the oil and

gas industry.

2.1.1 Drilling the well

An excellent reference on the process of drilling a well is A Primer of Oilwell Drilling by
Bommer [13]. The following description is drawn from this source, unless otherwise noted,
and should be referred to for greater clarity and additional illustrations.

The actors — An operating company owns, manages, and engineers the wells being
developed. The fieldwork is carried out by drilling and service contractors.

Site preparation — The well location is determined based on a variety of legal and eco-
nomic factors including the need to obtain a lease to drill there. If other wells have been
drilled in the area, the placement of a well may be informed by knowledge obtained from
them. In any case, geologists and geophysicists will generally suggest areas they think likely
to be productive based on promising expected geology from available data. Prior to bringing
the drilling rig on location, the drilling site is cleared and flattened if necessary. A reserve
pit is dug to store waste drilling fluids. Other earthen pits may also be dug alongside to
store water and rock cuttings. The primary drilling fluid, “mud,” is generally stored in metal

tanks to maintain quality. A small, secondary rig might at this point drill any nearby holes
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necessary for temporarily storing drill pipes. Additionally, in some cases this smaller rig
might “spud,” or drill the initial hole which is wide but shallow. This conductor hole is lined
with casing and cemented in place. Alternatively, this last step of spudding the well might
be done by the main rig once it is on site.

Rig move (from previous well) and rig up — The disassembled rig is moved to the well
site on trucks, or if it is a “skid” rig, it is towed to the site. During rig up, the process varies
based on rig type. For instance a “slingshot” rig can be elevated using hydraulic pistons. The
“drawworks,” which hoists or lowers a cable called a “drilling line,” and other substructure
equipment are set up and the mast or derrick is raised into position. This system will be used
to raise and lower everything in and out of the wellbore [152]. Additional equipment is “rigged
up,” including electric generators, steel mud tanks, pumps, stairways and walkways. Living
quarters are brought on site along with drill pipe, pipe racks and other drilling equipment.
A metal building called a “doghouse” is set up next to the rig floor for the driller and crew
to use as an office. A representative but highly simplified schematic of an onshore drilling

rig is shown in Figure 2-1.

Figure 2-1: Simplified schematic of onshore drilling rig. Source: Tidal Petroleum

Drilling the surface hole — Once rigging up is complete, the well is spudded and the

conductor casing cemented in place (if this was not carried out previously by another rig).
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The surface hole is then drilled to a depth of a few thousand feet typically, using a large
diameter surface drill bit “made up” to a “bit sub.” As the hole is drilled, “drill collar” is
added above the bit sub. This creates the "bottom hole assembly” (BHA) used to drill the
well, which is the bottom portion of the “drill string,” or column of connected drill pipe and
equipment at any given time. Once the BHA is made up, drill pipe is added to lengthen
the drill string and allow the bit to reach the bottom of the deepening wellbore. To make
up (i.e. connect) the segments of drill pipe, “roughnecks,” or fieldworkers, guide suspended
drill pipe into place at the top of the drill string once it is flush with the rig floor. They
then use tongs or specialized equipment to apply torque to the drill pipe and tighten the
screw threads between pipes. Drive systems vary but they all allow rotation of the entire
drill string [152|. It is this rotation, referred to as “rotate drilling,” that is generally used
to turn the bit and crush rock at the bottom of the wellbore. Mud is circulated through
the drill string and back up the annulus of the hole in order to return drill cuttings and to
maintain bottomhole pressure [152].

Tripping out — Once the planned depth for the surface hole is reached, the drill pipe is
“tripped out” and stored. In order to trip out pipe, the drill string is pulled out gradually to
expose a stand of pipe. Pipe is then “broken out” using equipment to rotate it and spin out
the threads (Figure 2-2a). The pipe is then racked back (Figure 2-2b).

Running and cementing surface casing — Next, metal casing will be put in place and
cemented to isolate the surface hole from the surrounding rock and surface water. The casing
joints are added in a similar manner to that of drill pipe until the casing reaches the bottom
of the surface hole. A cementing company brings cement-pumping equipment to the site and
mixes the cement slurry. The cement is pumped into a cementing head that is attached to
the top joint of casing. A “bottom plug” is dropped from the head just before the cement
in order to keep mud in the wellbore from contaminating the cement slurry and to push the
mud on through and back up the annulus. When the plug reaches the bottom of the casing,
it sits in a “float collar” that is in place there. This causes a membrane to be broken and
cement flows out of the bottom of the casing and fills the annulus space around the casing
from the bottom up. When the last of the cement is pumped, the “top plug” is dropped to

separate the cement from the displacement fluid, which is pumped after it to fill the inside
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(a) Source: Troy Fleece Photography

g

(b) Source: OSHA

Figure 2-2: A rig crew uses tools to break out drill pipe and then rack it back.

of the casing and displace the cement.. A pressure jump indicates that the top plug has
“bumped” the bottom plug and the cement has filled the annulus of the casing, ending the
cement job (Figure 2-3).

A period of a few hours follows for waiting on cement. After this, the wellhead can be
installed and the blow-out preventer (BOP) placed, or more formally, “nippled up.” Pressure
testing of the BOP stack, wellhead, and well is carried out before further drilling can occur.

Tripping in and drilling out the shoe — The BHA for the next section of the well is picked
up first and the bit is returned to the bottom of the hole by adding stands of pipe back to
the drill string as it is lowered. Once the bit reaches the bottom of the surface casing, the
bit drills out the equipment and cement at the bottom then starts making new hole. Before
proceeding to drilling the next section of hole, the casing and cement job is pressure tested.

Constructing other sections of the well and downhole maintenance — The well may be
designed to have two, three, or even four well sections (the surface hole is the first as the
conductor hole is not generally counted). This is generally determined by drilling engineering
calculations taking into account the target depth and pressure regime. The other sections are

drilled, cased, and cemented in essentially the same manner as the surface hole. Casing for
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Top plug

Solid core

Bottom plug Rupture disk

Hollow core

Figure 2-3: Diagram of top and bottom plugs for cementing casing. Source: Schlumberger

these additional well sections may be run all the way to the surface or it may be suspended
from a hanger and act as a liner beyond the first string of casing. During drilling of any of
the sections, additional round trips may (and likely will) be required because of equipment
failures or a need to change out the bit or BHA to achieve different drilling parameters. If a
tool or other item is lost downhole it may be retrieved using “fishing equipment.” Small items
may also be drilled using “junk mills” if they are not retrieved. In addition to these downhole
issues, problems with procedures or equipment at the surface may lead to nonproductive time
(NPT), which may be interspersed throughout the overall process and is a frequent source of
wasted time in the drilling process. There are many other activities that may be carried out
throughout the drilling process, either to recover from unintended outcomes, or to attempt
to preempt them. An example of this is pumping through the well different mixtures of
drilling fluids, in precise volumes and densities, and sometimes containing solids® in order
to control the wells behavior. The variability of these procedures from one well to the next
will be relevant in the later discussion of operational variability in Chapter 4.

Drilling the curve section — Directional drilling in shale wells can be accomplished using
either “slide drilling” with a “mud motor” or “rotary steerable assemblies.” With slide drilling
the BHA contains a section of bent housing that orients the bit at a small angle (Figure 2-

4). The bit can then be pointed by holding the drill string steady and turning the bit

!Peanut shells may even be used as “lost-circulation material” to prevent loss of drilling fluids through
the wellbore sides [134]!
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by pumping mud through the hydraulically powered downhole mud motor. A “measurement
while drilling” (MWD) tool placed higher up in the BHA detects the direction of the hole and
sends pressure pulses back to the surface to relay the information. Once the desired direction
is achieved the directional BHA can be rotated conventionally with the drill string and the
current direction will be maintained because the bend in the mud motor has no preferred
direction (Figure 2-4). This is much faster than slide drilling. If a rotary steerable assembly
is used instead of slide drilling then the wellbore path is programmed into a computer in the
assembly. The computer steers the drill bit while the drill string is being rotated allowing

for more rapidly drilled curves.

STEERABLE MOTOR ACTIVITIES

Sliding §

Figure 2-4: Slide and rotate drilling with a bent mud motor. Source: Oil & Gas Journal

Drilling the lateral section — In the lateral section a different BHA with a smaller bend
angle may be used or the curve assembly may remain in place if the bend angle is not too
large. The lateral section is drilled primarily by rotating the drill string. If the BHA “walks”
and veers from the planned path or if the target zone is changed then some slide drilling
may be required to change the wellbore direction.

Rig down/skid/slide — After the well total depth (TD) has been reached and the pro-
duction casing installed the well is fully drilled. The rig is either disassembled and trucked
to another site or skidded to a location nearby. For multi-well pads, the rig may be on slides
that allow it to be quickly shifted in order to drill other wells alongside before it is removed
from the site.

The drilling process is complicated and highly variable, even for wells in the same field
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that are intended to be homogeneous and standardized to promote efficiency. Almost every
step described here has either some caveat, slightly different alternative approach, or more
detailed set of optional and required procedures that I have neglected to mention here in the
interest of brevity. The process is also not as linear as I have described it here. Many of these
procedures are in reality mixed and matched in various orders, particularly when the oper-
ating company and crew engaged are less familiar with the field being developed (i.e. early
in a drilling campaign). Variations may enter the process due to unforeseen conditions (and
the need to mitigate them), differences in opinions and ‘styles’ of drilling engineers, com-
pany men and superintendents (field managers), planned experimentation with procedures
to determine bast practices for the field, and inconsistency of the field crew at implementing
the procedures. Chapter 4 will consider how to measure this operational variability and
the variability in time-based performance improvements as an operating company and crew
“learns” the best way to implement consistent wells in a field. Some further background on

learning in oil and gas drilling will be provided in Section 2.3.

2.1.2 Completing the well

I will not go into as great of detail describing the process of completing, and hydraulically
fracturing the well, as I have for the drilling operations of a well because the step-by-step
procedure is of less interest to this thesis.

Completing the well includes casing and cementing the well?, perforating the horizontal
section of well with shape charges from a perforation gun, installing production equipment
(production tubing and production wellhead), and stimulating the reservoir with hydraulic
fracturing, or “fracking” (Figure 2-5) [13]. Hydraulic fracturing is essential to production of
oil and gas from extremely low permeability unconventional reservoirs. Hydraulic fracturing
involves pumping between 2 and 20 million gallons of water, mixed with specialized chemicals,
and proppants such as sand or other solids into the well, and out of the perforations [83]. The
volume and pressure (10,000-20,000 psi typically) is sufficient to fracture the rock around
the well and drive the propagation of these cracks out into the rock formation to provide a

flow path for fluids trapped in the shale reservoir [83]. The solid proppant is wedged into the

2Because this occurs alongside drilling the well I have included this activity in the previous section.
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fractures and helps to prevent them from closing up once the pressure has been removed [13].
The chemical additives in the mixture adjust certain fluid properties, such as viscosity, to
improve delivery of proppants into the formation; some additives address other down-hole
concerns such as bacteria growth [41]. Hydraulic fracturing of a well is carried out in “stages”
(sometimes as many as 40) in which a portion of the horizontal section of well is isolated and
fracked. After the well has been stimulated and the waste-fluids flowed-back for disposal,

the well enters its productive life.

Private Well

usbw
Municipal Water Well:
<1,000 ft.

Shale Fractures

Agdditional steel
casings and cement
to protect
groundwater

Protective Steel Casing

(Not to scale) Typical distance from

surface: 5000 10,000 ft

Figure 2-5: Schematic of hydraulically-fractured shale gas system. Source: US DOE-NETL

2.1.3 Unconventional oil and gas—a new set of development chal-

lenges

The differences between shale gas and tight oil and conventional gas and oil reservoirs begin
with the geological processes forming the hydrocarbon accumulations. Source rock is a rock
formation, often shale or limestone, which is rich in organic matter that becomes oil or gas
under the right combination of heat and pressure [152]. Because the formed hydrocarbons
are less dense than the water typically filling underground pore space, over time they will
travel upward until they either reach the surface through seeps or accumulate in geological

“traps.” [152] These trap accumulations are the conventional reservoirs that have long been
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the exclusive target of petroleum exploration; with shale gas and tight oil we are going to
the source rock itself, and “raiding the kitchen,” in a sense (Figure 2-6) [152]. Conventional
reservoirs can be thought of as discrete deposits of petroleum, defined spatially by the geo-
logical structures trapping them in place, while unconventional reservoirs are really source
rock formations through which trapped petroleum is somewhat continuously dispersed [8].
See Figure 2-6 for a diagram of this. More generally, continuous petroleum systems spread
throughout a regional area with a common geological history are often referred to as resource

“plays.” [65, 91|

U.S. Energy
(<] Information
Administration

Figure 2-6: Schematic geology of natural gas resources (Oil is similar). Note the conven-
tional petroleum accumulations formed by seal “traps.” Coalbed methane is another type of
unconventional gas that does not migrate from shale but is generated in separate processes
related to coal. Source: US EIA

This geological story aside, the reservoir characteristics are very different between conven-
tional and unconventional resources (which leads to differences in the development challenges
associated with each). Porosity (a measure of the pore space, which can hold fluid in the
rock) and permeability are both necessary for production in conventionals [152]. In uncon-
ventionals, the rock has voids (porosity) filled with petroleum, but the voids are not very
connected (and therefore, the rock has low permeability), and the ability of fluid to flow

is very limited [85, 8]. In conventional development, rocks are naturally more favorable to
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flow, so much of the economic success of a project is associated with the size of the reservoir,
especially thickness, which will impact how long wells will be productive [152, 131]. Im-
portant geologic factors are greater in number and have more complex interrelationships in
unconventionals, making rates of production and life of wells both highly unpredictable. [142]
Furthermore, heterogeneity of rock properties is greater in unconventionals, and properties
like permeability, or oil and gas saturation are widely distributed throughout even relatively
small areas [116, §].

Although risk and uncertainty is always present in oil and gas exploration and produc-
tion, in conventionals it is substantially reduced over the course of developing a field, and
can be described as sequential investment decisions under decreasing uncertainty [131, 143].
A major goal of exploration and appraisal efforts in conventionals is to reduce the scope of
uncertainty as much as possible early on, which leads to extensive data-collection, simula-
tion, and planning for conventionals (as described in the next section), particularly for large
scale offshore projects [152, 131]. In contrast to this, a manufacturing, or factory, approach
to development has been adopted in unconventional fields with less concern directed toward
addressing key uncertainties [53]. Shale gas and tight oil plays are often referred to as “engi-
neering plays,” due to a greater emphasis in industry on drilling and completions strategies
rather than thorough geological assessment, simulation, and reservoir optimization [25]. This
frenetic development approach would benefit from more accurate predictions early on [142],
but thus far there have been limitations to forecasting in shale gas and tight oil, as the next

section will explore.

2.2 Resource evaluation methods

In this section, I discuss some of the key sources of data on conventional petroleum reser-
voirs, and some limitations seen in data collection for unconventionals. I delve further into
the limits to different approaches for reserve estimation in unconventionals stemming from
insufficient data and other challenges. As this thesis takes a more statistical perspective of
well productivity, I present some past efforts toward this in conventionals and background

on the lognormal distribution in natural systems generally.
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2.2.1 Reservoir data collection

There are a wide range of surveying methods used to detect the potential presence of a
conventional petroleum reservoir and estimate properties of rock and fluids in the reservoir.
These include surface observations of field geology and hydrocarbon seeps, but in recent
years technological innovation has vastly improved exploration efforts through geophysical
surveying of subsurface structures [152, 131]. Geophysical surveying, such as gravity, electro-
magnetic, and radiometric surveys, are used in exploration to identify anomalies that vary
from the background geology of an area [152]. A technology that has become extremely
important for reservoir characterization in recent years is seismic imaging, which maps the
subsurface by monitoring the reflections of sound waves propagated into the ground [152].
These sound waves are produced by airguns in offshore exploration, or vibrating trucks on-
shore [152]. This data is costly to obtain because it requires specialized equipment and
personnel and the process takes months [152]. After being collected, the data must be
processed extensively and requires subjective interpretation by specialists [152].

Ultimately, the best source of information on a conventional reservoir, and the only way
to know that hydrocarbons are present, is drilling. Surveying data is used by reservoir
engineers to strategically place appraisal wells in order to determine presence of a petroleum
reservoir, and estimate the size and commercial viability of a field [152]. In addition to
determining the existence and extant of hydrocarbon accumulations, a number of other
properties can be sampled or estimated from data collected in the wellbore while drilling is
taking place, through “logging while drilling.” Drilling mud returns are analyzed to determine
pressure, depths of formation change, and hydrocarbon presence [152]. “Cores,” or rock
samples collected in the reservoir zone of the wellbore using a cylindrical tube, are subjected
to numerous laboratory tests to measure rock porosity, permeability, hydrocarbon and water
saturation, and lithology (rock type); Similarly, reservoir fluids can be collected and tested
to determine their properties and reservoir conditions [152]. Electrical resistivity, acoustic
logging (similar to seismic), and nuclear logging in the wellbore can provide guidance on a
number of rock properties correlated with these measures [152, 128]. The aim of many of

these studies is to determine fluid and rock properties that can be used for numerical reservoir
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simulations or to estimate a “recovery factor,” the percentage of petroleum volumes in place
that can be recovered, helping to reduce the uncertainty about well productivity [152].
There are some limitations to the deployment of these approaches in unconventional re-
sources. Some of this is associated with deployment cost. The value of information must be
balanced with cost of data collection, and often there is less value in gathering more data
for an individual unconventional well through surveying technology [25]. The development
cost and potential production for an individual unconventional well is substantially less than
for many conventional wells, such as those in large offshore projects; as a result, less data is
gathered and less analysis goes into optimization of production. Seismic for instance, can be
used to optimize a well location according to subsurface structure and geomechanics [138],
but may not be feasible or cost effective in an onshore environment [131]. To make matters
worse, rock heterogeneity places limits on the usefulness of samples and tests carried out to
ascertain properties of the reservoir. Many parameters, such as porosity, are more complex
and widely distributed throughout shale and tight formations than they are in conventionals,
with large variations often occurring within relatively small areas [25]. This makes it nearly
impossible to sample a field extensively enough to understand properties and how they vary
throughout the formation. Finally, there are issues with obtaining accurate measurements
from reservoir samples taken, including cores, and cuttings. The rocks found in these for-
mations are susceptible to irreversible changes at atmospheric conditions, and it is difficult
to retrieve, handle, and prepare samples for tests in a manner that can replicate in situ

conditions reasonably well [25].

2.2.2 Reserve estimation in unconventionals

One category of approaches used for forecasting reserves and production in shale gas and
tight oil fields is bottom up analysis of geological parameters and modeling reservoir pro-
duction behavior based on this [116]. As the previous section reviewed, there are challenges
associated with acquiring sufficient and reliable data in unconventionals, making it diffi-
cult to reduce uncertainty about reservoir properties [116]. In addition to data limitations,
the “extremely low aggregate permeability” of these petroleum systems makes conventional

reservoir engineering models and analysis inadequate and inappropriate for unconvention-
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als [142]. For instance, a straightforward material balance approach to reservoir modeling
is not reliable because the low permeability precludes the use of an “average” reservoir pres-
sure [142, 31]. It is also difficult to establish a reasonable recovery factor from reservoir
parameters, which could be used to obtain volumetric estimates of reserves [142, 31].

Numerical simulations of flow, which are used prodigiously in conventionals, may prove
their worth in unconventionals, but only if large advances can be made in our scientific under-
standing of fluid storage and transport mechanisms in these types of rock formations [122, 25].
Furthermore, the natural and induced fracture networks are a major factor governing pro-
duction behavior, but there is significant uncertainty about the fracture properties for a given
well and how to model them? [25, 142]. There have also been efforts to adapt rate-transient
analysis, by which flow regimes are inferred from production history, to unconventional reser-
voirs and completion geometries but this is an area of ongoing work and suffers from many of
the same limitations as reservoir modeling, because of our limited understanding of flow be-
havior in shale and tight formations[142, 25]. It is also difficult to reliably estimate properties
at early stages of well production [142, 25].

An alternative approach to forecasting is extrapolation of production, or decline curve
analysis, in which parameters of an existing decline curve model are fitted to the early months
of production decline in a well. [116, 100]. The fitted decline curve model is then projected
into the future to forecast future production and technically or economically achievable ul-
timate recovery. As a result of the challenges in physical and geologically-informed models,
decline curve analysis is one of the most widely used approaches for forecasting future pro-
duction from shale gas and tight oil wells [116, 100]. This approach is simple and accessible,
even to those without any understanding of reservoir engineering, but there is also huge room
for error especially early on in a well’s life when limited production data is available [142].
Decline curve analysis is perceived as lacking transparency and rigor (due to a lack of physi-
cal explanation for the curves), and the use of this method by operating companies to book
reserves is somewhat controversial because of the potential to overstate resources [116].

Different decline curves exist in literature, including the traditional Arps decline curve 6],

3Some uncertainty can be reduced through monitoring of fracture propagation using micro-seismic but
the use of this technology in unconventional fields is still limited and many uncertainties remain about the
observations it provides [111, 112].

42



and newer models intended to capture unique decline behavior observed in unconventionals,
like those by Valké [146] and Ilk et al. [79]. There are concerns about the applicability of
the Arps decline curve with shale gas and tight oil because it has a tendency to overestimate
future production (especially when it is applied early in a well’s production life) {100, 116].
Arps decline curves are really not appropriate for unconventional wells, because the rate
of decline changes over time and the fitting parameter often exceeds physically realistic
values [142, 116]. The methods proposed by Valko and Ilk et al. may be better suited for
use with shale gas and tight oil [100].

Even with these newer models, it remains unclear how valid the assumption is that
future decline will follow early decline behavior and a probabilistic approach to decline
curves would be a great improvement [116]. Thus far, there is no widely accepted approach
for this [116, 100]. Some attempts have been made to adapt existing decline curve models for
these purposes but they lack reliability and produce extraordinarily wide uncertainty bands
making them less useful [116, 100, 60, 61, 21]. A better understanding of the statistical
variability of well productivity in shale gas and tight oil may help to improve probabilistic
models of production.

The importance of empirical production models is not only in prediction, but also po-
tentially improving our understanding of the physics of shale gas and tight oil production.
After years as a widely accepted empirical model, a physical explanation for the Arps de-
cline curve was eventually developed for conventionals, which remains useful in rate transient
analysis [52]. These models can also be used for computational analysis of the role of dif-
ferent production parameters, allowing for greater incorporation of available data [132]. A
notable example of this from Patzek et al. incorporated a large database of unconventional
production data and developed not only an empirical model of production but also a physical
theory to explain it [125].

Production forecasting and reserve estimation in unconventionals remains a challenging
area of work today. To date though, extensive drilling of a field is the only way to really
assess the resources in a field [116]. Defining a probability distribution for productivity may
enable attainment of knowledge about a field earlier in a drilling campaign, before many

inefficiencies of development are built in.
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2.2.3 Statistical approach to resource evaluation

The petroleum industry has historically preferred to avoid a “casino” analogy to develop-
ment, in favor of a more deterministic perspective? [131]. However, such a view does not
eliminate the large uncertainty associated with petroleum development projects, and may
lead to inadequate consideration of risk and poor decision making as compared to more prob-
abilistic approaches [131]. Fortunately, in recent years, there has been growing recognition
that quantification of uncertainty and statistical models can improve estimates and decision
making, especially in resource plays, which are often considered to have more statistical risk
than geological risk [91, 131, 65, 116].

One frequently useful probability distribution in petroleum resource evaluation is the log-
normal distribution®—a distribution which is Gaussian when the natural logérithm is taken
of it. This concept was introduced by Arps and Roberts in 1958 and gained popularity in the
1960s due to further data analysis by others, most notably Kaufman® [5, 90, 38]. Initially,
this distribution was used to describe the distribution of field sizes” in a region. Over time,
the theory was further refined to better take into account aspects such as economic trunca-
tion (small fields are less likely to be developed) and size bias (larger fields are more likely to
be discovered first) and a number of statistical methods for exploration were developed based
on lognormal and related distributions [92, 137, 7, 4]. More recently, the lognormal distribu-
tion continues to be advocated as useful for constraining or informing estimates of resource
properties and reserves, although it has fallen out of favor with unconventional resource
plays because of the perceived low risk associated with their development® [131, 65, 64, 68].
In unconventionals, uncertainty about field size may have simply been replaced by uncer-
tainty about the productive quality of rock and completion effectiveness. A rigorous test or
application of lognormality with shale gas and tight oil has yet to be reported.

Lognormality is commonly found in natural systems due to the salient role of multiplica-

“The industry has a tendency to view deterministic models as more “scientific” for some reason [131].

5This has also been used to describe the exploration economic risk, a related but more complex assess-
ment [15].

6The lognormal distribution was also applied in the mining industry for assessment of mineral deposits [95,
96, 97].

"Note the importance of field size with exploration for conventional petroleum fields, as discussed in
Section 2.1.3.

8This assumption is only recently being questioned, as discussed in Chapter 1.
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tive effects (as opposed to additive effects which generate more Gaussian distributions), and
the lower bounding at zero of values that must be nonnegative [11, 105, 141]. An example
of multiplicative effects is the amount of petroleum in a reservoir, which is the product of
bulk rock volume, porosity, and pore petroleum saturation. A normal distribution in each
of these parameters leads to a lognormal distribution for the product [141]. This is, in effect
a variant of the central limit theorem, and the lognormal distribution should be thought
of as just as fundamental as the normal distribution, despite its derivative name [2]. Al-
though some have gone as far as advocating that this theory is explained by geochemical
processes leading to the formation of mineral deposits, a more supported explanation is that
the process itself of classifying elements of a population based on shared characteristics leads
to an emergent, approximately lognormal distribution [91, 2, 18]. For the case of resource
plays (particularly the consideration of lognormality at different scales, which is investigated
in Chapter 3), it is relevant that Crovelli demonstrated that the convolution of lognormal
random variables within petroleum plays produces a nearly lognormal distribution, with no-
ticeable differences only in the extreme tails, implying a scalability to the application of the

theory within fields [28, 29, 91].

2.3 Learning in unconventional drilling

The upstream petroleum business is a unique engineering venture because of the confluence
of vast amounts of advanced technology, complex natural systems and phenomena, direct
involvement of humans at various levels (from analysis and design, to manual deployment of
equipment into miles-deep wells), and most of all, immense uncertainty. The natural-artificial
hybrid systems being designed and engineered are never directly observed, and conditions and
behavior must be inferred from a range of data sources. This makes the process of learning
and inference particularly important for understanding drilling performance variability. In
this section, I provide background on learning curves, discuss some important organizational
aspects of learning, and highlight some aspirations used to direct learning in drilling, such
as standardization and continuous improvement. I also outline some of the limitations in all

of these areas, especially in understanding and managing system variability.
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2.3.1 Empirical models of learning

A “learning curve” is frequently used to empirically describe the effect of learning by doing,
in which cost of production is reduced with increasing units of production [104, 155, 99]. Tt
has also been identified as describing progress (both in terms of time and cost) in the drilling
of oil and gas wells in a field [77, 17]. The form of the drilling learning curve suggested by
Tkoku® [77] is shown in Equation 2.1.

Y = an’ (2.1)

In this expression, n is the well number in the sequence, y, is the time of drilling the n*”
well, and a and b are parameters fitted with nonlinear regression. An additional model for
learning in drilling, which is still widely used [82], was presented by Brett and Millheim'® [17]

as shown in Equation 2.2.

yn = Cre "M% 4 Gy (2.2)

In this expression, n is the well number in the sequence, y, is the time of drilling the nt*
well, and C, Cy, and (5 are estimated parameters. More specifically, Cj is the technical
limit once no more efficiency gains can be made (in a plot of the learning curve, this appears
as an asymptote as n — 00), Cy is the rate of learning, and C is the initial time it takes to
drill the first well.

Although the learning curve is often applied to historical data to understand trends,
there are challenges with using it as a basis for planning and decision-making. To begin
with, past progress is no guarantee of future performance (as is an issue with any curve
fitting exercise). Particularly early on in production, there is significant uncertainty about
future rates of learning, although probabilistic methods can help to forecast a range of out-
comes [113]. Beyond prediction though, one of the primary motivations for studying the

learning curve is the development of tools and organizational structures for better managing

9In the broader learning curve literature, this was the originally proposed power function learning curve
used by Wright to describe airplane manufacturing cost [153].

19In the broader learning curve literature, this is similar to the exponential function learning curve proposed
by Levy [104].
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and speeding up the learning process. In order to remain competitive in a dynamic and un-
certain environment, companies need to constantly monitor their learning process, properly
evaluate and incentivize progress of teams, measure the outcome of trials, and establish best
practices. There is great interest in using the learning curve as a foundation for addressing
many of these concerns, but the inputs to the learning curve need to be better understood
both conceptually and quantitatively [99, 155, 121, 94]. One important step toward this is
better linking the learning curve with understandings of how organizations learn, codify, and
implement knowledge in practice, and the challenges of doing this, which will be discussed

in the next section [103, 99, 94].

2.3.2 Learning in organizations

Organizational learning is rooted in the learning of individuals but is more complex due to
the multiple interacting levels of learners, including individuals, teams, and the overall orga-
nization [99]. Not only must individuals make inferences from observations, but knowledge
must be shared through formal and informal means within the organization, and the capacity
to take effective action must consequently be enabled [94]. As a result, the learning process is
substantially different for organizations than for individuals, and tends to be “routine-based,
history dependént, and target-oriented” because of the rigidity of these exchanges [103, 94].

There are generally two types of learning an organization can engage in. The first of
these, operational learning, refers to a “know-how” for implementing procedures and making
minor adjustments to routines, which tends to lead to short-term incremental improvements
in efficiency [94, 121]. The second is conceptual learning, which instead addresses the “know-
why” of a process and challenges prevailing ways of doing things in order to develop new
frameworks [94]. Conceptual learning seeks to understand causes and effects using testable
hypotheses and experimentation [121]. This type of learning can lead to design changes or
breakthrough innovations, but in order to have a lasting effect it must be codified in some
way, such as in a standard operating procedure (SOP) [103, 121].

Memory is tightly linked with learning, and takes the form of individual and shared mental
models. In addition to SOPs and other documents, organizations may rely on informal shared

understandings, particularly in settings (like oil and gas drilling) where complex uncertainties
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make it harder to formally document concepts [124, 103]. There is a risk with poorly defined
SOPs of enshrining procedures in a way that inhibits future changes [94]. Further work is
needed to understand the way that mental models, such as SOPs, influence and are influenced
by the learning curve [94, 99].

Another key component of learning is experimentation, or “deliberate learning activities,”
but there is a need for further study to understand optimal strategies for this in different
settings [99]. Experiments can be a source of great conceptual learning, but if they are
not managed properly, they can actually be detrimental to learning [99]. Bohn and Lapre
identified four types of experiments an organization can engage in [12]. Controlled experi-
ments introduce deliberate changes on different groups, while natural ezperiments attempt
to infer causation from variations in data under normal operations. Ad hoc ezperiments'!
use deliberate changes but without a control group or experimental design, leading to lim-
itations in the ability to reach strong conclusions about findings, especially when there are
confounding variables present. Finally, evolutionary operation is a hybrid approach between
controlled and natural experiments, where very small changes are introduced that do not
create necessarily different groups. This is common with continuous variables that should
be optimized, such as the density of drilling mud used in a well. Instead of comparing effects
between groups, statistical measures are used to infer effects and further changes are made
to investigate in the more favorable direction of the parameter. In choosing an experimental
approach, some important considerations are the speed and cost of each “learning cycle” (the
time from deployment of a trial to measurable outcome, analysis, and procedural revision),
the signal-to-noise ratio (the ratio of the unknown effect to the standard deviation of out-
comes), the fidelity of experiments if they are simulations of real world conditions, and the
value of information being investigated [99).

Frequently, because of the many points of exchange in an organization, learning may
break down or be inhibited by aspects of the organization or environment. March and Olsen
identified four incomplete learning cycles, shown in Figure 2-7, where limitations arise in an

organizations ability to learn [107, 94]. In role-constrained learning, individuals are limited

1Based on numerous conversations with engineers and managers at operating companies, this type of
experimentation is very common in unconventional drilling.
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by constraints on their roles and as a result are unable to act upon learning. With audience
learning, individuals are able to take action but are limited in their ability to impact the
broader organization’s actions. Superstitious learning occurs when the action taken as a
result of learning does not have a clear effect on the environment. This occurs because of
a “misattribution” of cause and effect [121]. Finally, learning under ambiguity means that
actions have an effect on the environment but the causal connection is not clear. This may
lead to the formulation of “myths,” which are inaccurate beliefs based on interpretations of
data [121]. Multiple myths may also engender conflict as individuals compete to assign

accountability or attribution to outcomes, be they negative or positive [103]

Role-constrained

learning
Individual M | | Individual
action | ‘ beliefs
h
Audience _ | e Learning
learning — 71— B — under
ambiguity
Organizational | | Environmental
action I ’ response
Superstitious
learning

Figure 2-7: Model of organizational learning and incomplete learning cycles. Adapted from
March and Olsen [107]

In addition to March and Olsen’s identified incomplete learning cycles, Kim discusses
three others that deal with insufficient utilization of mental models. Briefly, these are sit-
uational learning, where an individual improvises to solve a problem but does not codify
or generalize the learning, fragmented learning, in which the link between individual and
shared mental models is broken, and opportunistic learning, where shared mental models
are intentionally bypassed to allow an individual or small group of individuals to implement
their own mental model instead [94].

There are additional non-organizational considerations that make learning particularly
difficult in the setting of unconventional oil and gas drilling. Learning is difficult in unstable

environments because it is difficult to effectively implement changes or learn from ambiguous
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outcomes [121] This “incomplete technological knowledge” makes it impossible to have a
full understanding of the effects of input variables on output [99]. With drilling, detail
complezity means there are too many variables to comprehend the problem entirely, and
dynamic complerity presents a particularly nasty hurdle to learning because the uncertainty
of subsurface drilling conditions and the lengthy learning cycle for drilling a well makes it

difficult to establish cause-and-effect [99].

2.3.3 Procedural and performance variability and learning

Despite these challenges, learning happens in drilling. In unconventionals, the rapid and
repetitive approach to development requires an incessant drive toward standardization of well
designs and drilling procedures in order to improve efficiency [34]. Additionally, operators
engage in continuous improvement of techniques based on systematically testing procedures
to determine those that lead to more optimal outcomes in a field [34]. The combination
of standardization and continuous improvement drives progress along the learning curve.
This development strategy, which has been referred to as a “flexible factory,” relies on data
“triggers” to inform cyclical well redesigns, striving toward greater efficiency of implementa-
tion through increasingly repetitive practices (from standardization) with better frameworks
for understanding best practices (through continuous improvement) [53]. However, the suc-
cess of this effort depends on the ability to understand and manage sources of operational
and performance variability throughout this process, a dimension rarely appreciated within
discussions of learning from experience in drilling [34].

Standardization of drilling procedures has been found to improve the efficiency of task
execution and reduce variation in time spent on identical tasks [3]. It requires process def-
inition, ensuring that shared mental models are established, and avoiding some learning
pitfalls described in the previous section. It also engages learning at multiple levels, from
planning to implementation [103]. For example, the directional drilling plan in a horizontal
well consists of an equipment selection and a strategy for combining sliding and rotating
drilling to achieve the desired curvature. During execution, the directional driller is guided
by this plan but may slightly alter the approach as needed in the field. If the strategy of

the plan is sound, over time the directional driller will become more proficient at executing
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it in the given field, resulting in more standardized combinations of sliding and rotating. If
variations introduced by the directional driller improve the plan, then they may be incor-
porated formally, or informally into future wells, also leading to more standardized drilling.
Thus, there are both top-down and bottom-up sources of standardization and it is important
to consider not only standardization of designs and plans, but the standardization of actual
field practices. It is important to understand the role that standardization plays in learning
in order to inform planning of drilling campaigns and the design of proper incentives for
those driving improvement [63]. Detection and description are the first steps related to this
effort.

Continuous improvement on the other hand is a form of experimentation that seeks to
introduce and evaluate new drilling approaches to a field in a structured way [34]. These
changes may be evaluated in absolute terms, or relative to the learning curve, as Zangwill
and Kantor propose [155]. It is important to consider both of these measures, because of
the obvious economic implications associated with absolute performance improvements, but
also the improved ability to manage and disseminate the learning process by considering the
impact of variables on the slope of the learning curve. However, due to natural variability
introduced between cause and effect, and noise associated with measuring performance, it
is important to statistically assess the impact of a continuous improvement [82]. Learning
curves are useful and important in drilling campaigns but the practical issue of scatter,
or noise, within the learning curve drives the need for probabilistic methods and better

characterization of performance variability [12, 99, 69, 103, 82].

2.4 Benefits to characterizing the nature of performance
variability

A critical development in the understanding and management of shale gas and tight oil
resources is the characterization of performance variability, both in well productivity and
well drilling operations. Here, I will summarize some of the benefits to doing this.

There is a growing awareness of a high level of productivity variation both between
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and within areas of unconventional resource plays, due to immense heterogeneity of reservoir
properties. The extent and nature of this variation is not well understood but analysis of pro-
duction data may help to define this better, as this thesis aims to address [116]. At this time,
the wide range of well productivity, even within areas of seemingly similar geology, makes it
difficult to reliably predict individual well performance in advance [65]. Characterization of
this variability as a distribution of outcomes will help to improve economic forecasting and
development planning in fields and can also underlie any reserve analysis [142]. At the same
time, it is important (especially within an operating company) to use a consistent approach,
such as a probability model, to estimate the chance of success, in order to accurately compare

opportunities and investments [131]. According to McGlade et al.:

“[A] key weakness of existing resource estimates is the absence of a rigorous
approach to handling uncertainty. . . few studies provide thorough analysis of the
sources and consequences of uncertainty or present their results in the form of a

probability distribution'®” [116]

The appraisal and development phases overlap more in unconventionals than in convention-
als, and it is important to incorporate quantification of risk into the early stages of field
development. This will give a more complete economic picture throughout development,
as more is learned about a field. It is also important to move away from static forecasts
toward forecasts that incorporate uncertainty so that value of information strategies can be
employed [20].

Furthermore, characterization of production variability will support future efforts to iden-
tify drilling, completion, and geological sources of variability in order to advance knowledge
of unconventional reservoir behavior and operational proficiency. Variability may be a salient
feature and should be incorporated into theories if this is the case.

With regards to learning, improving knowledge about drilling performance variability will
contribute both in unconventional drilling applications and also more broadly to the fields
of organizational learning and learning curve theory. There have been attempts to address

variability in learning rates [82, 99], but little work has been done to address variability in

2Ttalics added by me for emphasis.
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the system itself, which makes it difficult to assess the progress of an organization and make
decisions accordingly [155]. The method for evaluating continuous improvement, presented
by Zangwill and Kantor, is very limited in application because it fails to take into account er-
ror present in the observations relative to the theoretical learning curve [155]. Characterizing
variability will provide a statistical basis for more effective evaluation of experimentation.

Many of the development strategies currently employed in unconventional well devel-
opment may be inappropriate or may differ in practice from theory [20]. It is not clear
at this point that a low-cost manufacturing approach is the best strategy for development
campaigns, although lessons may be drawn from this strategy, such as the benefits of stan-
dardization as opposed to one-off “craft” wells typical of conventionals [55, 34, 33]. To identify
new development strategies and measure the efficacy of existing ones, additional measures
must be developed to understand facets of learning beyond the simple metrics of time, cost,
or number of defects [3, 99]. As with the learning curve, these additional performance
metrics can be used to compare different teams, establish best practices, and design better
incentives [3].

Finally, there is great interest in advancing data-driven models and learning in oil and
gas development, and characterizing variability is an important part of this [71]. Dramatic
expansion in data acquisition, transmission, and storage capabilities over the past few years
has enabled oil and gas operating companies to collect unprecedented amounts of data from
drilling and other operations. These large and diverse structured and unstructured datasets
are leading to an increased “digitization” of the oilfield [51]. This data-rich paradigm is
creating both opportunities and challenges in terms of the effective utilization of this data
in enhancing field operations. Unfortunately, for many operators, this new data abundance

> g situation where the available

has not led to operational gains owing to “data paralysis,’
data is not utilized to the fullest extent possible owing to insufficient analytics expertise and
an inability to engage in sophisticated data-driven learning [133].

There is a great opportunity to improve forecasting abilities, decision-making and devel-
opment planning, and promote more effective learning by making use of abundant existing

field data from sensors and reports. Automated data analysis techniques are essential for

effective learning from plentiful feedback because they allow the incorporation of greater
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quantities of useful data than can be achieved manually, they can identify latent trends, and
they can automate parts of the learning process; all of which leads to more useful real-time
guidance for the planning of future wells [19]. Obtaining data is not sufficient—it is neces-
sary to tightly manage the process of experimentation and close the learning feedback loop
by correctly interpreting effects and encoding inferences in shared memory models [130].
Understanding the patterns of variability in both drilling and production will provide a rig-
orous testing framework for experimentation with drilling and completion parameters and is
a critical step toward the optimization, automation, and application of machine learning in

field practices.
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Chapter 3

Characterizing production performance

variability

The variability of early-life well productivity is a major driver of economic uncertainty in a
shale gas or tight oil field development campaign. The peak rate of production from wells
provides a suitable proxy for early life productivity and is a useful metric for statistical
assessment and development of forecasting tools.

In this chapter, I characterize the nature of production performance variability in major
shale gas and tight oil fields. This analysis includes the Barnett, Marcellus, Bakken, Eagle
Ford, and Haynesville, but I place the Barnett at the forefront of the study because of the
abundant drilling of wells in that play and availability of data across a longer timeframe.
In Section 3.1, I describe the production history dataset used for the study, including infor-
mation about how it was processed and prepared for the analysis. I introduce the graphical
method of probability plots and use them to evaluate the shape of the distribution of well
peak production rates in Section 3.2. Using the distributional assumption I develop here,
distribution parameters for a region, such as p, can be estimated using Bayesian statisti-
cal inference with a known distribution family. I outline the procedure for this and then

demonstrate the utility of this tool in Section 3.3.
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3.1 Description of data and processing

3.1.1 Production data and initial processing

The production data I have used in this analysis was accessed on July 3, 2014 from the
drillinginfo HPDI online database of US oil and gas production data [73]. This is a service
that aggregates production data for oil and gas wells in 33 US states, drawing on publicly
available repositories managed by the respective states. The information in these databases
has been reported by oil and gas operating companies according to state requirements.
There are challenges associated with utilizing well production databases like HPDI because
the requirements for the categories and quality of data reported vary from state to state.
Monthly production rates and perforation locations were reporting requirements in all the
states analyzed though, and formed the basis of this study.

It was necessary to clean the dataset prior to analysis. The raw HPDI dataset contained
some erroneous “junk” wells with obvious misreporting (i.e. values outside the range of
reasonable values for some or all fields), which were thus excluded from the analysis. I used
a set of data filters to obtain a cleaned dataset of active wells producing from the plays of
interest. The criteria used for filtering, and the number of remaining valid wells in each play,
is summarized in Appendix A in Table A.1.

The plays included in this analysis—Barnett, Marcellus, Bakken, Eagle Ford, and Hay-
nesville—are major US shale plays with high levels of drilling activity in recent years, pro-
viding abundant production datasets [14, 26, 30, 39, 48, 56, 66, 120, 127, 140, 151]. They
also have been developed similarly enough to warrant comparison, yet have known geological
differences. They include a range of reservoir fluid types, from the dry gas of Haynesville to
the liquids-rich gas condensate of the Eagle Ford! and the black oil of the Bakken [73, 114].

Some descriptive characteristics of these plays are summarized in Appendix A in Table A.2.

T analyzed the gas production rates from Eagle Ford to avoid complicating the analysis with consideration
of varying gas-oil-ratios.
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3.1.2 Transformation and normalization of production data

As discussed in Chapter 2, there are theoretical and historical reasons to expect that well
productivity may be lognormally distributed. The probability density function of a lognormal
distribution is shown in Equation 3.1.

1 _(nz-w?

e 22 x>0 (3.1)

fx(zyp,0) =
To\ 2T

If the lognormal distribution in Equation 3.1 is used to describe the distribution of peak
production rates in a well ensemble, z becomes the well’s peak production rate, u becomes
the arithmetic mean of the log-transformed well ensemble peak production rates, and o is
the standard deviation of the log-transformed well ensemble peak production rates in the
well ensemble. Put another way, if each value in a lognormal distribution has the natural
logarithm taken the resulting distribution is normal (Gaussian) with mean, u, and standard
deviation, o. The parameters p and o are also sometimes referred to as location and scale
parameters respectively. It is worth noting here that in lognormal distributions, p also
corresponds to the natural logarithm of the median value. For a thorough examination
of the lognormal distribution and all of its peculiarities, see the classic monograph on the
subject from Aitchison and Brown [2].

It is important to use an appropriate system of normalization when searching for common
patterns within large oil and gas datasets [71]. In order to compare the productivity distri-
bution shape for different well ensembles, the production rates must be normalized within
well ensembles. This allows for comparison of the shape of the distribution separately from
central tendency and spread of data, which may vary between well ensembles. To accomplish
this, I took the log-transformation of the peak production rate for each well and then calcu-
lated the “standard score” for each well relative to the distribution of wells in the ensemble
under consideration? [93]. The standard score, z, is calculated using Equation 3.2.

_Inz—p

7= ——" (3.2)

ag

2This means | am effectively assuming a log-normal distribution and the analysis in the following section
evaluates the validity of this model.
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In addition to the absolute peak production rate, I also consider the specific peak pro-
duction rate, which normalizes production to the length of the productive section of the well.
This is an important metric because many companies have been moving toward longer lateral
sections and more stages of hydraulic fractures to increase absolute production, potentially
influencing patterns found in the data [59]. In order to calculate the specific peak production

rate I use Equation 3.3.

Q _ Qpeak:
spec.,peak D

per f. lower — DpeTf.,upper

(3.3)

@ spec. peak i the monthly specific production rate in the peak month, Qpeak is the (abso-
lute) monthly production rate, Dyer.tower is the measured depth of the lowest perforation in
the well, and Dpe,¢. upper is the measured depth of the highest perforation in the well. The
denominator in this expression represents the productive length of the well that has been

perforated.

3.2 Evaluating the shape of the productivity distribution
with probability plots

In this section, I assess the validity of the distributional assumption that well productivity
in shale gas and tight oil is lognormal. There are four reasons for making distributional

assumptions, as identified by Chambers et al. [22]:

1. Allow for compact description of data—mean and standard deviation are adequate

parameters to describe normal or lognormal distributions
2. Enable useful statistical procedures (e.g. analysis-of-variance)

3. Characterize sampling distributions for parameters and make statistical inferences from

data

4. Improve understanding of physical mechanisms generating data
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All of these reasons apply to the case of a lognormal distributional assumption for well
productivity. Simple, yet accurate, descriptions of well productivity (enabled by reason
1) will lead to better resource assessments. Statistical procedures like analysis-of-variance
for lognormal distributions (as in reason 2) can be used in the future to evaluate different
completion (hydraulic fracturing) techniques for effectiveness. Making statistical inferences
(from reason 3) is the focus of Section 3.3, and enables operators to assess the productivity
of resource areas early on. It is my hope that the findings of this study will help guide and
inform fundamental research into understanding the complex physical processes governing
shale gas and tight oil production (leading to future realizations of reason 4).

In the remainder of this section, I introduce probability plots, the technique used to
evaluate the distributional assumption of lognormality, and present results to demonstrate

the general validity of this distributional assumption.

3.2.1 Probability plots

In order to evaluate distribution shape I use the graphical method of probability plots, also
called theoretical quantile-quantile plots. This technique allows for a graphical comparison
of a univariate empirical distribution with an ideal distribution. This test is invariant to
location and spread, allowing it to be used to test for an entire family of distributions [22].
This property also means that the transformation in 3.2 has no impact on the shape of the
resulting plot, except that in order to test for lognormality of the original data, we need to
test the z values for normality. The transformation does enable us to use a common scale
for different well ensembles and plot them on the same graph for convenient comparison.

A probability plot is constructed by first ordering data by increasing value and deter-
mining the empirical quantile of each data point. For example, if there are n = 100 data
points, the lowest value has a quantile of p = 0.01. The empirical quantile of each data point
is then matched to the value that would occur at the same quantile in an ideal distribution
of the same size as the data. The empirical values are then plotted against the theoretical
values. [22]

In this thesis, the y-axis corresponds to the theoretical distribution and the x-axis corre-
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sponds to the data®. For ease of comparison, the plots have been set to a standard horizontal
scale of 2 = —3 to z = 3. This pushed some left-hand extreme values off the graph but allows
for easier visual inspection over a suitably wide-range of the data. I did all of the probability
plotting in MATLAB, using the “probplot” function with the default midpoint probability
plotting positions [110].

The interpretation of probability plots is extensively explored in literature, and I will
provide only a brief discussion of the basics here [22, 58, 118]. A good fit of data with a
distribution is indicated by the straightness of the data points in the plot. Often, the line is
shifted or multiplied by a constant to allow it to be compared to a diagonal line. This is done
automatically in MATLAB. In addition to checking for goodness of fit, much can be learned
from any systematic departures from the line. Often, outliers exist at either end of the data.
Additionally, there tends to be greater variation in tails for distributions that have density
that gradually tapers to zero in the tails (such as normal or lognormal distributions) [22].
Defined and systematic curvature at the ends may indicate longer or shorter tails in the
data than the ideal distribution. With the axis selection I have chosen, curvature upward
at the left tail or downward at the right tail indicate longer tails at those ends of the
distribution [22]. The opposite orientations indicate shorter tails at either end. Asymmetry
can also be identified. Convexity of the plotted data indicates that the empirical distribution
is more left-skewed than the ideal distribution (and contrarily, concavity indicates right-
skewness) [22]. Additionally, gaps and plateaus may tell something about data rounding or
acquisition issues [22].

It is important to remember that, in the real world, no truly normal or lognormal distribu-
tion of data exists. Measurement error, physical and practical limitations on data generation
and collection, along with the discrete nature of sampling preclude such a possibility [22]. We
are really interested in evaluating whether a distributional assumption is adequate for the
purposes of describing data and using statistical tools with the data. Probability plots are

thus more appropriate for testing distributional assumptions with real data than frequentist

31t is important to be clear about which axis is the data and which is the theoretical distribution because
interpretations of any deviations have opposite meaning depending on the orientation of the plot. There is
not a standard axis selection and the different scales and units that might be used for each axis can lead to
ambiguity.
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Figure 3-1: Histograms showing distribution of well productivity in Barnett before and after
normalization to standard score. MMsef/mo is million standard cubic feet per month.
[Summary statistics for specific productivity of counties in Barnett (fig 3-4b).]Summary
statistics for specific productivity of counties in Barnett (fig 3-4b). Units of mscf/mo/ft are
1000 standard cubic feet per month per foot

hypothesis tests, which estimate the probability that differences between the data and ideal
distribution could have been caused by sampling error alone [58, 71, 93, 118|. For large, real
datasets—Ilike the ones used in this thesis— frequentist hypothesis testing is also unreliable
because the large sample size makes the measurable threshold for statistical significance too

small [118].

3.2.2 Lognormality of productivity

Before applying probability plots to the production history data, it is worth plotting the
distribution of productivity as a histogram for illustrative purposes. Figure 3-1 shows his-
tograms for well productivity in the Barnett Shale play, the most extensively developed (and
thus sampled) unconventional resource play, both before and after the transformation and
normalization described in Section 3.1.2.

It can be seen from the histograms in Figure 3-1 that the distribution of well produc-
tivity is right-skewed and resembles a lognormal distribution. To more reliably test this
distributional assumption though, we turn to probability plots.

The probability plot in Figure 3-2 demonstrates the lognormality of well productivity
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across the Barnett play for the entire population of over 9,000 wells. The adherence to
this distribution is remarkable for both absolute productivity and specific productivity, the

length normalized metric defined in Section 3.1.2.

7
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Figure 3-2: Probability plot comparing absolute and specific productivity in the Barnett to
an ideal lognormal distribution.

This characterization also applies to the other resource plays in the dataset. Figure 3-3
shows probability plots of major U.S. unconventional plays, including Barnett, Marcellus,
Bakken, Eagle Ford, and Haynesville. Across the well ensembles of all of these plays, the
empirical productivity distribution shape can consistently be characterized as lognormal,
especially between the fifth and ninety-fifth quantile. The curvature at the ends will be
discussed in Section 3.2.3.

Interestingly, because this characterization of the distribution shape is invariant to loca-
tion and scale parameters, it also applies at multiple spatial resolutions within plays, despite
known differences between areas. First, an examination of counties within the Barnett play
reveals that the lognormal distribution assumption holds when the play is broken into its
constituent counties (Figure 3-4). The same distribution shape can be seen both in core

areas, such as Johnson county, and lower performing non-core areas, like Parker county.

Although core counties have higher median well productivity, the absolute variability—measured

as the P90-P10 ratio®—is actually extraordinarily consistent within all of the Barnett coun-

ties, as can be seen in Table 3.1. The same is generally true for absolute variability of

Oth

4This is a ratio of the 90*® percentile value over the 10** percentile value.
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Figure 3-3: Probability plots comparing absolute and specific productivity of all plays to an
ideal lognormal distribution.

counties in other unconventional plays, as shown in Appendix A in Table A.3.

Table 3.1: Summary statistics for specific productivity of counties in Barnett (fig 3-4b).
mscf/mo/ft is thousand standard cubic feet per month per foot.

County P90-P10 P50 (mscf/mo/ft) Mean (mscf/mo/ft)

Denton 3.38 19.63 21.51
Johnson 3.95 23.56 27.25
Parker 3.22 13.93 16.07
Tarrant 3.37 25.90 29.29
Wise 3.92 13.91 16.00

This characterization can be carried to still finer spatial resolutions than the county-
level. In order to do this, I develop artificial spatial divisions within Johnson county in the
Barnett to spatially group wells together. I divide the county into uniformly-dimensionsed
“blocks” of ten square miles and then use the latitudinal and longitudinal coordinates for
each well in that county to determine the block that it sits in. I only include in my analysis
the blocks that have enough wells in them to reasonably be examined for their productivity
distribution (I use an arbitrary cutoff of 16 or more wells for this). The wells in each of these
blocks is treated as a separate well ensemble that can be analyzed with a probability plot,
as in Figure 3-5. The limited sampling of these smaller well ensembles makes it unsurprising

that the consistency of the distribution shape from one well ensemble to another is less
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Figure 3-4: Probability plots comparing absolute and specific productivity of well ensembles
in different Barnett counties to an ideal lognormal distribution.

than those at larger spatial resolutions. However, viewed collectively, the symmetry of the

noise about the 45° line suggests that this characterization still captures the core behavior

of productivity variability in shale gas and tight oil at these smaller geographical scales.

It is certainly an adequate characterization for practical purposes of forecasting, as I will

demonstrate in Section 3.3. Further investigation of this phenomenon will be necessary to

understand the relationship between this noise and the spatial scale.
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Figure 3-5: Probability plot comparing specific productivity of well ensembles in ten square
mile blocks with 16 or more wells within Johnson county of the Barnett to an ideal lognormal
distribution.

How reliable is this distribution assumption over time with potentially evolving technol-
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Figure 3-6: Probability plots comparing absolute and specific productivity of different vin-
tages in the Barnett to an ideal lognormal distribution.

ogy? To answer this, we look at some additional sub-groupings of well ensembles in plays.

First, we consider each vintage, or development year, as a well ensemble. The probability

plots examining different vintages in the Barnett are shown in Figure 3-6.

In addition to the consistency of the distribution shape, it is worth noting that the ab-

solute variability has remained fairly consistent over this period of development for both

absolute and specific productivity as well, as shown in Table 3.2. The same trend of per-

sisting, wide variability of well productivity for other shale gas and tight oil plays in this

analysis can be seen in Appendix A in Table A 4.

Table 3.2: Spread of productivity by vintage in Barnett (Figure 3-6).

Vintage Absolute productivity P90-P10 Specific productivity P90-P10

2005 4.48
2006 4.59
2007 4.33
2008 3.90
2009 4.06
2010 4.00
2011 4.81
2012 4.14
2013 9.22

5.08
4.49
4.58
4.43
3.97
4.66
4.46
3.88
4.26

Furthermore, categorizing wells by the length of the perforated section of well yields the
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same distribution shape. In general, wells have been increasing in length (and number of frack
stages) over time, making this a relevant consideration for understanding how technology
evolution might impact the shape of the productivity distribution. Figure 3-7 shows the
results of this categorization for absolute productivity (specific productivity is excluded due

to the redundancy of both categorizing and normalizing based on length).
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Figure 3-7: Probability plot comparing absolute productivity for Barnett well ensembles
categorized by perforation length to an ideal lognormal distribution.

Finally, if this distributional assumption is to be used by individual operating companies,
it is worth considering the distribution for a specific company’s portfolio of wells in a given
area. Figure 3-8 shows the distribution of well productivity for specific county-level individual
company well portfolios in the Barnett. These samples represent the largest individual
company well portfolios in the Barnett.

The figures presented in this section provide a narrative that demonstrates the lognormal-
ity of unconventional well productivity. The Barnett shale gas play has been the focus here
because the broadness of the dataset facilitates division into many sub-categories of wells.
Many additional figures are included in Appendix B (Figures B-1 to B-19) to reinforce this
characterization with similar analysis for other plays, as well as for an alternate metric to

the peak production rate—the first twelve months of production.

66



0,995} BB ER 0.995} o} oo
0.99+ & 0.99} o e
"m
0.95+ 0.951
0.9r 0.9t
L L
E 0.75 E 075
g 0.5} 8 osf
a 0.25}F °  Operator 1 - Johnson E 0.25}- °  Operator 1 - Johnson
’ > Operator 2 - Johnson ' = Operator 2 - Johnson|
0.1} e Operator 3 - Johnson| 0.1} e Operator 3 - Johnson
0.05+ e QOperator 1 - Tarrant 0.05F o Operator 1 - Tarrant
G °  Operator 2 - Tarrant @ Operator 2 - Tarrant
0.01 %’ n ¢ Operator 4 - Tarrant 0.01F _, °  Qperator 4 - Tarrant
]
0.005 fu: —— Ideal lognormal 0.005 —— Ideal lognormal
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Z (standard score) z (standard score)
(a) Absolute productivity (b) Specific productivity

Figure 3-8: Probability plots comparing absolute and specific productivity of different oper-
ating company well portfolios in Barnett counties to an ideal lognormal distribution.

3.2.3 Discussion of deviations at the ends

It is worth considering some potential explanations for the deviations from lognormality
at the extremes of the data. The adherence to a lognormal distribution was found to be
generally strong between the fifth and ninety-fifth percentile. Outside this range, the right
tail is thinner than lognormal and the left tail is heavier than lognormal. There are three

categories of explanations for these deviations that I will address:

1. The pattern of productivity is better described by a different distribution.

2. Lognormality is only applicable to non-extreme samples; geological differences lead to

different behavior.

3. The extremes of the data are influenced by differences in sampling,.

Given the consistency of the deviations, we admit that a distribution with a similar shape
to the lognormal distribution but with slightly different tail behavior might describe the data
better. One such possibility is the gamma distribution, which has a smaller right tail than
the lognormal distribution [23, 135]. However, a probability plot comparing the normalized
absolute productivity in the Barnett to the ideal gamma distribution in Figure 3-9 shows

that the gamma distribution actually overcompensates for tail behavior and does not provide
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an obviously better model. Whether other distributions provide suitable models for produc-
tivity in unconventionals is a topic for further consideration elsewhere. My purpose here is
to provide a generally descriptive and useful model for the productivity distribution shape,
for which the lognormal seems a good candidate. Additionally, the analytical tractability
of the lognormal probability density function, and the numerous statistical methods useful
with normal (or lognormal) distributions make a strong case for sticking with this charac-

terization®.

Probability
o
(3]

0.01- °  Absolute
Ideal gamma

-3 -2 -1 0 1 2 3
z (standard score)

Figure 3-9: Probability plot comparing absolute productivity for Barnett wells to an ideal
gamma distribution.

In the second explanation, the lognormal distribution is applicable to the bulk of the
data but at the extremes, different natural processes lead to behavior deviating from the
general pattern. A lognormal distribution is indicative of numerous “errors” being multiplied
together in a process [2]. In the extreme cases, certain outlier geological properties may
dominate other factors in the system, overpowering the generally multiplicative nature of
outcomes. Although shale gas and tight oil are often thought of as continuous resources
with heterogeneously distributed properties, there may be “dry” spots with exceptionally
low organic matter. If there is little to no organic matter, than this quality will dominate
productivity and other heterogeneously varying qualities will have no discernible effect. If

this was the case for the entire lateral section of the well, it would yield a “dry hole” and

5Eberhardt and Gilbert found that the use of a lognormal distribution for similar distributions, such as
the gamma distribution, could be justified by convenience, as it provides equal levels of power and robustness
regardless of the actual distributional origin of data [40].
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would not be in our dataset. It could apply only to a portion of a well’s lateral length though,
leading to much lower than expected output. Unfortunately, given the lack of geological data
for this production dataset, I am limited to this type of conjecture.

The third and most intriguing explanation for deviations is that “human factors” are
behind it, with sampling differences influencing results in some way [150]. This has been an
important consideration in past statistical evaluations of conventional field size distributions.
To begin with, a process of economic truncation was identified, in which the smallest fields
might not be reported, leading to a thinning of the left tail [137]. Additionally, the sampling
of conventional oil drilling was not random and there was a tendency for larger fields to be
targeted initially, also known as proportional sampling, size bias, or “creaming” [92, 117].

However, when it comes to deviations it is difficult to reconcile what is observed in
our production data with the analogue of conventional field size distributions. These past
explanations were not only dealing with a petroleum resource of a very different nature,
the deviations they sought to explain were in fact different. The deviations observed in
conventional field size were generally the opposite of ours, with a thin tail on the left and a
heavy tail on the right (relative to a lognormal distribution) [92, 4]. In spite of the censoring
out of inactive wells in our dataset, there remains a greater abundance of low-performing
wells than an ideal lognormal distribution would imply. Economic truncation may be a more
complex issue in unconventionals, leading to different behavior than with conventionals but
it is difficult to say at this point.

With regard to size bias, this takes a slightly different form in unconventionals. There
is a definite targeting of the best acreage first, as can be seen by the general decline in
specific productivity over the different vintages of wells in the Barnett (fig 3-10). However,
as Figure 3-6 shows, the shape of the distribution in the different vintages does not change.
This means that, relative to conventionals, there is a relative inability for operators to target
the most productive wells first without also sampling the lower end of the distribution in an
area. This implies a very different nature of risk with each well drilled than in conventionals,
which is further discussed in Chapter 5. Additionally, past concerns about the influence
of size bias on statistical inference methods are less relevant with shale plays than with

conventional field sizes [92].
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Figure 3-10: Cumulative distribution function plot showing a general decline in specific
productivity by vintage in the Barnett.

There are additional potential paths leading to differences in sampling at the extremes,
such as the choice of drilling locations. Individual well production may be reduced when
wells are drilled in close proximity to each other and share the same pressure drawdown area,
leading to interference. Ikonnikova et al. estimated that in the Barnett, around 15% of wells
had overlapping drainage areas and might suffer from interference effects [78]. At the upper
end of our empirical distribution, higher performing wells tend to slightly underperform
what would be in line with an ideal lognormal distribution and, due to the tendency for
high density development in productive “sweet-spot” areas, interference may be a reasonable
explanation. Figure 3-11 shows wells drilled in the Barnett, with the top fifth and bottom
fifth percentile identified in red and blue, respectively. The top fifth percentile of wells tend
to occur in more productive areas that are heavily drilled.

This tendency can be expressed more precisely by calculating the number of wells drilled
within a radius of 0.564 miles® of each well (which creates a circle of one square mile around
the well). On average, this is notably higher for the most productive wells, leading to greater

potential for interference with these wells”. Table 3.3 shows some summary statistics that

6T calculate this by assuming 1° latitude=69 mi. and 1° longitude=58.5 mi. (for 32.5° N and 97.5° W).

I am ignoring an important temporal aspect of this here. Interference can only weaken the peak produc-
tion rate of a well if the pressure in the area has already been drawn down by nearby wells drilled earlier.
Analysis of the timing of the start of production for nearby wells could provide further insight but this is
beyond the scope of my discussion here.
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Figure 3-11: Barnett shale play wells. Red indicates peak production in the top fifth per-
centile. Blue indicates peak production in the bottom fifth percentile.

capture this dynamic.

To put these numbers in context, Iknonnikova et al. estimated that 10-15 wells within
a square mile area was the maximum density of wells that could be drilled in the Barnett
without interference effects. Although this description of well proximity is not proof of
interference , it suggests that the circumstances for a number of more productive wells to
have their peak production lowered by interference may be present, at least in the Barnett.
This effect may partially explain a thinning of the right tail of the distribution.

Another possibility that could lead to sampling differences at both extremes, is choking

back of wells either intentionally or unintentionally. Wells produce into shared pipelines and
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Table 3.3: Average number of nearby wells (within 0.564 mi. radius) for wells in the Barnett.

Wells Median Mean Maximum

<P5 1 2.4 16
Overall 5 6.2 31
>P95 8 9.4 31

it may be the case that the strongest wells have to be choked back below their full production
potential due to capacity constraints. On the other hand, the lowest producing wells have
inadequate initial pressure to compete with production from other wells flowing into the
same pipeline. This may inhibit their production as well.

It is worth noting that from an economic perspective, the deviations at the upper end
of the distribution are of greater concern because in absolute terms they are much larger.
Taking the log-transformation is helpful for evaluating the adequacy of the distributional
assumption but it masks the fact that deviations at the upper end tend to be of a greater
magnitude due to the positively-skewed nature of the distribution. This can be clearly seen
in a probability plot comparing absolute productivity in the Barnett to an ideal lognormal

distribution, shown on a linear scale without a log-transformation (Figure 3-12).
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Figure 3-12: Probability plot showing absolute productivity of Barnett wells compared to an
ideal lognormal distribution. Axes are linear scale of raw data without a log-transformation.

Despite the observed differences in tail behavior discussed in this section, I conclude that

the lognormal distribution is a suitable distribution for describing productivity in shale gas
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and tight oil except at the most extreme values. This allows us to proceed to Bayesian

statistical methods of inference.

3.3 Bayesian inference of productivity distribution pa-

rameters

3.3.1 Background

In general, statistical inference is a process that uses observations, or data, to provide infor-
mation about unknown variables or an unknown model [10]. Bayesian statistical inference
seeks to accomplish this using probability models fitted to the data, with results summa-
rized as probability distributions for the model parameters and for predicted future observa-
tions [57]. It is based on Bayes’ rule (Equation 3.4), with © representing the paramater(s)

of interest and X as the observations [10].

fo(9) fxje(z]0)
f fo(0) fxio(x]0")d0"

In Equation 3.4, fe(8) is referred to as the prior, fxjo(z|0) is the likelihood, the denom-

foix(0lz) = (3.4)

inator is referred to either as the evidence, or the marginal likelihood, and the left term,
foix(0)z), is called the posterior [98].

The procedure for Bayesian analysis involves first fully defining the probability model for
the quantities of the system. To update the knowledge about the system and incorporate
new observations, this probability model is conditioned on the observed data to form the
posterior distribution, which effectively combines the beliefs of the prior with the observed
data. The marginal likelihood serves to normalize the posterior distribution. The fit of the
model and implications of the posterior should always be evaluated and, if necessary, the
process can be repeated with a different model or set of assumptions. [57]

Put simply, the posterior distribution is proportional to the prior distribution and the
likelihood of the data being observed given this prior. After it is calculated, the posterior

distribution can be reused as a prior distribution and the process repeated when new ob-
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servations becomes available. This makes Bayesian analysis ideal for situations in which
data is gathered sequentially, with some time lag (and potentially decisions) in between
observations. [98]

Bayesian statistical inference is a powerful approach to statistical inference with some
advantages over classical (frequentist) statistical inference, which views unknown quantities
as deterministic rather than as random variables. The ability to clearly state and incorporate
distributional assumptions and beliefs about parameters into a prior distribution makes
Bayesian analysis both transparent and well-suited to situations where subjective beliefs can
improve the accuracy of inferences. Alternatively, when little is known about the system in
advance, or the data should “speak for itself,” an uninformative prior can be selected that
will be dominated by the observations in the posterior calculation. {10, 98]

Bayesian inference may yield similar or identical results to traditional approaches in
certain, simple cases. However, it’s generality and flexibility provide a framework that can be
extended to more advanced approaches. For instance, Bayesian hierarchical modeling allows
inferences to be made when multiple parameters have some dependence on each other. This
is useful in situations where information about observations is available at different levels,
such as reservoir or well parameters influencing production from a well. [57]

Conclusions drawn from Bayesian statistical inference are also more intuitive, and some-
times more robust, than those from classical approaches. For instance, a probability dis-
tribution for an unknown value provides more information and is less ambiguous than a
confidence interval defined by rigid hypothesis testing [57]. These factors make it a good ap-
proach for estimating unknown parameters of well productivity distributions, understanding
the uncertainty associated with the distributions, gauging the influence of data collected, and
allowing for additional gathered information to be incorporated through prior distributions

and more advanced methods like hierarchical modeling.

3.3.2 Estimating the mean of a normal distribution

As it turns out, Bayesian statistical inference builds quite nicely on our distributional as-
sumption that well productivity in a field is lognormally distributed. By taking the natural

logarithm of productivity, we can transform our distribution into a normal distribution. An

74



observation z thus has the likelihood defined by the Gaussian probability density function
in Equation 3.5 [98].

)2
1 e_( ) (3.5)

p(x|p,0) =
o\ 27

I focus here on the problem of estimating  when o is known. Estimating both x4 and o
together requires multiple parameter Bayesian inference, an exercise worthy of development
but not necessary to go into for this thesis. One convenient way to approach this, is to choose
the conjugate prior for the Gaussian likelihood function in Equation 3.5. A conjugate prior
will combine with the likelihood function to yield a posterior distribution of the same family
as the prior. Because the product of two normal distributions is also normal, we can thus
choose a normal distribution for the prior distribution on p. [98]

We define the prior distribution on pu to be normal with mean M), and standard deviation

S,.. Following the derivation presented by Kruschke [98], the likelihood times the prior is:

p(z|p, 0)p(p) o< exp (—% (= ;2“)2> exp <—% (u _524“)2>
= exp (_% (SU ;2/1)2 (m ~S§4“)2})
o (-5 [He g 0o
([ g )
o ()

The transition to the final line above was possible because the last term in the innermost
parentheses was a constant and could be dropped. Following this same rationale in reverse,
we insert a different constant in order to “complete the square” and achieve an expression that

resembles our original normal probability density function (Equation 3.5) in its structure. [98]
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Equation 3.7 is the numerator for Bayes’ rule, which can be normalized in order to get
a probability density function. The form of Equation 3.7 is a normal distribution on p with

mean M)j, and standard deviation S}, as shown in Equation 3.8 and 3.9. [98]

) OQMN + SE$

ko 02+S§

,_ [
So=\mr e (3.9)

This can be repeated, with the posterior distribution on u becoming the new prior dis-

(3.8)

tribution for the next observation z. Alternatively, if N observations are made at once, we
can use the fact that the mean of the observations Z should be normally distributed with
a standard deviation of o/v/N [98]. Thus for N samples the posterior distribution on u
becomes normal with mean M, y and standard deviation S}, v as shown in Equation 3.10

and 3.11.

/ _ (UZ/N)M#-i_S;%j
MM,N - 02/N+ SZ (3'10)
2 N 5'2

Wl =\ (0?/N) + 52

Equation 3.10 and 3.11 form the basis for a study in the following subsection.

3.3.3 Estimating the mean for a ten square mile block of wells

It was shown in Figure 3-5 that even at the scale of ten square miles, the distribution of

well productivity was approximately lognormally distributed. In this subsection, I demon-
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strate how this distributional assumption, combined with Bayesian statistical inference tools,
provides a powerful method for estimating the mean of the distribution of wells in an area.

Consider a situation in which an operating company would like to estimate the value of 1
for the productivity distribution of wells that will be drilled in a ten square mile area. This
company may ultimately decide to drill fifty wells in this area, which each cost $5 million,
making this a $250 million investment decision. If the company expects the value of p for
this area to be too low, it may choose to drill wells in a different area instead, or not at
all. Traditionally, the company would drill a small number of appraisal wells in this area
in order to gather geological data, for instance through core plug samples. It would then
run reservoir simulations to generate production estimates aiding the decision of whether to
continue drilling. As I discussed in Chapter 2, this can be a costly and imperfect process.
The company could additionally use initial production rates from early wells drilled in the
area to form a statistical inference of x4 and use this knowledge to inform their decision to
continue drilling the area.

We will assume that the operating company has some knowledge about well productivity
in the broader area, such as other wells in the county in which this ten square mile block
lies. This is not unreasonable given the availability of production data, such as through
HPDI [73]. This knowledge allows the company to use an informative prior distribution
on 4. The company does not know the distribution for the current block that they are in
though, and must infer this from observations (wells drilled).

To evaluate the efficacy of Bayesian statistical inference in this situation I return to
the same geographical divisions for Johnson county in the Barnett that led to Figure 3-5.
I choose the prior distribution on u to be normal with a mean equal to the mean of the
log-transformed production rates for a random® selection of 250 wells in the county (this
represents less than 10% of the total wells in our dataset for this county). Additionally, I
choose the prior standard deviation to be equal to the standard deviation for mean values of
log-transformed productivity in a random selection of 7 ten square mile blocks in the county
(this represents less than 10% of the total ten square mile blocks in the county).

In order to use Equation 3.10 and 3.11, developed in Section 3.3.2, we will treat o as a

8] use the Mersenne twister algorithm in MATLAB to generate random integers.
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constant. The value assumed for o is again drawn from a random sample of 7 ten square
mile blocks in the county. The standard deviation for wells in each of these blocks is taken
and the median value is chosen for o.

This is a somewhat arbitrary procedure for determining the prior parameters and o but it
allows us to illustrate the use of imperfect knowledge about the area as a basis for developing
an informative prior distribution. An operating company would of course make use of any
available production data, both internally and externally, and tailor these numbers based on
expert opinions in the company (this incorporation of subjectivity is a strength of Bayesian
statistical inference).

There are a total of 72 ten square mile blocks in Johnson county that have 8 or more
wells in our dataset. For each of these blocks, I carry out Bayesian statistical inference with
initial wells drilled in the block and estimate the value of u for the productivity distribution
of all wells in that block. As a measure of accuracy, I calculate the squared error between
the estimate of 1 and the actual p in each block. For each possible sample size N between 1
and 8, I sum the squared error across all 72 blocks. For comparison, I also use a maximum
likelihood estimator (MLE; the sample mean, since we are working with normally distributed
samples after log-transformation) and calculate the sum of squared errors. I also find the
sum of squared errors if a static estimate of the county average is used (since this knowledge
was used for the prior distribution). The result of this analysis is shown in Figure 3-13.

The Bayesian inference systematically balances observed data with prior knowledge about
the area, and as a result of this, does better than both MLE and the static estimate based
on prior knowledge. There is a particular advantage over MLE when only a small number
of wells have been drilled. This makes this technique particularly valuable as it can provide
insight about the value of drilling in an area without having to invest as much in drilling

appraisal wells.
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Figure 3-13: Sum of squared error with different numbers of wells drilled for Bayesian infer-
ence, maximum likelihood estimator, and county average (the prior knowledge) as a static
estimate.
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Chapter 4

Characterizing drilling performance

variability

Drilling wells is essential to development of shale gas and tight oil resources and is often a focal
point for well cost reduction. Because of its procedural complexity, as discussed in Chapter 2,
there is a large amount of uncertainty about development costs, both for present and future
wells. The learning curve, discussed in Section 2.3.1, provides a model for projecting changes
in efficiency of drilling operations over time driven by organizational learning, particularly
through the use of “experiments,” or field trials of new or altered procedures.

The variability in operations and performance presents challenges for understanding the
inputs to the learning curve. There is variability in performance around the learning curve,
which appears as “noise” in a chronological plot of well construction times with a fitted
learning curve. This noise makes it challenging to reliably measure progress on the learning
curve and forecast future improvements. Variability in the sequence of operations used
to drill a well represents an additional indicator of learning, capturing elements of both
“standardization”—an unconventional drilling aspiration I introduced in Section 2.3.3—and
experimentation with new procedures, especially early on in the development of a field.
These forces of learning need to be carefully balanced. Thus, it is worthwhile to consider a
way to quantify the level of standardization and procedural consistency between wells drilled
sequentially in a field.

Performance and operational variability in well drilling operations is a challenging and
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ambiguous topic. In addition to geotechnical physical uncertainties, there is a critical social
dimension to drilling. The data I have used, rather than being direct physical measurements,
is based on human-reported conditions of the drilling system, which adds to the challenge
of identifying underlying trends. Furthermore, in contrast to the production dataset used
in Chapter 3, the scope of the drilling dataset used in this chapter also makes it difficult
to draw broadly applicable conclusions about variability beyond the dataset examined. The
production data spanned all wells drilled in a number of plays over the course of several
years, allowing for ubiquitous trends to be identified. The drilling report data used in this
chapter is for a single drilling campaign in a field, including around 200 wells drilled by a
single operating company. The drilling report data is neither granular enough for specific
conclusions about individual operations, or broad enough to develop an understanding of
how operations evolve more generally across multiple campaigns. Nevertheless, the data
provides a useful analysis test-bed, providing insight into how performance variability can be
characterized, interesting trends worth further investigation in other drilling campaigns, and
how future efforts toward understanding drilling variability and managing the transformative
learning process might be improved.

In the first section, I describe the available data in greater detail, as well as how it
was processed. I then discuss a method for measuring operational variability between wells
drilled sequentially and present the results of applying this to wells from a single drilling
campaign. The relationship between this measure and learning will be explored along with
related implications for managing the drilling learning process. In the last section, I discuss
variability of performance around the learning curve and the challenge this presents for
evaluating and managing the learning process in drilling. I characterize variability in the
residuals of both a power and exponential learning curve fit to the overall wells drilled in
this campaign and discuss the implications of both the specific findings and more generally

the benefits of considering this dimension of variability in drilling performance.
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4.1 Description of data and processing

4.1.1 Description of drilling report data

The drilling report data that I have analyzed consists of a database of detailed drilling
reports from nearly two hundred horizontally-drilled development wells drilled in a major
North American unconventional field by a single operator over the course of about three
years. Each well’s collection of drilling reports is comprised of sequential entries spaced
at an hourly resolution, including structured data like process time and bit depth along
with unstructured text entries describing activities and measurements. Each entry in the
drilling report is identified with an operation code, which indicates the category of activity
associated with that drilling report. In total, approximately 60 different operation codes are
used in the reports, corresponding to activities that include testing the blow-out preventer
stack, rotary drilling, slide drilling, casing placement, pumping cement, etc. Combined, these
describe with a reasonable level of granularity the sequence of activities taking place during
the drilling of each well.

In an unconventional field, the delivered well is essentially a commodity, and unlike
with hydraulic fracturing, the drilling procedure is unlikely to have a direct impact on well
production. The exception to this is well placement and length. Although the well is
constructed essentially the same, a longer well may allow for additional stages of fracturing
and access to more of the reservoir. Longer wells can also be more time-consuming to drill.
The placement of the well also matters, both in terms of the area that it accesses (although
the quality of rock is difficult to predict as Chapter 3 identified) and whether the well is
effectively drilled to stay within the target zone. In this analysis, I occasionally treat wells
as being of identical length, a valid assumption since the well-length does not vary much
within this dataset. In other cases, I normalize drilling time by well-length to account for
differences where they are more likely to have a notable impact on outcomes. I also make
the assumption that staying within the target zone is not an issue with any of the wells—a

reasonable assumption since there is no reason to believe that any of these wells were botched.
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4.1.2 Conversion of drilling report data into operation sequences

Given this reporting structure, the drilling activities of each well can be approximated using
a sequence of these operation codes. These sequences will ultimately form the basis for com-
paring wells’ drilling activity to each other for similarity in 4.2.2. It is helpful to disaggregate
these sequences into different “drilling modules,” and this is straight-forward to do because
the reporting format uses “phase codes” associated with the section of well under construc-
tion. The four drilling modules for these wells are 1) drilling the surface hole—drilling the
first section of wellbore, 2) casing the surface hole—casing and cementing the first section of
the well, 8) drilling the production hole—drilling the second (and in this case final) section

of wellbore, 4) casing the production hole—casing and cementing the second section of the

well.
Raw data Base64 characters
Well A Well B Well A Well B
1 'RUD' 1 |'RUD' 1o 10
2 'RUD' 2 |'BPR! 2o 2 D
3 'DRT 3 |'sAF' 3 s 3 p
4 |'DRT' 4 |'RUD' 4s 4 o
5 |'pCD' 5 |'BPT' 508 5 |E
: S :
66 |'DRT' 76 |'PCD’ 66 |S 76 g
67 'RUD' 77 'DRT' 67 o 7S
68 'DRT' 78 |'DRT' 68 |S 78S
69 'DRT' 79 |'PCD’ 69 |S 79 g
70 'SAF' 80 |'INT' 70 |p 80 Z
81 |'PCD’ 8l|g
82 |'INT' 822
83 |'RUD' 83 o

Figure 4-1: Sequences of operation codes (raw data) mapped to Base64 characters.

In preparation for comparison, I used a program in MATLAB to separate operation codes
into the drilling modules of each well. In the dataset for this analysis the drilling operation
codes were three letters in length, so for ease of implementation, I used a key to convert each
drilling operation code into a Base64 character. The sequential procedures for each well are
represented by a vector of symbols, which can be mapped back to the original operation codes
and the identifying information of the well. An illustration of this encoding of operations

for each well into a string is shown in Figure 4-1, which uses the drilling the production hole
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module from two wells for illustration. Descriptions of the operation codes in Figure 4-1 are

included in Appendix A in Table A.5.

4.2 Evaluating operational variability

Standardization of drilling procedures is a key driver toward reduction over time of the unit
cost of production in unconventional oil and gas fields. This may be aspirational, in the sense
of efforts to modularize well designs and planned sequences of activities across similar wells.
It may also be used to refer to the similarity of actual procedures between different wells,
which is difficult to quantify. In this section, I present an original method for quantifying
this dimension of learning and present some interesting results obtained from applying it to

the field data described in the previous section.

4.2.1 Approximate string matching and operational dissimilarity

In order to measure standardization across a development campaign, and how procedures
vary over time, I make use of approximate string matching (ASM). ASM is an algorithmic
technique used for the pairwise comparison of character strings that represent qualitative
measurements, steps or symbols in a sequential system—such as nucleotides in DNA or
RNA sequences—to quantify the degree of similarity [76]. ASM had never been applied to
petroleum production systems before we proposed it at the 2014 SPE ATCE in Amster-
dam [119]. In the past it has been applied to short strings, such as in online search queries
and word processor spell-checkers, and also with long strings, such as in determining the
similarity of sequences of DNA in the field of bioinformatics [32, 76]. I use this technique
to develop a measure for operational variability, the first objective metric for evaluating and
comparing the rate and consistency of standardization across different wells, sections of wells,
and rigs.

The purpose of the ASM technique is to quantify the dissimilarity between two chains
of symbols. In order to do this, the algorithm determines the minimum number of single-
character edit operations necessary to change one string to another. This minimum number

of edit operations is often called a “string distance,” but I will refer to it formally as the
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operational dissimilarity, since we are comparing sequences of operations. A higher oper-
ational dissimilarity corresponds to a greater variation in the field operations between two
wells. ASM can be implemented using several algorithms that allow for different edit oper-
ations. In this analysis, I chose to use the Damerau-Levenshtein algorithm?!, which is used
for comparison of DNA sequences in bioinformatics—the most similar application to our
own [32, 101, 76]. This variant of ASM includes the potential edits described in Appendix
A in Table A.6.

The Damerau-Levenshtein ASM algorithm first creates a blank matrix for comparing two
strings of elements. The matrix size is (m + 1) x (n + 1), where m and n are the lengths
of the respective strings (or number of operations). The first column and row are used to
compare each string with a “blank” reference string and are numbered according to character
position, which is the minimum number of edits between each of the strings and the blank
string. This matrix with the initial numbering is shown in Figure 4-2.

ODpPpOEeese g S S g Z g Z 0

012345 76 77 78 79 80 81 82 83
1

m »w w»mw o0 o
v b wN

66
67
68
69
70

T VvV un»m o nv

Figure 4-2: The initial comparison matrix is generated for the strings being compared. Many
cells have been omitted here and are represented with ellipsis.

A dynamic program then proceeds through each position, moving left-to-right and then
top-to-bottom. At each position, the algorithm finds and stores the minimum number of edits

associated with changing the first substring to the second substring, where each substring is

More precisely, I use the restricted edit form of Damerau-Levenshtein, which is computationally more
efficient and does not allow substrings to be edited more than once. The results of this version are nearly
identical with the full Damerau-Levenshtein algorithm.
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defined as the characters up to and including the current position (i.e. to the left and above
the current position in the matrix). In order to do this, the algorithm combines the editing
associated with the character combination at the current position with the previous stored
values. The potential edits and the process for evaluating the new associated values relative
to the previous position’s minimum edit values are summarized in Appendix A in Table A.7.
The minimum total value out of all of these potential edit operations is the value that will
be stored in the cell for the positions currently under consideration.

In this manner, the algorithm effectively stores the minimum number of differences as
it works across the two strings, and the bottom right cell holds the resulting minimum
edits, or operational dissimilarity, between the first string of operation codes and the second.

Figure 4-3 provides a detailed example of this.

oDpoE oDpo6E
012345 012345
0 10} o 010 1
o2 o2
53 s 3
o Dp oE ***gsSSgZg1Zo
/ 012345 76 77 78 79 80 81 82 83
0DpoOE 0DpoOE c 1012 3 4 75 76 77 78 79 80 81 82
0012345 012345 o 2112 2 3 74 75 76 77 78 79 80 81
010123 wmmp 0101234 $ 322 2 3 3 73 74 75 76 77 78 79 80
o2 o 2i1% S 4 3 3 3 34 273747576 777879
s 3 § 3 g 5444424 7172737475 76 77 78

/ ;

oDpoE oDpoE S 66 65 65 64 63 63 52 53 53 54 55 55 55 55
012345 012345 - o 67 66 66 65 64 64 52 53 54 54 55 56 56 55
0101234 ™= 0101234 S 68 67 67 66 65 65 51 52 53 54 55 56 57 56
0211223} ©211223 S 69 68 68 67 66 66 51 51 52 53 54 55 56 57
s 3 $322233; p 70 69 69 68 67 67 51 52 52 53 54 55 56i57;

Figure 4-3: On the left, a series of substring comparison steps are shown (some steps are
excluded here). The gray box indicates the two substrings being compared and the red box
is the minimum edit operations at that position. On the right is an overview of the matrix
after the entire strings have been compared with the overall operational dissimilarity in the
bottom right red box.

Using this ASM algorithm, I systematically compared the well drilling modules in the
analyzed dataset discussed here in order to find the operational dissimilarity for each pairing
of wells. However, given that we are considering sequences of different lengths, one concern
with this metric of operational dissimilarity is that it is an absolute measure of the total

number of edits. Longer strings (i.e. wells with more operational steps) can incorrectly
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appear more different from each other than shorter strings that are compared with each
other—the greater number of potential differences present in a longer string tends to exag-
gerate the difference by skewing the operational dissimilarity without regard for the overall
length of strings being compared. This is particularly a problem since we are interested in
looking at specific drilling modules, which are different lengths (such as longer modules like
drilling the production hole and shorter modules like casing the surface hole) and want to be
able to compare trends between these. What we really need to measure is how different (or
similar) two sequences are relative to the maximum number of differences. To develop this
metric, we normalize the operational dissimilarity by dividing it by the maximum number of
potential differences, which is the length of the longer string being compared. This provides
a normalized measure of dissimilarity, ranging from zero, if the two strings are identical,
to one, if there is no similarity between the two strings and every character must be either
substituted, inserted, or deleted.

After carrying out ASM on a set of drilling modules from wells, we need a way to visualize
the normalized operational dissimilarity between each pair of wells. One approach to this is
using a color plot. Figure 4-4 provides an example of this visualization using a small sample
of wells. The left and bottom axes are labeled with well numbers (ordered sequentially by
date), increasing from top to bottom and left to right, as is standard in matrices. Note that
diagonally across, there is a line of cells with a value of zero, since a well compared to itself
has an operational dissimilarity of zero. Additionally, the plot is symmetrical about this line,
since approximate string matching is commutative. Temporally, since the wells on each axis
are ordered by date, the top left is a comparison of the oldest wells to each other and the
bottom right is a comparison of the most recent wells to each other. Of particular interest
to us is the “gradient,” or gradual change in color toward lower values which can be seen in
this particular example moving from older wells to newer wells. This indicates that wells
became more standardized and similar to each other over time.

Figure 4-5 is a color plot of the normalized operational dissimilarity, calculated by using
ASM, for the production hole drilling module across nearly 200 wells drilled sequentially in
this campaign. The darker shades along the left and top of the plot indicate that earlier

wells have a great amount of dissimilarity both with each other (upper left corner) and with
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Normalized operational dissimilarity for sample of wells

Wells ordered by date

Wells ordered by date

Figure 4-4: A color plot can be used to visualize the results of ASM for a series of wells.
This color plot is similar to viewing a discretized surface plot from above. The plot here is
not of actual data, and is intended only to be illustrative.

later wells (along the upper and left side). On the other hand, later wells (lower right corner

of the plot) appear to be more similar to each other.

4.2.2 Demonstration of operational variability

Although it is useful to visualize all of the information generated from the ASM in color
plots, it is easier to inspect trends by using a single metric for each well. Additionally, when
considering standardization in a given field, we are less interested in how each well compares
to every other well in the field—to understand standardization we really want to understand
the nature of procedural variation in temporally close wells. In order to measure this, we
formally define operational variability as the mean of the normalized operational dissimilarity
of the previous ten wells compared with the current well>. This provides a simple metric for
individual wells indicating how procedurally standardized each module in them is.
Referring back to Figure 4-5, the section of data used for calculating operational variabil-

ity is outlined with dotted lines. A plot of operational variability for drilling the production

2A scope different than the previous ten wells can be chosen, but there is an inherent trade-off between
being able to apply the technique earlier on and introducing too much noise with a shorter scope.
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Normalized operational dissimilarity for drilling the production hole
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Figure 4-5: Color plot of normalized operational dissimilarity for drilling the production
hole.

hole versus chronological well number is shown in Figure 4-6. There is a strong trend toward
greater standardization across the drilling campaign within this module.

The trends of standardization are not identical across all drilling modules and some in-
teresting insights can be drawn from comparisons. We can apply a linear fit to operational
variability in a module to produce a trend line we will call a “standardization curve,” be-
cause of the similarity of this concept to the learning curve. Figure 4-7 shows a comparison
of standardization curves in different drilling modules. Note that there are nearly parallel
trends for both of the drilling-based modules as well as for both casing-based modules. It
is natural that the drilling-based modules experience higher levels of standardization, or re-
duction in operational variability. There is simply a greater variety of activities that can be
carried out in the drilling procedures than for casing, which is a more straight-forward ac-
tivity. Drilling-based activities have more experimentation early on, associated with finding
the best techniques. Once these best practices have been identified the drilling procedures
are rapidly standardized in order to improve efficiency. Also, observe that modules related
to the production hole—which is longer and more complex to both drill and case because

of the presence of a curved section and long, horizontal section—have higher operational
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Operational variability for production drilling
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Figure 4-6: Operational variability captures the operational dissimilarity of a well relative
to the other most recently drilled wells (in this case using a scope of the ten previous wells).

variability than their surface hole counterparts. This illustrates how this metric can be used
to understand the nature of learning in different parts of wells. This type of insight should
guide management toward focusing on modules with greater opportunity for standardiza-
tion improvements. In some ways, standardization may be most prevalent and also most
important for more complex sequences of activities in the drilling process.

It is worth considering a potential relationship between standardization (i.e. the reduction
of operational variability shown in Figure 4-6) and time-based performance improvement, as
is frequently discussed with the learning curve (see Section 2.3.1). Learning curves will be
developed and applied to this drilling data in the next section, but for now the normalized
time and chronological well number will be plotted without a fitted curve simply to show
general shifts in performance over time and how operational variability can provide further
illumination on change brought about through learning. Figure 4-8 shows time for drilling
the production hole in each well normalized by the length of this section of well®. This

can be compared to the plot in Figure 4-6 showing operational variability in this drilling

3Here we normalize the length, although it is not necessary, as wells are fairly similar in length. Later,
in Section 4.3, this normalization is not used because when considering the entire well construction process,
slight variations in total well length have little impact. It is generally recommended that both non-normalized
and normalized time are examined and an evaluation of the relevance of well length differences is made from
this.
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LLSF of operational variability for drilling modules
with 95% confidence bounds
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Figure 4-7: A comparison of operational variability trends in different drilling modules. Solid
lines are linear least squares fits (LLSF) and corresponding dashed lines are 95% confidence
bounds established using non-simultaneous functional bounds [109].

module for each well. In both cases, learning is reflected in the general downward progression
of the data, toward faster drilling and more standardized, consistent sequences of drilling
procedures. Both of these findings are somewhat expected based on literature discussed
in Section 2.3.3. It is unclear at this point whether there is a causal relationship between
these trends in either direction but some correlation is apparent. This corollary relationship
is interesting because each metric is measuring fundamentally different aspects of how the
drilling of wells has changed over time: the length of time a well takes to drill and how similar
operationally a well is to other recently drilled wells. Because the operational variability has
been normalized by the the number of operations, the length of time spent drilling has no
direct impact on the standardization curve, indicating that these are two separate trends
taking place alongside each other. Although it has been theorized that standardization is an
important aspect driving time performance improvement in the drilling of unconventional
fields, prior to this work, standardization had never been quantified alongside time-based
improvement for comparison of the two phenomena.

Rather than treating it as a separate indicator, we can also use the metric of operational

92



Normalized production drilling times
100

90f O
80
70+
60p o}
50

40/ o © o

Time per depth (hour/1000 ft)
O
o 0]
o
O

30k © R o
20t %JOO%DO%O@O gg%’q)%@m

10 1 1 1 1 1 1
0 20 40 60 80 100 120

Well number

Figure 4-8: Normalized time for drilling the production hole. Compare the downward trend
with that shown for operational variability in 4-6.

variability to enhance a plot of time-based improvement. In this manner, we can use a
single plot to provide even more information about how operations have changed over time,
both in their duration and relative sequencing. To do this, a “bubble” plot is used to plot
normalized times of drilling the production hole with variable marker sizes. The marker sizes
are determined by the operational variability of the production hole drilling procedures in
each well. Normalized times for the first ten wells are excluded from the plot because they are
outside the scope of measurement for operational variability. This makes it possible to view
relative changes in operational variability and the trend of standardization as a dimension
of the learning process.

An interesting application for this combined plotting of time-based performance and op-
erational variability is analyzing and comparing learning within specific drilling rigs or crews.
The drilling campaign under analysis actually consists of several rigs operating throughout.
In addition to looking at aggregate performance improvements and standardization across
the entire field development campaign (as we have been doing so far), we can also disag-
gregate learning effects for the different rigs. Figure 4-10 shows normalized production hole
drilling time for each rig, from the eleventh to final well drilled by the rig (in order to limit

plotting to wells which have a corresponding operational variability measure). This type of
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Figure 4-9: Operational variability and time-based performance combined into one “bubble”
plot with marker size based on operational variability.

plot can provide insight into how rigs should best be deployed within fields. For instance,
Rig 3, which operated for only a short time, showed extraordinary procedural consistency,
indicating an ability to implement fairly standardized procedures immediately. In contrast,
Rigs 1, 2, and 4, deployed early in the campaign, had high operational variability as well
as substantial scatter in time-based performance at the start. This may be attributable to
planned experimentation and ambiguous engineering plans. Over the course of the campaign
though, they all demonstrated an ability to internalize learning and achieve good operational
consistency and performance improvements. Rig 5, on the other hand, was brought in late
during the campaign and had a large amount of operational variability and inconsistency in
time-based performance. This may indicate an inability to follow standard operating proce-
dures and incorporate broader field learnings or may be due to an oversight by management
at bringing this rig up to speed with best practices. It would require further assessment to
determine if management is the culprit, but if the Rig 5 crew itself is mostly to blame, then
we can conclude that Rig 3 is a more reliable rig to bring into a field in which some standard

operating procedures have already been established.
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Normalized production drilling times with
marker size based on operational variability (within rig)
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Figure 4-10: Operational variability can be used to provide additional insight into differences
between drilling rig performance. Operational variability is measured within the wells drilled
by each rig and only the eleventh to final well is plotted. See Figures B-20 to B-24 in
Appendix B for each rigs data shown independently.

4.2.3 Enabling automated and data-driven learning

ASM and the metric of operational variability can be used to measure standardization in
drilling field operations, which is an established concept though one that has not been rig-
orously measurable before this research. The results here indicate some connection between
operational variability and improvement in drilling time performance. This is a useful first
step in deconstructing the inputs to the learning curve and can be used to better understand
the role of standardization in reducing drilling time. The ability to measure and record
standardization can inform the design of incentives for engineers and field workers in or-
der to balance the different roles of standardization and experimentation. Additionally, the
measurement of standardization is useful for planning, implementing, and evaluating drilling
campaigns. For instance, ASM can be used to call attention to parts of a well that could
benefit from further standardization (and vice versa).

Going forward, this technique can be made more operational and the learning curve
can be better understood by developing a systematic means for measuring experimentation,

or “continuous improvement.” The challenge of doing this, due to natural variability in

95



time-based performance, is discussed in the next section. The combination of improved
understanding of continuous improvement and standardization with the ability to measure
these will lead to an improved understanding of the different levers that drive the learning
curve in drilling. This can also help engineers and managers to balance the two objectives.

Ultimately, these methods can play a critical role in future “smart” drilling rigs and
advanced drilling campaign management software, enabling rapid adaptation and greater
overall drilling efficiency. By automating measurement of specific dimensions of learning like
standardization, data analytics and machine learning techniques can be rapidly deployed
with incoming streams of data to assist in directing operations, evaluating well designs and
making new drilling plans. This will enable the oil and gas industry to overcome “data
paralysis” and make better use of abundant field data. Although further work is needed for
the development of additional tools and frameworks for learning, the tools presented here for
measuring standardization are a fundamental early step toward improving drilling planning

and the management of data-driven learning in unconventional drilling.

4.3 Performance variability in the learning curve

4.3.1 The issue with learning curve noise

Continuous improvement is the central process of TQM (total quality management) gener-
ating improvements in effectiveness and efficiency in a range of industries [155]. Here, I use
it to refer more generally to any intentional learning activity during drilling, which is in-
tended to drive improvements in performance and shift activity favorably along the learning
curve. For instance, a new drilling fluid might be introduced during a challenging section of
drilling a well in an effort to improve drilling efficiency. As identified in Section 2.3 though,
introducing changes is not enough, and if done unsystematically can actually harm the learn-
ing process. It is also necessary to measure outcomes, infer causal effect, and if warranted,
enshrine the new practice as a protocol (such as an SOP).

Zangwill and Kantor [155] developed an approach for evaluating progress made relative

to the learning curve—an important examination given the interest in better managing the
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learning curve. The authors develop a differential equation form of the learning curve that
can incorporate both the power-law (Equation 2.1) and exponential (Equation 2.2) forms
of the learning curve in literature by using different assumptions. From this more general
model, they describe a finite difference approach to estimate progress on the learning curve

(i.e. the rate of learning implied by a continuous improvement) defined as,

E(q) = ~AM/(AgN(q)) (4.1)

In Equation 4.1, E(q) is the effectiveness of the continuous improvement, g is the pro-
duction number (i.e. the cumulative well count) and Ag is the number of items processed in
the period of interest (while the continuous improvement is being implemented. N(q) is the
“waste” remaining in the system and AM is the measured improvement in the cost or time

metric. Figure 4-11 illustrates these quantities on a sample learning curve.

- CLLLL] L L L1

q (well #)

Figure 4-11: Illustration of the variables used by Zangwill and Kantor [155] to evaluate
effectiveness.

A major challenge in reliably estimating AM is the abundant noise, or scatter, of data
points distributed around the learning curve. The difference in M between two points cap-
tures some change along the learning curve but also an unknown error term associated with
each point. Zangwill and Kantor attempt to address this concern by suggesting that M be

measured at the level most directly associated with the change to reduce error. There are
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two issues with this though. First, in a process like drilling there is significant interconnect-
edness of different procedures making it difficult to measure a direct output of an activity
at times. Second, Zangwill and Kantor presume that if the effect of an activity can be mea-
sured directly it will be a deterministic representation of the causal impact of a continuous
improvement. This is a poor assumption in a situation like drilling a well, which is fraught
with uncertainty about the subsurface. Any measure of an outcome should be viewed as a
statistical sampling of the effect in question; an exact replication of activities might yield a
slightly different outcome in the field.

Additionally, there are situations, such as developing learning-based incentives or evalu-
ating particular crews and rigs, in which it would be desirable to measure learning within
an overall learning curve, rather than for a subset activity in the learning curve. As an
example of this, an analysis I carried out found that a collection of different rigs all made
learning progress while drilling several wells on a drilling pad, but when the rigs were moved
to a new drilling pad, they each experienced a decline in efficiency with the first well on
the pad. This form of “forgetting” is an important consideration in the learning process and
has been previously discussed in the context of drilling rigs [17]. Importantly, some rigs
were better at internalizing learning and had lower rates of forgetting. This difference in
progress retention allowed the less forgetful rigs to, over time, outperform other rigs that
had higher rates of learning within pads. Although the specific results of this analysis have
not been included in this thesis, this anecdote illustrates the value of considering continuous

improvement effectiveness as part of the overall learning curve.

4.3.2 Characterizing the variability of noise

When considering the variability of performance, it is less relevant to consider absolute values,
than the quantity of waste remaining in the system. This is identical to the measured
performance but with an assumed constant technical limit subtracted from the measured
effect* [155, 3]. The assumption of a technical limit is not trivial and may change over time,

but for the purposes of evaluating performance, waste in the system is usually relatively large

4The technical limit is included in the exponential law (see Equation 2.2) so this term is set to zero during
the curve fitting of waste time here.
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Figure 4-12: The power-law and exponential functions, the two most common forms of the
learning curve, were fitted to the waste times for wells in a drilling campaign using ordinary
least squares nonlinear regression.

early on when the technical limit is most uncertain, making the accuracy of early estimates of
technical limits less important [155]. By the time the remaining waste becomes small enough
to make position of the technical limit a concern, more reliable estimates can be made of
its quantity (and management of continuous improvement is less economically important at
this stage anyway).

Given that I have drilling data over the course of a development campaign, I will simply
assume a, technical limit equal to the minimum observed value. In situations where less data
is available, this would not be appropriate and the technical limit must be defined based
on technical analysis, analogues, and best estimates that are revised as more data becomes
available.

Nonlinear regression was used to fit both the power and exponential forms of the learning
curve to the waste times. The results of this are shown in Figure 4-12.

It is important to understand the nature of performance variability within the learning
curve. As in Chapter 3, probability plots provide a useful tool for this evaluation. In this
instance, I use them to evaluate residuals from the curve fits. Visually inspecting Figure 4-
12, it is fairly apparent that the noise is not evenly distributed and has an upper skew to
it. Nevertheless, I will begin by considering a normal approximation for the noise (which is

unlikely to be appropriate given this skew) and then examine a lognormal distribution fit to
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Figure 4-13: Normal probability plots for residuals of power and exponential learning curve
fits.

the residuals. Figure 4-13 shows normal probability plots for the residuals of both the power
and exponential curve fitting. This distribution provides a very poor description of noise in
both curve types.

Evaluating a lognormal shape is not straightforward because residuals are both positive
and negative (for those below the fitted curve) and a lognormal distribution by definition
can only include positive values. Therefore, the data points need to first be shifted by some
constant so that the distribution shape can be compared a lognormal one. Such a constant,
though inherently arbitrary is not trivial to select. It is not enough to shift the distribution
such that the lowest observed point is at (or very close to) zero. In a collection of around 200
samples, even from a true lognormal distribution, there is unlikely to be a value occurring
relatively close to zero. To determine an appropriate shift constant for a sample size n, I
first calculate the inverse CDF for what would statistically be the lowest expected value
(i.e. F'=1/n). Of course, the lowest sample could occur below or above this value but it
seems a reasonable starting point for the lowest data point if a lognormal distribution is a
good approximation. I then shift the distribution such that the minimum value observation
coincides with this expected lowest observation. Because the inverse CDF of the lognormal
distribution depends on the shift constant selected, an iterative process in MATLAB was

used to obtain this. A lognormal probability plot applied to both sets of residuals is shown
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Figure 4-14: Lognormal probability plots for residuals (with constant shift) of power and
exponential learning curve fits.

in Figure 4-14. This model for the residuals is quite good, suggesting that a lognormal
distribution is a good approximation for the performance variability in a learning curve.

It is also worth considering how the distribution of learning curve noise might change
throughout the learning curve. To determine if variance is fairly constant throughout the
learning curve (i.e. homoscedastic), I used a graphical and formal test for heteroscedasticity
in the data. From a plot of the residuals relative to ¢, the production unit number, the
residual appears consistent and randomly arranged over the course of all wells (Figure 4-15).
An Engle test was also applied in MATLAB and confirmed that for both sets of residuals,
heteroscedasticity is not present.

I also consider the consistency of the distribution shape throughout the learning curve.
To do this, I break the sequence of wells into three roughly equal-sized groups. Figure 4-16
shows probability plots for residuals in each fit for the first group of wells. Figure 4-17 shows
the same for the second group of wells, and Figure 4-18 for the third, and final, group of

wells. Lognormality is apparent for all three of these categories.

4.3.3 Implications of drilling performance variability

As was the case in Chapter 3, lognormality is more an insightful observation and convenient

model than a surprising result. Complex tasks often have right-skewed distributions of
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Figure 4-15: A plot of residuals in sequential order suggests homoscedasticity.
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Figure 4-16: Lognormal probability plots for residuals (with constant shift) of power and
exponential learning curve fits for first group (out of three groups) of wells.
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Figure 4-17: Lognormal probability plots for residuals (with constant shift) of power and
exponential learning curve fits for second group (out of three groups) of wells.
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Figure 4-18: Lognormal probability plots for residuals (with constant shift) of power and
exponential learning curve fits for third group (out of three groups) of wells.
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efficiency due to the multiplicative effects of any errors [88]. This is likely to be the case
in drilling because mistakes may interact with each other and have compounding effects.
Lognormality also often accompanies systems that are positive-constrained. Interestingly,
here the data faces a non-zero lower constraint in the form of a technical limit, meaning that
the waste time in the system, rather than the actual time, is lognormally distributed. This
point emphasizes the importance when characterizing variability in a system of considering
physical constraints and appropriate data transformations that facilitate the identification
of common patterns.

Though the approach and assumptions used here to characterize performance variability
are similar to those used with productivity in Chapter 3, it is important to consider the
limited extent of the data and place less credence in the findings. To form broad conclusions
about patterns of performance variability in drilling operations, it would be necessary to in-
vestigate further the presence of learning curve noise in other drilling campaigns and further
refine the procedure for shifting the data. Additionally, it would be worthwhile to investi-
gate performance variability for specific sets of procedures to determine if there are similar
patterns across all activities, or if certain activities are more variable and others more consis-
tent. Still the analysis here illustrates the importance of considering patterns of variability
through the use of empirical models of data (in this case learning curves), data transforma-
tion, and graphical methods of data analysis. Extreme accuracy in the characterization of
variability may be less important than the selection of a convenient and reasonable model,
such as the lognormal distribution here, that enables the use of other statistical methods.
This naturally depends on the modeling goals.

Characterizing variability in performance is an important consideration and can be used
to analyze and compare the effectiveness of rigs, crews, and management in a rigorous
manner. The assumption of a reasonable distribution can also be used to better understand
the technical limit, which can be related to some very low probability value at the low end
of the distribution of waste times.

Furthermore, it is apparent from these findings that ordinary least squares regression is
not appropriate for fitting learning curves, because the assumption that errors are normally

distributed fails. Other approaches, such as robust fitting or using a log-linear approach may
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be more reliable. Consideration of the variability within the curve could even be used to
develop a Bayesian model of learning that takes into account natural variability, uncertainty
about the learning parameter, and uncertainty about the technical limit. Such a model
would be an extremely powerful way to rigorously capture learning dynamics while avoiding
some of the pitfalls of curve fitting—particularly early on—and would make it possible to
incorporate more information into the process. This is a very promising area for future work,
although it is beyond the scope of this thesis.

Most importantly, when evaluating continuous improvements and inferring effects of
changes made to the drilling process, it is not enough to look at absolute changes. Improve-
ment must be measured statistically and with reference to the learning curve. Attempts
to design experiments and evaluate the effectiveness of changes will otherwise be misguided
and will underestimate the number of trials needed to estimate a causal impact with any

confidence.
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Chapter 5

Closing remarks

Thus far, development of shale gas and tight oil resources has proceeded at a rapid pace
without an adequate understanding of the underlying drivers of drilling and production vari-
ability in fields. If this continues, it is clear that large gains in development efficiency and
effectiveness will be left on the table. The pressure from lower oil prices and increasing
scrutiny on the long-term resource potential marks a changing landscape for companies en-
gaged in shale gas and tight oil production. No longer can they rely on eager investors to
underwrite unpredictable and inconsistent results. Characterization of performance vari-
ability that has thus far been intrinsic to drilling and production in these fields is the first
critical step toward disentangling aspects of uncertainty that can be mitigated through bet-
ter practices or anticipated through applied statistics and data analytics. Only when these
challenges are properly understood and the resulting patterns of variability recognized, can
the unconventional development process be made into a “conventional” development process
that is both streamlined and reliable.

The focus of this concluding chapter will be on broader implications of the findings in

this thesis and future areas that should be addressed.

5.1 Statistical importance of considering variability

[t should be clear from the analysis in this thesis that it is important and worthwhile to not

only incorporate uncertainty into forecasts and models, but also to choose a reasonable dis-
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tribution for doing so. In Section 4.3, I showed that a simple and widely accepted statistical
approach like least squares regression fitting of learning curves may be misguided because
error is not normally distributed—a key assumption of the approach which is unfortunately
often not questioned. In natural systems and systems in which values can only take on
positive values (or are constrained by some other lower bound, like a technical limit) there
is strong precedent to look for a lognormal distribution shape'. Although, it is often under-
appreciated and viewed as simply an off-shoot of the more popular normal distribution,
many in the scientific community regard the lognormal distribution as equally fundamental
and more useful than the normal distribution in many situations. The ease with which log-
transformations can be carried out with basic computational or spreadsheet software means
properties described by this distribution can leverage the abundant statistical approaches
designed for normal distributions?.

Historically, there is some bias in industry toward consistent overestimation of reserves,
and the use of a distribution like the lognormal one, which probabilistically yields more low
values than high values, can help to reign in this tendency [131]. No distribution will perfectly
capture real world behavior and thus when using such a model it is also important to keep
in mind any systematic deviations. In Section 3.2.3, deviations from lognormality at the
extreme ends of the empirical distribution were discussed, and the deviations found reinforce
the need to manage industry expectations, because the amount of very low-performing wells
exceeds, and amount of very high-performing wells falls short of, what is expected even with
this skewed distribution.

There are statistical implications to the prevalence of the lognormal distribution in shale
gas and tight oil well productivity, especially related to the nature of sampling from this
distribution. With a skewed distribution for productivity, like the lognormal one found in

this thesis, an individual well is more likely to fall below than above the population mean for a

LQOccasionally, other less empirically-based distributions are used to represent variability of geological
properties, such as the triangular distribution, which has been used by USGS [116]. This can lead to
overestimation as compared to use of the lognormal distribution, so it is important to consider whether use
of such a distribution is appropriate for the system [131].

2There are some situations, such as when there are a very small number of samples, in which log-
transformation of a lognormal distribution can introduce some bias. Skeweness often leads to tradeoffs
between bias and error. A good reference on this topic is a paper by Blackwood on the lognormal distribution
in environmental systems [11].
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field. This makes the production risk higher for drilling one well than for drilling many wells.
In fact the sample mean increases with the number of samples, making mean a misleading
measure of central tendency unless a very large number of wells are drilled [131]. Median well
performance, which is a better estimate of the “typical outcome” (rather than “total outcome”
across many wells), is notably lower than mean well performance in a field [11]. In Chapter 3,
Table 3.1 showed that within counties, the mean often differs from the median by greater
than 10%. This underlies the importance of considering more than one measure of central
tendency and spread when considering variability in shale and tight plays. Furthermore,
this nuance should be taken into consideration when assessing the environmental footprint
of developing these resources because no single, static metric will capture the distribution of

impacts fully.

5.2 Improving decision-making in unconventionals

Developing reasonable assumptions about probability distributions of outcomes can enable
greater incorporation of statistical approaches into decision-making in unconventionals. For
instance, in Section 3.3 I demonstrated the usefulness of a Bayesian approach to inferring
the parameters of the productivity distribution within specific areas of a play early in de-
velopment. This example only skims the surface of the predictive potential of a more fully
developed spatial Bayesian model of unconventional field productivity. Additionally, based
on the lognormality found for learning curve noise in Section 4.3, a Bayesian method can be
developed for evaluating continuous improvements and probabilistically predicting progress
on the learning curve. There are advantages to Bayesian statistical approaches over those
based entirely on classical statistics, as was discussed in Section 3.3. Foremost though is the
ability to expand simple models to include additional information, such as through hierar-
chical models, and eventually develop machine learning techniques based on them.

In addition to direct statistical and data mining techniques, it is important to base
strategies on an awareness of the nature of performance variability. In the old paradigm of
conventional oil and gas development, the resources lowest on the cost-curve could generally

be systematically identified and produced first. However, in unconventionals the wide vari-
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ability in production rates, even within sweet-spot areas, means that thus far, beyond aiming
to be in higher quality acreage, it is impossible to avoid sampling from the entire supply curve
for an area simultaneously. Additionally, the drilling process—which benefits from improve-
ments in efficiency over time due to learning—remains hampered by a poor understanding
of how to manage natural and intentional (i.e. experimentally-driven) variability in drilling
activity. There is a need to counter the prevailing “factory drilling” mentality with a more
formalized understanding of uncertainty; the notion that these are “engineering” plays that
simply need to be “manufactured” understates the importance of performance variability. If
anything, these are statistical plays, and development potential can only be fully realized
with breakthroughs in the ability to leverage field data into planning and decision-making.
Learning in unconventional fields requires experimentation with different methods, but as
Section 2.3 discussed, this must be carried out in a systematic manner with comprehension
of natural and explainable variability. This is equally true for drilling, in which continuous
improvements require statistical inference of effects, and completions, in which many hy-
draulic fracturing parameters are evaluated for their effect on well productivity. Outcomes
really need to be thought of as a combination of both an effect variable and an unknown
random variable. Experimental design and related methods can utilize knowledge about
observed variance in order to statistically disentangle these effects. Design of experiments
can and should be driven by the value of information since they are taking place in a devel-
opment context. For example, when it is possible and worthwhile, large individual changes
rather than multiple, small changes to a system will enable inferences to be reached with
greater confidence in fewer trials. “Tampering”—or making constant changes to drilling and
completions processes while failing to consider an underlying randomness to outcomes—may
actually undermine learning efforts by limiting the ability for standardization to lead to
greater efficiency of implementation. Some coordination may be required because several
teams involved in a well’s design and construction may be pursuing different initiatives. In
such a case, each group has a desire to see their own efforts prove successful, but it is difficult
to determine how much any one of the initiatives can be attributed with an outcome. There
may actually be a bias in management toward over-experimentation because those who have

had successful experiments in the past are often promoted to these roles and they may have
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an unbalanced and overconfident perspective on experimentation [108, 103].

Industry culture plays an important role in decision-making and should be revisited in
light of these findings. There is a bias in industry toward wanting to drill more wells, which
is partly reinforced by financial incentives and social pressures within companies [131]. This
culture is actually a holdover from the conventional mindset, in which drilling was viewed as
the only way to really find a very productive well or prospect, even if this actually destroys
value in the process [131]. This “hero’s journey” mentality (also referred to as the “prospector
myth”) is a belief that persistence will pay off in the end, and that the odds can be beat [131].
Like a gambler at a slot machine, failures are tolerated because each one is assumed to bring
the player one step closer to an enormous payout that will make up for all of the losses. This
kind of wasteful and dangerous mindset has been identified in the industry, even prior to the
shale gas and tight oil development of recent years [131]. I simply wish to re-emphasize here
that, if anything, appreciating the “table odds” is even more important with unconventionals,
and part of the importance of formally describing variability of performance in these systems
is to move toward a more rational approach to decision-making.

Characterization of the statistical behavior in these systems can supply the foundation
needed for developing additional statistical and data mining techniques to improve decision-
making in unconventional development. This will enable further incorporation of abundant
field data into the planning and engineering of fields. The work presented in this thesis is an
important step toward distinguishing the “signal” from the “noise,” in performance-related
field data but further work will be needed to accomplish this. Drilling operations and initial
production data have been analyzed to demonstrate the wide range of opportunities across
the development spectrum. However, it is important to also consider how hydraulic fracturing
varies both intentionally (varied designs) and stochastically (in terms of unpredictability of
fracture growth, for instance). Additional production history data should be analyzed to
identify trends such as more rapid decline in some situations, evidence of well interference,
and other important patterns. Geological data can also be incorporated into models like the
one for well productivity here, in order to better understand the factors leading to differences

in outcomes.
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5.3 Paving the rocky path forward for shale

If unconventional oil and gas is to play a major role domestically and globally in the coming
decades, we will need a concerted research effort into the underlying physics that govern
shale production. The characterization in this thesis of well-to-well production variability
should aid this effort by providing a statistical basis for evaluating the role of different
geological and completion parameters and stochastically modeling subsurface behavior. For
instance, detection of well interference, or shared pressure drawdown area, may be possible
by measuring statistical differences in wells drilled at different times within a certain spatial
proximity.

Despite the apparent stochasticity of production to date, with better scientific under-
standing, improved techniques for extraction, and more optimal decision-making, it may
still prove possible to shift the productivity distribution toward fewer poor-performing wells
and more high-performing wells. Inclusion of additional variables may eliminate some of the
productivity uncertainty, as there are surely properties beyond well length that can control
for some of the observed variability. At the very least, well placement can be improved
beyond the current approach of widespread drilling of evenly-spaced wells across an entire
play, and increased density drilling in sweet-spot areas. The ability to extract more resource
with fewer wells will not only improve the economics of this resource but will also reduce the
environmental footprint associated with development.

Economical sustained production from shale gas and tight oil plays in North America will
require well productivity gains and the reduction in development costs to keep up with (or
outstrip) the pace at which the best acreage in fields is exploited. This allows production to
be sustained through more effective development of the naturally less productive parts of a
play. Understanding the balance that can be struck between these forces is the key challenge
for those attempting to assess the long-term productive potential of these resources. Reliable
resource evaluations that account for production variability across fields and systematic
changes in development costs will help policymakers, public utilities, and the private sector
make informed decisions about long-term energy infrastructure investments.

If the economic benefits of unconventionals—and public health benefits of switching elec-
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tricity generation from coal to shale gas—are to be realized outside of North America it
is important to codify learning from the development of these resources in North America.
This will enable better identification of promising resource plays and the best drilling areas
within them, based on a strong statistical understanding of variability within plays. It will
also ensure that learning from drilling in North American unconventionals is transferred to
these other areas, and that the best techniques for managing learning and experimentation
are deployed. Development of shale and tight resources outside of North America faces
greater economic hurdles than it did in the U.S. and Canada, and it will be necessary to
minimize and remove inefficiencies very early on if these efforts are to be successful.

Of course, looming over all of this today is the weak global oil price, presenting a new
hurdle to unconventional resource development both abroad and in North America as well.
A year ago, despite all of the uncertainties associated with drilling and production in uncon-
ventionals, strong oil prices were taken as a given. Now, this has changed and future price
trajectory is unclear. This makes it more important than ever to understand these other
sources of uncertainty and find methods and strategies to mitigate or anticipate them. The
inefficiencies of yesterday allow us to frame the right questions today, and with inspiration

and insight, find a better solution for tomorrow.
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Appendix A

Tables

The plays used in Chapter 3 include Barnett, Bakken, Marcellus, Eagle Ford, and Hay-
nesville. In order to generate the database of wells for the study the filtering criteria in
Table A.1 was used for each play. General details about the plays are summarized in Ta-
ble A.2, including the location, geological age, extent, depth, average thickness, total organic
carbon, porosity, and technically recoverable resources. This information has been assimi-
lated from a range of references and is only intended to be descriptive of the plays. Many of
the values still have a high degree of uncertainty associated with them.

Tables A.3 and A.4 present additional results from other plays to support the findings
of consistent absolute variability in different Barnett counties (Table 3.1) and vintages (Ta-
ble 3.2).

Tables A.5 to A.7 describe some example drilling procedures and the steps involved in

calculating operational dissimilarity using ASM, as discussed in Chapter 4.
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Table A.1: Filtering criteria used for wells in each play.

911

Play Barnett Bakken Marcellus Eagle Ford (Gas) Haynesville
State(s) Texas North Dakota Pennsylvania Texas Texas, Louisiana
Number of 9,138 5,483 1,584 2,159 2,221
wells
Production Gas Oil; Oil and gas Gas Gas Gas
type
Well type Horizontal Horizontal Horizontal Horizontal Horizontal
Status Active Active Active Active Active
Earliest 2005 2009 2009 2010 2009
start date

Depths At least 1,000 feet At least 1,000 feet At least 1,500 feet At least 1,000 feet At least 1,000 feet

Perforation At least 1,000 feet At least 1,000 feet At least 1,500 feet At least 1,000 feet At least 1,000 feet
length

Peak rate  Highest rate in first Highest rate in first Highest rate in first Highest rate in first Highest rate in first
3 months 6 months 3 months 3 months 3 months

Production At least 3 months At least 6 months At least 3 months At least 3 months At least 3 months
history of production of production of production of production of production




L1

Table A.2: General properties of the plays included in the characterization of productivity variability.

Play Barnett Bakken Marcellus Eagle Ford (Gas) Haynesville
Location North Texas [30] North Dakota, Ohio, Pennsylvania, South Texas [30]  East Texas and
South Dakota, and New York, and West northwest
Montana [56] Virginia [30] Louisiana [30]
Geological Mississippian [30] Devonian- Devonian [30] Cretaceous [30] Jurassic [30]
age Mississippian [151]
Extent, sq mi 6,500 [48] 6,500 [49] 05,000 [48] 3,300 [48 9,000 [48]
Depth, ft 7,500 [48] 4,500-7,500 [48] 4,000-8,500 [48] 7,000 |48 10,500~
13,500 [48]
Average 300 [48] 92 48] 125 [48] 200 [48] 250 [48]
Thickness, ft
Total organic 4.2 [30] 11 [140] 4.8 [30] 3.8 [30] 2.4 [30]
carbon
(TOC), %
Porosity, % 5 [120] 8 [48] 8 [48] 9 [48] 8.5 [48]
Technically 100 MMBO:; 26,700 7,400 MMBO; 84,200 BCFG; 3,400 900 MMBO; 51,900 60,700
recoverable BCFG; 1,100 6,700 BCFG; 500 MMBNGL [26] BCFG; 2,000 BCFG [39]
resources’ MMBNGL [127] MMBNGL [56] MMBNGL [39]

IMMBO= million barrels of oil. BCFG = billion cubic feet of gas. MMBNGL = million barrels of natural gas liquids.



Table A.3: Summary statistics for specific productivity of counties in all plays. mscf/mo/ft
is thousand standard cubic feet per month per foot. bbl/mo/ft is barrels per month per foot.

Play County P90-P10 P50 Mean
(mscf/mo/ft) (mscf/mo/ft)
Marcellus Bradford 3.45 24.84 28.18
Marecellus Lycoming 3.38 30.20 33.28
Marcellus Susquehanna 6.67 55.79 61.72
Marcellus Tioga 3.71 20.39 23.04
Marcellus Washington 3.81 19.40 25.42
Eagle Ford Dewitt 2.83 23.01 26.45
Eagle Ford Dimmit 3.16 8.77 9.43
Eagle Ford Karnes 2.77 20.18 21.34
Eagle Ford Lasalle 4.16 18.85 19.81
Eagle Ford Webb 3.70 20.77 22.87
Haynesville Caddo 1.83 51.97 54.89
Haynesville De Soto 2.58 65.88 67.89
Haynesville Panola 2.38 40.59 43.61
Haynesville Red River 3.00 86.26 89.30
Haynesville Sabine 2.25 60.12 62.52
Play County P90-P10 P50 Mean
(bbl/mo/ft) (bbl/mo/ft)

Bakken Dunn 4.38 1.62 1.78
Bakken McKenzie 3.35 1.81 1.98
Bakken Mountrail 4.33 1.75 2.04
Bakken Williams 3.44 1.35 1.47
Bakken Divide 3.04 0.96 1.04
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Table A.4: Spread of productivity by vintage in all plays.

Play Vintage P90-P10
Marcellus 2010 4.45
Marcellus 2011 4.56
Marcellus 2012 7.03
Marcellus 2013 7.39
Bakken 2009 6.14
Bakken 2010 4.47
Bakken 2011 4.12
Bakken 2012 4.20
Bakken 2013 3.94
Eagle Ford 2010 4.41
Eagle Ford 2011 4.36
Eagle Ford 2012 4.25
Eagle Ford 2013 5.39
Haynesville 2010 3.12
Haynesville 2011 2.81
Haynesville 2012 2.18
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Table A.5: Descriptions of operations included in Figure 4-1.

Operation Description Opera-
tion
code

Rig up/down On-site equipment and materials preparation for any operation RUD
Drill string Run-in-hole and pull-out-of-hole with assembly DRT
trip
Pump/ Pumping fluid into the well down the string or annulus when not carrying out other operations PCD
circulate/ such as drilling, coring, hole opening, milling, reaming, or washing down, working on pipe,
displace pressure testing or cementing
Safety related  Covers non-routine safety activities that are not specifically covered by another operation code SAF
BOP install/ Includes all work in assembling/removing BOPs or diverter BPR
remove
BOP test All activities associated with the function and pressure testing of BOPs BPT
Inflow test Pressure testing using the formation pressure as a source of pressure INT
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Table A.6: Description and examples of the edit operations within ASM and corresponding procedural changes they identify.

Edit type Description of drilling procedural = Example of procedural change between two wells
change

Insertion of a An operation was inserted between two Break up drilling sequence with circulation of bottoms
character existing operations. up

Deletion of a An existing operation was removed from Slide drill continuously rather than breaking up slide
character the drilling procedure. with period of rotary drilling

Substitution of one An existing operation was replaced with  Drill with same bottom-hole-assembly (BHA) instead of
character for another a different operation in a procedure. tripping to change BHA

Transposition of two Two existing sequential operations in a Pump lost-circulation mud immediately before landing
adjacent characters procedure had their order reversed. curve instead of immediately after landing curve
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Table A.7: Potential edits, conditions restricting their use, and the method for finding the new value in each cell. Cost is equal
to 0 if the current characters being compared are identical, and 1 otherwise, which allows for the option of making no change.

Edit type Conditions for this edit New value from edit
Insertion N/A Value in the cell to the left + 1
Deletion N/A Value in the cell above + 1

Substitution N/A Value in the cell diagonal (left

and above) + cost
Transposition ~ Must not be the first character in either string; Current and previous Value in the cell diagonal two
character in one string should be reverse of current and previous away (up two and left two) + cost

character in the other string




Appendix B

Figures

Figures B-1 to B-19 are included in this Appendix to reinforce and provide greater breadth to
the findings of Section 3.2.2 of the thesis. The lognormality of productivity is demonstrated
across a range of plays, categories of wells, and a different metric of initial productivity.

Figures B-20 to B-24 expand upon the contents of Figure 4-10.
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Figure B-1: Probability plot comparing absolute and specific productivity in the Marcellus
to an ideal lognormal distribution.
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Figure B-2: Probability plot comparing absolute and specific productivity in the Bakken to
an ideal lognormal distribution.
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Figure B-3: Probability plot comparing absolute and specific productivity in the Eagle Ford
to an ideal lognormal distribution.
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Figure B-4: Probability plot comparing absolute and specific productivity in the Haynesville
to an ideal lognormal distribution.
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Figure B-5: Probability plot comparing absolute and specific productivity in the Barnett
(based on first 12 months of production) to an ideal lognormal distribution.
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Figure B-6: Probability plots comparing absolute and specific productivity of all plays (based
on first 12 months of production) to an ideal lognormal distribution.
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Figure B-8: Probability plots comparing absolute and specific productivity of well ensembles
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Figure B-9: Probability plots comparing absolute and specific productivity of well ensembles
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Figure B-10: Probability plots comparing absolute and specific productivity of well ensembles
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Figure B-11: Probability plots comparing absolute and specific productivity of well ensembles
in different Barnett counties (based on first 12 months of production) to an ideal lognormal

distribution.
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Figure B-12: Probability plots comparing absolute and specific productivity of different
vintages in the Marcellus to an ideal lognormal distribution.
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Figure B-13: Probability plots comparing absolute and specific productivity of different
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Figure B-14: Probability plots comparing absolute and specific productivity of different
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Figure B-15: Probability plots comparing absolute and specific productivity of different
vintages in the Haynesville to an ideal lognormal distribution.
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Figure B-16: Probability plots comparing absolute and specific productivity of different
operating company well portfolios in Marcellus counties to an ideal lognormal distribution.
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Figure B-17: Probability plots comparing absolute and specific productivity of different
operating company well portfolios in Bakken counties to an ideal lognormal distribution.
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Figure B-18: Probability plots comparing absolute and specific productivity of different
operating company well portfolios in Eagle Ford counties to an ideal lognormal distribution.
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Figure B-19: Probability plots comparing absolute and specific productivity of different
operating company well portfolios in Haynesville counties to an ideal lognormal distribution.
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Rig 2 - Normalized production drilling times with
marker size based on operational variability
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Figure B-21: Operational variability and time based performance for rig 2-drilling the pro-
duction hole.
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Figure B-22: Operational variability and time based performance for rig 3-drilling the pro-
duction hole.
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Rig 4 - Normalized production drilling times with
marker size based on operational variability
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Figure B-23: Operational variability and time based performance for rig 4-drilling the pro-
duction hole.
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Figure B-24: Operational variability and time based performance for rig 5-drilling the pro-
duction hole.
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