A Taxonomy of Computer Intrusions
by
Daniel James Weber

Submitted to the Department of Electrical Engineering and
Computer Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering
and

Master of Engineering in Electrical Engineering and Computer
Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1998
© Daniel James Weber, MCMXCVIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis
document in whole or in part.

Author:. P e
Department of Electrical Engineering and Computer Science

i May 29, 1998

Certified DY . ..o e e
Richard P. Lippmann

Senior Technical Staff, MIT Lincoln Laboratory

~ " Thesis, Supervisor
MASSACHUﬁ-WTPy D I R I N T S T A Sl D P7 . Tt U I Y WLULGL Y P I P~ ool S I L e A

or YCoHNnLOnY Aﬁrthur C. Smith
JuL1 41%8 Chairman, Department Committce on Graduate Students

LIBRARIES

ARCHIVES

A Taxonomy of Computer Intrusions
by

Daniel James Weber

Submitted to the Department of Electrical Engineering and Computer Science
on May 29, 1998, in partial fulfillment of the
requirements for the degrees of
Bachelor of Science in Computer Science and Engineering
and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Software and procedures were developed to generate both normal background inter-
computer TCP/IP sessions and attacks on a dedicated computer network of UNIX
workstations. Network applications such as telnet and sendmail are driven automat-
ically without human intervention to generate artificial traffic. Network monitoring
data, including TCP/IP packets, and Sun Basic Security Module (BSM) auditing
data, collected while artificial traffic is being generated is being used to evaluate the
false alarm and detection rate of new intrusion detection systems. More than twenty
different attacks were automated and a small network is currently using the traffic-
generating software to emulate traffic between more than 100 hosts and 1000 users.
In addition, a taxonomy of UNIX computer intrusions was created and is being used
to select a comprehensive set of attacks for evaluating intrusion detection systems.

Thesis Supervisor: Richard P. Lippmann
Title: Senior Technical Staff, MIT Lincoln Laboratory

Acknowledgments

I would like to thank all my lab-mates at Lincoln Laboratory, including my thesis
advisor, Richard Lippmann, for his tenacity and good humor in getting me through
my research and my thesis; Samuel Gorton for his assistance and inspiration in the
creation of the taxonomy; and my office-mate Seth Webster for providing IDS models
for me to try to break and for putting up with name collisions.

I acknowledge the support of Teresa Lunt at DARPA, the Office of the Secretary
of Defense, and Terry Champion, Steve Durst, and Eric Miller at the Air Force Rome
Laboratory.

I would like to thank my parents for their support during the last twenty years of

my education.

Contents

1 Introduction

1.1 Overview of Computer Security
1.2 Towards Computer Security
1.3 Intrusion Detection Systems
1.4 Structure of This Thesis

2 Testing Intrusion Detection Systems

2.1 Experience With One IDS
2.2 Possible Testing Strategies
2.3 Sessions

3 Traffic Regeneration

3.1 Regeneration
3.2 Simulating Multiple Machines
3.3 The Framework
34 FileFoimat
3.5 Regenerating a Single Session
3.6 Multiple Sessions
3.7 Options and Additional Features

4 Taxonomy

4.1 Goalsofataxonomy

11
13

14
14
18
21

22
22
23
23
24
25
26
27

28

4.2

4.3

4.4

4.1.1 It can be used for the evaluation of security tools, particularly

IDSs 29
4.1.2 It can be used to perform cost-benefit analysis. 30
4.1.3 It can help prevent attacks in the future. 30
4.1.4 It can be used to explain the cause of an attack. 31
4.1.5 Each attack should be reliably placed in only one category. . . 31
4.1.6 All possible intrusions should have a place in the taxonomy. . 31
4.1.7 It can be extended in the future. 31
Previous work oL 32
4.2.1 RISOS report, April 1976 32
4.2.2 The PA report, May 1978 34
4.2.3 Landwehr, September 1994 35
4.2.4 Bishop’s Taxonomy, May 1995 35
4.2.5 Aslam’s Taxonomy, August 1995 37
4.2.6 Howard’s Taxonomy of Computer and Network Attacks, April

1997 . . e 38
A New Taxonomy 39
4.3.1 Privilegelevels L. 40
4.3.2 Actions 41
4.3.3 Methods of transition Lo 43
4.3.4 Representing an Acticn at a Privilege Level 44
4.3.5 Representing Transitions 44
4.3.6 Representing Actions at a Higher Privilege Level 45
4.3.7 Multipleusers 45
4.3.8 Tracingofasession 46
4.3.9 Multiple machineso 47
Evaluation of the taxonomy 48
4.4.1 Each attack should be reliably placed in only one category. . . 48
4.4.2 All possible intrusions should have a place in the taxonomy. . 48
4.4.3 1t can be extended in the future. 48

[}

4.4.4 It can be used to perform cost-benefit analysis. 49

4.4.5 It can be used to guide evaluation of security tools, particularly
IDSs. e 49
4.4.6 It can help prevent attacks in the future. 49
4.4.7 It can be used to explain the cause of an attack. 49
4.5 Quick Start 49
4.6 Summary e e e 51
5 Attacks 52
5.1 SOUICES e e 52
5.2 Timelineof anattack 53
53 Ageofan Attack 54
5.4 Stealthiness of Intruders 54
5.5 Profilesof intruders oL 95
5.6 The Attacks 57
5.7 Grouping Attacks Using the Taxonomy 61
6 Conclusions and Future Work 64
6.1 Regenerator 64
6.2 Taxonomy e 65
Bibliography 66

List of Figures

1-1 Data For an IDS Can Come From a Network Sniffer or Audit Logs . 11
2-1 A Sample Transcript 15
2-2 ROCCurves e 17
2-3 Testing Procedure o 18
2-4 Recording Data From A Real Network, Then Adding Attacks 19
2-5 A Testing Strategy to Remove Artifacts From Data 21
4-1 A Summary of the Possible Attack Descriptions 50
5-1 Timeline of an Attack 53
5-2 An Attack Tends to Become Less Useful Over Time 54
5-3 The Attacks 57
5-4 Start State vs. End State Lo 61
5-5 Minimum Privilege Levels Needed To Perform Actions 62
5-6 Effect vs. Method of Exploitation 63

Chapter 1

Introduction

1.1 Overview of Computer Security

Computer security in this thesis is defined as by Garfinkel and Spafford [11]: “A
computer is secure if you can depend on it and its software to behave as you expect.”
That is, private data stays private, un-privileged users remain un-privileged users, and
all services of the system continue to function. Many recent news articles illustrate a
growing concern with this problem.

In September 1996, subscribers of the Internet Chess Club found themselves un-
able to access their system for several days due to the actions of an anonymous person
on the Internet [17]. In January 1997, a group of German computer users demon-
strated an ActiveX control that could transfer money out of a Quicken user’s account
without the need for a personal identification number [24]. In March 1998, a teenager
disabled critical communications at a Massachusetts airport for several hours [18].

More and more computers are being connected to networks, including the Internet,
every day. Each system, to varying degrees, is vulnerable to misuse from outsiders. A
firm’s financial data, a pharmacy’s database of its customers’ drug needs, or an indi-
vidual’s personal e-mail are possible targets for an attacker. This information might
be disclosed beyond its intended audience, subtly altered, or cut-off from legitimate
users.

Attacks are not difficult for even the unskilled to launch. Sites on the World

Wide Web freely give out programs that allow novice users to run powerful attacks.
The method of attack that was used against the Internet Chess Club was published
in semi-underground computer journals, and from there took a minimal amount of
knowledge to employ.

Threats are by no means limited to the attacks of random, unskilled people who
find attack tools. Insiders in a company, who know what is vulnerable and what
is valuable, can canse tremendous damage. More sophisticated computer intruders,
skilled hackers who know how to explore a system for its own peculiar vulnerabilities
while hiding their actions, are probably rarer but still dangerous.

If intruders can gain enough access to a system, they can use it as a new base
to launch further attacks. Breaking into one computer on a network often simplifies
break:ng into other computers on the network, as those systems may be programmed
to automatically trust each other. Even if they don’t, critical data is often sent over
a network unencrypted, allowing any computer connected to that network to read it.
Once a hacker has broken into a computer, it is difficult to restore it to a secure state

without wiping it clean and re-installing the original operating system.

1.2 Towards Computer Security

It is very difficult to secure a computer totally, and firewails cannot keep out all
intruders. Intrusion detections systems can help fill the gap.

There is a fundamental trade-off among security, usability, and cost. In general,
the more secure a computer is, the more difficult it is to use. One simple method to
secure a computer is to unplug it from the network. Such a disconnected ccmputer is
not very useful, however. Networks were developed so that computers could exchange
data easily.

An alternative is to make each individual machine usable and secure, using two
privilege levels. Normal users can have low level privileges while the root user, the
master user on a computer, can do just about anything to the system. This is difficult

to implement perfectly, however, as commercial operating systems will invariably be

found to contain security holes after they have shipped. A common security hole
with UNIX systems is that certain programs on the computer, referred to as “setuid
root,” are specially trusted. When executed by a normal user they have the privileges
of the root user, since they need to do some special action that is denied to normal
users. An example is checking the free space on a disk. (If normal users could directly
access the hard drive, they could read any file they wished.) Writing these programs
in a secure fashion, however, is not a simple task, and one that doesn’t necessarily
have the highest priority for computer vendors. Bugs that zllow normal users to run
arbitrary code as root are inevitably found in many commercial operating systems,
and administrators must go back later to fix or “patch” these holes.

One could also attempt to restrict access to the entire network with a firewall, a
computer that sits between the network and its connection to an outside network,
such as the Internet. Every piece of data that wants to pass through this boundary
must go through the firewall. Firewalls can block certain connections based on simple
rules. For example, all login attempts from outside to inside could be automatically
rejected. Another rule which a firewall could implement is to drop any network traffic
from a site known to harbor problem users, while sending notification of the attempt
to the administrator.

Firewalls, however, can have security faults the same way individual computers
can, since firewalls are also computers. The security provided by a firewall often
degrades over time, as more holes are opened to allow remote users access to more
and more services. The rules that the firewall uses to determine which packets are
allowed through need to be updated regularly, as out-of-date rules may not provide
protection against recent attacks. The firewall could also be bypassed by poor security
practices of the internal users. For example, an outsider can mail a user a program
which, when run, maps the inside network and mails the findings back out, or an
inside user may use a modem to connect to the outside over phone lines.

Use of a firewall and frequent software updates can not prevent attacks. While
fixing security holes is a vital part of maintaining a machine, an administrator needs

to keep a close eye on the system, including monitoring logs for unusual behavior. A

10

/ INTERNET
HOST Servers | HOSTS | ROUTER

AUDIT <1 | [>
DATA lNETWORK DATA

AUDIT DATA

COLLECTION
__.> POINT SNIFFER

Figure 1-1: Data For an IDS Can Come From a Network Sniffer or Audit Logs

useful tool that can help automate this task is an Intrusion Detection System (1DS).

1.3 Intrusion Detection Systems

An IDS does not necessarily attempt to prevent intrusions to a computer or network of
computers; instead, it gathers information from the system, and attempts to detect
intruders. Reports of possible intrusions are passed to a human analyst for closer
examination.

The data that an IDS gathers come from two sources. One is the computer
network: all data passes over the network in packets that are typically visible to
any computer that wishes to monitor it. The data-gathering component of the IDS
records all of these network packets with a program such as tcpdump, a program
which captures this network traffic and saves it to a file. So that all data coming in
to or going out of the network can be analyzed, this component is usually placed near
the network’s router.

The second data source an IDS may use is system audit data. Many computer
operating systems log important security related events that occur on its system. Logs
may be terse, such as only logging failed password attempts, or very verbose, such as
the output of Sun’s Basic Security Module (BSM) [22], which logs every system call

made on the system, including all reading of and writing to the filesystem. After the

11

data is logged, it must then be collected.

Figure 1-1 has a representation of a typical network, showing hosts and servers
along a network, which is connected through a router to the Internet. The sniffer
reads network data cff of the wire, while some machines are generating their own
audit data.

After gathering input data, another component of the IDS processes the results.
This may occur in real-time, which allows administrators or the IDS to take immediate
defensive action against possible threats, or off-line, in which case the IDS analyzes
the data and reports results at a later time to a human analyst, who then must go to
the system to inspect the situation more closely.

Signature detection schemes look for a specific sequence of events to detect known
attacks. Some signature detection IDSs monitor TCP/IP network telnet connections
between computers and watch for certain events that may indicate intruder activity.
For example, the command loadmodule can be used by normal users to load drivers
into the kernel during run-time, though it is seldom used this way in practice. On
some UNIX operating systems it also has a serious security hole that allows users to
run commands as root. Thus, many signature-based schemes that match on strings
trigger on the keyword “loadmodule”. However, not all keywords are as discrimi-
nating. Strings such as “passwd” and “rhosts” may be useful in identifying hacker
activity, but they are common in normal traffic as well, especially by legitimate sys-
tem administrators. Furthermore, altering the strings to get around the IDS is fairly
straightforward. An example of a signature detection system is the Network Security
Monitor, described in [12], which uses text strings as the basis for its signatures.

Anomaly detection schemes build up models of the typical behavior of a system
and issue warnings when activity deviates from normal. Anomaly detection may
monitor many aspects of a system. It can be used to characterize patterns of network
traffic, the use of system calls by daemons, or the typing speed of users on the system.
Of course, existence of anomalies does not necessarily mean intruder activity, and
intruders do not always appear anomalous. Example anomaly detection systems are

Haystack [21], for which models of behavior for users and groups must be built by

12

a human operator, and NIDES [3], which automatically builds short- and long-term
profiles for each user.

Bottleneck verification systems watch for processes transitioning from a user-level
status to a privileged-level status and verify that the state transition took place via
an approved route — the “bottleneck”. These systems can be network-based, such as
checking that new root prompts were preceded by su commands, or host-based, such
as watching that the password file is only modified by approved programs, such as

passwd. A prototype bottleneck verification system is described in [23].

1.4 Structure of This Thesis

The work described in this thesis is part of a larger project to test and evaluate
intrusion detection systems. This thesis focuses on ways of creating traffic-both
attacks and “normal data’-that can be passed through non-real-time IDSs to see
what kind of attacks they recognize and how many false alarms they generate.
Chapter Two gives an overview of testing IDSs. Chapter Three discusses a strategy
to simulate many users automatically and repeatedly. Chapter rour attempts to
taxonomize computes attacks, particularly in a way that is useful for testing IDSs.
Chaptcr Five presents some aspects of the attacks used and demonstrates the use of

the taxonomy. Chapter Six contains conclusions and ideas for future work.

13

Chapter 2

Testing Intrusion Detection

Systems

A major goal of this thesis work is to devise approaches to test and evaluate intrusion
detection systems. Test and evaluation approaches are essential to compare the dif-
fering techniques in intrusion detection and to point out new directions in research.
Initial work examined the performance of one sample IDS, and further work sought

to create a framework to test other non-real-time IDSs against the same data.

2.1 Experience With One IDS

Initial work involved a baseline IDS that was similar to the Network Security Monitor,
NSM [12]. This IDS is described more thoroughly in [23]. It captures all packets in
TCP/IP network traffic ~nd reconstructs the packet contents into TCP sessions. A
session is a record of the data sent between one machine and another over the course
of a network connection, broken down by the bytes that each computer sent. The
IDS then searches each session for a set of pre-programmed keywords that identify
a session as “dangerous.” These are strings that may indicate either an attempted
exploitation of a known security hole or suspicious actions that an intruder night
perform after gaining entry.

An entire session is given a warning value on the scale of 0 to 10, based on the

14

T4} ¥8{~ ~1~"|~$zpzé#pz'D

UNIX(r) System V Release 4.0 (pascal)

{}~login: joe

Password:
Last login: Fri Jul 18 12:25:46 from plato
Sun Microsystems Inc. sSun0Os 5.5 Generic November 1995

joe@pascal: emacs
Figure 2-1: A Sample Transcript

number and type of keywords that were found coming from each direction (from the
source or from the destination). If this score is above a certain threshold, a report is
generated for a human analyst. The header of this report contains counts of the key-
words that were found in the session, and the body contains all the bytes sent in each
direction. Part of a sample transcript is shown in Figure 2-1, listing the bytes that
the destination machine sent back. This transcript shows a telnet session for a user
named joe logging into a host named pascal and running the emacs editor. The ini-
tial line of characters represents environment information passed between computers
when a telnet sessions starts.

Ideally, sessions that are actually attacks would receive high scores, while those
that are not would receive low scores. In practice, some dangerous sessions get lower
scores than some harmless sessions. The user can trade off the detection and false
alarm rates by setting a threshold. All sessions that score higher than the threshold
are turned into transcripts for a human analyst. The lower the threshold is, the more
attacks will be flagged. The higher the threshold is, the fewer false alarms that the
humans will need to search to find attacks.

The baseline IDS was testing using two sets of attacks. One set was composed of
old attacks, attempts to exploit well-known security vulnerabilities, such as trying to
log into default accounts. There was also a set of new attacks, attacks that had been
discovered after development had stopped on the baseline IDS, such as the security

hole in the eject program that allowed users to become root.

15

Each set was tested against a large quantity of “normal sessions.” These are
sessions in which a security breach was not being attempted. To gather this body
of data, traffic was collected from fifty sites with similar traffic patterns. Over 3.4
million TCP sessions were captured, and of these 86,015 were telnet sessions.

To test each set of attacks, each attack was inserted ten times into the normal
data. There were a total of 30 instances of old attacks and 50 instances of new attacks.

IDSs were compared using a receiver-operating characteristic (ROC) curve. An
ROC curve is a visual representation of how well a system can discriminate events
(attacks, in this case) from non-events (normal activity). The percentage of false
alarms on the X-axis is plotted against the percentage of attacks that were found on
the Y-axis, over the range of possible thresholds. The performance of the system is
reflected in the behavior of the plotted line, which starts in the lower-left and makes
its way towards the upper-right. One general measure of the performance of an IDS
is the area under the ROC curve-the higher this area is, the better the system is in
differentiating normal sessions from attacks.

If a system were perfect in recognizing attacks and never issued a false alarm, the
plot of the ROC curve would be a line that starts straight up the left-hand side of
the graph and then continues along the top line. Such a system would have 100%
detection with 0% false alarms. If a system were randomly guessing, the plot would
be a 45° line.

The first curve in Figure 2-2 shows the ROC curve for the baseline IDS when
tested against the old attacks. The IDS achieves a 20% detection rate at a 15% false
alarm rate. To achieve a 100% detection rate 45% of normal sessions are incorrectly
labeled as attacks. The IDS had a purity of about 1:16,000. The purity is the measure
of how much background traffic the human analysts would need to look through to
find an attack when the IDS was detecting 80% of attacks. For this data, a human
analyst using the baseline system would have to examine 16,000 transcripts to find
each attack.

The IDS performed much worse against the new attacks. The ROC curve is strictly

under the 45° line. In other words, random guessing would yield better results than

16

100 - 100
i OLD N NEW
w0 ATTACKS _ % [ATTACKS
S 69% AREA | S |
560 [1/15,590 = 60 | 19%1/?;{ %6
2t PURITY | Q | PURITY
- = X
= -
R 40 - 3 ATTACKS 2 40 - 5 ATTACKS
® [®
20 — 20 -
0-|'||1||||||||1111|l 0 I BTTETE Y NITE BN AN N AT AT
0 20 40 60 80 100
0 20 40 60 100
% FALSE ALARMS % FALSE ALARI\S/IoS

Figure 2-2: ROC Curves

the baseline system.

The false alarms were generated by sessions in which keywords were used in non-
nefarious circumstances. For example, a single “login incorrect” in a telnet session
pushes its warning value above 7. The string “permission denied”, which occurs
frequently, also generated a large number of false alarms.

This initial evaluation illustrates the need to use a large amount of normal traffic as
well as attacks to evaluate intrusion detection systems. The normal traffic is required
to measure false alarm rates while attacks are required to measure detection rates.
This evaluation was limited because the normal telnet traffic used was proprietary and
private, it had already been pre-selected based on scores of the baseline system, and
ground truth concerning the presence or absence of attacks had not been established.
In addition, only a small number of attacks were used. A major goal of this thesis was
to extend this approach to evaluating IDSs and correct the limitations of this initial
evaluation by developing procedures that can be used to generate automatically large
amounts of non-proprietary network data and by developing a larger collection of

attacks.

17

SNIFFED
DATA OUTPUT

SCORES
INTRUSION ; ROC CURVE -
AUDIT DETECTOR ANALYSES ’
DATA o
ROC CURVE
AND PURITY

Figure 2-3: Testing Procedure
2.2 DPossible Testing Strategies

A methodology for testing intrusion detection systems was proposed in [20]. It called
for setting up an isolated network and automating attacks with ezpect [15]. Simple
models of normal users, such as secretaries and programmers, were provided.

The methodology presented in [20] serves as a foundation for work performed as
part of this thesis. This methodology was extended by simplifying the generation of
user actions and attacks using a new file format (the .ex file file format described in
section 3.4) to generate action scripts, by creating a much richer set of user actions, by
developing many more attacks, and by developing techniques to monitor the progress
of a large simulation network.

To test multiple IDSs, a large quantity of data used by IDSs was required (e.g.,
dumps of network traffic and BSM audit data) that could be distributed to IDS
developers. Figure 2-3 shows a model of providing this data to an IDS, which will
report its results. The output results will indicate a warning score for each session,
and from this an ROC curve can be generated. Each IDS will have an ROC curve
associated with it, and these curves can be compared with metrics such as area and
purity.

This raises the question of how to generate the data. For accurate IDS evaluations,
the ideal way to generate this data would be to capture the data off of an actual
network containing real users doing real work. As the network is running, various
attacks would be run on the system, breaking in or disabling services.

This is not a realistic strategy, of course. People are using a network in order to

18

(/NORMAL i

\{CORDED DAT.

- \A INTRUSION | PERFORMANCE
LIVE DETECTOR | MEASUREMENT
INPUT DATA / S l
LIVE ROC CURVE
ATTACKS ANALYSES

Figure 2-4: Recording Data From A Real Network, Then Adding Attacks

get work done and would not appreciate random interruptions of service or possible
exposure of their personal data to other users on the system during security breaches.
A second serious problem is the violation of the users’ privacy. All the data that is
collected will inciude personal information, such as usernames, passwords, and the
contents of electronic mail. These data cannot be distributed to IDS developers.

Another testing strategy that was considered was to acquire data by monitoring
real users on an actual network. The identities of the real users could be concealed, by
creating new user names and replacing ainy personal data with statistically-equivalent
nonsense text. Attacks would be run on a separate network. The required data would
be recorded and then inserted into the data from the actual network. Figure 2-4
depicts attacks being recorded and mixed with the normal data before passed trough
an IDS.

Among the reasons why this was not implemented was the difficulty in cleanly
inserting attacks into actual data. To insert an attack where the user successfully
logs in would require simulating a new process being launched. This will throw off
the system’s count of process id numbers (PIDs), which are assigned sequentially,
unless some existing process in the actual data is removed.

Furthermore, if another user had at that time checked to see who else was on

19

the system, it would be necessary to modify the output of that user’s command in
the data. Otherwise, a sufficiently observant IDS would notice a user had logged in
and was invisible to everyone clse. Other IDSs may notice this inconsistency and
determine that this attack was artificially appended into the data. This type of clue
is an “artifact” that should be avoided.

It may be possible to work around some of these problems by having dummy users
on the actual system while it is being recorded, doing simple token actions that serve
as placeholders to be replaced. However, these problems are too complex to tackle at
this time, especially when the quality of the output would be uncertain.

An alternative concept is to capture actual user sessions off a real network, and
extract the commands that the user had typed and the timing information associated
with those commands. Given a series of sessions composed of commands and timing
information, it is easy to go back through and add our own attacks, and alter existing
sessions to include hacker or anomalous activity. These sessions would then need to
be “regenerated,” re-run over the network. This time, network traffic and audit data
would be consistent and not contain artifacts, because what is seen is the result of
running actual commands. Figure 2-5 shows data from a real network being sanitized
to replace personal information and analyzed to extract commands. These commands
are then regenerated by computers on another network, with attacks added, and new
input data for an IDS is recorded. This regeneration scheme is discussed in Chapter
Three.

Careful analysis led to the conclusion that purifying the data consistently is too
difficult. Sensitive information, including items like the names of machines and direc-
tories, is hard to cleanse reliably in a consistent manner, and information concerning
the file structure and programs on mounted hosts is difficult or legally impossible to
obtain.

A modified approach was developed where types of users are characterized and
simulated using “automata” running from perl/ezpect scripts. These users run various
random tasks while they are logged in, and their global behavior statistically matches

that of actual users from the real network.

20

SNIFFED

PATA ANALYZE AND e
ATTACKS
NE%%RK SANITIZE
AUDIT
DATA

TEST & EVALUATION

NETWORK e
SNIFFED —— ROUTER |
DATA ‘ ;

Figure 2-5: A Testing Strategy to Remove Artifacts From Data
2.3 Sessions

A “user session” is a TCP session over a network service, such as telnet, HTTP, or
SMTP. Since the IDSs can have very high false alarm rates, and in the real world
actual attacks are a very small part of the total data, a large quantity of normal
traffic is required.

A sizable quantity of attacks is also needed. In order to see how well the IDS
detects an attack, each attack should occur several times in the data, with different
levels of “stealthiness.” There should be several different kinds of attacks, so that an
accurate measurement can be made of the types of attacks that the IDS catches. Some
novel attacks, for which “exploit code” is not publicly available, are useful for seeing
how IDSs react against attacks they have not been trained to find. The selection of

attacks is described more in Chapter Five.

21

Chapter 3

Traffic Regeneration

In Chapter Two, a methodology was presented for generating data that could be
provided to an IDS in a way that minimizes artifacts. Artifacts in the data might be
used by an IDS, intentionally or not, to help distinguish between background traffic
and actual attacks. To minimize artifacts, an identical approach is used to regenerate

both normal data and attacks.

3.1 Regeneration

Regeneration is used to create automatically network TCP/IP sessions containing
artificial normal traffic or attacks as if they were being produced by actual computer
users.

Goals of regeneration were that traffic generation must be:

e Automatic, requiring no human intervention.

Reproducible, so that either many sessions or individual sessions could be run

again.

Robust, so that it can be run for a long neriod of time.

Recoverable, so that if regeneration fails part of the way through it is possible

to continue it later.

22

e Informative, providing detailed logging information to validate and confirm

runs.

3.2 Simulating Multiple Machines

To simulate multiple machines on a network, each UNIX machine on which a regen-
erator runs has a modified kernel. This modified kernel from Rome Labs [8], a variant
of the Linux version of UNIX, allows each program running on the machine to act as
if it is using a different IP address.

Briefly, an IP swapping technique works through a device driver called “ipswap”
in conjunction with the character-special file /dev/ipst. When an authorized user
wants to launch a network program with a fake IP address, the program’s PID and
desired fake source address are written to a table by ipswap, and the kernel opens a
port with that fake IP address.

There are other identifying features of a system that need to be fixed so that it
can appear to be multiple machines to the network. Many programs that interact
with the network, including sendmail, ftpd, and login, identify the machine they
are running on. These programs need to be altered as well.

The regenerator can also function normally without the modified kernel, when

multiple machines do not need to be simulated.

3.3 The Framework

As suggested in [20], the ezrpect program is used to automate interaction, allowing a
shell session to be run as if a user were typing at a keyboard [15]. However, it would
be too much work to code up an ezpect script for every session, and it would still
require another ezpect program or shell script to call each individual session. Also,
such a scheme would make code maintenance difficult.

For this reason, a regenerator was written in ezpect that reads in information

about hosts, prompts, commands, and timing from specially formatted “.ex” files

23

which control separate sessions.

3.4 File Format

There is one .ex file for each session that is to be regenerated. The header of each file

contains the following information:

e Time to start
e Estimated duraticn

e Binary flag indicating whether to telnet to a target port on a remote machine,

or start a local shell
e Real IP address of host machine
e Real IP address of target machine
e IP address of virtual host machine
e IP address of virtual target machine

e Target port

List of prompts

The body of the .ex file also contains the following information for every prompt-

response pair which is to be generated:

e Comment field
e Prompt index
o Time to wait
e Time to type

Command

24

After scanning the header, the regenerator sequentially issues all the commands
included in the prompt-response pairs. For each prompt-response pair, the regenera-
tor first waits for the prompt indicated by the index, waits the indicated amount of
time before typing, and then types the command over the time period specified.

This provides a moderate level of control over the timing of a session. If someone
steps away from their terminal for an hour and then returns later to type a series of
commands, this can be represented by a long “time to wait.”

More information could be provided, such as the timing delay between all charac-
ters. It would be easy to alter the regenerator program to use this extra data, but it
would reduce both the simplicity of the this approach and the readability of the .ex
file while not affecting possible artifacts that may be inserted into the data.

The list of prompts are regular expressions. This allows specifying a general
description of a prompt even though some details of a user’s prompt may change, like
the command number or current directory.

Comments can also be inserted into the .ex file. Comments can provide meta-
information about the session that can easily be parsed out of the file. For example,
comments are inserted to indicate which commands are considered attacks and to
indicate which commands generate new TCP/IP sessions.

The commands that the regenerator types in are arbitrary, and they do not need
to end in a carriage return. Two regenerators could also be hooked end-to-end to

replay both sides of a recorded conversation.

3.5 Regenerating a Single Session

The regenerator program is designed to run one network session. It takes an .ex file
as an argument. It opens up this file and reads in the header data. “Time to start”
and “duration” are ignored.

When the regenerate program reads the virtual host machine from the .ex file, it
uses the IP masquerading kernel to create a socket connected with that IP address.

The regenerator then opens a network session to the target computer and port.

25

The regenerator program enters each command, simulating human typing. If there
are more commands left in the list, the regenerator continues the process, pausing
between each command. Once all the commands are exhausted, it exits.

The regenerator logs a recording of the session to a file, along with meta-data,
such as the actual start time.

Instead of opening a telnet connection to a remote machine on a specific port, the
“remote or local” option can be used to start the shell on the regenerator’s local host
computer. This is useful, for example, in that it allows the use of the computer’s local
commands for network actions such as mail or ftp, instead of requiring the regenerator

or the .ex file to understand the details of each protocol.

3.6 Multiple Sessions

The regeneration scheme was also designed to allow multiple sessions to be run simul-
taneously, and to provide a graphical user interface to summarize the current status.
Another ezpect program, called the master regenerator, can take as an argument a
list of filenames. Each of these filenames is a session to be recreated. The master
regenerator checks the starting times of each file. When the starting time of a session
is reached, a regenerator program is then launched with the correct .ex file as its
argument, with the master program monitoring the output of each session. There
can be many individual regenerators running at the same time, one per session.

The user interface can report the number of total sessions to be run, how many
have begun, and how many have completed. The sessions that completed can be
subdivided into those that completed normaily, those that reported a serious error,
and those that crashed. A session crashing means that the master program lost
contact with an individual regenerator. This would indicate that there is a serious
bug in the regenerator.

This program worked for testing sample scripts. However, when thousands of
scripts were run instances of .ex files that crashed the entire regenerator system

were encountered. Because of these problems, the master regenerator was simpliﬁed

26

to create a perl script that launches each session at the proper time. Its logging
functionality is weaker than that of the more complex program, which maintained
three log files: one a summary of the pertinent information for cach session, another
a log of the errors encountered during regeneration, and the third a verbose record of
all state changes that the master regenerator witnesses.

Another issue in scalability involved the exhaustion of pseudo-terminals (pty’s).
There are a set number of pty’s available on a machine, and ezpect nses a pair each
time it opens a network connection. “Waiting” for each process completion is essential
for efficient operation, but in order to have more than a handful of sessions open
simultaneously, it was necessary to add more pseudo-terminals to the system, a typical
systern administrator activity. The regenerator now checks to make sure a session was
able to obtain a pseudo-terminal and launch correctly. If it can’t, then the session is

skipped, instead of having the entire program crash, which is ezpect’s default behavior.

3.7 Options and Additional Features

To allow for quick testing of a session or a series of sessions, the regenerator or the
master regenerator can be run with a speed-up option. This reduces the delays before
a session starts up, after seeing the prompt, and between keystrokes by a given factor.

If a particular session requires more complicated interaction than is allowed for by
the .ex file format, each command component of a prompt-response pair can specify
another ezpect script subroutine. This makes it possible to use some of ezpect’s more
useful abilities, such as taking different actions based on what the host machine is
sending back in its response. Examples of such scripts are a mail reader, which reacts
differently based on how many messages the user has waiting, and an automata to

run the UNIX man and more commands.

27

Chapter 4

Taxonomy

In addition to traffic generation, work focused on generating computer attacks and
developing a taxonomy of attacks. A taxonomy is a method of classifying elements in
a hierarchical fashion, such as the taxonomy of life. That taxonomy shows the variety
of species that exist and illustrates relationships among similar species.

A taxonomy of computer intrusions classifies attacks. Some previous taxonomies
were proposed for the purpose of preventing vulnerabilities. If common faults can be
found for each kind of security hole, it may be possible to figure out how to prevent
those faults, such as through better checking of code or more careful specification.

The primary purpose for categorizing attacks here is to create good classes from
which to draw intrusions for evaluating IDSs. Egquivalence pertitioning categorizes
attacks in such a way that an IDS has a roughly equal chance of recognizing each
member of a class [20]. This simplifies testing by enabling the IDS to be tested against
just a few members of that class. Furthermore, if a new attack is developed and can
be placed within an existing equivalence class, it can be determined which IDSs would
have found the attack without needing to run that attack against each IDS.

The first section in this chapter discusses the desired features of a taxonomy of
computer intrusions or attacks. This is followed by an overview of some previous
taxonomies, and a new taxonomy.

In the following discussion, an intrusion or attack is defined as an instance in

which someone gains unauthorized access to a system or disrupts authorized access.

28

Vulnerabilities or security faults are flaws in systems that allow attacks to occur. They
can be caused by software errors, by providing features that can be misused, or by

poor user validation.

4.1 Goals of a taxonomy

Discussions of desirable characteristics in a taxonomy can be found in several previous
works (e.g., [2], [7], and [20]). Features desired in a general taxonomy of computer

intrusions include:
e It can be used to guide evaluation of security tools, particularly IDSs.
e It can be used to perform cost-benefit analysis.
e It can help prevent attacks in the future.
e It can be used to explain the cause of an attack.
Features of a taxonomy that are more generic include:
e Each attack should be reliably placed in only one category.
e All possible intrusions should have a place in the taxonomy.
e The taxonomy can be extended in the future.

The relative importance of each category will vary depending upon the intended
purpose of the taxonomy. The categories are ordered here in approximate importance
for the testing an evaluation of IDSs. Each goal is discussed in turn in the following

sections.

4.1.1 It can be used for the evaluation of security tools,

particularly IDSs

A useful feature of an attack taxonomy is to allow security tools to be evaluated. If it

is possible to say against which kinds of attacks the security tool provides protection,

29

a site could use this in combination with a cost-benefit analysis to determine the
appropriate tools for their situation.

Different partitionings will have different usefulness in testing. If one partitions
the attacks by their relative harm, a ranking can be made by how well the IDS finds
each attack.

However, among any one class of attacks in that partition, the IDS may find some
attacks easily, while missing others entirely. This is the argnment behind equivalence
partitioning, breaking the attacks into classes such that the IDS’s chance of finding
all intrusions in the class is roughly equivalent. Equivalence classes may be possible
to construct for an individual IDS which uses a restricted set of inputs such as BSM
audit logs from one host. They may not, however, be possible to construct for multiple
IDSs which use different input factors. The goal of creating equivalence classes can

only be partially met.

4.1.2 It can be used to perform cost-benefit analysis.

Different groups will face different risks from computer intrusions. An ISP that prides
itself on reliability, for example, may find an attack that leaves its customers unable to
log in worse than one which allows unauthorized users to have user-level permissions,
while a medical database might place the highest priorities on integrity and privacy.

Different groups should be able to use the taxonomy to perform cost-benefit anal-
ysis by placing cost values on each subcategory of attack. These costs would estimate
the damage that would be done if someone actually performed an attack. Steps could
then be taken to isolate the most dangerous attacks for a given site and to select an

IDS which is most appropriate and finds the most costly attacks.

4.1.3 It can help prevent attacks in the future.

Many of the previous taxonomies were created in the hope of reducing or eliminating
vulnerabilities in the future. By categorizing the different security holes that existed

in software, effort could be applied towards fixing the most frequent and dangerous

30

holes.

4.1.4 It can be used to explain the cause of an attack.

If a service on a machine has suddenly stopped working, a taxonomy of attacks may
be of use in determining whether the cause of the denial is due to malicious activity.
Even if the exact symptom cannot be found in the taxonomy, one could look nearby

for simnilar intrusions, and inspect one's system for evidence of those attacks.

4.1.5 Each attack should be reliably placed in only one cat-
egory.

Each intrusion should fit in no more than one category. This has proven to be a
difficult requirement. Landwehr [14] pointed out that “often ...such a partitioning
is infeasible.” Bishop and Bailey’s main criticism of other taxonomies [7] was that
“they fail to define classification schemes that identify a unique category for each
vulnerability.”

Also, it should be simpie to determine the placement of each element in the tax-
onomy. Under Aslam’s taxonomy [4], for example, even though some faults could
correctly be described by more than one location in the chart, a decision tree uniquely

determines the classification of each fault.

4.1.6 All possible intrusions should have a place in the tax-

onomy.

The taxonomy should be complete. It should be possible to categorize all currently

known as well as proposed future attacks.

4.1.7 It can be extended in the future.

It is difficult to determine what sort of attacks will be developed in the future. Many

new attacks in one category may occur, and the taxonomy would classify them iden-

31

tically. It should be possible to add new sub-categories or new branches to the

taxonomy, without affecting the correctness of previously existing entries.

4.2 Previous work

In 1975, Linde presented generic lists of “functional flaws” (such as authentication,
implicit trust, and residue) and operating system attacks (including clandestine code,
masquerade, and wire tapping) [16]. Most efforts after that moved towards creating

hierarchy in the descriptions of flaws and attacks.

4.2.1 RISOS report, April 1976

The RISOS project’s report [1] served as an early overview of issues in computer
security. It presented concepts of security flaws and discussed methods for enhancing
the security of operating systems.

The report presented a taxonomy of integrity flaws. The primary focus was a
taxonomy of security faults in operating systems, although it recognized that “almost
all applications software flaws have direct analogies with operating system flaws.”

The report briefly mentioned other useful categories for describing an attack. The
categories were chosen so that the following sentence would be an accurate represen-

tation of the flaw:

A [class of user| acquires the potential to compromise the integrity of
an installation via a [class of integrity flaw] integrity flaw which, when
used, will result in unauthorized access to a [class of resource] resource,
which the user exploits through the method of [category of method] to

[category of exploitation].

e Class of user: Users of applications, service users (authorized administrators),

or intruders.

e Class of integrity flaw: The gap in security may be in physical protection,

personnel (sabotage and user error), procedural (including “social engineering”

32

and Trojan horses), hardware (such as terminal hangups not happening prop-

erly), application software, or operating system flaws.

e Class of resource: “What does the intruder get?” Possibilities are informa-

tion, services, and equipment.

e Category of method: “What did the intruder do?” Interception. scavenging,

preemption, or possession.

e Category of exploitation: By his or her actions, the user can deny posses-

sion/use, deny exclusive possession/use, or modify the system.

The main part of the taxonomy was seven categories of operating system flaws.

These flaws were:

e Incomplete parameter validation. An example is an individual program not
checking the lengths of arguments passed to it before storing them in a fixed-

size buffer.

e Inconsistent parameter validation. The given example is of two programs that
each have valid security mechanisms. One safely writes entries to a permissions
file, allowing embedded spaces. The other, which removes entries from the file,
does not accept entries with embedded spaces. A user may be unable to revoke

privileges after handing them out.

e Implicit sharing of privileged/confidential data. A program could temporarily

store sensitive data in a publicly readable location.
e Asynchronous validation/inadequate serialization, such as race conditions.

e Inadequate identification/authorization/authentication. Examples are naming
collisions, and programs with “wizard modes” that allow trusted-user access to

the system.

e Violable prohibition/limit. These occur when a user can operate outside set

bounds, such as a limit on the number of processes or a disk quota.

33

e Exploitable logic error, which includes bugs in programs. A listed example is of
a user who can interrupt a failed password check before the operating system
logs it, allowing unlimited attempts to crack passwords. Or, a user error causes

a system program to leave the system in an unprotected state.

This taxonomy is not exclusive. For example, on some UNIX systems, when a user
accesses a setuid shell script through a symbolic link, there is a window of time when
the user can substitute his or her own file, after the system has checked the validity
of the original file but before the it has run it, causing the user’s file to run with the
permissions of the shell script. This would be both “inadequate identification” as
well as “asynchronous validation.” It might also be classified as an “exploitable logic

error.”

4.2.2 The PA report, May 1978

The Protection Analysis report from the Information Sciences Institute [5] was an
attempt to classify errors in applications and operating systems. It discussed errors
from a low-level, theoretical point of view, and sought to create generalized error
patterns by which actual software errors could be recognized. One of the purposes
of the research was to allow programs to be statically verified so that security flaws
could be located and removed.

Ten categories of errors were created, but they “seemed to manifest themselves
at differing levels of abstraction.” The classification scheme was refined, and a set of
four global error categories resulted: domain errors, validation errors, naming errors,

and serialization errors.

Domain errors result from incomplete separation of information. Information may
be in the wrong domain, or the gateway between domains may be insufficiently
checked. Examples include the operating system nct clearing a memory block

of residual data before assigning it to someonc else.

Validation errors include insufficient validation of operands and failure to check

boundary conditions.

34

Naming errors, such as a new object taking the identity-and permissions—of a

deleted object

Serialization errors, such as race conditions, result when events incorrectly occur

simultancously, or atomic events are interrupted.

This taxonomy suffers from the same problem as that of the RISOS project, in that
one event could be placed in two categories. In fact, [6] shows how Peter Neumann’s
presentation of the PA project [19] and the RISOS project can each be mapped to
the other.

4.2.3 Landwehr, September 1994

Landwehr, Buli, McDermott, and Choi presented taxonomies of flaws in operating
systems in order to determine how flaws were being introduced [14]. There were three
separate taxonomies with which each flaw would be categorized: by genesis, by time

of introduction, and by location.

e The genesis taxonomy describes how the flaw was introduced. The top-level
categories were maliciously intentional, non-maliciously intentional, and inad-
vertent. The inadvertent flaws were further categorized in a manner similar to

the PA and RISOS taxonomies.

e The time of introduction of a flaw could be during development (which in-
cludes specification, source code, and object code), during maintenance, or dur-

ing operation.

e The location of the flaw could be in the operating system, in support programs,

in individual applications, or in the hardware.

4.2.4 Bishop’s Taxonomy, May 1995

Bishop’s taxonomy [6] focused on UNIX system and network vulnerabilities, as op-

posed to attacks, according to the belief that “a model should highlight the underlying

35

vulnerability, and not its exploitation.” He looks at the previous taxonomies for use-
ful features in his goal of creating a taxonomy that describes vulnerabilities “in a form
useful to intrusion detection mechanisms,” by which be means both IDSs as well as
tools that statically check a system for existing vulnerabilities, such as COPS [9].

There are six axes to Bishop’s taxonomy:

e The nature of the flaw. Neumann’s version of the PA categorization of errors

[19] is used:

— Improper Choice of Initial Protection Domain
— Improper Isolation of Implementation Detail
— Improper Change

— Improper Naming

— Improper Deallocation or Deletion

— Improper Validation

— Improper Indivisibility

— Improper Sequencing

— Improper Choice of Operand or Operation

e The time of introduction. This was taken to be the same as Landwehr’s time
of introduction taxonomy, modified slightly so that the distinctions between

classes was more clear.

e The exploitation domain: who can take advantage of the vulnerability, and

where the attacker needs to be relative to the system to do so

e The effect domain: what can be affected by a use of the vulnerability, such

as network sessions or hardware

e The minimum number of components needed for the vulnerability to be
exploited. This indicates how many programs must be audited by an IDS to

detect the exploitation.

36

e The source that caused the vulnerability to become known, such as USENET

or academnic literature.

4.2.5 Aslam’s Taxonomy, August 1995

Aslam [4] presented a taxonomy of security faults in UNIX with the intent to “unam-
biguously classify security faults into distinct categories.” Non-overlapping groupings
were required for the construction of a vulnerability database, and he claimed that
taxonomies presented by the RISOS report, the PA report, and Landwehr were un-
suitable in this regard, as they are “too generic, and do not clearly specify the criterion
used for the classification.”

Each security fault was categorized into one of three general groups: environment

faults, operational faults, and coding faults.

Environment faults include “limitation of the operational environment” and “in-

teraction errors between functionally correct modules.”

Operational faults are configuration errors, such as programs installed with im-

proper permissions or in the wrong place.

Coding faults come in two varieties: synchronization errors (race conditions and
serialization errors) and condition validation errors (failure to properly validate

inputs, boundaries, permissions, or handle exceptions)

Aslam also overviewed some software fault detection techniques, and how they
could be applied against each of these categories.

A very useful feature that was included was a decision tree for the taxonomy.
This aids in the easy cataloging of security faults, and helps provide for a unique

classification.

37

4.2.6 Howard’s Taxonomy of Computer and Network At-
tacks, April 1997

Howard created a taxonomy of computer and network attacks as part of his analysis of

security incidents reported to CERT from 1989 to 1995 [13], an incident being a series

of attacks over time related to the same attacker. He analyzed many categorizations

in the literature in his crcation of a taxonomy. His taxonomy broke an attack into

five fields that had to be “linked” for an intrusion to succeed: attackers, tools, access,

results, and objectives.
Attackers Howard presents six types of intruders:

e hackers, who break in to a site for the challenge
e spies, looking for information that will lead to political gain
e terrorists, seeking to cause fear for political gain

e corporate raiders, seeking information from competitors that can lead to

financial gain
e professional criminals, seeking personal financial gain

e vandals, who are just out to cause damage
Tools The intruder must use at least one of these in the attack:

e user commands
e a script or program

e autonomous agents, such as a worm or virus

toolkits, a combination of the previous three tools

distributed tools, scattered across multiple hosts of the Internet

a data tap, physically monitoring the electromagnetic emissions of a system

Access The attackers gain access through a vulnerability in one of implementation,
design, or configuration. They then either make unauthorized access to or have

unauthorized use of system processes, possibly to files or data in transit.

38

Results The results of the attack are chosen from

e corruption of information
e disclosure of information
e theft of services
e denial of service
Objectives The objectives of the attack connect back to the attackers in the first
field. Possible objectives are
¢ challenge and status
e political gain
e financial gain

e damage

Any successful attack would need to link at least one path across all these fields,

so computer security counter-measures could be applied against any stage.

4.3 A New Taxonomy

A new taxonomy was created for the purpose of testing and evaluating IDSs. One
of Bishop and Bailey’s criticisms of vulnerability taxonomies was that their point of
view was not clearly defined [6]. By taking three different points of view (e.g., from
the flawed process that is exploited, from the attacker process, and from the operating
system service routines) Bishop and Bailey claimed to get multiple categorizations
for a particular attack. Such a criticism is avoided here by taking one clear point of
view. It is that of a potential intruder, and his or her level of privilege relative to the
target system.

Each attack is categorized as one of the following:

» A user does some action at one level of privilege.

39

e A user makes an unauthorized transition from a lower privilege level to a higher

privilege level.

e A user stays at the same privilege level, but does some action at a higher level

of privilege.

This taxonomy requires a way of describing privilege levels, a way of describing
transitions, and a way of categorizing actions. These three items are presented in the
following sections. A UNIX-like operating system is assumed for the examples, but a
similar taxonomy should work with other operating systems as well. Also, although
this taxonomy was designed with methods of electronic security in mind, it should be
easily adaptable for other potential methods of attack, such as hardware vandalism

or social engineering.

4.3.1 Privilege levels

The taxonomy first requires an approach to rank levels of user privileges. A sample

ranking of privilege levels is:

No access

Remote network

Local network

Modem access

User access

wic|z|c|w|o

Root/superuser status

“No access” means the user has no practical access to a system, such as it being in
a locked building on a separate network. “Remote network” access refers to having,
via other networks, minimal network access to a system. “Local network” means
having the ability to read and write to the local network that the target machine uses.
“Modem access” refers to the ability to connect directly to a target computer. “User
access” refers to having the ability to run normal user commands, and “superuser

access” gives the user total software access to the system.

40

Note that the privilege levels need not be strictly ordered: for example, modem
access to a computer is not necessarily more privilege than being able to sniff its
network connection.

This list is not as complete as it could be; for example, a process could have the
ability to read any file on the system, but not have the ability to write to any file.
This state could be listed between user access and root access. In addition, physical
access to a local console keyboard could provide more privilege than network-based
access. Many such states could be listed, but the list is kept brief for simplicity and
brevity.

It is difficult to attempt to rank all possible privilege levels that an intruder could
have for all circumstances. However, an individual site may have a more specific idea
of how its systems are configured, so it could create a more detailed and appropriate
privilege level structure. For example, having access to an external network could be
ranked lower than having access to an internally firewalled network, or having access
to machines storing sensitive data could be ranked higher than having access to a
static webserver.

Similar structures to this were seen in some other taxonomies, such as the class
of user in RISOS and the exploitation domain in Bishop’s taxonomy. This structure

is more general and has finer granularity.

4.3.2 Actions

The taxonomy includes the following five actions:

1. Probing: Gathering data about a system. More specific categories of informa-

tion to be collected are:

Probe(Users) Users on a machine (and information about these users)
Probe(Services) Services on a machine

Probe(Machines) Machines on a network

41

2. Denial of Service: Hindering legitimate access to the system. Includes degrada-
tion of service.
Deny(Temporary) Temporary denial with automatic recovery
Deny(Administrative) Denial requiring administrator action to recover

Deny(Permanent) Permanent denial
3. Interception/Reading of Data:

Intercept(Files) Files on a system

Intercept(Network) Network traffic
4. Alteration/Creation of Data

Alter(Data) Alter stored data

Alter(Intrusion-Traces) Removing intrusion traces, such as log files
5. Attacker uses system:

Use(Recreational) The intruder is using the system for enjoyment purposes,

such as chatting on IRC to brag.

Use(Productivity) Using the system for productivity-related purposes, such

as using the editor or compiling, excluding intrusion-related uses.

Use(Intrusion-Related) The intruder is using system resources to help break
into other sites, such as using system cycles to crack passwords. Excludes

staging of attacks.

Use(Staging-Attacks) The intruder is using the computer as a stepping-stone

to launch attacks on another system or systems.

The RISOS project had the concept of actions, but they were spread over mul-
tiple categories (class of resource, category of method, and category of ezploitation).
Bishop’s taxonomy also had the effect domain, although this was limited more to

what was affected than what the attacker accomplished.

42

Howard’s attack category contained descriptions similar to this one. His “corrup-
tion of data” category is revised here to include both the creation and alteration of

data, and the new category of “probing” is added.

4.3.3 Methods of transition

The user needs to exploit some failure of the security system to perform an attack.

Three categories of failure are:

m) Masquerading Misrepresenting oneself. An example could be using a stolen
username-password pair, or sending a TCP packet to a machine with the source

address forged.

a) Abuse of feature There are legitimate actions that one can perform, and is ex-
pected tc perform, that when taken to an extreme can lead to failure. Examples
are filling up a disk partition with user files or a mail spool with junk mail, or
attempting to connect to every port on a machine to determine what vulnerable

services it is running.

b) Implementation bug A bug in a trusted program that allows an attack to pro-

ceed. Specific examples could be buffer overflows or race conditions.

Many of the previous taxonomies had different implementations of this category.
The RISOS project and PA report were primarily concerned with how the security
holes were introduced, and Bishop’s taxonomy built on those. A parallel could be
drawn between Aslam’s categories of “coding fault” and “environment fault” and this
taxonomy’s “implementation bug” and “abuse of feature.” The Howard taxonomy
has access being provided through a vulnerability either in implementation, design,
or configuration.

An individual attack may use more than one of the approaches. For example,
any compiter can send messages to a machine’s syslogd daemon, and also forge the
packets to come from arbitrary IP addresses. Some versions of syslogd will crash

if they fail to perform a reverse-DNS-lookup on this address. This exploits both

43

masquerading and buggy implementations, and it’s possible to detect the intrusion

via either of these paths.

4.3.4 Representing an Action at a Privilege Level

Every attack category in the taxonomy is represented by a short alphanumeric string.
For attacks which simply perform actions at a higher privilege level, this string indi-
cates the user’s initial privilege level, followed by the type of security hole exploited
(if any), followed by the action performed.

The substrings in this description are the bold strings from the previous three
sections. The initial privilege level is indicated by O, R, L, M, U, or S as defined
in section 4.3.1, the method of exploitation by m, a, or b as defined in section 4.3.3,
and the action is indicated by one of the many strings in 4.3.2.

The following table illustrates strings for three attacks. The SYN flood attack,
for example, sends a repeated stream of SYN packets to a port on a target machine.
For a short duration after these packets have been sent, no other users can connect

to that port on that machine, denying them service.

Examples:

Attack String Description

SYN flood R-a-Deny(Temporary) | User needs network access to enact a tem-

porary denial of service

sniffing L-a-Intercept(Network) | User with access to a computer’s network
passwords reads plaintext passwords

cracking U-Use(Intrusion) From a user account, someone uses sys-
passwords tem cycles to crack passwords

4.3.5 Representing Transitions

To show a transition between two privilege levels, the two privilege levels are written
adjacent to each other with the method of transition between them. Two examples

of transitions, from user (U) to superuser (S) and from remote user (R) to local user

44

(U) are shown in the following table.

Exarmples:
Attack String | Description
eject U-b-S | User exploits bug in eject program tc become

root

password guessing | R-a-U | User with network access repeatedly guesses

passwords

4.3.6 Representing Actions at a Higher Privilege Level

Users may also be able to perform actions with a higher privilege level than they
currently possess, but they may not be able to keep those enhanced privileges. These
cases are represented as illegal transiticns, except the action that is performed is
written, following a colon. The following example is an attack where a user creates

new files on a UNIX system.

Example:

Attack String Description

ftp-write | U-b-S:Alter(Data) | A bug in some ftp daemons allows a user to
create any file on the system that did not
exist previously, such as putting a new file

in a database. This does not necessarily

translate to a root compromise.

4.3.7 Multiple users

As is, the taxonomy treats all user accounts as equivalent. However, this is not always
the case. Some users may have less than normal privileges, some users control specific
services, and individual users have access to their own files. The foliowing notation
allows different types of users to be described.

Users:

45

Plaintezt | Formatted

Usertype | Usertype | Description

v v |UuU” Generic Users
(U-1) U_; User “nobody”
(e Ug Guest

(Us) Us System-level Users
(U1615) | Users Specific Users

Formatting is suggested for both plaintext and formatted output.

Generic users are used when an attack involves multiple users, such as one user
gaining the ability to read another user’s files (see example below). User “nobody”
refers to the account with minimal privileges on many UNIX systems. “System-level
users” generically refers to accounts like “bin” and “daemon,” accounts that have
special privileges over important parts of the operating system. Specific users are
useful for tracing an incident (see the next section).

The following example shows an attacker who wishes to read another user’s mail.
He creates a program which alters the permissions of the mail directory of any person

who executes it.

Examples:

Attack String Description

trojan horse | U’-U”:Intercept(Files) | One user asks a second user to run a given
program. When the second user does so,

her mail directory is made world-readable,

allowing the first user to read the files.

4.3.8 Tracing of a session

This taxonomy allows a trace to be made of an incident that is composed of many
steps, like the record of a chess match. This is useful, for example, in performing

post-mortems of an incident.

46

Here is an example trace of an attack in which a user breaks into a computer that
is running a buggy web-server, and proceeds to acquire more and more privileges until

achieving root.

Notation English Notes
R-b-U_;:Intercept(Data) | phf, ypcat Webserver running as user
passwd nobody has a cgi-script al-

lowing the encrypted pass-

word file to be read

R-m-U use cracked Off-line, the intruder has fig-
password ured out a password
U-b-S use buffer Intruder goes from user to
overflow root via a bug in the eject
program

4.3.9 Multiple machines

For a given attack or incident, there may be more than one machine from which it is
desirable to have a point of view. For example, an intruder may be simultaneously
attacking two important systems, or she may be jumping across multiple machines in
a network during a trace.

Each machine is represented by the letter “H” followed by a number or letter
indicating the machine. Privilege levels are now indicated with respect to a given
machine, by writing the machine and the privilege level separated by a dot.

Here is a brief example of IP-spoofing involving three machines. H,4, H;, and
H, are on the same network. H4 has been totally compromised by an attacker, and
she now wants to attack H,, which trusts H,. If a user is logged in to H,, he can
automatically log in to H; without needing a password.

The attacker is going to make H, pretend to be H,. However, H; will try to
talk with H,, which will respond by saying that it never initiated a connection. The
attacker needs to stop H, from responding. She will accomplish this by sending H, a

“ping of death” to re-boot it, giving her time to complete her transactions with H;.

47

Notation English Notes

Hj; R-b-Deny(Temporary) | ping of death | Attacker prevents H, from responding

H4.S-m-H,.U IP spoofing | From the superuser account on ma-

chine A, the attacker connects to H,

as a normal user.

4.4 Evaluation of the taxoncmy

4.4.1 Each attack should be reliably placed in only one cat-
egory.

This taxonomy fails to strictly meet this requirement. Instead, an attack is placed in
a category for cach distinctive feature it contains. For example, if an attacker breaks
in and then both denies users access to a service and launches attacks against other
systems, the attack could be described under multiple categories. This is acceptable,

since IDSs might detect the attack because of either effect.

4.4.2 All possible intrusions should have a place in the tax-

onomy.

No potential attacks should be left out. All the attacks in Chapter Five can be
described with this scheme. This is a necessary but not sufficient step. It remains to

be seen if attacks will occur which cannot be contained in this fashion.

4.4.3 It can be extended in the future.

New sub-categories can be added to the list of possible actions with ease. In the
future, for example, if attacks occur which temporarily deny service, some to the file
system, some to CPU cycles, a further sub-category could be added to distinguish
between the two groups. Similarly, new privilege levels can be added where more

detail is needed.

48

4.4.4 It can be used to perform cost-benefit analysis.

The costs of each attack can be estimated on a per-site basis. To our knowledge, no

site has used this taxonomy, or another taxonomy of attacks, for such a purpose.

4.4.5 It can be used to guide evaluation of security tools,

particularly IDSs.

Plans to test IDSs are currently underway. It remains to be seen how well this

taxonomy will serve in partitioning the attacks into equivalence classes.

4.4.6 It can help prevent attacks in the future.

This taxonomy does not provide any special mechanisms for helping eliminate security
holes. However, it can be used with a cost-benefit analysis to suggest easy ways that
security may be improved, by seeing if attacks with a high-cost can be changed
by administrator actions into similar attacks with a low-cost. For example, a user
breaking in and erasing all user files is a permanent denial of service and would likely
have a high cost. But enacting a regular backup strategy can reduce the costs of such

an attack to the levels of a denial that only requires administrator intervention to fix.

4.4.7 It can be used to explain the cause of an attack.

This taxonomy is useful in diagnosing some attacks. If one notices many temporary
denial-of-services attacks one a network, searching through this taxonomy for attacks

that meet that requirement can give an idea of the vulnerability being exploited.

4.5 Quick Start

Figure 4-1 gives a quick overview of the approach this taxonomy uses to describe
a simple attack.

First, select the privilege level that the user had when the attack occurred, from

49

. 2. O -- No Access
Initial Method Remote Network
Privilege : of : 3a.
Level Exploitation i pfLocal Network New
: Modem Access Level
User Access
Superuser Access
O -- No Access Probe(..)
Remote Network | | }masquerade Deny(...)
Local Network abusg f-eature . Intercept(...) ib.t'
Modem Access : I bug in implementation |: Alter(...) ction
User Access ¢]2 -- unknown Use()
Superuser Access| : -
O -- No Access
: Remote Network l;)r::e((' ' ')) 3c.
Local Network Y. Action
o :|Intercept(...)| ata
: Modem Access Higher
Alter(...) 9
User Access Use(...) Level
Superuser Access —_—

Figure 4-1: A Summary of the Possible Attack Descriptions

“no access” up to “superuser access.” If possible, determine the minimum level of
privilege that was necessary.

Second, select the method of exploitation, if known. The possibilities are mas-
querading, abuse of feature, and implementation bug. Indicate an unknown method
with a question mark.

Finally, indicate one of the following three:
e to what new privilege level the user transitioned

e what actions the user performed at the current level of permission, chosen from

probing, denial, interception, creation/alteration, or use

e what actions the user performed at a higher permission level, using a concate-

nation of both a privilege level and an action

50

4.6 Summary

The following table summarizes descriptions of some common attacks for reference.

Attack String Description

SYN flood | R-a-Deny(Temporary) User needs network access to enact
a temporary denial of service

sniffing L-a-Intercept(Network) User with access to a computer’s

passwords network reads plaintext passwords

cracking U-Use(Intrusion) From a user account, someone uses

passwords system cycles to crack passwords

eject U-b-S User exploits bug in eject program
to become root

password R-a-U User with network access repeat-

guessing edly guesses passwords

ftp-write U-b-S:Alter(Data) A bug in some ftp daemons allows
a user to create any file on the sys-
tem that did not exist previously,
such as putting a new file in a
database. This does not necessar-
ily translate to a root compromise.

trojan U’-U”-Intercept(Files) One user asks a second user to run

horse a given program. When the second

51

user does so, her mail directory is
made world-readable, allowing the

first user to read the files.

Chapter 5

Attacks

A large representative sample of actual attacks are needed to test an IDS. These
attacks should be varied at least with respect to the vulnerability exploited, stealth-
iness, and types of actions performed after the break-in. This chapter describes the
attacks to be used in the training data of an upcoming planned 1998 DARPA off-line

intrusion detection evaluation.

5.1 Sources

Most of the attacks developed for the DARPA evaluation are drawn from publicly
available sources on the Internet. Bugtraq, a “full-disclosure” mailing list, frequently
hosts “exploit code” when a vulnerability is discussed, ostensibly to be used to test
one’s own system for that weakness. It frequently took some effort to get an attack to
work consistently and reliably on our network. Either the attack needed to be tuned
to our systems, or our systems needed to have the proper software installed.

Other attacks were based upon the vulnerabilities that are probed by scanning
tools, such as SATAN. Some attacks were created from information about potential
security holes that was available from computer security groups, such as CERT.

Some new attacks were also created. These attacks are useful for determining how

IDSs work against novel attacks, a difficult class for signature-detection IDSs.

52

Time Line of an Attack

>
Probing Break-in Malicious Actions
* Port sweeps » Operating System Bug * Steal data or programs
* Address sweeps * Shiffed password * Hop to other systems
* Doorknob rattling * Social Engineering * Install back door
* Back Door * Setup sniffer

e Steal CPU time

Figure 5-1: Timeline of an Attack
5.2 Timeline of an attack
An attack can be usefully broken up into three stages of time:

1. The time before the attack, where the intruder may be attempting to probe the

system for weaknesses.
2. The actual attack.

3. The actions following the attack.

This timeline is useful because different 1DSs tend to trigger from events that
occur in different parts of the timeline. For example, probing of a network can b-
unusual, so anomaly-detection systems can trigger on wide-spread probing in stage 1.
Since many signature-based IDSs use recorded samples of actual attacks, they may
recognize when an attack occurs at stage 2. Other systems may detect when someone
is executing (or attempting to execute) dangerous commands or commands normally
run by the system administrator. These systems may find stage 3 of the attack, but
could also false alarm on many legitimate administrator actions. Of course, systems

may be able to find intrusions at more than one stage.

53

Vulnerability to attack:

~ "MODERATE
Attack first Exploit Exploit is Patches CERT issues Some
developed script noticed by known advisory; systems
and used by becomes system by some patches are never
afew widely administrators released patched
hackers distributed widely

Figure 5-2: Aa Attack Tends to Become Less Useful Over Time
5.3 Age of an Attack

Each attack has a peiiod of time during which it is most potent. Figure 5-2 shows
a simplified example of the use of a supposed attack developed by hackers. As time
goes by, more systems become resistant to the intrusion. The length of this time
window is quite variable.

Some systems go years without having widely-known security holes fixed. A num-
ber of computers in operation today contain these holes, such as guest accounts with
default passwords.

Some old attacks, such as trying to overflow the buffer of the fingerd daemon,
are included in the set of intrusions. It is expected that many IDSs will find these

attacks easily.

5.4 Stealthiness of Intruders

Stealthiness is defined as taking steps to evade an intrusion detection system. There
are many approaches that an attacker could use to hide from an IDS. For example, if
an IDS looks for someone exploiting the loadmodule vulnerability by watching for the

string “loadmodule”, an intruder could bypass this by setting the csh shell variable

94

VAR to “module” and then issuing the command as “load$VAR”.

Another way of hiding from an IDS involves separating the attacks from the actions
that follow it (stages 2 and stage 3 in the timeline). One technique to accomplish this
is for the intruder to open two simultaneous connections to the victim machine. After
running an exploit to gain enhanced permissions in one session, the hacker actions
can be performed in the other session. If the IDS looks at each session independently,
it is possible that neither session would look suspicious enough by itself to warrant
human inspection. Categories of “SIMT (Single Intruder Multiple Terminal)” and
“MIMT (Multiple Intruder Multiple Terminal)” are presented in [20].

5.5 Profiles of intruders

When creating instances of attacks for the simulation, it is useful to have profiles of
potential intruders. Howard [13] cited six different types of attackers: hackers, spies,
terrorists, corporate raiders, professional criminals, and vandals (see section 4.2.6).

Different intruder< into a system will display different kinds of behavior. Some
of the simulations of actual attacks should follow such patterns, since the ultimate
purpose of an IDS is to detect actual break-ins.

Characteristics that distinguish one attacker from another include the following:

1. Skill at hiding. Some attackers will be unaware of monitoring, or may not
understand how to successfully hide. Other attackers may know more about
hiding in general, or perhaps the specifics of the particular IDS by which they

are being monitored.

2. Source of attacks. Many people attempting to break in to a site have found
publicly available scripts on the Internet, and they try them repeatedly until
they find a site that is vulnerable. A small fraction of intruders have discovered

a vulnerability on their own and are using that knowledge to penetrate systems.

3. Intentions. Some intruders are out to just “collect systems” — to break into

as many machines as possible — while some may want to attack a specific ma-

55

chine. Others could be looking for information that seems to be valuable. For
example, they might search for directories that are labelled as “personal” or

“confidential.”

A multiple-category division of attackers such as Howard’s may be useful in cre-
ating profiles. However, for simplicity, a two-category approach is used that defines
an attacker’s actions instead of motivations as used by Howard. Actions are used as
a basis for these categories because they can be easily created in out simulation. The

following are two user categories [10}:

Collector Sets out to break-in to as many machines as possible. May install back-
doors on a system, and look for other systems to break into. Will not take
special actions to hide from an IDS. Working from publicly available scripts.

Relatively iow-skill.

Spy Looking for important information. Will take steps to minimize the possibility of
detection. Knows how IDSs work and will take steps to evade them. Relatively

sophisticated.

96

Twenty Attack Types to be Used in Training
Data For DARPA 1998 Off-line Evaluation

Solaris Server SunOS Linux i Cisco
(audited) internal internal ! Router
Denial of *ping of death *ping of death *ping of death i eland

Service steardrop steardrop steardrop 1
eneptune eneptune eneptune i
syslogd !
sback.c :
ssmurf ;

Remote edictionary «dictionary «dictionary N

to User eguest sguest sguest !
ssniffer esniffer ssniffer :
«IP spoofing *IP spoofing “IP spoofing |
‘news *news :
sphf

User to seject *ps speri

Root ftbconfig sloadmodule ftp-write
fdformat
Surveillance/ *port sweep *port sweep *port sweep sport sweep
. *ip sweep *ip sweep *ip sweep *ip sweep
Probing siss eiss siss . eiss

finger ofinger finger i efinger

Figure 5-3: The Attacks

5.6 The Attacks

Ping of Death R-b-Deny(Temporary)

A ping packet of a certain size causes many operating systems to reboot.
CERT Advisory: CA-96.26!

Teardrop R-b-Deny(Tempcrary)

A flaw in the IP re-assembly routine on many operating systems can
cause the computer to re-boot when it receives certain packets.

CERT Advisory: CA-97.28

Neptune R-a-Deny(Temporary)
Floods the target machine with SYN packets. Prevents other users

from connecting to the attacked service on the attacked machine.

CERT Advisory. CA-96.21

1CERT advisories may be found on the World Wide Web at http://www.cert.org/

o7

Syslogd R-mb-Deny(Administrative)
A remote user sends a message to the syslogd daemon running on a
Solaris computer, with the source address faked. If that new address
does not resolve to a DNS name, syslogd crashes.

Back.c R-b-Deny(Temporary)

If a request to an Apache web-server contains a large amount n of back-
slashes, the web-server will take an O(n?) time to process the request.
Smurf R-ma-Deny(Temporary)

By sending broadcast pings to a number of networks, a storm of ping
packets many times greater than the amount sent out come back, clog-
ging the network and the computer. By forging the source address, this
attack can be directed at a specific target.

CERT Aduvisory: CA-98.01

Dictionary R-a-U

Brute-force trying of many possible passwords against a username
Guest R-a-Ug

Trying to log in as the guest user.

Sniffer L-Intercept(Network)

User reads plaintext passwords off of an Ethernet.

CERT Aduvisory: CA-94.01

IP Spoofing L-m-U

User pretends to be coming from a machine that the target machine
trusts.

CERT Advisory: CA-96.21

News R-b-U

Intruder sends a mal-formatted article to the victim machine’s news
server. A bug in the news server causes the code in the body of ths

message to be executed.

CERT Advisory: CA-97.08

o8

Phf R-b-U_,

A cgi-script contains a bug that lets users who can connect to the
webserver run arbitrary code as user “nobody”, assuming that’s the
user running the webserver.

CERT Advisory: CA-96.06

Eject U-b-S

A bug in the setuid root program eject allows users to run arbitrary
code as root.

Ffbconfig U-b-S

A bug in the setuid root program ffbconfig allows users to run arbi-
trary code as root.

Fdformat U-b-S

A bug in the setuid root program fdformat allows users to run arbitrary
code as root.

Port Sweep R-a-Probe(Services)

Attempt to open network connections to many ports on a computer, to
see which services are running.

IP Sweep R-a-Probe(Machines)
Attempt connections to a large range of IP addresses, to see which
machines respond.

ISS R-a-Probe(Services)

Run a commercial scanner that tests machines for common vulnerabil-
ities but does not exploit them.

CERT Advisory: CA-93.14

Finger R-a-Probe(Users)

Gather information about which users are on the system and obtain

personal information about them.

59

Land R-mb-Deny(Administrative)
If a vulnerable machine receives a SYN packet with the source IP ad-
dress and port set to be the same as the destination it will lock up.
CERT Advisory: CA-97.28

Ps U-b-S

Race condition in ps command allows local users to get root access.
CERT Advisory: CA-95.09

Loadmodule U-b-S

A bug in the setuid loadmodule program allows users to run arbitrary
code as root.

CERT Advisory: CA-95.12

Perl U-b-S

A flaw in the perl program allows users to start shells as root.

CERT Aduvisory. CA-96.12

Ftp-write U-b-S:Alter(Data)

Due to the way that the ftp server dumps core, a user can create any

file on the system that did not exist previously.

60

. P
_ SPOOFING

ATTACK START STATE

ATTACK GOAL

Figure 5-4: Start State vs. End State
5.7 Grouping Attacks Using the Taxonomy

The above attacks can be grouped using the different components of the new taxon-
omy.

Figure 5-4 groups many of the state-transition attacks by their initial and final
privilege levels. More dangerous attacks are those towards the upper right, which
need less access and grant more privileges. This figure illustrates how sequences of
attacks can be chained. There are a variety of exploits that allow remote users to get
the equivalent of local accounts on a machine, and there are many attacks that allow
normal users to get root level privileges. The “news + perl” entry points out that
simply combining two attacks allows people with nearly no access to a vulnerable

system to soon acquire total access.

61

Action Attacks, Sorted by Method
of Exploitation and State Achieved

Probe Deny Intercept Alter Use

*ping of death
steardrop
*neptune
*syslogd
*back.c
esmurf

*land

sport sweep

Remote Network! o sweep

Local Network sshiffer

User Access ftp-write

Figure 5-5: Minimum Privilege Levels Needed To Perform Actions

Figure 5-5 shows the initial privilege level and action taken from attacks that
undertake actions but do not lead to a change in privilege. This chart shows that
hostile actions tend to break down by the access level that is needed to employ them.
For example, denial of service attacks can be run with just a minimal amount of
access, but seizing data from a system requires closer access, and altering data on a

system requires an even higher level of privilege.

62

masaueradin abuse of implementation
9 9 feature bug
. *ping of death
Denlal Of eneptune oteardrop
Service syslogd °sm‘:1 of ssyslogd
(R-Deny) *back.c
sland
Remote to °IP spoofing :g:f:;c;nary *pht
User (R?U) eshiffer *news
*eject
*ftbconfig
User to estolen fdformat
Root { ps
(U?S) password | +loadmodule
| eperl
i eftp-write
!
Surveillance/ ::’°:‘:;eel° |
Probing -iZs P :
(R-Probe) «finger ;

Figure 5-6: Effect vs. Method of Exploitation

Figure 5-6 shows how varicus privilege transitions and probes are accomplished.
For example, for these attacks, all illegal transitions from user to root occur due to
implementation bugs or to stolen passwords. This figure also suggests that probing

occurs more due to abuse of features than due to improper authentication or bugs.

63

Chapter 6

Conclusions and Future Work

Chapter One presented the concept of using intrusion detection systems to enhance
computer security. Chapter Two discussed methodologies for testing and evaluating
IDSs. Chapter Three presented the regeneration scheme that was developed to create
large amounts of input data for an IDS. Chapter Four reviewed previous taxonomies
and offered a new taxonomy to assist in evaluating IDSs. Chapter Five listed aspects
of attacks that should be varied, and showed how thc attacks could be categorized

by the taxonomy.

6.1 Regenerator

The regenerator is being successfully used and seems to present a good abstraction
of interactive network sessions. The software, however, has exhibited problems as it
is exposed to more complex situations. Even though it was designed with resistance
to total failure as a specific goal, the master regenerator has crashed intermittently,
ending all of its child processes and network sessions. The program was simplified
and now works well.

Work is continuing on tools written in perl-ezpect, as opposed to the standard
ezpect which is built on TCL. It is hoped that these tools will prove easier to maintain.

Other avenues of future work include:

e Develop better ways to purify sensitive and personal data out of large sets of

64

recorded sessions, providing more sets of background data.

e Acquire more samples of actual intruder activity, so that the actions of real

hacker activity can be better simulated.

e Create good automatic simulations of many different types of users that can be
randomly generated, such that they are not easily distinguishable from actual

users.

6.2 Taxonomy

The taxonomy has presented promising ways of organizing attacks. When the evalu-
ation has completed, it will be possible to determine how well it divides attacks intc

equivalence classes. Future work in this area includes:

o Determine if the methods of exploitation are complete. Would adding an addi-
tional category, such as “configuration error,” significantly improve the taxon-

omy?

o Determine if the ac*ions are complete. For example, a way of describing the
denied service in addition to the time frame in which it is denied may be desir-

able.

e Further explore equivalence classes. It may turn out, for instance, that different

means of dividing up the attacks are needed for different kinds of IDSs.

65

Bibliography

[1]

2]

(3]

[4]

[5]

[6]

R. P. Abbott, J. S. Chin, J. E. Donnelley, W. L. Konigsford, S. Tokubo, and
D. A. Webb. Security analysis and enhancements of computer operating systems.
Technical report, Lawre' ce Livermore Laboratory, Livermore, CA 94550, April

1976.

Edward G. Amoroso. Fundamentals of Computer Security Technology. Prentice-

Hall PTR, Upper Saddle River, NJ, 1994. Referenced in [13].

D. Anderson, T. F. Lunt, H. Javitz, A. Tamaru, and A. Valdes. SAFEGUARD
final report: Detecting unusual behavior using the NIDS statistical component.
Final technical report, Computer Science Laboratory, SRI International, Menlo

Park, CA 94025, December 1995.

Taimur Aslam. A taxonomy of security faults in the UNIX operating system.

Master’s thesis, Purdue University, West Lafayette, IN 47907, 1995.

Richard Bisbey II and Dennis Hollingworth. Protection analysis: Final re-
port. Technical report, USC/Information Sciences Institute, Marina del Rey,

CA 90291, May 1978.

Matt Bishop. A taxonomy of UNIX system and network vulnerabilities. Technical
report, University of California at Davis, Department of Computer Science, May

1995.

66

[7] Matt Bishop and David Bailey. A critical analysis of vulnerability taxonomies.
Technical report, University of California at Davis, Department of Computer

Science, 1996.
[8] Steve Durst and Terry Champion. The IP-swapping kernel. Unpublished.

[9] D. Farmer and E. H. Spafford. The COPS security checker system. Technical
report, Purdue University, West Lafayette, IA 47907, June 1990.

[10] Conversation with Simson Garfinkel, February 1998.

[11] Simson Garfinkel and Eugene Spafford. Practical UNIX & Internet Security.
O’Reilly & Associates, Inc., Sebastopol, CA 95472, 2nd edition, April 1996.

[12] L. T. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood, and D. Wolber. A
network security monitor. In Proc. 1990 Symposium of Research In Security and

Privacy, pages 296-304, 1990.

[13] John D. Howard. An Analysis Of Security Incidents On The Internet, 1989 -
1995. PhD dissertation, Carnegie Mellon University, 1997.

[14] Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S. Choi. A
taxonomy of computer security flaws. ACM Computing Surveys, 26(3):211-254,
September 1994.

[15] Don Libes. Eaxploring Exzpect: A Tcl-based Toolkit for Automating Interactive
Programs. O’Reilly & Associates, Inc., Sebastopol, CA 95472, 1994.

[16] Richard R. Linde. Operating system penetration. National Computer Confer-
ence, pages 361-368, 1975.

[17] John Markoff. A new method of internet sabotage is spreading. New York Times,
September 1996.

[18] Patricia Nealon. Teenager caused dangerous computer breach. The Boston Globe,

March 1998.

67

[19] P. G. Neumann. Computer system security evaluation. In 1978 National Com-

puter Conference Proceedings, pages 1087-1095, June 1978. Referenced in [6].

[20] Nicholas J. Puketza, Kui Zhang, Mandy Chung, Biswanath Mukherjee, and
Ronald A. Olsson. A methodology for testing intrusion detection systems. Tech-

nical report, University of California, Davis, Department of Computer Science,

Davis, CA 95616, September 1995.

[21] S. E. Smaha. Haystack: An intrusion detection system. In Proc., IEEE Fourth
Aerospace Computer Security Applications Conference, pages 37-44, 1988.

[22] Sun Microsystems, Mountain View, CA 94043. SunSHIELD Basic Security Mod-

ule Guide, 1995. Documentation from the Solaris Operating System.

|23] Seth E. Webster. The development and analysis of intrusion detection algorithms.
Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA, 02139,
1998.

[24] Nick Wingfield. Activex used as hacking tool. CNET News.com, February 1997.

68

THESIS PROCESSING SLIP

FIXED FELD: ill. . name

index biblio

» COPIES: Erchives) Aero Dewey [Eng) Hum

Lindgren Music Rotch Science

TITLE VARIES: ’D

NAME VARIES: 'm _ﬂq.ml_l_jame_ﬁ_L&&bSL

IMPRINT: {COPYRIGHT)

»coLLATION: __ 6% p-

» ADD. DEGREE: _B_i__ »DEPT: _ = =

SUPERVISORS:

NCTES:

cat’r: date:
page: .

&*Q\DEPT: E. E; ’3110{‘ e A

P;K\EA,_B: ‘q ?g » DEGREE: __/_4”_4__%__' El”
»NAN;;E: \A/ E BER Dame / ,~;

