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ABSTRACT

When developing new products, there are a number of important considerations that must be examined
closely in order to be successful, including the following: managing the interactions and interdependencies
between functional teams, identifying the critical areas of engineering design, understanding the impact of
iteration and rework on other design activities, and predicting the overall completion time. This thesis
examines each of these areas in detail using a number of analytical tools to mode! the product
development process of a digital wireless telephone, as a means toward analysis and improvement.

The Design Structure Matrix (DSM) is used to capture the structure of the product development process
as a system. Using the DSM, Swapping is performed to represent the product development process from
a variety of different perspectives, including by design task, by functional group, and by process flow.
Coupling Analysis is used to analyze information flows and dependencies between design tasks,
functional groups, and process flow phases, by quantifying their interrelationships. Partitioning is used to
identify coupled sets of design activities. The Work Transformation Matrix (WTM) is used to model design
iteration. Using the results of Partitioning and the WTM model, Controlling Features and Total Work
Analysis (or Eigenstructure Analysis) is performed to identify closely related design activities that govern
the rate and nature of convergence of the design effort. The Signal Flow Graph and the Reward Markov
Chain are used to model hardware development, specifically to predict completion time of printed circuit
boards (PCBs). The Aggregate-Code Model is used to model firmware development, specifically to
predict completion time of large-scale projects. Software algorithms that implernent many of these
techniques are included in the form of MATLAB and Visual Basic code.

As a result of these analyses, a number of strategic recommandations are presented to the company that
sponsored this research, as well as key learnings, and opportunities for futi:re work.

Thesis Supervisors: David L. Tottle, Director
Steven D. Eppinger, Associate Professor
Daniel E. Whitney, Senior Research Scientist
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CHAPTER 1: INTRODUCTION

1.1 Objective

With the rapid pace at which technology is evolving, high-tech firms are faced with incredible challenges
when developing new products. To remain competitive, they must constantly monitor ana stay abreast of
changing market conditions, the competitive landscape, technological advancements, and the needs of
their customers. Successful firms are differentiated from their competitors by their ability to respond to
change quickly, while at the same time introduce high-quality products at the lowest possible cost. This
growing need for companies to centinuously improve their adaptability is further underscored by shrinking
product life cycles and narrowing windows for time-to-market. Failure to meet an anticipated deadline can
severely compromise a product’s marketability and profitability, even causing some projects to be
abandoned completely.

Given the significance of these issues, a number of companies are being force:. to seriously examine all
aspects of their product development processes including organization, division of labor, information
transfer, technological capabilities, and allocation/collocation of resources. In doing so, it is their hope that
they will identify ways to reduce development time while still achieving their targets for cost and quality.
However, as is typically the case for large-scale projects within these industries, the product development
process is extremely complex and often involves the contributions of hundreds of people over the course
of several years.

To overcome some of these challenges, many companies utilize concurrent engineering {9], which
involves multiple cross-functional teams working simultaneously on separate aspects of the overall
development effort, particularly design and manufacturing. Concurrent engineering allows specialized
groups to work in parallel and subsequently integrate their activities. Given the complex technical and
organizational interactions between functional teams, integrating their efforts presents its own unique
challenges.

To address the integration problem [18], several firms have adopted rapid prototyping [1}, which is
characterized by repeated “design-build-test” intervals, each resulting in a product prototype. Increasing
levels of functionality are introduced with each successive iteration, leading up to the product's general
availability. Rapid prototyping regularly synchronizes the efforts of the product development teams, while
allowing cross-functional problems to be identified quickly and resolved throughout the development cycle.

Naturally, these two approaches lead to a number of important considerations that must be examined
closely in order to be successful, including the following: .

How do | manage the interactions and interdependencies between functional teams?
What are the critical areas of engineering design?

What is the impact of iteration and rework on other design activities?

How can | predict the overall completion time?

The objective of this thesis is address to each of these areas in detail using a number of analytical tools
such as the Design Structure Matrix (DSM), Swapping, Coupling Analysis, Partitioning, the Work
Transformation Matrix (WTM), the Signal Flow Graph, the Reward Markov Chain, the Aggregate-Code
Model, and more, to model the product development process of a digital wireless telephone, as means
toward analysis and improvement.
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1.2 Background

This reseaich was performed during a seven-month internship as part of collaborative work between a
high-tech manufacturer of consumer electronics (henceforth referred to as “tha sponsor company”), the
MIT Leaders for Manufacturing (LFM) Program, and the MIT Center for innovation in Product
Development (CIPD). LFM is a partnership between the MIT School of Engineering, the MIT Sloan
Sc ool of Management, and U.S. manufacturing firms, to discover and translate into teaching and practice
the principles that produce world-class manufacturing and manufacturing leaders. CIPD is also a jcint
effort of the MIT School of Engineering, the MIT Sloan Schooi of Management, and industrial partners, fu*
research and education in product development. The research facility was dedicated to the desigri and
manufacture of a specific product platform, digital wireless telephcnes (henceforth referred to as “the
handset"), which was the focus of this research. The assignment was characterized by three unique
attributes.

First, the internship started during the latter stages ot development for the handset, and was completed
just before the product's launch. This timing of the research provided an excellent opportunity to
investigate product development in progress.

Second, all of the functional areas associated with the product were collocated within the research facility.
This included marketing and sales, project management, research and development, and manufacturing.
This approach to the allocation of resources made the facility an ideal candidate for examining product
development across a number of different areas, because each functional group was easily accessible.

Third, the product development process was characterized by concurrent engineering in a rapid
prototyping environment. A number of functional groups worked in parallel on segmented areas of design
and manufacturing, while regularly scheduled builds and releases served as an integrating force across
the various groups. New functions and new features were introduced with each prototype iteration
throughout the product's evolution, leading up to its eventual completion. These techniques for design
and manufacturing provided useful insights from both a technical and an organizational perspective.

In summary, these characteristics, coup.ed with the competitive nature of the industry, the powerful nature
of the technology, and the complex nature of the handset, made the research environment extremely
fertile ground for product development process modeling and analysis. !n the following sections, we
present a brief overview of the technologies used in wireless communications, an overview of the wireless
industry, and an overview of the handset itself - a digital wireless telephone.

1.3 Technology Overview

The wireless industry embodies two major themes: Wireless Network Infrastructure and Wireless
Communications Technology.

1.3.1 Wireless Network Infrastructure

Wirele:ss networks provide a number of multimedia services to their end-users using radio technology,
primary among them telephony - the ability to send and receive telephone calls. A simplified wireless
network infrastructure consists of the following main elements [12]):

¢ Mobile Station (MS) - The MS is typically a stand-alone device (e.g. telephone or handset), but it can
also be connected to other devices (e.g. computer). The MS provides the end-user with access to the
network's services via the radio path.

o Base Station (BS) - The BS's are geographically dispersed sites that communicate with the MS's via
the radio path. The BS's are stationary and provide coverage of specific geographic regions, while the
MS's are free to move throughout the service area.

e Mobile Switching Center (MSC) - The MSC communicates with the BS's and exchanges messages
with the wireline Public Switched Telephone Network (PSTN) and other wireless networks.

Figure 1.1 shows a pictorial representation of a simplified wireless network infrastructure.
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Figure 1.1: Simplified Wireisss Network Infrastructure

1.3.2 Wireless Communications Technology

Over the last 15 to 20 years, wireless communications technology has experienced tremendous evolution,
In the 1980's, the first generation of wireless networks were deployed at cellular frequencies (800 MHz).
These networks used analog transmission modes, such as AMPS (Advanced Mobile Phone Systern), the
U.S. standard. Toward the latler part of the 1980's many of these analog networks reached their
capacities. To accommodate growing demand, the second generation of wireless networks were
proposed using digital transmission modes. These networks were based on FDMA (Frequency-Division
Multiple Access), where each user is assigned to a different frequency band, and TDMA (Time-Division
Multiple Access), where each user is assigned to a different time slot.

In the early 1990's, TDMA emerged as the dominant digital transmission standard, and a number of
TDMA networks were implemented as an adjunct the existing analog networks. The U.S. standard was
based on TDMA technology, and the European standard, GSM (Global System of Mobile
Communications), was also based on TDMA technology. Digital technologies offered a number of
benefits over their analog counterparts including improved spectral efficiency, encryption, enhanced
services (e.g. facsimile), better robustness, lower operations costs, raduced power consumption, and
smaller/lighter handsets. However, looking toward the 21® century and beyond, there is still growing
demand for even greater services than are presently available using TDMA. Ttie wireless networks of the
future will deliver voice, video, data, facsimile, and more, seamlessly to the end user, regardless of their
location in the world. These services are commonly referred to as Personal Comriunications Services
(PCS).

. Toward this end, in 1993, wireless communications reached another milestone when the U.S. Congress
allocated new spectrum at what were designated PCS frequencies (1.8 to 2.0 GHz). Within the same
timeframe, a new transmission mode was proposed based on CDMA (Code-Division Muiltiple Access)
technology, which offered additional benefits not afforded by TDMA. Traditional TDMA systems are
narrowband systems, and therefore, dimension limited. TDMA systems cannot accommodate additional
users once all of the time slots have been assigned. CDMA systems are based on a spread spectrum
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convention whereby the number of users is only limited by the bandwidth and the amount of interference.
Multiple conversations can be spread across a wide segmerit of broadcast spectrum by assigning one of
4.4 trillion unique codes to distinguish it from the other calls being transmitted simultaneously. CDMA
results in increased capacity, higher voice quality, fewer dropped calls, better security and privacy, lower
power consumption, reduced operating costs, and enhanced services. CDMA and PCS have ushered in
the latest generation of wireless networks.

From a technological perspective, there are two main considerations facing the wireless industry - 1) What
frequency band will you use for signal transmission? (Cellular or PCS) and 2) What transmission mode (or
standard) will you use for spectral allocation? (COMA, TDMA, or GSM). Any combination of frequency
bands and transmission modes is viable.

Table 1.1 shows retail sales of digital wireless telephones in 1997, and projected sales in 1998, for each
permutation of frequency bands and transmission modes (Source: Radio Communications Reporf).
Clearly, the highest levels of growth are projected for the PCS frequency band and the CDMA
transrnission mode. There are also a number of dual-band/dual-mode and dual-band/tri-mode wireless
telephones currently being introduced or undergoing development. As standards continue to be
established for these platforms, the market can expect to see a dramatic increase in the number of cross-
technology handsets.

CDMA 3M 6.9M 130% 0.7M 1.5M 114%

TDMA 1M 1.2M 20% 0.2M 0.5M 150%
GSM 36.4M 48.3M 32% 1.7M 2.3M 102%

TOTAL 40.4M 56.4M 40% 2.6M 4.3M 65%

Table 1.1: World Digital Wireless Telephone Retail Sales

1.4 Industry Overview

The wireless industry exists to provide communications services to end-users such as voice, video, data,
and facsimile. Demographically, the typical customer is 40 years of age, with an average income above
$60,000. In 1996, nearly 60% of wireless customers were female. The primary reason for purchasing a
wireless telephone among customers is for safety purposes (45%), while the primary location for use is in
the automobile (90%). Figure 1.2 shows the worldwide growth in wireiess subscribers between 1992 and
1996, which experienced increases as high as 45% in the U.S. (Source: U.S. Department of Commerce).
During this period, the average monthly service bill to the customer was $58.65, against 89 minutes of
airtime. The number of wireless subscribers worldwide is expected to reach 200 million by the year 2000
(Source: U.S. Depariment of Commerce).

The wireless industry is divided into three main segments: 1) Equipment Manufacturers including mobile
switching centers and base stations, 2) Handset Manufacturers including analog and digital wireless
telephones, and 3) Service Providers that maintain wireless networks and purchase goods from both
equipment manufacturers and handset manufacturers [13].
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Figure 1.2: World Wireless Subscriber Growth

1.4.1 Equipment Manufacturers

The wireless equipment manufacturing industry is extremely concentrated in a few firms that essentially
dominate the market. These firms include (market share in parenthesis): Lucent (37.2%), Ericsson (23.2),
Northern Telecom or Nortel (19.2%), and Motorola (14.5%). These four companies alone represent more
than 94% of the equipment manufacturing market. Figure 1.3 shows 1996 data of the world market share
for cellular and PCS equipment manufacturers based on revenue (Source: Dataquest).
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Figure 1.3: 1996 World Cellular and PCS Equipment Manufacturers Market Share

In 1996, the equipment manufacturing market grew 63% from $3.3 billion to $5.3 billicn. This grewth was
largely fueled by the sales of PCS equipment which experienced a 428% increase from $530 million to
$2.8 billion. Cellular equipment sales experienced negative growth during that same period. The typical
capital investment for telecommunications network infrastructure equipment is $285,000 for a cell cite,
which includes a radio tower, antennas, a building, radio channels, system controllers, and a backup
power supply, and between $450,000 and $1.1M for a radio channel between cell sites. For TDMA,
CDMA, and GSM, a single site can support 3,060, 9,600, and 4,800 subscribers respectively.

1.4.2 Handset Manufacturers

The wireless handset manufacturing industry is highly competitive in the digital wireless business, with
more than thirteen players currently competing. This is due to the huge demand from service providers
seeking to benefit from the cost and performance benefits of digital technologies. The primary players are
(market share in parenthesis): Nokia (18%), Ericsson (18%), and Motorola (17%). Motorola and Nokia
presently dominate the more mature, analog wireless business as well with 39% and 22% of the market
respectively. Figure 1.4 shows 1997 data of the world market share for cellular and PCS handset
nianufacturers based on revenue (Source: Dataquest).
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Figure 1.4: 1997 World Cellular and PCS Handset Manufacturers Market Share

The average wholesale price of terminals in 1997 was $431 (CDMA) and $315 (TDMA). These numbers
are expected to drop to $1A2 and $87 respectively by the year 2000. Shipments of digital handsets was
estimated at 1,653,000 in 1996. This is projected to reach 29,655,000 by the year 2000 - a compound
annual growth rate of 105.8% (Source: Dataquest).

1.4.3 Service Providers

The wireless service provider industry is fairly consolidated at both cellular and PCS frequencies. This is
partly due to the huge capital investment associated with obtaining frequency spectra and installing a
wireless network. However, once a network is established there is extreme pressure to minimize the
activation cost to the customer given the low marginal cost associated with adding new users to the
system. In the U.S,, the top five service providers at cellular frequencies using CDMA technology, own
90% of the market. At the same frequency, the top seven service providers using TDMA technology own
95% of the market. GSM has not been deployed in the U.S. at cellular frequencies. Figure 1.5 shows
1997 data of the U.S. market share for cellular service providers based on points-of-presence (POPS)
(Source: Mobile Phone News).
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Figure 1.5: 1997 U.S. Cellular Service Providers Market Share

The average end-user price for a digital handset (CDMA and TDMA) in 1997 was $500. This is expected
to drop to $333 by the year 2000. Presently, the cost of most handsets is subsidized by the service
providers. The breakdown of cellular and PCS subscribers was estimated at 96% (cellular) and 4% (PCS)
in 1996. This is projected at 65% (cellular) and 35% (PCS) by the year 2000 (Source: Dataquest).

Similarly, at PCS frequencies the top six (CDMA), three (TDMA), and eight (GSM) service providers own

93%, 99%, and 92% of their markets respectively. Figure 1.6 shows 1997 data of the U.S. market share
for PCS service providers based on points-of-presence (POPS) (Source: PCS Week).
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Figure 1.6: 1997 U.S. PCS Service Providers Market Share

1.5 Product Overview

Figure 1.7 shows a front-view of a digital wireless telephone. At a conceptual level, the elements of a
digital wireless telephone can be divided into three primary categories: 1) Hardware, 2) Firmware, and 3)
Physical Componerits. Figure 1.8 shows a simplified block diagram of a digital wireless telephone.

1.5.1 Hardware

Hardware denotes a printed circuit board (PCB) resident in the handset that includes analog circuitry and
digital circuitry. The analog circuity, also referred to as Radio Frequency circuitry, includes a Receiver and
a Transmitter that communicate directly with the base stations via an Antennae. The digital circuitry, also
referred to as the Baseband circuitry, includes a Microcontroller with its associated Memory devices, a
Digital Signal Processor (DSP), a Modem (modulator/demodulator) that interfaces between the analog
circuitry and the DSP by performing analog-to-digital and digital-to-analog conversion, and circuitry that
interfaces between the Microcontroller and the Display and Keypad/Buttons, and the DSP and the
Audio/Acoustics system.

1.5.2 Firmware

Firmware denotes binary/hexadecimal versions of software as read-only-memory (ROM) files resident in
the handset that program the Microcontroller and the Digital Signal Processcr (DSP). The Microcontroller
firmware controls the User Interface (Display and Keypad/Buttons), and establishes the handset's current
state (e.g. initialization, synchronization, etc.) by controlling the DSP. The DSP firmware communicates
directly with the analog circuitry by transmitting and receiving bits from the Modem, performs framing,
error detection, and retransmission, and interfaces with the Audio/Acoustics system by processing the
speech signal using a vocoder (voice coder/decoder).
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Figure 1.7: Front-View of a Digital Wireless Telephone
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Figure 1.8: Simplified Block Diagram of a Digital Wireless Telephone
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1.5.3 Physical Components

Physical Components denote the man-to-machine interface of the handset that includes the Chassis and
Housing, Display monitor (typically a Liquid Crystal Display (LCD)), Keypad/Buttons, and the
Audio/Acoustics system (microphone, receiver, ard alerter). The User Interface components (Display and
Keypad/Buttons) interface directly with the Microcontroller. The Display receives information (e.g. menu
options) from the Microcontroller and the Keypad/Buttons send information (e.g. dialing selections) to the
Microcontroller. The Audio/Acoustics components interface directly with the DSP. The microphone inputs
an audio signal (the talker's or the listener's) to the DSP, the receiver outputs an audio signal (the
listener's or the talker's) from the DSP, and the alerter outputs various tones (e.g. ringing) generated by
the DSP.

1.6 Thesis Overview

This thesis is organized into six main chapters, each focusing on a particular aspect of the product
development process at the sponsor company.

Chapter 2 provides an overview of the product development process at the design task level, functional
group level, and the process flow level. This chapter includes an introduction to the Design Structure
Matrix (DSM), a modeling tool that represents the relationships among development activities in a matrix
form, and presents the product development process within a DSM framework.

Chapter 3 analyzes information flow and dependencies between design tasks, between functional groups,
and between the various phases of process flow. This chapter includes an introduction to Swapping,
which uses the DSM to manipulate these interactions, and Coupling Analysis, which uses the DSM to
quantify these interactions.

Chapter 4 analyzes the controlling features of engineering design iteration and overall total work.
Controlling Features and Total Work Analysis (or Eigenstructure Analysis) predicts sets of closely related
design activities that govern the rate and nature of convergence of the design effort. This chapter
includes an introduction to Partitioning, which uses the DSM to identify the most tightly coupled subsets of
design tasks, and the Work Transformation Matrix (WTM) model, which extends the DSM's capabilities as
means toward understanding the impact of iteration and rework on other design activities.

Chapter 5 models hardware completion time for printed circuit boards (PCBs). This chapter includes an
introduction to the Signal Flow Graph, a tool typically used in circuit and systems analysis in electrical
engineering for modeling discrete event systems, and the Reward Markov Chain, a tool typically used in
operations management, manufacturing, reliability, and telecommunications network and computer
modeling to conduct queuing and system analysis for performance evaluation. Both tools are used to
predict the completion time of a hardware development process that is modeled as sequential iteration.
Transition probabilities determine feedback and iteration. Both models also offer the benefit of a
sensitivity analysis with respect to the model parameters.

Chapter 6 models firmware completion time for large-scale software projects. This chapter includes an
introduction to the Aggregate-Code Model that was developed specifically for the sponsor company, using
aggregated code-related metrics such as the productivity, fault density, and mean time-to-repair faults as
inputs. The mcdel predicts the completion time of a firmware development process that is modeled by
segmenting the code into various categories at an appropriate level of abstraction. This model also offers
the benefit of a sensitivity analysis with respect to the model parameters.

Chapter 7 presents a set of strategic recommendations to the sponsor company, key learnings that have
been drawn as a result of this research, and possibilities for future work.
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1.6.1 Notes

Names of the design tasks and functional groups have been disguised at the request of the sponsor
company. Data have also been disguised at the request of the sponsor company. The term “standard”
will generically refer to any industry standard for digital wireless telephones (e.g. standards issued by the
American National Standards Institute (ANSI), Electronic Industry Association (E{A), Telecommunications
Industry Association (TIA), International Standard Organization (1ISO), or Alliance for Telecommunications
Industry Solutions (ATIS)).

Throughout this document, many of the analytical and mathematical techniques will be presented using
simple introductory examples. For subsequent uses of the same technique, only the final results (e.g.
matrices, expressions, etc.) will be presented. Software tools that implement the algorithms used to
perform these examples are included in the Appendix in the form of MATLAB 4.0 code [16, 17] and
Microsoft Excel 5.0 Visual Basic code [19, 20]. Not included are additional software tools with expanded
functionality that were developed using MATLAB and Visual Basic and served as a graphical front-end
and user interface.
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CHAPTER 2: PRODUCT DEVELCPMENT PROCESS OVERVIEW

2.1 Systems and Structure

A system is a collection of parts and relations between parts such that the behavior of the whole is a
function not only of tne behavior of the parts, but also the relations among them. The structure of the
system shows where the parts are connected, or related [39]. Figure 2.1 shows the structure of a system
that is comprised of six parts (letters A through F).

¢
Al B =31 r——)IE-—)IF
N

Figure 2.1: Structure of a System

This diagram could represent any number of systems such as a gathering of individuals that are
exchanging information, a collection of routes that are offered by an aitline, or a network of suppliers that
comprise a value chain.

2.2 Product Development Process Modeling and Analysis

Products are systems. When developing new products, one must understand the structure of the product
as a system. For example, a computer mouse has various parts such as buttons, the housing, and a
track ball. A design team must be able to look at each part individually as well as within the context of the
entire system. [t is only by recognizing how the size of the buttons can affect the housing, and how the
housing can affect the location of the track ball, that one can create a mouse for optimal performance.

Similarly, product development processes are systems. When developing new products, one must also
understand the structure of the product development process as a system. Referring to the previous
example, the human and technical resources (the parts) necessary to design and manufacture the mouse
must all work together individually and collectively (the system). It is only by recognizing how the industrial
designer must interface with the mechanical engineer, and how the mechanical engineer must interface
with the manufacturing engineering, that one can create a mouse for optimal performance.

Typically, when we cannot break a real system into parts, we construct a model of the system that we can
break into parts. A model is an approximation of the real system, such that an understanding of the model
can be translated into an understanding of the real system. Models can be particularly useful when
examining complex systems. Just as models can be created for products, models can also be created for
product development processes [42]. By modeling and analyzing the product development process we
hope to achieve greater insight that can hopefully be leveraged for subsequent improvement.

In this chapter, we present an overview of the product development process for the digital wireless
telephone at the sponsor company.

2.3 Design Structure Matrix (DSM)

The Design Structure Matrix (DSM) is a product development process modeling tool that represents the
relationships among development activities in a matrix form [38]. The DSM was first introduced by
Steward and captures coupling and dependence between the design tasks of a project [39]. The tasks

23



listed along the left column of the matrix represent design activities that receive information, while the
same tasks listed along the top row represent design activities that provide information. An off-diagonal
mark located within the matrix denotes dependence and coupling between two design activities.
Steward's original model is also referred to as a Binary Design Structure Matrix because each cell in the
matrix represents a hinary choice of coupling and dependency. As an example, Figure 2.2 shows a 6 x 6
binary DSM representation of the system shiown in Figure 2.1. Each part (letters A through F) represents
a task that is performed during the product development process.

DESIGN TASKS
A B C D E F<—PROVIDING
A “F X INFORMATION
B | X |=% X
C X |5 [~
DESIGN TASKS MARK
ES D X m
E X | X 2%
F X |i

RECEIVING INFORMATION
Figure 2.2: Binary Design Structure Matrix

The mark located in row three, column two, denotes Task C's dependence on Task B to be completed
before it can be executed. Looking down a task's column, one can easily determine those tasks are
dependent on it. For example, looking down column five we see that Tasks B and F are dependent on
Task E to be completed. Looking across a task's row, one can easily determine those tasks that it is
dependent on. For example, looking across row five we see that Task E is dependent on Tasks C and D
to be completed.

Note that if the tasks in the DSM are ordered sequentially, the marks located above the diagonal represent
feedback (information transferred from later tasks to earlier tasks) and the marks located below the
diagonal represent feedforward (information transferred from earlier tasks to later tasks). In the following
chapter we will expand on this concept in the context of Partitioning, a method which attempts to find a
lower triangular ordering for the tasks in the DSM. Such an ordering represents an uncoupled design
problem (no feedback) where each task receives all of its required information from its predecessors.

An extension to Steward's work was introduced by Eppinger, Whitney, Smith, and Gebala [10] where the
off-diagonal marks are replaced with numerical measures of coupling and dependence (or some other
metric that measures an inter-task relationship), while the on-diagonal marks measure task duratior: (or
some other metric that characterizes an intra-task relationship). This Numerical Design Structure Matrix
captures task interrelationships at a much deeper level than its binary counterpart, in addition to capturing
completion time. As an example, Figure 2.3 shows a 6 x 6 numerical DSM representation of the binary
DSM shown in Figure 2.2.

The number 2.1 located in row two, column four, denotes the relative strength of dependence by Task B
on Task D. The number 7 located in row three, column three, denotes a duration of 7 days for Task C to
be completed.
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Figure 2.3: Numerical Design Structure Matrix

As evidenced from these simple examples, the DSM is an effective tools for capturing the structure of a
system both concisely and compactly.

2.4 Constructing the DSM

The four steps to constructing the DSM are as follows:

Select the areas of the product development process to be examined.
Identify development activities at a sufficient level of abstraction, and define development activities
according to an appropriate rule of classification (Task-Level DSM, Parametric-Level DSM, or Hybrid
DSM).

e Select an inter-task metric for the off-diagonal positions (Sequential Iteration Model or Parallel
Iteration Model), and select an intra-task metric for the on-diagonal positions.

e Select interviewees and collect data.

To construct a DSM, the areas of the product development process that are going to be examined must
be selected. This is the first and perhaps most important step in constructing a DSM because it affects all
subsequent steps. Examining an area that is too broad or too limited in scope can severely inhibit the
ability of the DSM to provide valuable insight.

Second, once these areas have been selected, development activities must be: 1) identified at a sufficierit
level of abstraction, and 2) defined according to an appropriate rule of classification. Selecting an
appropriate level of abstraction is important because one that is too low can prove cumbersome during
construction and collection of data. Similarly, a level of abstraction that is too high can prove worthless
when performing analysis and seeking real insight. Selecting an appropriate rule of ciassification is
equally important, and refers to the way in which development activities are defined. Typically, they are
categorized as either design tasks (Task-Level DSM) or design parameters (Parametric-Level DSM). A
DSM can also combine both design tasks and design parameters (Hybrid DSM) [10]. Design tasks are
best described as discrete physical activities performed by people. Examples of entries in a task-level
DSM include documenting customer requirements and ordering parts for a product prototype. Design
parameters are best described as product specifications or attributes. Examples of entries in a
parametric-level DSM include the frequency response of an acoustical system or the clearance of the
housing for a component. Henceforth for simplicity, we will refer to both design tasks and design
parameters as design tasks, unless explicitly stated otherwise. Once identified and defined, design tasks
are placed along the left column and the top row of the matrix. As mentioned earlier, along the left column
these tasks denote design activities that receive information. Along the top row, these tasks denote
design activities that provide information.
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Third, an inter-task metric is selected (e.g. task precedence or coupling strength) for the off-diagonal
numerical values, and an intra-task metric can be selected (e.g. duration or cost) for the on-diagonal
numerical values [8, 18, 25]. If the intent is to build a DSM model that captures iteration, one must
distinguish between the kind of iteration they seek to capture - sequential iteration or parallel iteration. In
the Sequential Iteration Model (which uses the Reward Markov Chain and is described in greater detail in
Chapter 5), the off-diagonal numerical values indicate the probability that one additional iteration will be
necessary if the interdependent tasks are performed in the specified order [10, 36]. In the Parallel
Iteration Model (which uses the Work Transformation Matrix and is described in greater detail in Chapter
3), the off-diagonal values measure what portion of information produced during the first iteration would
need to be changed during the second iteration {10, 35]. Using these models, a number of analytical
methods can be applied to predict iteration time or identify strongly coupled sets of tasks. A clear
understanding of the intended use for the data can help guide in the decision regarding which iteration
model! is best suited for a given purpose. Such an assessment will alsc govern how the questionnaires
are worded.

Fourth, interviewees are identified and data are collected via questionnaires. Typically, the interviewees
are participants in the product development process (e.g. engineers or managers). Because the inter-task
metrics are usually subjective (e.g. rework amounts, iteration probabilities), it is important to identify
individuals that are deemed capable of providing data that accurately depicts reality. We should note that
previous research efforts have also stressed the confusion that can be easily encountered between the
“currently followed", “should-be followed", and the “will-be followed” product development processes when
gathering DSM data [34]. This must be clearly distinguished and articulated at the onset.

Finally, once the data set is collected, intra-task metrics are placed in the on-diagonal positions of the
matrix and inter-task metrics are placed in the off-diagonal positions of the matrix. In the following
sections we will demonstrate how the DSM was used to model the product development process at the
sponsor company. This was achieved by first identifying the various functional groupings and process
flow phases that governed design activity, and then proceeding to construct the DSM and collect data.

2.5 Functional Groups

Products have an inherent technical structure that in some way should be matched with respect to the
organization of resources. In practice, without a detailed understanding of these interactions in advance, it
is difficult to know what represents the optimum. Firms typically organize design activities into a number
of functional areas. Each functional area is then focused on a particular product “chunk”. This is
particularly useful for large-scale projects, complex products, and design efforts that involve individuals or
teams that are geographically dispersed. One of the objectives of such an approach is to minimize the
interactions across functional groups, and maximize the interactions within functional groups, resulting in
better coordination and reduced time-to-market.

Product development at the research company was organized by the fifteen functiona! groups listed in
Table 2.1 (abbreviations in parenthesis).

e Funé‘tidnéI'Grbup ST Functlonal Group

Dlgltalnal Processor Desugn (DSP) o

Product Management (PM)

System Engineering (SE) Microcontroller Design (MC)

System Architecture (SA) System Integration (SI)
Human Factors (HF) System Test (ST)

Supply Chain Management (SCM) Reliability (REL)

Industrial Design (ID) Field Test (FT)
Analog Design (AD) Manufacturing (MFQ)
Digital Design (DD)

Table 2.1: List of Functional Groups

Each of these functional groups worked in parallel (concurrent engineering) and was responsible for a
specific area related to the product, ranging from defining requirements to final manufacturing. Note that
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we identified the design task “Field Test” as a functional group, although it was not a formal functional
group. The following is a brief description of each functional group (for a detailed understanding of the
product's technical structure, the reader is referred to Section 1.5):

Product Management - Manages the day-to-day profitability of the business including marketing, sales,
and service, and generates the Customer Requirements (CR) document for product/handset platforms.

System Engineering - Translates customer/market needs (from the CR) and operational requirements
(from industry standard documents) into engineering requirements for the handset by generating the
Technical Requirements (TR) document. System Engineering also monitors and interprets industry
standard documents.

System Architecture - Translates engineering requirements (from the TR) into requirements for the
design groups and evaluates proposed techniques for feasibility.

Human Factors - Designs and tests the product's user interface, ergonomics, and other functional and
operational aspects such as tones, call flow, menu structure, error messages, button actions, button
labels, display characteristics, etc.

Supply Chain Management - Manages additions to/deletions from the qualified parts list,
validates/updates the qualified suppliers list, and works with procurement to obtain parts from vendors for
product prototypes and volume production units. Supply Chain Management works closely with the
Analog Design, Digital Design, and Manufacturing groups, to obtain parts for these builds.

Industrial Design - Defines the physical dimensions of the handset and ensures that the industrial design
of the product meets or exceeds customer needs, both functionally and aesthetically. Industrial Design
works closely with the Analog Design, Digital Design, and Manufacturing groups to provide the
dimensional specifications of the handset.

Analog Design - Designs the analog printed circuit board (PCB) including the antennae, receiver,
transmitter, transfer oscillator, and power control. Analog Design works closely with the Industrial Design
group to receive the dimensions of the handset, the Supply Chain Management group to secure parts, and
the Manufacturing group to build the PCB.

Digital Design - Designs the digital printed circuit board (PCB) including the microcontroller, digital signal
processor (DSP), keypad, memory facilities for both processors, and modem. Digital Design works
closely with the Industrial Design group to receive the dimensions of the handset, the Supply Chain
Management group to secure parts, and the Manufacturing group to build the PCB.

Digital Signal Processor Design - Designs and tests the DSP firmware including the vocoder, layer 1
(physical layer) processes (transmit/receive bits), and layer 2 (data link layer) processes (perform framing,
error detection, and retransmission). Digital Signal Processor Design works closely with ihe
Microcontroller Design group, particularly given the fact that the microcontroller controls the function =f the
DSP.

Microcontroller Design - Designs and tests the microcontroller firmware including the Type 1 software
(communication with the base stations), user interface (display and keypad/buttons), and machine-to-
machine interface (data I/O port that can connect to a PC). The Microcontroller Design group works
closely with the Digital Signal Processor Design group, particularly given the fact that the micrccontroller
controls the function of the DSP.

System Integration - Integrates the hardware and software components from the development
organizations and/or outside vendors, and tests for operability and performance. System Integration
works closely with the hardware and firmware design groups (Analog Design, Digital Design, Digital Signal
Processor Design, and Microcontroller Design) to test essential features and ensure the overall quality of
the product prior to delivering the handset to the System Test group.
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System Test - Evaluates and documents the handset's overall performance and compliance with industry
standards at the system level. System Test receives units from the System Integration group. System-
level testing is considered the final phase of each prototype iteration. System Test works closely with the
System Integration group, who performs testing of the handset at a level of abstraction below that of
System Test. System Test essentially performs testing of the handset as a “black-box” (using external
interfaces) focusing solely on inputs and outputs.

Rellability - Provides a means to plan for, design in, assess, predict, monitor, control and improve
handset reliability throughout its life cycle. Reliability davelops product hardware and firmware reliability
requirements, certifies vendors/components for reliability qualification, and qualifies product prototypes
and volume production units. Reliability works closely with the Industrial Design and Supply Chain
Management groups to evaluate the handset at the component level and the unit level.

Field Test - Performs evaluation of the handset in the field. Field Test receives units from the System
Test group. Field testing is performed in a real-world environment.

Manutacturing - Conducts Design for Manufacturing/Assembly/Testing (DFX) reviews, manufacturers the
analog/digital printed circuit board (PCB), and performs final assembly of the unit. Manufacturing alsc
provides a method for implementing new products into an existing manufacturing environment that
supports rapid prototyping and high volume manufacturing. Manufacturing works closely with the
hardware design groups (Analog Design and Digital Design), and the Industrial Design and Supply Chain
Management groups to perform manufacturing and assembly.

2.6 Process Fiow

The product overview helped us to understand the product as a system, and its underlying structure, from
a technical perspective. Functional groupings helped us to understand the product development. process
as a system, and its underlying structure, from an organizational perspective. Finally, the process flow
helped us to understcnd the product development process as a system, and its underlying structure, from
a temporal perspective. The process flow diagram was also extremely useful in clearly identifying the
relevant areas of the product development process for investigation.

The process flow for the product development process at the sponsor company could be segmented into
four distinct phases: 1) Requirements, 2) Design, 3) Integration, and 4) Test, the latter three phases
constituting an iterative loop (rapid prototyping iterations). This research focused specifically on these
three phases, because they represented a significant portion of the product development process over
time. Figure 2.4 shows the process flow diagram of the product development process.

The following is a brief description of each process flow phase:

Requirements - During the Requirements phase, customer requiremenis are identified by Product
Management and translated to technical specifications by System Engineering. These technical
specifications are translated to design specifications by System Architecture, which are finally transiated to
detailed design specifications by each of the design groups (Analog Design, Digital Design, Digital Signal
Processor Design, and Microcontroller Design).
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Desian - During the Design phase, functional groups related to hardware (Analog Design, Digital Design,
Supply Chain Management, Industrial Design, Reliability, and Manufacturing) and firmware (Digital Signal
Processor Design and Microcontroller Design) work in parallel within their respective areas to complete
regularly and separately scheduled hardware builds and firmware releases, respectively. Increasing
functionality is introduced with each successive prototype iteration, ieading up to the product's evantual
completion. System Integration is more closely aligned with the firmware design groups because many of
the functions and features are realized in firmware. Also conducted during this phase are the
procurement of parts by Supply Chain Management, sub-unit level tests by Industriai Design and
Reliability (e.g. a specific component), and the development of test cases by System Integration. Note
that as a strategic resolve, the sponsor company intentionally decoupled hardware and firmware activities
to minimize the interactions between the hardware and firmware design groups. It was believed that such
interdependencies could severely hinder the speed of development. Hardware builds and firmware
releases were therefore scheduled according to different timetables. Consequently, hardware and
firmware design could be considered relatively independent activities (to the extent that this strategy was
successful), as indicated in Figure 2.4.

Product Management

System Engineering REQUIREMENTS,,,
System Architecture
HARDWARE , FIRMWARE
DESIGN,,,

DESIGN,y,

Analog Digital
Design Deaign

DSP
Design

Microcontrolier
Dasign

Supply Chain Industrial Design/Reliabllity
Management Sub-Unit Level Tesls

System Integration
Davelop Test Cases

Manufacturing

System Integration
Exscute Test Cases

industrial Desigrn/Relisbllity System Engineering INTEGRATION,,
Unit Level Tests
Human Systam Fleld
{.]
Factors Tost Test TESTy
ITERATION | ITERATION

Figure 2.4: Process Flow Diagram of the Product Development Process

Integration - During the Integration phase, System Integration integrates the hardware and firmware by
executing the test cases that were developed during the Design phase. These test cases evaluate the
handset at a level of abstraction below that of System Test and deal primarily with features that cut across
functional areas. Also conducted during this phase are unit leve! tests by Industrial Design and Reliability
(e.g. an environmental test of the handset), and regulatory testing by System Engineering. Once System
Integration is satisfied with the performance of the handset, it is handed over to System Test for final
evaluation.
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Test - During the Test phase, System Test performs “black-box" testing of the handset according to
established internal (e.g. requirements documents) and external (e.g. industry standards) spesificaticns.
Also conducted during this phase are various man-machine interface related tests by Human Factors, and
testing in the field by Field Test. By the time this phase has co.apleted, the next iteration of the Design
phase has already begun. In fact, when looking at a level of abstraction below the large “Dasign-
Integration-Test" loop, there are a number of smaller loops conducted within each respective functional
area. The larger loop is the result of the introduction of new functionality associated with rapid prototyping.
The smaller loops are the result of either their own local processes and tests associated with concurrent
engineering, or more global feedback received from System Integration or System Test.

2.7 Design Tasks

Design tasks represent the basic elements of the DSM. With the functional groups identified and the
process flow clearly understood, interviews were conducted with the technical managers of each
functional group to generate a list of design tasks that were directly relevant to the handset. A particular
emphasis was placed on activities cocnducted between each successive hardware build and firmware
release (rapid prototyping iterations - the Design, Integration, and Test phases). Brief follow-up interviews
were then conducted with the same technical managers to confirm the list's accuracy and completeness.
The final list of 114 design tasks is shown in Table 2.2 (each task is preceded by its abbreviated functional
group, referenced in Table 2.1).

As mentioned earlier, this ressarch focused specifically on the Design, Integration, and Test phases. In
limiting the study to these activities solely, a number of development activities wera either taken for
granted, combined into aggregate tasks, or completely ignored. For example, pricr to the requirements
phase, a number steps must be performed to gain project approval. These tasks were taken for granted.
During the requirements phase, a number o steps must b2 performed leading up to the release of the
Customer Requirements (CR) document. All of these tasks were aggregated into the single task
“Customer Requirements”. Once the product is ready for general availability, there are a number of
associated tasks including field support and customer support. These tasks were ignored.

Lastly, although each of these tasks are associated with a specific functional group, many can be
considered cross-furictional activities ranging from documenting the customer requirements to performing
testing in the field. Functional group associations are primarily indicative of ownership. The followirig is a
brief description of each design task (categorized by functional group):

Product Management
Customer Requirements - Document that describes the product's functionality as required by the

customer.

System Engineering
Technical Requirements - Document that describes the product's functionality at a technical level and

identifies the optimal approach for development.

Handset Requirements - Document that describes detailed, product-specific requirements for
hardware/firmware developers, testers, and Product Management.

Standard Features - External industry standards that must be specified and govern interoperability with
the base station.

Standard Type 1 Messages - Specifications of which Type 1 messages will be supported on the handset
from an industry standard.

Standard Type 2 Messages - Specifications of which Type 2 messages will be supported on the handset
from an industry standard.

Standard Type 3 Messages - Specifications of which Type 3 messages will be supported on the handset
from an industry standard.

Regulatory Emission Test - Regulatory compliance emissions test.

Regulatory Scan - Regulatory compliance scan.

Regulatory Compliance Certification - Regulatory compliance certification.
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WoONO O D LN -

PM: Customer Hequirements
SE: Technical Requirements
SE: Handset Requirements
SE: Standard Features

SE: Standard Type 1 Messages

SE: Standard Type 2 Messages

SE: Standard Type 3 Messages

SE: Regulatory Emission Test

SE: Regulatory Scan

SE: Regulatory Compliance Certification
SA: Architecture Requirements

HF: Voice Quality Tast

HF: User Interface Test

HF: Audibles Test

HF: Ergonomic Test

HF: Field Trial Test

SCM: Order/Secure Standard Materials
SCM: Order/Secure Custom Parts

ID: Tool Parts Available

ID: Component Plastics Test

ID: Component LCD Test

ID: Component Chassis Test

ID: Component Acoustics Test

ID: Unit Drop Test

ID: Unit Reliability/Environmental Test
ID: Unit Acoustics Test

ID: Industrial Design Release

AD: Draw/Update Schematic

AD: Enter Schematic (ECAD)

AD: Component Placement

AD: Routing/Via/Ground/The:mal Relief
AD: Design Rule Check

AD: Gen Art/Prep Docs/Format ECAD
AD: Solder Stencil (send/receive supplier)
AD: Circuit Board (send/receive supplier)
AD: Parts (send/receive BOM to SCM)
AD: Fabricate PCB

AD: Unit Test

AD: AD Engineering Sample

DD: Draw/Update Schematic

DD: Enter Schematic (ECAD)

DD: Component Placement

DD: Routing/Via/Ground/Thermal Relief
DD: Design Rule Check

DD: Gen Art/Prep Docs/Format ECAD
DD: Solder Stencil (send/receive supplier)
DD: Circuit Board (send/receive supplier)
DD: Parts (send/receive BOM to SCM)
DD: Fabricate PCB

DD: Unit Test

DD: DD Engineering Sample

DSP: Layer 1 Processes

DSP: Layer 2 Processes

DSP: Speech Processes

DSP: DSP States

DSP: DSP Firmware Release

103
104
105
106
107
108
109
110
m
112
113
114

3 MC Slandard ype 1 Change B

MC: NAM Programming Changes
MC: Standard System Determination
MC: Type 3 Service Provisioning
MC: Type 2 Messages

MC: User Interface

MC: CNIP

MC: Authentication

MC: Roaming

MC: Voice Mail Notification

MC: Programming Lock

MC: Type 3 Roaming List

MC: Integyity

MC: Sleep

MC: Type 4 Protocol

MC: Boot Block Support

MC: MC Firmware Release

Sl: Develop Accessories Test Cases
Sl: Develcp Type 1A Test Cases

Sl: Develop Type 1B Test Cases

Sl: Develop Type 4 Test Cases

Sl: Develop Integrity Test Cases

Sl: Develop Type 3 Test Cases

SI: Develop Support Tools Test Cases
Sl: Develop User Interface Test Cases
Sl: Integrate System Components
Sl: Execute Accessories Test Cases
Sl: Execute Type 1A Test Cases

Sl: Execute Type 1B Test Cases

Sl: Execute Type 4 Test Cases

Sl: Execute Integrity Test Cases

Sl: Execute Type 3 Test Cases

Si: Execute Support Tocls Test Cases
Sl: Execute User Interface Test Cases
Si: Demo Prep

Sl: Field Test Support

Sl: System Integration Release

ST: Layer 1 Test

ST: Type 1 Test

ST: Interoperability Test

ST: User Interface Test

ST: Audio/Acoustics Test

ST: System Test Release

REL: Component Test

REL: Board Test

REL: Reliability Test

REL: Environmental Test

REL: Verification Test

REL: Reliability Release

FT: Field Test

MFG: DFM Review

MFG: DFT Review

MFG: DFA Review

MFG: Build Preliminary Prototypes
MFG: Pretotype Testing

MFG: Build Engineering Samples
MFG: Engineering Sample Testing

MFG: Post-Build Analysis

Table 2.2: List of Design Tasks




System Architecture
Architecture Requirements - Document that identifies detailed specifications for the design groups

(Analog Design, Digital Design, Digital Signal Processor Design, and Microcontroller Design).

Human Factors

Voice Quality Test - Evaluates periormance of the handset's audio voice quality in the field by a group of
expert or trained listeners (e.g. subjective Mean Opinion Scores (MOS)).

User Interface Test - Evaluates performance of the handset's user interface to ensure and improve its
usability and friendliness.

Audibles Test - Evaluates performance of the handset's ring patterns and tones to verify that they are
distinguishable from one another and at the appropriate volume level.

Ergonomic Tect - Evaluates performance of the haridset's plastics to ensure a comfortable form factor,
appropriate weight, absence of sharp edges, etc.

Field Trial Test - Evaluates performance of the handset in the field - prototypes are supplied to end-users
that report data in the all of the aforementioned test areas.

Supply Chain Management
Order/Secure Standard Materials - Order and secure standard/generic materials (typically short lead

times) from the Bill of Materials (BOM) for engineering samples (regularly delivered to Manufacturing).
Order/Secure Custom Parts - Order and secure custom/specialized materials (typically long lead times)
from the Bill of Materials (BOM) for engineering samples (regularly delivered to Manufacturing).

Industrial Design
Tool Parts Available - Chassis and housing tools parts available fer enginsering samples.

Component Plastics Test - Evaluates performance of the handset's plastic components (e.g. reliability).
Component LCD Test - Evaluates performance of the handset's Liquid Crystal Display (LCD) (e.g. pixel
cross-talk, contrast).

Component Chassis Test - Evaluates performance of the handset's chassis (e.g. dimensionai
compliance).

Component Acoustics Test - Evaluates pertormance of the handset's acoustic components {e.g.
microphone).

Unit Drop Test - Evaluates performance of the handset to being dropped in a variety of configurations.
Unit Reliability/Environmental Test - Evaluates reliability performance of the handset to environmental
conditions.

Unit Acoustics Test - Evaluates performance of the handset's acoustic system (e.g. frequency response,
attenuation)

Industrial Design Release - Mechanical Computer Aided Design (MCAD) release {periodically released
to Analog Design, Digital Design, and Manufacturing).

Analog Design
Draw/Update Schematic - Changes to the analog circuitry schematic drawings.

Enter Schematic (ECAD) - Enter the analog circuitry schematic drawings into the Electrical Computer
Aided Design (ECAD) package.

Component Placement - Place the components on the printed circuit board in ECAD.
Routing/Via/Ground/Thermal Relief - Route the connections (via and ground) between components and
perform thermal relief analysis.

Design Rule Check - Perform verification of design rules such as component spacing, line width, and
other geometric attributes.

Gen Art/Prep Docs/Format ECAD - Generate artwork (for solder stencil supplier), prepare documents
(e.g. Bill of Materials), and format the ECAD data (for circuit board supplier).

Solder Stencil (send/receive supplier) - Send artwork to supplier and receive solder stencil from
supplier.

Circuit Board (send/receive supplier) - Send ECAD data to supplier and receive circuit board from
supplier.

Parts (send/receive BOM to SCM) - Send Bill of Materials (BOM) to Supply Chain Management (SCM)
and receive parts from Supply Chain Management.
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Fabricate PCB - Manufacture the printed circuit board (PCB).

Unit Test - Evaluates performance of the analog subsystem.

AD Engineering Sample - Analog subsystem engineering sample (periodically released and delivered to
System Integration).

Digital Design
Draw/Update Schematic - Changes to the digital circuitry schematic drawings.

Enter Schematic (ECAD) - Enter the digital circuitry schematic drawings into the Electrical Computer
Aided Design (ECAD) package.

Component Placement - Place the components on the printed circuit board in ECAD.
Routing/Via/Ground/Thermai Rellef - Route the connections (via and ground) batween components and
perform thermal relief analysis.

Design Rule Check - Perform verification of design rules such as component spacing, line width, and
other geometric attributes.

Gen Art/Prep Docs/Format ECAD - Generate artwork (for solder stencil supplier), prepare documents
(e.g. Bill of Materials), and format the ECAD data (for circuit board supplier).

Solder Stencil (send/receive suppliler) - Send artwork to supplier and receive solder stencil from
supplier.

Circuit Board (send/receive supplier) - Send ECAD data to supplier and receive circuit board from
supplier.

Parts (send/receive BOM to SCM) - Send Bill of Materials (BOM) to Supply Chain Management (SCM)
and receive parts from Supply Chain Management.

Fabricate PCB - Manufacture the printed circuit board (PCB).

Unit Test - Evaluates performance of the digital subsystem.

DD Engineering Sample - Digital subsystem engineering sample (periodically released and delivered to
System Integration).

Digital Signal Procegsor Design
Layer 1 Processes - Processes running at the lowest possible layer (the DSP's low-level interface with

the analog circuitry) that transmit/receiv2 bits and perform framing. Also called Physical Layer processes.
Layer 2 Processes - Processes running at the layer above Layer 1 processes, that perform error
detection and retransmission. Alsc called Data Link Layer processes.

Speech Processes - Processes running at the layer above tha Layer 2 processes, that perform speech
compression and decompression.

DSP States - Various states that the DSP assumes to perform initialization, synchronization, etc.

DSP Firmware Release - Compiled DSP source code into a binary object file and a hexadecimal file for
use in integration testing, system integration, and manufacturing (periodically released and delivered to
System Integration).

Microcontroller Design
Standard Type 1 Changes - Programming changes to code that adhered an old standard, necessary for

the code to adhere to a new standard.

NAM Programming Changes - Changes to the Number Assignment Module (NAM), non-volatile memory
that stored unit specific parameters {e.g. the telephone number, preferences).

Standard System Determination - Algorithm used to determine which service provider's system
(commercial network of base stations) to get service from, based on a standard recommendation from an
industry development group.

Type 3 Service Provisioning - Process by which the NAM parameters can be loaded using Type 3
service provisioning, also based on a standard recommendation from an industry standard group.

Type 2 Messages - Type 2 messages delivered from the base station to the handset, similar to paging
services.

User Interface - Handset's interface with the user including the display and keypad/buttons.

CNIP - Caller Party Number Identification and Presentation (caller ID).

Authentication - Encryption of the handset's electronic serial number (ESN) to avoid fraud.
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Roaming - Accelerated search procedure for frequency space (by utilizing a roaming list database) in
areas where service is not offered by the service provider, built to a recommendation by a
handset/equipment manufacturer.

Voice Mail Notificatior - Enables the base station to communicate notification and the number of voice
mail messages to the handset.

Programming Lock - Ensures that the handset only works with the service provider.

Type 3 Roaming List - Allows the roaming list database to be transmitted using Type 3 service
provisioning for access by the handset.

Integrity - Implements scenario using specialized mathematical techniques to test the integrity of the
communications infrastructure between the base station and the handset.

Sleep - Extends the life of the battery (when the handset is not in its time slot, it is powered down).

Type 4 Protocol - Type 4 protocol that facilitates the management of service negotiation between two
base stations at the time service is transferred from one base station to another.

Boot Block Support - Enacts a protected section of the flash memory such that the handset can recover
from a prematurely terminated update cycle.

MC Firmware Release - Compiled microcontroller source code into a binary object file and a hexadecimal
file for use in integration testing, system integration, and manufacturing (periodically released and
delivered to System Integration).

System Integration
Develop Accessories Test Cases - Development of test cases for the handset accessories (e.g. hands-

free kit).

Develop Type 1A Test Cases - Development of test cases for Type 1A functionality by simulating various
transmission environments.

Develop Type 1B Test Cases - Development of test cases for Type 1B functionality such as originations
and terminations.

Develop Type 4 Test Cases - Development of test cases for Type 4 protocol that facilitates base station-
to-base station service negotiation.

Develop Integrity Test Cases - Development of test cases for the specialized mathematical scenarios
that test the integrity of the communications infrastructure between the base station and the handset.
Develop Type 3 Test Cases - Development of test cases for Type 3 service provisioning that loads the
handset parameters.

Develop Support Tools Test Cases - Development of test cases for the handset support tools (e.g.
mobile diagnostic system monitor).

Develop User Interface Test Cases - Development of test cases for the user interface (e.g. display and
keypad/buttons).

Integrate System Components - Integration of the system components (hardware and firmware).
Execute Accessories Test Cases - Execution of test cases for the handset accessories (e.g. hands-free
kit).

Execute Type 1A Test Cases - Execution of test cases for Type 1A functionality by simulating various
transmission environments.

Execute Type 1B Test Cases - Execution of test cases for Type 1B functionality such as originations and
terminations.

Execute Type 4 Test Cases - Execution of test cases for Type 4 protocol that facilitates base station-to-
base station service negotiation.

Execute Integrity Test Cases - Execution of test cases for the specialized mathematical scenarios that
test the integrity of the communications infrastructure between the base station and the handset.

Execute Type 3 Test Cases - Execution of test cases for Type 3 service provisioning that loads the
handset parameters.

Execute Support Tools Test Cases - Execution of test cases for the handset support tools (e.g. mobile
diagnostic system monitor).

Execute User Interface Test Cases - Execution of test cases for the user interface (e.g. display and
keypad/buttons).

Demo Prep - Activities to support preparation tor demonstrations.

Field Test Support - Activities to support field testing.
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System Integration Release - Integrated system components (hardware and firmware, periodically
released and delivered to System Test).

System Test
Layer 1 Test - Evaluates performance of Layer 1, the lcw-level interface between the analog circuitry and

the DSP that transmits/receives bits and performs framing.

Type 1 Test - Evaluates performance of Type 1 functionality.

Interoperability Test - Evaluates performance of Layer 2, the layer above Layer 1, that performs error
detection and retransmission.

User Interface Test - Evaluates performance of the user interface (e.g. display and keypad/buttons).
Audio/Acoustics Test - Evaluates performance of the audio and acoustics system (e.g. frequency
response, attenuation, and subjective Mean Opinion Scores (MOS)).

System Test Release - System Test results (periodically released and fedback to the functional groups).

Reliability
Component Test - Evaluates reliability/environmental performance of components.

Board Test - Evaluates reliability/environmental performance of printed circuit boards (PCBs).

Reliability Test - Evaluates performance of the handset to a sequence of environmental stresses that are
designed to identify problem areas and verify product reliability (e.g. vibration, heat, drop, electro-static
discharge, and temperature).

Environmental Test - Evaluates performance of the handset to a sequence of environmental stresses
(similar to the Reliability Test, but based on the environment that the prototype units will be subjected to in
normal usage).

Verification Test - Evaluates performance of the handset to a sequence of environmental stresses
(similar to the Environmental Test, but for tool made samples and production units).

Reliability Release - Reliability test results (periodically released and fedback to functional groups).

Field Test
Field Test - Evaluates the overall performance of the handset (e.g. ability to originate and terminate calls)
in a real-world environment.

Manufacturing
DFM Review - Design for Manufacturing (DFM) review prior to manufacturing engineering samples.

DFT Review - Design for Testing (DFT) review prior to manufacturing engineering samples.
DFA Review - Design for Assembly (DFA) review prior to manufacturing engineering samples.
Build Preliminary Prototypes - Build of preliminary prototypes of engineering samples.
Prototype Testing - Testing of preliminary prototypes of engineering samples.

Build Engineering Samples - Build of engineering samples.

Engineering Sample Testing - Testing of engineering samples.

Post-Build Analysis - Post-build analysis of manufacturing process.

2.8 Data Collection

The design activities identified in this research for constructing the DSM constituted a task-level DSM.
Activities defined in the Requirements phase were primarily task-based - e.g. specification documents
such as the Customer Requirements. Activities defined in the Design phase were primarily task-based -
e.g. entering a schematic or writing the code for voice mail notification. Activities defined in the iIntegration
and Test phases were primarily task-based - e.g. unit level testing, regulatory testing, and field testing.
Also, this DSM captured the “currently followed" product development process.

For the analyses to be performed, coupling strength was selected as the inter-task metric for the off-
diagonal positions. Selection of an intra-task metric for the on-diagonal positions was unnecessary
because here, the purpose of the DSM was to analyze process structure and task interrelationships as
opposed to task duration or cost. We will revisit the selection of an intra-task metric in Chapter 5.
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Each technical manager recommended engineers that they felt were qualified to provide data on coupling
strengths. Questionnaires were then distributed to approximately 68 engineers, and they were asked to
evaluate their assigned task(s) relative to the other design tasks. In other words, if an engineer was
recommended to evaluate the task “Perform Test X", they then had to evaluate the strength of the
coupling between this task and the remaining 113 tasks from the exhaustive list. In a memo that
accompanied the questionnaire, coupling strengths were rated on a High (H), Medium (M), and Low (L)
scale, according the definitions shown in Table 2.3.

. Deseription .- * Possible Examples -
High Level of Coupling - Task A requires Task A is frequently dependent on Task B
significant interaction with Task B. for information, perhaps daily.
e Task A cannot begin untii Task B is
completed.
M Medium Level of Coupling - Task A|e Task A is generally dependent on Task B
requires moderate interaction with Task B. for information, perhaps weekiy or bi-
weekly.

e Task A can begin but cannot be
completed without input from Task B.

L Low Level of Coupling - Task A requires | ¢ Task A is infrequently dependent on Task

very little interaction with Task B. B for information, yet sometimes.

e Task A can be completed but would prefer
input from Task B.

EMPTY | No Coupling - Task A requires no|e Task A is not dependent on Task B for

interaction with Task B. information.

e Task A can be completed without input
from Task B.

Table 2.3: Definitions of the Coupling Strengths for DSM Data Collection

This questionnaire captured neither pure sequential iteration nor pure parallel iteration. Tremendous
difficulty was experienced in defining the coupling strengths because different functional groups had
different interpretations of what it meant to be coupled. A purely sequential definition (e.g. Task A cannot
begin until Task B is completed) did not appear to be globally applicable to all of the functional groups. A
purely parallel iteration definit~n (e.g. Task A is frequently dependent on Task B for information, perhaps
daily) did not appear to be globally applicable to all of the functional groups either. In retrospect, it
appears that the sequential iteration definition was more appropriate when dealing with tasks that
occurred during different process flow phases. For example, a task in the Integration phase could not
begin until a task in the Design phase was completed. The parallel iteration definition was more
appropriate when dealing with tasks that occurred during the same process flow phase. For example, a
task in the Design phase would be frequently dependent on another task in the Design phase for
information, perhaps daily. Therefore, this questionnaire essentially captured both sequential and parallel
iteration - a form of combined iteration. The only exception was in the hardware design groups (Analog
Design and Digital Design), where although the tasks in these groups occurred within the same process
flow phase, iteration in these groups was essentially performed in sequence.

In Chapter 4 we will use these observations to segment the tasks into groups of parallel activities (the
process flow phases) as a means to identify subsets of strongly coupled tasks, using the parallel iteration
model and the Work Transformation Matrix (WTM). In Chapler 5, we will also build on these observations
to predict completion time in the hardware design groups, using the sequential iteration model and the
Reward Markov Chain (as well as the Signal Flow Graph).

Engineers were recommended to provide data for as low as a single task and as high as twelve tasks.

This caused a significant disparity in the responses from the questionnaires. Some engineers responded
that they were coupled to very few tasks, almost none, while others responded that they were coupled to
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almost every task. To resolve these discrepancies and normalize the data, technical managers were
asked to review the responses from the engineers in their functional group. Once the technical managers
made their modifications, the data was considered valid and representative of the working environment,
The manager's modifications were an extremely important step in normalizing the responses from the
engineers.

This resulted in a 114 x 114 DSM that modeled the product development process. In the following two
chapters we will present this DSM from different perspactives, and we will apply a number of analytical
tools to perform analysis.

2.9 Discussion

In this chapter, we provided an overview of the product development process at the sponsor company.
We also provided an introduction to the Design Structure Matrix (DSM), a modeling tool that captures the
interrelationships between design activities in a compact form. In constructing the DSM, there were a few
important observations that must be restated.

First, the importance of properly identifying the areas of the product development process to be modeled
cannot be overemphasized. As mentioned eariier in the chapter, this is the first and perhaps most
important step in constructing the DSM because it affects all subsequent steps.

Second, defining the design tasks at a sufficient level of abstraction and according to an appropriate rule
of classification is also of critical importance. The choices here include a task-level DSM, parametric-level
DSM, and hybrid DSM.

Third, differentiation between the “currently followed”, “should-be followed”, and the "will-be foilowed"
product development processes must be clearly understood and articulated to interviewees when
gathering DSM data. . <

Fourth, if the intent is to build a DSM that captures iteration, one must choose between the parallel
iteration model and the sequential iteration model, and formulate design questionnaires accordingly.
Lastly, once the data set is collected, if it has been gathered from a large number of people (whose
opinions are likely to differ according to what constitutes a strong coupling or a weak coupling) then it is
recommended that a much smaller number of people (e.g. managers) review the data before it is
considered representative of the process. This serves to normalize the data across multiple responses.

Overall, the DSM gave us an extremely versatile framework to capture the product development process

at the sponsor company. In fact, the DSM underlies much of the work described in the following two
chapters, as well as this thesis.

37



CHAPTER 3: ANALYZING INFORMATION FLOW
AND DEPENDENCIES

3.1 Modeling Information Transfer

The DSM can be used to capture information flow and dependencies between design activities. By
substituting the marks in the matrix with numerical values we can also begin to quantify the strength of
these couplings. Therefore, the DSM can serve two simultaneous purposes - as a visual aid and as a
quantitative tool to examine the transfer of information throughout the product development process.

By rearranging and aggregating the marks in the matrix, we can represent the DSM from a number of
different perspectives such as by design task or by groups of design tasks. These DSM representations
can be useful in that they provide a visual perspective on information flow and dependencies during the
product development process. Using the same perspectives, we can also perform coupling analysis as a
means to quantify the interrelationships betwean design activities.

In this chapter, we first present an introduction to the basics underlying DSM representations and coupling
analysis. Finally, we present the DSM representations and perform coupling analysis on the product
development process for the digital wireless telephone at the sponsor company.

3.2 DSM Representations

The DSM is a useful tool for analyzing information flows and information dependencies. One of the
reasons why the DSM is so aftractive in this context is its flexibility. By exchanging rows/columns and
rearranging the data accordingly, a method called Swapping {39], we can manipulate the DSM matrix and
represent the same process from different perspectives. A visual inspection of the DSM from these
different perspectives can provide general insight to the product development process.

As mentioned in Chapter 2, the tasks listed along the left column of the DSM represent design activities
that receive information, while the tasks listed along the top row represent design activities that provide
information. A relative measure of information received by a design task, or information that a design task
is dependent upon from other tasks (inputs), can be evaluated by looking across its row. A relative
measure of information provided by a design task, or information that other design tasks are dependent
upon from a task (outputs), can be evaluated by looking down its column. We will build on this concept in
the following section. As an example, Figure 3.1a shows the DSM representation of the same binary DSM
previously shown in Figure 2.2.

A B C D E F A B C D E F
Al X A leme 0.3
By X X B |1.3|&% 2.7
cl _[xT-. c 0.2| 7%
D X 4 D 2.3 PRk
E X\ X | E 0.5) 1.1 |58
F X F 0.7 |

(@) (b)

Figure 3.1: DSM Representation and NDSM Representation

Performing a simple visual inspection of the DSM representation, we can see thiat Tasks B and E receive
a relatively large amount of information (looking across their rows, the sum of the marks for both tasks is
equal to 2), and Tasks B and E provide a relatively large amount of information (looking down their
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columns, the sum of the marks for both tasks is equal to 2). While such a visual perspective of the DSM
is instructive, for much larger matrices a more quantified and detailed perspective can be achieved by
performing Coupling Analysis.

3.3 Coupling Analysis

Coupling Analysis is a simple tool that uses the information captured by the DSM to quantify interactions.
The analysis can be performed at two levels - the individual task level, the lowest level of abstraction, and
the group task level, which aggregates the individual task level data to create higher levels of abstraction.

At ‘he individual task level, we can examine how irformation is transferred between individual design
tasks, using only a few basic metrics. For example, we can identify design tasks that have the greatest
potential to delay other design tasks or to be delayed by other design tasks. At the group task level, we
can examine how information is transferred between groups of design tasks, such as functional groups or
process flow phases. For example, we can identify functional groups or process flow phases that have
the greatest potential to delay other functional groups or process flow phases or to be delayed by other
functional groups or process flow phases, using only a few basic group metrics. This is done by assigning
each design task to a particular grouping (e.g. a functional grouping such as “manufacturing” or a process
flow phase grouping such as “integration”), and aggregating the design task data to a new, and hopefully
more useful level of abstraction. Coupling metrics at the individual task level and the group task level can
also be decomposed in terms of their constituent elements. For example, a functional group that is
heavily dependent on another functional group for information can identify the tasks within that functional
group that contribute to the dependency most. In the following sections, we describe in detail how to
calculate and interpret the coupling metrics at the individual task level and the group task level.

3.3.1 Individual Task Level

If we replace the off-diagonal marks in the DSM with numerical equivalents {coupling strengths), we
create a Numerical Design Structure Matrix (NDSM). As an example, Figure 3.1b shows the numerical
DSM representation of the same numerical DSM previously shown in Figure 2.3.

Using the NDSM, we can calculate metrics that characterize information flow and dependencies at the
individual task level. Naturally, the coupling strengths themselves are useful metrics and give us
immediate insight to tightly coupled pairs of tasks (for an n x n DSM, there are n° such pairs of tasks). In
fact, they serve as the basis for calculating the other coupling metrics at the task level, which are as
follows: input measure, output measure, and volume measure. We can also calculate corresponding
measures as a percent of the total coupling.

As mentioned earlier, the tasks listed along the left column of the DSM represent design activities that
receive information, while the tasks listed along the top row represent design activities that provide
information. We can therefore calculate a relative measure of the amount of information required by a
design task (input) by summing the values in its row, as shown in Equation 3.1.

J =task number

input _measure; = 2 NDSM where - i ension of the NDSM

i=1
Equation 3.1

This simple metric can be useful in identifying tasks that may be overloaded or heavily dependent on other
design activities in order to be completed. Similarly, we can calculate a relative measure of the amount of
information provided by a task (output) by summing the values in its column, as shown in Equation 3.2.
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j = task number

output_measure; = Z NDSM;; where < i nsion of the NDSM

i=1
Equation 3.2

This metric can be useful in identifying tasks that may be overloading others or that others are heavily
dependent upon in order to be completed. Similariy, we can calculate a relative measure of the amount of
information received and provided by a task (volume) by summing its input and output measure, as shown
in Equation 3.3.

volume_measure ; = input_measure ; + output_measure, where j =task number

Equation 3.3

This metric can be usefu! in identifying tasks that are both heavily dependent on other tasks in order to be
completed, and other tasks are heavily dependent upon in order to be completed. Finally, the coupling
metrics at the task level (coupling strength, input measure, output measure, and volume measure ) can
also be expressed as a percent of the overall coupling (upper bound of 100), by dividing each metric by
the sum of all the coupling strengths, as shown in Equation 3.4.

) metric, k = task number
melric_ percenty =5 =, where n = dimension of the NDSM
D NDSM,

i=1 j=1

*Note that volume_percent must be divided by 2 to avoid double counting.

Equation 3.4

As an example, Figure 3.2a shows coupling strengths, input measures, and output measures for the
numerical DSM previously shown in Figure 2.3. Figure 3.2b shows coupling percentages, input
percentages, and output percentages for the same numerical DSM.

Input

A B C D E F Measure A B C D E F pl:,-i:,t"

A i 0.3 0.3 A ‘ l 3% 3%

B 1.3 &% __ 2.7 4.0 B [14% m 30% 44%

c 0.2 [amal 0.2 p 2% [ 2,

D 23 ] 2.3 D 559, P 25%

E 05]1.1 ;ﬂ; 1.6 E 5% [12% 18%

F 7 @) 0.7 F 8% [WHM| 8%
Output

Wemoure 13 25 05 11 34 03 91 ,‘,’;ﬂ',‘,', 18% 27% 5% 12% 37% 3%  100%

(a) (b)

. Figure 3.2: Coupling Analysis of a Numerical Design Structure Matrix

The cells in the matrix reveal that Tasks E and B represent the pairwise combination of tasks that transfer
the largest amount of information (coupling strength = 2.7, coupling percent = 30%). The input measure
and input percent reveal that Task B receives a relatively large amount of information (input measure =
4.0, input percent = 44%). Similarly, the output measure and output percent reveal that Task E provides a
relatively large amount of information (output measure = 3.4, output percent = 37%). Calculating volume
measures and volume percentages reveals that Task B yields that largest relative transfer of information
by volume (volume measure = 6.5, volume percent = 36%).
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3.3.2 Group Task Level

By aggregating the coupling strengths at the individual task level we can generate similar metrics for
information flow and dependencies at the group task level. We can use these metrics to perform the
same analysis at higher level of abstractions (e.g. by functional group or by process flow). As an example,
Figure 3.3 shows a 3 x 3 Aggregate Design Structure Matrix (ADSM), derived from the 6 x 6 numerical
DSM previously shown in Figure 2.3. Here, we assume that each of the six tasks (letters A through F) is
associated with one of three groups (numbers 1 through 3).

Group 1 Group2 Group3

D

A B C D E F Group1 Group2 Group3

A :ﬁ 0.3 ki P &
Group 1 —E B [1.3]=a 57 Group 1 |; ﬂE} ; 3.0
G 2 — 0.2)% !

roup c £ == Group 2 0.2

D 2.3 =

Group3{E 0.5]1.1 |4 Group3 | 23 0.5
NDSM ADSM

>

Figure 3.3: Aggregate Design Structure Matrix

The coupling strengths in the aggregate DSM serve as the basis for calculating the coupling metrics at the
group level, which are as follows: relative coupling percent, relative input percent, relative output percent,
and relative volume percent. All of these metrics are a function of the total available coupling for each
metric.

We cannot calculate coupling metrics at the group level directly from the strengths in the aggregate DSM,
because they are skewed in favor of large groupings. For example, a group made up of fifty tasks is
much more likely to have a high coupling strength than a group made up of five tasks, simply by virtue of
the potential for more couplings. We therefore modify the previous metrics, beginning with the coupling
strengths themselves and generate a Group Design Structure Matrix (GDSM) with more appropriate
relative coupling percentages. These percentages take into account the sizes of the various groupings.
They are calculated as a function of the coupling strengths in the aggregate DSM and the maximum
availble coupling strength for each cell in the group DSM. To determine these metrics, we must first
define the maximum available coupling strength for a cell in the group DSM.

We will assume that the maximum coupling strength in the numerical DSM is the upper bound for the
entire numerical DSM. Each cell in the aggregate DSM represents either the intersection of two groups
with each other (off-diagonal positions) or a single group with itself (on-diagonal positions). The coupling
strengths in these cells are derived directly from the coupling strengths in the numerical DSM (they are the
sum of the coupling strengths for each respective grouping). Therefore, the maximum available coupling
strength for any cell in the aggregate DSM is the product of the maximum coupling strength in the
numerical DSM and the dimensions of the submatrix in the numerical DSM that constitute the two
groupings or the single grouping. For example, the maximum coupling strength for the cell located in row
1/column 3 or Group #1/Group #3 of the aggregate DSM shown in Figure 3.3b is calculated as follows: 2.7
-2 -3 = 16.2, where 2.7 is the maximum coupling strength in the numerical DSM shown in Figure 3.3a,
and 2 x 3 is the dimension of the submatrix in the numerical DSM shown in Figure 3.3a that constitute the
intersection of Group #1 and Group #3.
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If we divide each cell in the aggregate DSM by this metric, we gensrate a coupling maasure that facters in
the relative size of the grouping, and is expressed as a percent of the maximum available coupling
strength for that cell. These relative coupling percentages represent the cells of the group DSM, and are
calculated as shown in Equation 3.5.

ADSM, &= max. coupling strength in NDSM
GDSM; = S-m-m where p;, = no. of tasks in group i
i m; = no. of iasks in group j

*Note that / and j correspond to row/column numbers and group numbers In the Group DSM/Aggregate DSM.
Equation 3.5

The relative coupling percentages are useful metncs and give us immediate insight to tightly coupled pairs
of groups (for an n x n group DSM, there are n 2 such pairs of groups). As an example, Figure 3.4 shows
the group DSM calculated from the coupling strengths of the aggregate DSM shown in Figure 3.3 (e.q. the
relative coupling percent for row 1/column 3 or Group #1/Group #3 is calculated using Equation 3.5 as

follows: 30/ (2.7 - 2 - 3) = 19%).

Group1 Group2 Group3 Group1 Group2 Group3
Group 1 __-;"'f‘1--3£ 3.0 Group 1 19%

Group 2 0.2

Group 2

Group 3 2.3 Group 3 14% 6%

ADSM GDSM

Figure 3.4: Group Design Structure Matrix

The remaining relative coupling metrics at the group task level are determined in two steps. First, we
calculate an input measure, output measure, and volume measure for each group. This is an
intermediate step. It is done using Equation 3.1, Equation 3.2, and Equation 3.3. However, we use the
ralative coupling strengths in the aggregate DSM instead of the coupling strengths in the numerical DSM
to perform these calculations. This gives us corresponding group metrics (group input measure, group
output measure, and group volume measure). Second, we divide these group metrics by the maximum
available coupling for each metric (upper bound of 100). As opposed to the metric percentages at the
individual task level, this gives us relative metric percentages at the group task level (relative input
percent, relative output percent, and relative volume percent) as shown in Equation 3.6.

group_metric,

relative_metric_ percent, = where K= group number

P p = max. available coupling
Equation 3.6a
where
group_input_measure, p=5- (" ' mk) &= max. coupling strength
If group_metric, = { group_output _measure, p= 0 (n-mk) in NDSM

. ,\ 1 = dimension of NDSM
group_volume_measure’, p=20- (2 hem = m,‘) m; = no. of tasks in group &

“Note that group_volume_measurey = group_input_measurey + group_ousput_measure; - ADSMy to avold double counting.

Equation 3.6b

42



To perform analysis, we use the relative metric percentages only. This information is useful in identifying
groups of activities that must cornmunicate regularly or work closely together, or in quantifying the amount
of information transferred across groups or the level of dependence between groups. This would include
intra-group information transfer as well as inter-group information transfer. As an example, Figure 3.5
shows relative coupling percentages (repeated), relative input percentages, and relative output
percentages for the group DSM shown in Figure 3.4 (e.g. the relative input percent for Group #1 is
calculated using Equation 3.6 as follows: (1.3 +3.0)/(2.7-6-2) = 13%).

Relatlve
Input
Group1 Group2 Group3d  Percent

Group 1 13%
Group 2 1%
Group 3 9%

Relative

Output 12% 3% 10%

Percent

Figure 3.5: Coupling Analysis of a Group Design Structure Matrix

The cells in the matrix reveal that Groups #3 and #1 represent the pairwise combination of groups that
transfer the largest amount of information (relative coupling percent = 19%). Notice that using the
coupling strengths in the aggregate DSM shown in Figure 3.4a, one would have erroneously concluded
that information transferred within Group #3 is the third ranked pair. However, when we taka into account
the relative size of Group #3 (it is the largest of all of the groups with three tasks) and its potential for
greater coupling in the group DSM, we see that it is actually information transferred within Group #1 that
represents the third ranked pair.

The relative input percent reveals that Group #1 recsives a large amount of information (relative input
percent = 13%). The relative output percent reveals that Group #1 also provides a large amount of
information (relative output percent = 12%). Calculating relative volume percentages reveals, not
surprisingly, that Group #1 yields that largest relative transfer of information by volume (relative volume
percent = 13%).

An additional benefit of coupling analysis on a group DSM is the ability to quantify interacticns at the
higher levels of abstraction, in terms of the lower levels of abstraction. Large relative percentages at the
group level can te further examined to identify the underlying individual tasks that contribute most to the
value. For example, earlier we recognized information transferred from Group #3 to Group #1 as the
maximum information transferred between groups by pair. Further investigation shows that this coupling
is largely governed by information transferred from Task E to B (2.7 / 3.0 = 90% of the total coupling).

Appendix A shows MATLAB code that implements the coupling analyses performed in these examples.
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3.4 Research Methodclogy

The data used to generate the DSM representations at the sponsor company were based on the results of
questionnaires distributed {0 engineers and managers (see Section 2.8 for a description of the data
collection process). They were asked to eveluate coupling strengths on a High (H), Medium (M), and Low
(L) rating scale {see Table 2.3 for the definitions of these coupling strengths). To create a numerical DSM
from this data, that could then be used for ccupling and subsequent analysis, the three ratings were
replaced with corresponding numerical values of 0.50, 0.25, and 0.05. These values were identical to the
numbers used by Smith and Eppinger in a similar research project {33). Once this steps was completed,
we were prepared to generate the DSM representations and perform coupling analysis.

In the following sections, we present the DSM representations at the sponsor company organized by
design task, by functional group, and by process flow. We also examine information flow and
dependencies using coupling analysis at the individual task level (by design task) and the group task level
(by functional group and by process flow).

3.5 Design Task Analysis

A DSM representation was generated and coupling analysis was performed at the design task level using
the 114 design tasks previously identified in the Chapter 2 (see Table 2.2 for the complete listing).

3.5.1 DSM Representation

The DSM representation of the product development process by design task is showr in Figure 3.6. This
representation was the most detailed representation. It gave a visual perspective on information flow and
dependencies between design tasks. For example, by looking the DSM it was clear that the Handset
Requirements (Task #3) required a significant amount of information from tasks that were associated with
the Microcontroller Design group (notice the clustering of coupling marks near the center of its row).
Despite these and other broad based observations, we found this representation to be too granular for any
detailed conclusions. The reader is advised to refer to this diagram as we perform coupling analysis on
the DSM representation by design task.

3.5.2 Coupling Analysis

Table 3.1 lists the top ranked design tasks by input measure and input percent. Table 3.2 lists the top
ranked design tasks by output measure and output percent. Table 3.3 lists the top ranked design tasks by
volume measure and volume percent. While hard recommendations for improvement could not
necessarily be drawn from this data, the exhaustive lists were extremely useful as reference material. The
input data was valuable in assessing the breadth and depth of tasks that had the greatest potential to
delay a rask by way of information or deliverables. The output data was valuable in identifying a task that
had the greatest potential to delay other tasks by way of information or deliverables, and assessing the
breadth and depth of the impact. The volume data was valuable in identifying tasks that experienced
large inflows and outflows of information or deliverables, and assessing the breadth and depth of these
movements.

Looking at the highest ranked tasks from the input data, it was clear that the owners of the Reliability
board test and component test were heavily dependent on a large number of other tasks in order to
perform these activities. Further investigation revealed that these dependencies were heavily
concentrated in System Integration (37% and 31% of the total coupling respectively) and Manufacturing
(9% and 14% of the total coupling respectively). Also, it was clear that System Integration's development
of the user interface test and execution of the user interface test required significant input both within the
group itself (26% and 33% of the total coupling respectively) and from Microcontroller Design (29% and
25% of the total coupling respectively). In the event that these or other tasks were experiencing delays, it
was easy to reference this data and identify tasks that were likely to be the cause of the delay.
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Figure 3.6: DSM Representation by Design Task
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Desngn Task

r
2
3
4
5
6
7
8
9
10

HEL Board Test

Sl: Execute User Interface Test Cases
Sl: Field Test Support

SE: Handset Requirements

Sl: Develop User Irterface Test Cases
REL: Component Test

MC: Standard Type 1 Changes

AD: Parts (send/receive BOM to SCM)
FT: Field Test

ST: Interoperability Test

Table 3.1: Design Tasks Ranked by Input Measure and Input Percent

De5|gn Task

.. Meastire:” .‘

Outpu! i

5'?Percent

3<om\|o>cn4=-com-

SE Handset Hequurements

DSP: DSP Firmware Release
MC: MC Firmware Release

DD: Engineering Sample

AD: Engineering Sampie

PM: Customer Reguirements
SE: Standard Features

SE: Standard Type 1 Messages
SE: Technical Requirements
MC: User Interface

17.45
14.50
13.75
13.05
12.50
12.00
11.75
10.10
10.00
9.40

2.70%
2.24%
2.13%
2.02%
1.93%
1.86%
1.82%
1.56%
1.556%
1.45%

Table 3.2: Design Tasks Ranked by Output Measure and Output Percent

S©OENO O AN - EER

De5|gn Task '-'_-'_“"if '

SE: Handset Hequnrements

Sl: Execute User Interface Test Cases
REL: Board Test

MC: Standard Type 1 Changes

Sl: Develop User Interface Test Cases
REL: Component Test

SE: Standard Features

MC: MC Firmware Release

Sl: Field Test Support

DSP: DSP Firmware Release

o ‘Percent

5.21%
4.19%
4.00%
3.49%
3.47%
3.39%
3.38%
3.37%
3.25%
3.25%

Table 3.3: Design Tasks Ranked by Volume Measure and Voiume Percent
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Many of the tasks that ranked high in the output data made intuitive sense - requirements documents,
specification documents, and engineering samples/firmware releases, that countless other tasks were
dependent upon. However, the data also suggested that Microcontroller Design's coding and testing of
the user interface provided a significant amount of information to System Integration (51% of the total
coupling), and Industrial Design's ability to make the chassis and housing tool parts available (not shown,
ranked eleventh) was of considerable (and intuitive) importance to Industrial Design testing (38% of the
total coupling) and tasks performed by Manufacturing (24% of the total coupling). In the event that these
or other tasks were experiencing delays, it was easy to reference this data and identify tasks that were
likely to feel the effects of the delay. The majority of the tasks that ranked high in the volume data were




alsc among the tasks that ranked high in either the input data or the output data. More valuable
conclusions can be drawn from the functional group and process flow analyses.

3.6 Functional Group Analysis

A DSM representation was generated and coupling analysis was performed at the functional group level
using the fifteen functional groups identified in Chapter 2 (see Table 2.1 for the complete list with
abbreviations). The number of tasks associated with each functional group were as follows: Product
Management (1), System Engineering (2), System Architecture (1), Human Factors (5), Supply Chain
Management (2), Industrial Design (9), Analog Design (12), Digital Design (12), Digital Signal Processor
Design (12), Microcontroller Design (17), System Intagration (20), System Test (6), Reliability (o), Field
Test (1), and Manufacturing (8).

3.6.1 DSM Representation

The DSM representation of the product development process by functional group is shown in Figure 3.8.
This representation can be considered an organizational representation. It gave a visual perspective on
information flow and dependencies between functional groups as well as insight to the organization of
resources. For example, by looking at the DSM we noticed the sequential nature of design tasks in the
Analog Design and Digital Design groups (notice the marks located below the diagonal), which would
suggest a strong precedence relationship among these tasks. We could also see that Microcontroller
Design provided significant outputs to System Integration (notice the clustering of marks located below the
Microcontroller Design group and to the left of the System Integration group), which suggested the need
for strong communication between the two groups. Again, the reader is advised to refer to this diagram as
we perform coupling analysis on the DSM representation by functional group.

3.6.2 Coupling Analysis
Figure 3.7 shows the group DSM by functional group.

Relative
PM SE SA HF SCM ID AD DD DSP MC SI ST REL FT MFG input
Measure
PM 0%
SE 33% | 20% | 11%} 9% 4% | 7% | 5% | 24% | 24% | 11% ]| 17% 44% | 6% 12%
SA 100%| 53% | xi:att] 10% | 50% | 10% | 12% | 12% | 50% | 16% | 4% | 10% | 7% | 10% | 38% 19%
HF 16% ] 10% | 2% |-10%: 7% | 6% | 4% | 6% | 4% | 6% | 15% | 6% | 2% | 21% T%
SCM 12% 12% | %8| 61% | 21% | 21% | 10% 3% | 49% | 50% | 39% 17%
ID 40% | 19% 27% | 36% |40%}] 5% | 11% | 3% 2% | 11% | 27% | 28B% | 26% 13%
AD 10% ] 5% | 5% | 4% | 20% | 14% |M8" 2% | 3% | 1% | 2% | 1% | 2% | 1% | 21% 6%
(»]3] 4% | 3% | 6% | 5% | 17% | 3% | 2% |Ki3%Y 4% | 1% 6% | 11% | 8% | 9% 5%
DSP | 20% | 4% 5% 4% | 4% | 5% |KI9%3] 15% | 5% | 2% 2% | 2% 6%
MC 31% | 20% | 21% | 4% 1% | 11% |414%Y 8% | 8% 6% | 1% 7%
Si 16% | 14% | 15% | 18% | 4% | 1% | 2% | 2% | 17% | 20% |318%)] 15% 16% | 2% 1%
ST 2% | 9% 7% 31% | 23% | 29% |E3%% 11%
REL [ 27% | 17% 33% | 11% | 15% | 15% | 4% 21% ] 35% |748%:}| 42% | 46% 18%
FT 50% | 56% 20% 8% | 8% | 20% | 54% | 28% | 17% HAd| 13% 23%
MFG 31% | 13% | 156% | 14% | 44% | 22% | 21% | 25% | 10% | 4% | 6% | 5% | 24% | 1% |°44% 16%

Relative
Output 21% 13% 9% 10% 13% 8% 6% 7% 12% 11% 9% 10% 9% 14% 14%
Measure

Figure 3.7: Group DSM by Functionat Group
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In analyzing the DSM from these perspectives, we ignored the Product Management grouping, the System
Architecture grouping, and the Field Test grouping, because each was comprised of a single task. In this
sense, they did not constitute real groupings and tended to skew the rankings. From this data we were
able to assess the effectiveness of the functional groupings, concurrent engineering, and strategic
decoupling.

One of the goals of segmenting product development activities into functional groups is to minimize the
interactions across groups and maximize the interactions within groups. An effective functional
segmentation would be characterized by higher relative coupling percentages in the on-diagonal positions
(intra-group information transfer) and lower relative coupling percentages in the off-diagonal positions
(inter-group information transfer) of the group DSM. The data shows that except for System Test (relative
coupling percent of 3%), whose activities were performed in relative isolation (within the group itseif), this
was generally the case as the remaining functional groups exhibited double-digit relative coupling
percentages.

Consistent with concurrent engineering we should also expect relatively high degrees of coupling between
the hardware design groups (Analog Design and Digital Design) and Manufacturing. The data shows
relative coupling percentages of 21% (Analog Design to Manufacturing), 21% (Manufacturing to Analog
Design), 25% (Digital Design to Manufacturing), and 9% (Manufacturing to Digital Design}. This would
support our expectations, with the exception that there appears to be a somewhat stronger reciprocal
relationship between Analog Design and Manufacturing, as opposed to Digital Design and Manufacturing.
In Chapter 7, we will present recommendations that are closely related to this observation.

Lastly, the sponsor company made an explicit effort to decouple hardware and firmware design activities
at the beginning of the product development process by establishing detailed specifications on the
hardware/firmware interface. This was a strategic choice in some sense, given the strong inherent
coupling between the hardware (analog and digital) and firmware (DSP and microcontroller) on the
handse:, resulting from their close technical relationship. By minimizing this potentially time consuming
coupliag, it was their intent to reduce time-to-market. The group DSM provided a way to assess the
effectiveness of this strategy. If it was effective then we would expect lower coupling values across the
hardware and firmwaie groups, and higher coupling values within these groups. Looking at the group
DSM, we see that the highest relative coupling values between the Analcg Design, Digital Design, Digital
Signal Processor Design, and Microcontroller Design groups are found in the on-diagonal values (within
groups). These percentages lie between 13% and 19%. The remaining off-diagonal values (across
groups) lie between 1% and 5%. The only off-diagonal values that are beyond this range represent
information transferred from Microcontroller Design to Digital Signal Processor Design (14%), and vice-
versa (15%), which is expected given the fact that both of these groups are firmware groups. The
conclusion is therefore that the strategy was successful. Presumably, the specifications were established
well enough at the beginning of the process to minimize the potential coupling between hardware and
firmware. Another valuable perspective is gained by ranking the relative coupling metrics.

Table 3.4 lists the top ranked functional groups by relative coupling measure - a pairwise measure of
information transfer between functional groups (information that is transferred within a functional group is
highlighted in bold).

From this data it was clear that there was a strong relationship between the four functional groups that
appeared consistently in the rankings: Industrial Design, Supply Chain Management, Reliability, and
Manufacturing. The area of product development that these functional groups shared was the acquisition
of parts and the qualification of suppliers. Industrial Design was responsible for seiecting and testing the
display and audio/acoustics parts. Supply Chain Management was directly responsible for the qualified
suppliers and qualified parts list, and the procurement of parts for prototypes and production runs.
Reliability was responsible for environmental and other testing of parts. Manufacturing was responsible
for assessing the ability to manufacture, test, and assemble parts. As a result, one of the
recommendations to the sponsor company was to astablish a cross-functional team of representatives
from each of these groups, charged with the joint responsibility of acquiring parts and qualifying suppliers.
Recommendations are summarized in Chapter 7.
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~“’Fuhctional Groups

} Industrial Dsign | uIChain Magemnt

1

2 Reliability Supply Chain Managernent 49.17%
3 Reliability Reliability 49.17%
4 Manufacturing Reliability 45.83%
g Supply Chain Management Manufacturing 43.59%
6 Manufacturing Manufacturing 43.75%
7 Industrial Design Industrial Design 39.75%
8 Manufacturing Supply Chain Management 38.75%
9 Supply Chain Management Industrial Design 36.11%
10 System Test Reliability 35.28%

Table 3.4: Functional Groups Ranked by Relative Coupling Percent

Table 3.5 lists the top ranked functional groups by relative input percent. Table 3.6 lists the top ranked
functional groups by relative output percent. Table 3.7 lists the top ranked functional groups by relative
volume percent.

" "Functional Group .+~ ©. " Relative Input. ",
U e i e i Pareent il

1 Reliability 17.89%

2 Supply Chain Management 17.02%

3 Manufacturing 16.03%

4 Industrial Design 13.12%

5 System Engineering 12.35%

6 System Test 11.10%

7 System Integration 10.98%

8 Human Factors 7.42%

9 Microcontroller Design 6.69%

10 Digital Signal Processor Design 6.14%

11 Analog Design 5.99%

12 Digital Design 4.55%

Table 3.5: Functional Groups Ranked by Relative Input Percent

F'un_fi(:l'io'néll G'roldp_ . : B

1 Manufacturing

2 System Engineering 13.35%
3 Supply Chain Management 12.63%
4 Digital Signal Processor Design 11.89%
5 Microcontroller Design 10.66%
6 System Test 10.20%
7 Human Factors 10.05%
8 System Integration 9.47%
9 Industrial Design 9.12%
10 Reliability 9.04%
11 Digital Design 6.98%
12 Analog Design 6.17%

Table 3.6: Functional Groups Ranked by Relative Output Percent
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1 Manufacturing 15.32%
2 Supply Chain Management 14.96%
3 Reliability 13.83%
4 System Engineering 13.33%
5 System Integration 11.58%
6 Industrial Design 11.14%
7 System Test 10.94%
8 Microcontroller Design 9.28%
9 Digital Signal Processor Design 9.22%
10 Human Factors 8.92%
11 Analog Design 6.40%
12 _Digital Design 6.05%

Table 3.7: Functional Groups Ranked by Relative Volume Percent

The input data also supported our earlier observation that the four functional groups associated with parts
and suppliers had a strong relationship to one another. Each of these groups appeared at the top of these
rankings as well. This suggested that these groups also shared some commonality in either the nature or
the amount of information that they required. Based on our previous conclusion, we surmised that such
commonality was found in the former, with the nature of the information again being related to parts and
suppliers.

The input data also suggested that the four design groups (Analog Design, Digital Design, Digital Signal
Processor Design, and Microcontroller Design) were not heavily dependent on other functional groups for
information, as they all appeared at the bottom of the rankings. In contrast, the two firmware groups
ranked much higher (fourth and fifth respectively) by relative output percent. The fact that the two
hardware groups did not rank high by relative output percent said more about the way that the groups’
design tasks were first identified than it did about the importance of their deliverables. The tasks in the
hardware groups were essentially performed in sequence, so there was a high dependence on the final
tasks in these groups only (34% and 38% of these group's total coupling with other groups). On the other
hand, the tasks in the firmware groups were largely performed in parallel, so there was a higher
dependence on the intermediate tasks in these groups (55% and 85% of these group's total coupling with
other groups) as well as the final tasks. Referring back to the design task rankings by input measure and
input percent, we saw that the deliverables from the four design groups ranked second, third, fourth, and
fifth. As a general observation, this underscored the importance of the design groups within a rapid
prototyping paradigm. This data also supported the equal importance of Manufacturing's role, given its
position in the relative input, output, and volume percent rankings (third, first, and first respectively).

Conceivably, the input, output and volume data could have also been used to identify functional groups
that were the best candidates to be relocated in the event such an action was necessary. For example,
the data suggested that Human Factors was neither heavily coupled by input, by output, or by volume, and
would have been a likely candidate. Additional insight was drawn from the process flow analysis.

3.7 Process Flow Analysis

A DSM representation was generated and coupling analysis was performed at the process flow level using
the four process flow phases identified in Chapter 2 (see Figure 2.4 for the process flow diagram). The
number of tasks associated with each process flow phase were as follows: Requirements (8), Hardware
Design (42), Firmware Design (31), Integration (21), and Test (12).
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3.7.1 DSM Representation

The DSM representation by process flow is shown in Figure 3.10. This representation can be considered
a temporal representation. As you move down a column and/or across a row, the tasks are ordered
quasi-sequentially by virtue of their association with each of the four phases. This gave a visual
perspective on information flow and dependencies between Requirements, Design (both Hardware and
Firmware), Integration, and Test. For example, all of the tasks in the Hardware and Firmware phases
occured before the tasks in the Integration phase. Also note that marks located above the diagonal
represent feedback, and marks located below the diagonal represent feedforward (here, the diagonal is
defined as the five large boxes within the DSM). For example, the marks located directly to the right of the
Integration phase box and above the Test phase box represented feedback from the Test phase to the
Integration phase. Again, the reader is advised to refer to this diagram as we perform coupling analysis
on the DSM representation by process flow.

3.7.2 Coupling Analysis
Figure 3.9 shows the group DSM by process flow.

Relative
REQ HW FW INT TEST Input
, Measure
Requirements 23%=E| 3% 25% 2% 19% 12%
Hardware Design 12% |.B%16%88] 3% 10% 9% 10%
Firmware Design 25% 1% |#ai1%%%] 5% 8% 7%
Integration 14% 10% 16% | #811%&E| 15% 12%
Test 15% 4% 18% 12% | &88%5m8 11%
Relative
Output 17% 9% 11% 8% 10%
Measure

Figure 3.9: Group DSM by Process Flow

From this data we were able to assess the effectiveness of the process flow groupings. One of the goals
of rapid prototyping with its short and iterative cycles (here, the Design, Integration, and Test phases) is to
serve as an integrative force throughout the product development process. By integrating the activities of
the various functional groups it is the hope that cross-functional problems will be uncovered downstream
and fedback upstream. A more traditional product development process would entail longer and less
frequent design, integration, and test cycles. In the traditional approach (if performed well), one wculd
expect very high coupling values for feedforward, and very low coupling values for feedback. In the rapid
prototyping approach (if performed well) one would expect more balance between feedforward and
fedback. The group DSM provided a way to assess the effectiveness of this approach. Looking at the
group DSM, we saw that balance was generally achieved (a 61% / 50% split between the sum of
feedforward and feedback - Design, Integration and Test phases only, calculated by summing the relative
coupling strengths above/below the diagonal, excluding the relative coupling strengths related to the
Requirements phase). Therefore, our conclusion was that the strategy was successful - from the
perspective of information flow. It appeared that information was indeed transferred from Hardware
Design and Firmware Design to Integration and Test, and vice-versa.

Looking at the group DSM, we also observed that the lowest coupling values were shared by the
Hardware Design phase and the Firmware Design phase (relative coupling percents of 1% and 3%). This
supported our earlier conclusion that the sponsor company was successful in decoupling these two
activities.
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Another valuable perspective was gained by ranking the relative coupling metrics. Table 3.8 lists the top
ranked process flow phases by relative coupling measure - a pairwise measure of information transfer
between process flow phases. Notice that the highest coupling values were shared by the Requirements
phase and Firmware phase (relative coupling percent of 25% for feedforward and feedback). This
suggested that the requirements established for firmware experienced considerable revision or
modification. Consequently, one of the recommendations to the sponsor company was to invest more
time at the beginning of the product development process specifying the requirements for firmware,
particularly Microcontroller firmware (62% of the total feedforward coupling and 61% of the total feedback
coupling), to avoid significant changes later on. Recommendations are summarized in Chapter 7.

We also noticed a high degree of coupling between the Integration and Test phases (relative coupling
percent of 12% for feedforward and 15% for feedback). This suggested a strong temporal relationship
between these phases that we will expand upon in Chapter 4.

Table 3.9 lists the top ranked functional groups by relative input percent. Table 3.10 lists the top ranked
functional groups by relative output percent. Table 3.11 lists the top ranked functional groups by relative
volume percent. The only observation that was derived from this data was the noticeably high rankings for
the Requirements phase (second by input, first by output, and first by volume). It was concluded that the
reason for this phenomenon stemmed from the fact that many of the requirements documents were based
on industry standards, that were constantly being monitored and changing. Many of these standards
described specifications that were related to micrccontroller firmware (e.g. Type 1, Type 2 messages, and
Type 3 service provisioning). This would partially explain the aforementioned strong relationship between
the Requirements phase and the Firmware phase. However it was also believed, as mentioned earlier,
that part of this relationship was due to poorly defined internal requirements, independent of the industry
standards.

ProceSs Flow Phases
: e : Helawtlve

Firmware Requirements B 25.20%

Requirements Firmware 25.12%
Test Requirements 19.38%
Firmware Test 17.66%
Firmware Integration 15.84%

Table 3.8: Process Flow Phases Ranked Pairwise

e Relatlve Inpllt o

+ iProcess Flow Phase " - :
L T i Percent

1 T Integration

12.41%
2 Requirements 12.13%
3 Test 10.51%
4 Hardware Design 10.29%
5 Firmware Design 7.05%

Table 3.9: Process Flow Phases Ranked by Relative Input Measure
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Relatlve Oulput

R _Process Flof' CRR

Lo I TN = Percent .-
1 Reqmrements 17.01%
2 Firmware Design 10.63%
3 Test 10.43%
4 Hardware Design 8.78%
5 Integration 8.33%

Table 3.10: Process Flow Phases Ranked by Relative Output Measure

"~ : "Protess Flow Phase ~ Re"”.“"e Volgme :
- . B T T Pereént i
14.27%

Requirements

Hardware Design 11.18%
Integration 10.87%
Test 10.49%
Firmware Design 9.21%

Table 3.11: Process Flow Phases Ranked by Relative Volume Measure

3.8 Discussion

In this chapter, we used DSM Representations and Coupling Analysis to analyze information flow and
dependencies within the product development process at the sponsor company. DSM representations
use a method called Swapping, which exchanges rows/columns of the DSM matrix, to represent the same
process from different perspectives. DSM representations provided an interesting visual perspective on
information inflows and outflows, but were too granular at times for any detailed conclusions. They were
particularly useful as a supplement to the more formal coupling analysis. Coupling analysis is a simple
tool that uses the information captured by the DSM to quantify the interrelationships between design tasks,
functional groups, and process flow phases. Coupling analysis was shown to be a valuable tool in
extracting a few worthwhile observations and general conclusions.

We performed coupling analysis at the individual task level (by design task) and at the group task level (by
functional group and by process flow) using the product development process at the sponsor company. At
the individual task level we calculated coupling metrics for information transfer by input, output, and
volume. At the group level we calculated similar coupling metrics for relative information transfer by input,
output, and volume, by adjusting for the sizes of the groupings. Furthermore, coupling metrics at both of
these levels were decomposed in terms of their constituent elements.

The coupling metrics allowed us to assess the sponsor company's performance in a few areas such as
the effective use of strategic decoupling, concurrent engineering, and rapid prototyping. Potentially,
coupling analysis could have also been used to identify functional groups that would have had the least
affect on the product development process were they to be relocated. While coupling analysis was useful
to us in providing certain insights, it does present a number of challenges and difficulties.

First, it is too detailed at the design task level to derive any strong recommendations for improvement. At
this level it is potentially useful as a reference when investigating potential delays to design tasks, and
design tasks that can potentially delay other tasks.

Second, it ignores the relative weight or effort associated with a design task. Essentially, each design task
contributes an equal weight to the coupling metrics regardless of the time or resources needed to
accomplish the task. A task that requires fifty people, that has the same coupling strength as a task that
requires a single person, contributes the same amount to the coupling metiics. This reinforces a point
made in Chapter 2 regarding the importance of segmenting the product development process intelligently
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when using the DSM. This also reinforces a similar point from Chapter 2 regarding the importance of
normalizing the data when constructing the DSM.

Third, at the group task level coupling analysis can be slightly skewed for small groupings (on the arder of
one to two tasks). In such instances it is recommended that particular attention be paid to these groups.
For purposes of this research these groupings were removed from the final rankings.

Fourth, the data that serves as the basis for coupling analysis is largely subjective. Task and group
rankings by input are based on the survey responses of those requiring information, as opposed to task
and group rankings by output that are based on the survey responses of those providing information. In
other words, if a task or group is ranked high by input, it is because the owner of that task or the
representatives from that group believed it to be true, and have reflected it in their suivey responses. On
the other hand, if a task or group is ranked high by output, it is because the owners of other tasks or the
representatives from other functional groups believed it to be true, and have reflected it in their survey
responses. Again, this reinforces a point made in Chapter 2 regarding the careful and intelligent selection
of interviewees when gathering data for the DSM, and the importance of normalizing the data once it has
been collected.

Lastly, coupling analysis requires a basic understanding of the product development process and its subtle
dynamics to generate worthwhile recomm=ndations. It is arguable whether or not it is simply a reflection
of that which is already known.

Despite their shertcomings, bothi the DSM representation and coupling analysis, combined with a

moderate familiarity with the product development process at the sponsor company, proved to be valuable
tools in analyzing information flow and dependencies.
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CHAPTER 4: ANALYZING CONTROLLING FEATURES
AND TOTAL WORK

4.1 Modeling Design iteration

The DSM can also be used as a means toward identifying coupled sets of design activities (Partitioning),
coupled features of the design problem that will require many iterations (Controlling Features), and the
total number of times a task is attempted during the iterative stages of the design process (Total Work).
This can be extremely useful in predicting sets of closely related design activities that govern the rate and
nature of convergence of the design effort.

Partitioning is performed directly on the DSM and is a precursor to controlling features and total work
analysis. These analyses use a DSM-based model called the Work Transformation Matrix (WTM) model!
[35].

In this chapter, we describe partitioning first. This is followed by a description of the WTM model, its
underlying assumptions, and the mathematical basis for the model itself. Next, we present the
methodologies associated with controlling features and total work analysis (Eigenstructure Analysis).
Finally, we apply these tools to the product development process of the digital wireless telephone at the
sponsor company.

4.2 Partitioning

Partitioning is a process whereby the tasks in the DSM are rearranged by exchanging rows/columns
(swapping) in an attempt to find a lower triangular solution [38]. As mentioned in Chapter 2, a lower
triangular ordering represents an uncoupled design problem (no feedback) where each task receives all of
its required information from its predecessors. |t is rarely the case that a lower triangular solution is
obtained, but rather a block lower triangular solution. Partitioning is also a useful tool in identifying the
optimal sequence for a given set of tasks, or in identifying coupled blocks of tasks within the DSM. Here,
we use partitioning to perform the latter, and as a precursor to controlling features and total work analysis.
As an example, Figure 4.1a shows an unpartitioned binary DSM (the same binary DSM previously shown
in Figure 2.2 with the coupling between Tasks E and F removed for illustrative purposes). Figure 4.1b
shows the corresponding partitioned binary DSM.

A B C D E F _|.=_ A E C D B
A ol X F |3
B X |5 X Al X |B%
C X | = COUPLED E -
D X R BLOCK\C\
E X | X |5 D
F g B X

(a) (b)

Figure 4.1: Unpartitioned and Partitioned Binary Design Structure Matrices

The solution represented by this ordering (F, A. E, C, D, B) is block lower triangular. The shaded blocks
located on the diagonal represent individual tasks (Tasks F and A) and coupled sets of tasks due to
feedback (Tasks E, C, D and B), while the marks below the diagonal represent feedforward. Later in this
chapter, controlling features and total work analysis will be performed on the 4 x 4 coupled block (Tasks
E, C, D and E} identified here via partitioning.
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There are a number of different algorithms and approaches that can be used to perform partitioning.
There is a publicly available software tool from NASA called DeMAID/GA (Design Manager's Aid for
Intelligent Decomposition with a Genetic Algorithm) [29, 30, 31, 33] that automates partitioning, and was
used in performing this research (described later in this chapter). DeMAID uses its own language for
describing the structure of the DSM. Coupling strengths are captured using a seven-lavel scale:
Extremely Weak (EW), Very Weak (VW), Weak (W), Neutrai (N), Strong (S), Very Strong (VS), and
Extremely Strong (ES). Code describing the structure of the DSM is input to DeMAID, partitioning is
performed using a knowledge base coupled with a genetic algorithm, and the software outputs the optimal
lower triangular or block lower triangular ordering [28, 32].

As an example, Figure 4.2a shows an unpartitioned numerical DSM (the same numerical DSM previoiisly
shown in Figure 2.3 with the coupling between Tasks E and F removed for illustrative purpcses). Note
that we have replaced the numerical values with a three-level coupling strength arrangement: Low (L), for
values from 0.0 to 0.4, Medium (M), for values from 0.5 to 1.2, and High (H), for values from 1.3 to 2.7.
We have also placed arbitrary task times in the on-diagonal positions for illustrative purposes (numbers
11,37, 25, 18, 29, and 32). Figure 4.2b shows the corresponding partitioned numerical DSM.

A B C D E F F A E C D B

A 11 L F |32}

Bl H]|37 H Al L as

C L |.25. E

D H A8 C

E M | M |:29! D

F +32: B H

(@ (b)

Figure 4.2: Unpartitioned and Partitioned Numerical Design Structure Matrix

Figure 4.3a shows input code to DeMAID corresponding to the DSM shown in Figure 4.2a. Note that we
have replaced the three-level coupling strengths with corresponding DeMAID coupling strengths as
follows: High (H) = Extremely Strong (ES), Medium (M) = Neutral (N), and Low (L) = Extremely Weak
(EW). Figure 4.3b shows the DeMAID output corresponding to the partitioned DSM shown in Figure 4.2b,
resulting from its own partitioning algorithm (note the following: 1) DeMAID allows a cost to be associated
with each task - here we have assumed that the cost of each task is 0 as noted by the “0" in the fourth
position of each “module” line of code, 2) Task #7, labeled “GOAL", is an artificial task sometimes
generated by DeMAID to reach a solution, and 3) the input-output convention is reversed in DeMAID).

Clearly, DeMAID’s solution is the same block lower iriangular ordering (F, A, E, C, D, B) previously
identified in Figure 4.2. Again, later in this chapter, controlling features and total work analysis will be
performed on the 4 x 4 coupled block (Tasks E, C, D and E) identified here via partitioning.

Appendix B shows instructions and Visual Basic code that generates the DeMAID code in this example by
converting a DSM stored in a Microsoft Excel spreadsheet to a format suitable for input to DeMAID.
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(title dsm) i Label Time

(maxmum 7)
37 | 8

(module 1 A0 11 AukB)
18 2
25 3
29 4

(module 2 B0 37 B uk C D) 1
11 ‘_—' g

(module 3C 025 C ukE)
(module 4 D 0 18 D uk E)
F 32 {6
GOAL 0 *— 7

(module 5 E0 29 E uk B)
(module 6 F0 32 Fuk A)
(module 7 GOAL 0 0 goal uk F)
(strength uk es AB)
(strength uk ew B C)
{strength uk es B D)
(strangth uk n C E)
(strength uk n D E)
(strength uk es E B)
(strength uk ew F A)
(strength uk n goal F)

> M N O ©

~N O A pHp W0 N

(a) (b)
Figure 4.3: DeMAID Code and Output

4.3 Work Transformation Matrix (WTM)

Controlling features and total work analysis are based on the Work Transformation Matrix {(WTM) model.
The assumptions underlying the WTM model are as follows [35]:

Every task is performed during each iteration stage.

Each task creates a deterministic amount of rework for other tasks.

Rework performed in the current iteration stage is a function of work performed in the previous
iteration stage.

The WTM models design iteration by anaiyzing a coupled set of design tasks from a numerical DSM. The
coupled set of design tasks is identified via partitioning, on which controlling features and total work
analysis are then performed.

Recall that the on-diagonal elements of the DSM represent an intra-task metric. Here, this meiric is the
amount of time it takes to complete a task during its first iteration. The off-diagonal elements of the DSM
represent an inter-task meiric. Here, this metric is the strength of dependence between tasks, which
causes rework. Rework is defined as “the required repetition of a task because it was originally attempted
with imperfect information (assumptions)” [35]. For example, a coupling strength of 0.5 between Task A
and B, would be interpreted to say that if Task A is performed, it causes 50% of Task B to be reworked.
Rework gives rise to iterations. As information is acquired, the amount of rework diminishes, and the
design problem converges.

The WTM model begins with a work vector u,, an n-tuple, where n is the number of counled design tasks
to be completed, as well as the dimension of the coupled block identified via partitioning. The elements of
u, represent the amount of work to be performed on each design task after iteration r. During each
iteration, all work is performed on the design tasks and each design task creates rework for other design
tasks. The WTM matrix contains amounts of rework in the off-diagonal positions, and task times in the
on-diagonal positions. The elements of the n x n matrix A are the off-diagonal elements of the WTM, while
the elements of the n x n matrix W are the on-diagonal elements of the WTM. For example, if all of the
design tasks in the DSM are coupled, then A is the off-diagonal elements of the entire DSM, while W is the
on-diagonal elements of the entire DSM.

The work vector u, changes during each iteration stage, according to the relation shown in Equation 4.1.
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uu-l = Aul
Equation 4.1

The n elements of the initial work vector u, are all ones, which is interpreted to mean that work has yet to
be performed on all of the design tasks. The work vector u, can therefore be expressed as shown in
Equation 4.2.

u = Ay,

Equation 4.2

The total work vector U, and n-tuple, is the sum of all of the work vectors, and is expressed in units of the
initial amount of work to be performed. This vector represents the total number of times each of the
design tasks is attempted during the M iterations that occur between iterations, as shown in Equation 4.3.

M M M
U =Zu, =2A'u0 =(2A')uo
t=0

=0 1=0
Equation 4.3

if the n x n matrix A is diagonalizable (has n linearly independent eigenvectors), it can be decomposed by
performing diagonalization. Diagonalization factors A into a product of the form shown in Equation 4.4 .

A= SAS" where S= dl.agonahzmg elgenvector'matrlx of A
A = diagonal eigenvalue matrix of A

Equation 4.4

If A is diagonalizable, the column vectors of the n x n diagonalizing matrix S are the eigenvectors or
characteristic vectors of A, and the elements of the n x n diagonal matrix A are the corresponding
eigenvalues or characteristics values of A. A' can therefore be expressed as shown in Equation 4.5.

A'=SA'S™
Equation 4.5

Substituting Equation 4.5 into Equation 4.3, the total work vector U can be expressed as shown in
Equation 4.6.

M
U= s(z N )s-'u0
1=0

Equation 4.6

As M approaches infinity, the total work vector is bounded as long as the system is stable (the maximum
eigenvalue is less than one). A sufficient, but not necessary, condition for stability is that the entries in
avery row or in every column of the matrix A sum to less than one [35]. Taking the limit as M increases
toward infinity, we use the relation shown in Equation 4.7.

M
’Lim ZA‘ =(I-A)" where [ = identity matrix (diagonal of ones)
==20
Equation 4.7

Finally, substituting Equation 4.7 into Equation 4.6 we can express the total work vector U as shown in
Equation 4.8.
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U=SU- A)"S"u0
Equation 4.8

Given the task durations in the diagonal positions of the matrix W, we can calculate the total amount of
time required by each design task in the vector T, as shown in Equation 4.9.

T=WU
Equation 4.9

Given this mathematical framework, we can now describe the specific steps for using the WTM model to
perform controlling features and total work analysis.

4.4 Controlling Features and Total Work Analysis

Once a coupled set of design tasks has been identified via partitioning, the next step in using the WTM as
an analytical tool is to examine the controlling features of design iteration. Controlling features analysis
identifies design modes. Design modes are defined as “groups of design tasks that are very closely
related such that working on any one of them creates significant work, directly or indirectly, for each of the
other tasks within the model” [35]. A design mode can typically identify a critical subset of design activities
or a subproblem of the overall development process. Using the eigenvalues and eigenvectors described
in the previous section, we can use the WTM to identify design modes.

Eigenvalues and eigenvectors are well developed concepts in linear algebra [15]. They play an important
role in the solution of systems of linear differential equations and in observing the behavior of various
complex systems. Smith and Eppinger write [35]:

“The interpretation of the eigenvalues and eigenvactors for design problems is similar to the
eigenstructure analysis used o examine the dynamic motion of a physical system. In the
discrete time description of linear dynamic systems, each eigenvalue corresponds to a rate
of convergence of one of the modes of the system (a natural frequency determining the
decay or oscillation of the mode). The eigenvectors identify the mode shapes of natural
motion, quantifying the participation of the state variables in each mode.”

In other words, the eigenvalues and eigenvectors describe the rate and the nature of convergence of each
design iteration. The magnitude of eigenvalue n characterizes the geometric rate of convergence of
design mode n. The m-th entry in the corresponding eigenvector n characterizes the relative contribution
of design task m to design mode n. The largest eigenvalue will identify the slowest design mode, or, the
design mode that plays the most significant role in determining the geometric rate of convergence. The
largest entry in the corresponding eigenvector will identify the design task that has the largest contribution
to this design mode. Therefore, by ranking the eigenvalues we can rank the design modes. By ranking
the entries in the corresponding eigenvector, we can rank the contributions of design tasks to these
modes. In doing so, we can identify the controlling features of each design iteration.

To rank the design modes, Smith and Eppinger recommend using the ranking factor or ranking criteria, as
shown in Equation 4.10.

ranking _ factor, = where A, = eigenvalue no. i

1
I-Re(4)
Equation 4.10

To rank the design tasks in the corresponding eigenvectors, Smith and Eppinger recommend calculating
the participation factors or participation vector for each design mode, as shown in Equation 4.11.
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Equation 4.11

We can define a participation matrix P that consists of all of the participation vectors, and rank the design
tasks within each design mode by ranking the corresponding entries in the matrix P.

The final step in using the WTM as an analytical tool is to examine the total wor« vector U shown in
Equation 4.8. By ranking the entries in the total work vector we can identify those design tasks that
experience the largest number of iterations, or those design tasks that perform the most work. The
design tasks in the total work vector are easily ranked according to their numerical contributions.

As an example, we perform controlling features and total work analysis on the 4 x 4 coupled block
identified via partitioning in the previous section, as shown in Figure 4.2. First, we replace the three-level
coupling strengths (High (H), Medium (M), and Low (L)) with numericai equivalents of 0.50, 0.25, 0.05
(note that for larger matrices, to perform the eigenstructure decomposition, these values must be scaled
down proportionally such that the off-diagonal values in every row or column sum to less than one),
producing the 4 x 4 WTM matrix for Tasks E, C, D and B, as shown below:

29 025 025 O | E
0 25 0 050

c
0 0 18 050 D
050 O 0 37| B

WIM =

The matrices A and W are easily determined as follows:

0 025 025 0 29 0 0 0
0 0 0 005 0 25 0 0
A=l o 0o 0 050 =10 0 18 o
050 0 0 0 0 0 0 37

Diagonalization of A according to Equation 4.4, produces the eigenvector matrix S and eigenvalue matrix A
as follows:
0.1690+0.4276i 0.1690-04276i 0.4598 0
-0.0677-00100i -0.0677+00100i 00685 0.7071
-06775-0.1005i ~0.6775+0.10051 0.6849 -0.7071

| 03488-04395i  03488+04395i 05611 0]
—0.2048 +0.3548i 0 0o 0
A 0 ~02048-03548i 0 O
- 0 0 04097 0
0 0 0 0
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Using Equation 4.11, the participation matrix P is calculated as follows:

~-00768-0.0513i -00768+0.0513i 17164 0
00123-00061i 00123+0.0061; 02557 08182
0.1234-0.0609i  0.1234+0.0609; 25569 -0.8182

—-0.0074+0.1125 -00074-0.1125; 2.0950 0

Using Equation 4.10, the ranking factors are as follows:

1 0.8300
2 0.8300
3 1.6941
4 0

From the rankings, it is clear that the highest ranked design mode is associated with the third eigenvalue
(A = 0.0819). Looking at its corresponding eigenvector and/or participation vector, we see that the third
task (eigenvector value = 0.6849, participation vector value = 2.5569) and fourth task (eigenvector value =
0.5611, participation vector value = 2.0950) contribute the most to the mode (Tasks D and B respectively).
We can therefore conclude that the strong relationship between Tasks D and B govern the rate and nature
of convergence of this design problem.

Using Equation 4.8 and Equation 4.9, the total work vector U and total time vector T are calculated as
follows:

17584] E 509933] E
10940| C 27.3490| C
~|19396| D ~1349128| D
18792 | B 695302 | B

We can finally conclude that Tasks D and B perform the most work (experience the largest number of
iterations), while Tasks B and E require the most time.

Appendix C shows MATLAB code that implements the eigenstructure analysis performed in these
examples by ranking the design modes using the ranking factor, ranking the design tasks using the
participation factors, and ranking the entries in the total work vector.

4.5 Research Methodology

To perform partitioning, we used the aforementioned publicly available software package DeMAID from
NASA. Because our coupling data was collected on a three-level scale (High, Medium, Low - see Section
2.8 for the definitions of these coupling strengths), it had to be mapped to corresponding DeMAID coupling
strengths. In selecting the mapping relationship, we chose to maximize the dynamic range of the
software's capabilities, as shown in Table 4.1.

To perform controlling features and total work analysis we had to first ensure that we satisfied the
assumptions underlying the WTM model. Once again, because this research was focused specifically on
those activities conducted during the rapid prototyping iterations (Design, Integration, and Test phases),
we ignored the tasks that occurred during the Requirements phase.
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bho De elfle Do De ntio
H High ES Extremely Strong
VS Very Strong
S Strong
M Medium N Neutral
w Weak
VW Very Weak
L Low EW Exiremely Weak

Table 4.1: DSM Coupling Strengths and Corresponding DeMAID Mappings

The first assumptions states that all o the design activities occur in parallel. To satisfy the first
assumption, we grouped the design tasks accordingly. This was almost the same as grouping the tasks
by process flow phase. We therefore grouped the tasks in the Design phase together (Hardware and
Firmware), and we grouped the tasks in the Integration and Test phases together. The reason we
grouped the tasks in the Integration and Test phases together was because it was believed that although
these activities were slightly separated in time, they closely resembled parallel iteration. This was
particularly true given the concurrent engineering nature of the research environment. This argument was
also supported by the high reciprocal coupling between the Integration and Test phases revealed during
coupling analysis in Chapter 3 (see Section 3.7.2 for the coupling analysis). The majority of the tasks that
occurred within these groupings approximated parallel iteration. The only clear exceptions were the tasks
associated with Analog Design and Digital Design, which were executed sequentially.

The second assumption states that the parameters in the matrix are time-invariant. Within the research
environment, there were several iterations of the Design, Integration, and Test phases. However, we
modeled all of the iterations as a single iteration, and performed our analysis only once for each grouping.
In others words, we assumed that the couplings that existed during each prototype iteration were the
same for every prototype iteration. Therefore, this second assumption was valid inasmuch as the
couplings identified during data collection remained constant during the time between prototype iterations,
and remained constant across each of the several prototype iterations. Because we segmented our
analysis into parallei activities that occurred repeatedly for each prototype iteration, and because the time
between each interval was relatively short, this second assumption was likely to hold.

The third assumption states that rework performed in the current iteration stage is a linear function of the
work performed in the previous iteration stage. Because we were modeling each prototypa iteration as a
single prototype iteration, we needed only be concerned with rework that was performed between these
intervals, as opposed to acioss all of the intervals. In other words, since there were likely to be very few
iterations of design tasks between each prototype iteration, this third assumption was also reasonable as
most of the work was performed during the first iteration.

Finally, to perform controlling features and total work analysis, we again replaced the three ratings (High,
Medium, and Low) with corresponding numerical values of 0.50, 0.25, and 0.05 (again, for large matrices,
to perform the eigenstructure decomposition, these values must be scaled down proportionally such that
the off-diagonal values in every row or column sum to less than one - consequently, these values were
actually scaled down by a factor of five). Smith and Eppinger have shown that the results of controlling
features and total work analysis are not sensitive to minor changes in these values {35].

In the following sections, we perform partitioning and controlling features/total work analysis on the DSM
at the sponsor company. This is done by first searching for strong correlations between design tasks
within the process flow groupings (Hardware/Firmware and Integration/Test). In doing sc, we seek to
identify coupled subsets of design activities that govern the iterations of the product development process.
Lastly, we search for similar correlations between functional groups as a means to corroborate earlier
findings.

64



4.6 Hardware and Firmware Design Phase Analysis

The 73 tasks performed during each iteration of the Hardware and Firmware Design phases were focused
on the completion of engineering samples (hardware prototypes) and firmware releases (firmware
prototypes). Also conducted during these phases were various supportive and integrative activities prior
to the Integration and Test phases (see Section 2.6 for a detailed description of the process flow phases).
In performing partitioning and controlling features/total work analysis on the tasks within these phases, we
sought to identify strongly coupled sets of activities that possibly slowed the process of designing the
hardware and firmware for the handset.

4.6.1 Partitioning

Partitioning of the 73 x 73 DSM of design tasks in the Hardware and Firmware Design phases resulted in
the partitioned DSM shown in Figure 4.4.

Figure 4.4: Partitioned DSM of the Hardware and Firmware Design Phases

All of the tasks contributed to the partitioning solution. The large coupled block located in the upper left
corner of the diagram consisted of 69 tasks. The 4 tasks that were not coupled to the large block were:
“Sl: Integrate System Components”, “MC: Boot Block Support”, “MC: NAM Programming Changes”, “ID:
Industrial Design Release”. With the exception of the last task, these activities were either tasks that
required very little effort to complete (and therefore had little interaction with other tasks), or tasks that
were performed in isolation from other tasks. In the latter case, many of the interviewees misinterpreted
the task “ID: Tool Parts Available" as representative of Industrial Design's final deliverable, as opposed to
“ID: Industrial Design Release”, causing it to be coupled to very few tasks.

4.6.2 Controiling Features Analysis and Total Work Analysis

Controlling features and total work analysis was performed on the 69 x 69 coupled block of Hardware and
Firmware Design tasks identified via partitioning. Figure 4.5, Figure 4.6, and Figure 4.7 show the top
three ranked design modes as well as the top twelve ranked design tasks within each mode for the
Hardware and Firmware Design phases.

Design Mode #1 was fairly cross-functional including tasks from Manufacturing, Analog Design, Industrial
Design, and Supply Chain Management. The common element among these tasks was the acquisition of
parts and manufacture of the analog printed circuit board (PCB). The analog PCB consisted of analog
electronic components that were placed (or printed) on a circuit board with traced interconnections.
Industrial Design was responsible for providing a Mechanical Computer Aided Design (MCAD) release to
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Analog Design. The information in this release described the chassis dimensions and was heavily
influenced by the component chassis test (Task #6). Without this information, the Analog Design group
could not place/route the components on the circuit board and perform a design rule check. These tasks
immediately preceded generating the artwork (solder stencil) for Manufacturing, preparing documents (bill
of materials) for Supply Chain Management, and formatting the Electronic Computer Aided Design
(ECAD) release for the circuit board supplier (all three activities encompassed in Task #2). Meanwhile,
Manufacturing performed Design for Assembly (DFA) and Design for Manufacturing (DFM) reviews
(Tasks #3 and #5) in preparation for the build. Finally, once Supply Chain Management had received the
bili of materials (Task #7) and secured standard and custom parts (Tasks #10 and #12), and the circuit
board had been received from the supplier, Manufacturing built preliminary prototypes (Task #4) and final
engineering samples (Task #5). We called this design mode “Analog Printed Circuit Board Parts and
Build". In identifying this design mode as the top ranked design activity that governed the rate and nature
of convergence of the design effort, one of our recommendations to the sponsor company was to
establish a cross-functional strategic design team centered around the radio frequency PCB.
Recommendations are summarized in Chapter 7.

As a result of Digital Design’s participation in the design mode (Task #8), we were inclined to include both
the analog PCB and digital PCB in the design mode. Our decision to select the anaiog PCB solely was
based on our observation in Chapter 3 using coupling analysis that there was a stronger reciprocal
relationship between Analog Design and Manufacturing, as opposed to Digital Design and Manufacturing
(see Section 3.6.2 for the coupling analysis). Also, although they were ranked high within the design
mode, we did not consider Task #9 (Industrial Design: Component LCD Test), and Task #11 (Reliability:
Board Test) as being particularly relevant to the mode.

Design Mode #2 involved tasks from Microcontroller Design, System Integration, and Digital Signal
Processor Design. With the exception of Task #3 (System Integration: Develop User Interface Test
Cases), the top eight ranked tasks were directly associated with Type 1 firmware. Type 1 was the
software that exchanged messages with the base stations and enabled calls to be originated and
terminated. Programming changes were required for code that adhered to an old standard, in order to
adhere to a new standard (Task #2). To save power, the handset is powered down when it is not in use
and it is not in its slot (Task #6). To establish service with the base station, a standard protocol is
established for system determination which enables the handset to find a service provider (Task #8).
Normally, the handset would have to perform an exhaustive search of the entire frequency space to
establish such service. To accelerate this process a method call Roaming (Task #5) was devised, which
uses a database to perform the search. One way to acquire this database is via Type 3 service
provisioning, where the database is downloaded to the handset via the radio path (Task #7). Another way
to obtain the database is by manufacturing it with the handset. Finally, the Microcontroller Design
firmware release (Task #1) was strongly coupled to the Digital Signal Processor Design firmware release
(Task #4) and layer 2 processes (Task #10) which perform error detection and retransmission of the
signal to the base stations, and System Integration's development of Type 1 tests (Task #12). We called
this design mode “Type 1 Design and Test". In identifying this design mode as the second ranked design
mode, one of our recommendations to the sponsor company was to establic - a cross-functional strategic
design team centered around Type 1 firmware. Recommendations are summarized in Chapter 7.

Design Mode #3 included Reliability component-level and board-level tests (Tasks #1 and #3), and
Manufacturing Design for Testing (DFT) reviews and post-build analysis (Tasks #2 and #4). It described
feedback from Reliability to Manufacturing regarding process-related problems that were identified during
testing. This design mode was not considered as strong as the previous two, and therefore did not result
in a formal recommendation.
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We have previously mentioned that the sponsor company made a strategic decision to decouple hardware
and firmware. As further evidence of its manifestation, both of the top ranked design modes were
centered on one of these areas to the exclusion of the other. Design Mode #1 was specifically related to a
hardware design activity. Design Mode #2 was specifically related to a firmware design activity. This was
a useful observation from three perspectives. First, it once again confirmed the effective implementation
of this strategy. Second, it provided evidence that our initial segmentation of tasks by process flow phase
was successful in capturing parallel iteration. Third, it further verified the WTM model's ability to identify
the main features of an actual design process.

Figure 4.8 shows the top twelve ranked design tasks in the total work vector for the Hardware and
Firmware Design phases. According to the data, tasks performed by Manufacturing performed the most
work. The top three ranked design tasks in the total work vector were ali Manufacturing activities including
building engineering samples and preliminary prototypes (Tasks #1 and #2). This underscored
Manufacturing's importance in the design process. In fact, it was observed in the research environment
that a delay in the manufacturing schedule was inevitably a corresponding delay in the product
development process.

The total work vector rankings also supported earlier conclusions regarding the importance of the analog
printed circuit board design mode. Tasks from this design mode reappeared in these rankings as twelve
of the top thirteen design tasks. To accentuate the strength of its importance and the importance of
hardware design, the highest ranked design task from the Type 1 design mode and firmware design was
ranked 25" in the vector. All of the preceding tasks in the total work vector were hardware related.

4.7 Integration and Test Phases Analysis

The 33 tasks performed during each iteration of the Integration and Tezt Design phases were focused on
integration and system-level testing of the hardware and firmware deliverables (engineering samples and
firmware releases). Also conducted during these phases were additional environmental and user-related
tests (see Section 2.6 for a detailed description of the process flow phases). In performing partitioning
and controlling features/total work analysis on the tasks within these phases, we sought to identify strongly
coupled sets of activities that possibly slowed the process of integrating and testing the different elements
of the handset.

4.7.1 Partitioning

Partitioning of the 33 x 33 DSM of design tasks in the Integration and Test Design phases resulted in the
partitioned DSM shown in Figure 4.9.
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Figure 4.9: Partitioned DSM of the Integration and Test Phases
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All of the tasks contributed to the partitioning solution. The large coupled block located in the upper left
corner of the diagram consisted of 25 tasks. The 7 tasks that ware not coupled to the large block were:
“Sl: System Integration Release”, “SE: Regulatory Emission Test", “SE: Regulatory Scan”, “SE: Regulatory
Compliance Certification”, “ST: System Test Release”, “REL: Reliability Release”, “Sl: Execute
Accessories Test Cases”. All of these activities were either final deliverables that fed information back to
earlier phases, or tasks that were performed in isolation from other tasks.

4.7.2 Controlling Features Analysis and Total Work Analysis

Controlling features and total work analysis was performed on the 25 x 25 coupled block of Integration and
Test tasks identified via partitioning. Figure 4.10, Figure 4.11, and Figure 4.12 show the top three ranked
design modes as well as the top ten ranked design tasks within each mode for the Integration and Test
phases.

Design Mode #1 was considered indigenous to the System Integration group. The top three rankad tasks
in the design mode were all associated with this group (Field Test Support, Execute Support Tools Test
Cases, and Execute User Interface Test). However, we were unable to identify 2ny underlying relationship
between these activities.

Design Mode #2 characterized unit and system-level testing of the audio/acoustics system. This mode
included tasks from Industrial Design, Reliability, Human Factors, and System Test. The audio/acoustics
system on the handset included a microphone, receiver, and alerter. Essentially, each of these functional
groups evaluated the audio/acoustics system from a different perspective. Industrial Design evaluated the
performance (e.g. frequency response) of the system and its response to various environmental
conditions (Task #1 and Task #3). Reliability also evaluated the system's response to environmental
conditions (Task #2). Human Factors evaluated the subjective performance of the system to human
listeners using Mean Opinion Scores (MOS), the overall perforrnance of the handset (including
audio/acoustics) in the field, and verified that the alerter was functioning appropriately (Task #4, Task #6,
and Task #9). System Test also evaluated the performance of the system in a number of areas (e.g.
frequency response, Mean Opinion Scores (MOS), and attenuation) (Task #5). Given thes= results there
was a noticeable duplication of effort associated with many of these tests. In recognizing this redundancy,
one of our recommendations {o the sponsor company was to reduce the number of audio/acoustics
related tests. Recommendations are summarized in Chapter 7.

Design Mode #3 was clearly associated with the handset's user interface. This mode included tasks from
System Test, Human Factors, and System Integration. The user interface on the handset included a
display (Liquid Crystal Display (LCD)), keypad/buttons, and audio/acoustics system, The user interface
related tests were designed to verify proper functioning of the menus on the LCD and the alerter, in
response to various selections on the keypad/tuttons. Each of these functional groups played a role in
evaluating the user interface. System Test pericrmed tests that specifically evaluated the user interface
(Task #1). Human Factors evaluated the aleriar tones, the user interface itself, and the overall
performance of the handset {including the user interface) in the field (Task #2, Task #3, and Task #4).
Lastly, System Integration also evaluated the user interface itself (Task #6). Once again, given these
results there was noticeable duplication of effort associated with many of these tests. In recognizing this
redundancy, one of our recommendations to the sponsor company was to reduce the number of user
interface related tests. Recommendations are summarized in Chapter 7.
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Figure 4.13 shows the top twelve ranked design tasks in the total work vector for the Integration and Test
phases. According to the data, tasks conducted by System Integration performed the most work. The top
three ranked design tasks in the totai work vector were all System Integration activities including field test
support (Task #1), execution of the user interface test cases (Task #2), and execution of support tools test
cases (Task #3). We could have perhaps concluded that the completion of these activities was of critical
importance to the integration and test process. However, there were two reasons why we considered this
data to be incon:lusive. First, none of the tasks were along the critical path. Second, the first and third
tasks did not represent activities that were central to the handset's completion, but rather activities that
supported the handset's development.

Generally speaking, the rankings in Design Mode #1 and the total work vector did not yield useful results.
It is believed that this was a result of the fact that many of the design tasks in the Integration and Test
phases were performed in relative isolation from one another, once operational hardware and/or firmware
was delivered from the design phases. However, Design Mode #2 and Design Mode #3 were considered
representative of a strong interrelationship between a number of design activities. It therefore appeared
that our decision to group the tasks in the Integration and Test phases together, as opposed to separately,
produced worthwhile results. As an exercise, controlling features and total work analysis was performed
on the Integration and Test phases separately. Not surprisingly, the results yielded already recognizable
groupings of tasks that were largely contained within the System Integration and System Test groups, for
the Integration and Test phases respectively. Nonetheless, given these results and the resuits from
Design Mode #1 and the total work vector, we concluded at minimum, that System Integration played a
very important role in the design process.

4.8 Functional Group Analysis

In performing partitioning and controlling features/total work analysis on the fifteen functional groups of the
group DSM, we sought to identify strongly coupled sets of functional groups that possibly slowed the
overall product development process (see Section 2.5 for a detailed description of the functional groups).
Our main objective here was to identify sets that corroborated earlier findings.

4.8.1 Partitioning

Partitioning of the 15 x 15 group DSM of functional groups resulted in the partitioned DSM shown in Figure
4.14.

13
18]

Figure 4.14: Partitioned Group DSM of Functional Groups

All of the tasks contributed to the partitioning solution. The large coupled block in the upper left corner of
the diagram consisted of fourteen functional groups. The single functional group that was not coupled to
the large block was Product Management. This was due to the fact that Product Management was
represented by a single task which was not dependent on other tasks (a customer requirements
document).
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4.8.2 Controlling Features Analysis and Total Work Analysis

Controlling features and total work analysis was performed on the 14 x 14 coupled block of functional
groups identified via partitioning. Figure 4.15, Figure 4.16, and Figure 4.17 show the top three ranked
design modes as well as the top ten ranked functional groups within each mode.

Design Mode #1 revealed that System Integration and Microcontroller Design were very closely related
functional groups. This also supported an earlier observation that was made in Chapter 3 using the DSM
representation by functional regarding the need for strong communication between these groups (see
Section 3.6.1 for the DSM representation analysis). This reinforced the importance of strong
communication between these groups.

Design Mode #2 confirmed our earlier recommendation to form a cross-functional strategic design team
around analog printed circuit boards. Here, where we analyzed relationships at the functional group level
rather than the task level, the same functional groups represented by the tasks were identified as closely
related including: Manufacturing, Industrial Design, Analog Design, Reliability, and Supply Chain
Management.

Design Mode #3 did not yield useful information.

Figure 4.18 shows the top twelve ranked functional groups in the total work vector. These results once
again underscored Sysiem Integration's and Manufacturing’s importance to the design process, as both
groups appeared at the top of the rankings.

4.9 Discussion

In this chapter, we performed Controlling Features and Total Work Analysis of the product development
process at the sponsor company. Controlling featuies analysis identifies design modes, which are groups
of closely related design tasks, while total work analysis identifies those design tasks that experience large
amounts of iteration. We also provided an introduction to Partitioning, an analytical tool that uses the
DSM framework to identify coupled sets of design tasks, and the Work Transformation Matrix (WTM), a
DSM-based model that provides the foundation for contrclling features and total work analysis, using the
results of partitioning and eigenstructure analysis.

In performing our analysis, a few simplifying assumptions were made. The product development process
at the sponscr company spanned several iterations of the Design, Integration, and Test phases. We
modeled the process as if it consisted of a single global iteration of these phases, with various local
iterations of the design tasks. We also relaxed some of the basic assumptions that underlie the WTM
model such as parallel iteration and deterministic amounts of rework. Despite these measures,
partitioning and controlling features/total work analysis demonstrated considerable robustness.

McCord and Eppinger describe the WTM tools as “suggestive rather than definitive”, in that they provide a
good starting point for reorganizing tasks as opposed to a well defined solution [18]. This was clearly the
case in this research. One could argue that in our interpretation of the design modes we created
“artificial” relationships between design activities. However, each of the design modes were presented to
management at the sponsor company who confirmed the potertial for their existence based on intuition
and experience. Furthermore, our observations from coupling analysis were helpful in refining our
interpretation of the design modes, while our results from eigenstructure analysis at the functional group
level were helpful in corroborating our interpretation of the design modes. Both of these methods can
serve as a supplement to the WTM model.
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Figure 4.15; Functional Groups - Design Mode #1

Manufacturing

Induslirial Design

Analog Design

Rellabllity

Supply Chaln Management

Digilal Design

Human Factors

System Architecture

System Engineering | %] 0.0230

Digital Signal Processor Design [1]0.0126 Ranking Factor = 1.0586

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0,7000 0.8000 0.0000

Participation Factor
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To perform this analysis we used a Task-Level DSM whose elements consisted ¢f design tasks. This was
in contrast to a Parametric-Level DSM whose elements consist of technical parameters. As mentioned
earlier, consistent with a rapid prototyping approach, both the hardware and firmwara on the handset
experienced increasing levels of functionality. These functions were easily captured by the task-level
DSM in the firmware design groups, because design activities and handset functions were inextricably
linked within these groups. For example, Caller Number Identification and Presentation (CNIP or caller
ID) was both a design task in that programmers had to write and test CNIP code, and a handset function
in that the CNIP feature was introduced at a specific point in the handset's evolution. On the other hand,
they were not so easily captured in the hardware design groups where design activities stood separate
from handset functions. For example, the ability to transmit a signal on the radio path is a function of the
analog printed circuit board. This function was introduced at a specific point in the handset’s evolution.
However, the design tasks associated with this function range from drawing and updating a schematic to
placing and routing components. While the task-level DSM was useful in providing insight to the product
development process, a parameiric-level DSM (where the parameters would be represented by the
various functions) may have yielded even greater insight by possibly suggesting an optimal ordering for
introducing the functions [37].

Nonetheless, in using the task-level DSM to perform controlling features and total work analysis,

partitioning and the WTM model were shown to be powerful tools in generating recommendations for the
sponsor company such as the reorganization of tasks and the establishment of strategic design teams.
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CHAPTER 5: MODELING HARDWARE COMPLETION TIME

5.1 Modeling Hardware Development

Hardware denotes the physical electronic components of a device or apparatus. For a digital wireless
telephone, hardware specifically refers to the printed circuit board (PCB) or printed wiring board (PWB)
resident in the handset that includes analog and digital circuitry.

The design and manufacture of a PCB is a fairly well understood process. First, the circuit is designed
typically using computer-aided design (CAD) tools that offer a library of electronic components such as
resistors, capacitors, diodes, and integrated circuits (ICs). Using CAD tools, the circuit can be simulated
and its performance can be evaluated and verified against specifications.

Second, using CAD and computer-aided manufacturing (CAM) tools, a simulation is performed that
models the placement of components onto the target circuit board and the routing of interconnections
between components. This is usually a challenge given the limited amount of space that is available on
the circuit board, and the often unanticipated interactions that can occur between components that are
within close proximity to one another.

Finally, once the blank circuit board (also called “unpopulated” circuit board) with interconnect traces is
obtained, and the necessary components have been secured, the PCB is manufactured by physically
placing the components and soldering their connections {e.g. pins or legs) cnto the circuit board (also
called “popuiating” the circuit board). Soldering is typically performed using one of two manufacturing
approaches: reflaw soldering and wave soldering.

Reflow soldering involves surface mount technology (SMT), where the leads of the components sit on
pads on the circuit board [7]. A solder paste is applied to the pads which, when heated in a “reflow” oven,
combines with the molten solder on the pads to form a joint with the surface mount devices. Wave
soldering involves through-hole technology, and is the most economical means of mass soldering leaded
components into holes on a circuit board [7]. The circuit board travels aiong a conveyor system. It is first
passed over a flux station, then preheated, and finally passed over a “wave” of molten solder. The joints
are formed between the component's leads and the pads, or plated through-holes of the board. Figure
5.1a shows a simplified hardware process flow diagram.

TASK
10 days
DESIGN Design _
CIRCUIT Circuit '
¥ " 5 days
PLACE AND ROUTE Place and Route n
COMPONENTS Components :
[ ] E
1 7 days
MANUFACTURE Manufacture _
PCB PCB
TIME P
(a) (b)

Figure 5.1: Simplified Hardware Process Flow Diagram (Sequential) and
Project Management Representation
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In theory, hardware development is a fairly sequential process. There is a series of tasks, each with a
strong precedence relationship to their predecessors, that constitute the steps from start to finish. To
model this process, a typical approach is to use traditional project management tools such as the Program
Evaluation Review Technique/Critical Path Method (PERT/CPM) or GANTT charts. PERT/CPM charts
depict tasks, task durations, and task dependencies, where the set of dependent tasks that together
require the longest amount of time (the “critical path”) are indicated in the chart [21]. A GANTT chart is a
representation of PERT/CPM in a matrix form where the vertical axis lists all of the tasks to be performed
and the horizontal axis is headed by columns that indicate the estimated duration for each task, skill
requirements, and the names of the individuals(s) assigned to the task [21]. Within the matrix itself are
horizontal bars that connect the starting period and ending period for each task. Figure 5.1b shows a
simplified project management representation of the hardware process flow diagram (rote that we
assume task times of 10 days, 5 days, and 7 days, for designing the circuit, placing and routing the
components, and manufacturing the PCB, respectively, this is done for later discussion).

In practice, hardware development is a sequentially iterative process. Information obtained during
downstream tasks, can typically cause the repetition of upstream tasks. As an exampie, the following
conditions could cause iteration: 1) while placing and routing the components an engineer discovers an
incompatibility between two components, causing the circuit to be redesigned, 2) while manufacturing the
PCB a technician determines that the spacing between two components is too close to perform soldering,
causing the components to be placed and routed again. Figure 5.2 depicts these conditions for the
simplified hardware process flow diagram shown in Figure 5.1 (note the following: 1) the tasks are lettered
A, B, and C, and numbered 1 through 5 including a start task and a finish task, and 2) we assume a
probability of 0.3 for the first iteration condition and a probability of 0.1 for the second iteration condition,
this is done for later discussion).

}

DESIGN
CIRCUIT,
A

ITERATION
10 days p=0.3

4

PLACE AND ROUTE
COMPONENTS;

8

ITERATION 5days

p=0.1 A

MANUFACTURE

Y

l 7 days
FINISH,,

Figure 5.2: Simplified Hardware Process Flow Diagram (Sequential Iteration)

Despite their usefulness, tools such as PERT/CPM and GANTT are no longer applicable given the
presence of iteration and its potential impact on completion time. Consequently, there exists a need for
more flexible project management tools. Two such tools that have been used to model sequential
iteration are the Signal Flow Graph and the Reward Markov Chain (or Reward Markov Model). The signal
flow graph is typically used in electrical engineering and is used for circuit and system analysis to model
discrete event systems [11]. The reward Markov chain is typically used in operations management,
manufacturing, reliability, and telecommunications network and computer modeling to conduct queuing
and system analysis for performance evaiuation [5].

In this chapter, we use the signal flow graph and the reward Markov chain to model hardware completion.
First, we describe each of these tools in detail, and then we present the results from applying them to one
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of the PCBs at the sponsor company. We conclude with a discussion of the strengths and weaknesses of
both models.

5.2 Signal Flow Graph

A signal flow graph is a network of directed branches that connect at nodes [11, 22]. Branch jk denotes a
branch originating at node j and terminating at node &, with the direction from j to k being indicated by an
arrowhead on the branch, as shown in Figure 5.3.

Node Node
Branch
(D)—=5(0)—
Py

Branch Transmittance

Figure 5.3: Signal Flow Graph Nodes, Branches, and Branch Transmittance

in modeling hardware completion time, the branches represent tasks, while the nodes serve to connect
related tasks. Associated with each branch is a branch transmittance P, that includes the transition
probability represented by the branch p;, the task time represented by the branch r, and the transform
variable z, as shown in Equation 5.1.

p;x = transition probability

—_ '
P, =p,z" where t; = task time

Equation 5.1

The Laplace transform is a generalization of the Fourier transform in the continuous-time domain. In
similar fashion, the z-transform is a generalization of the Fourier transform in the discrete-time domain.
The z-transform plays an important role in the analysis and representation of discrete-time systems.
Eppinger, Nukala, and Whitney write [11]:

“IThe z-transform is] used to connect the physical system (time domain) to the quantities
used in the analysis (transform domain). The z-transform simplifies the algebra, as it
enables us to incorporate the quaniities to be multiplied ([transition] probabilities) in the
coefficient of the expression, and to include quantities to be added (task times) in the
exponent. The resulting system is then analogous to a discrete sampled data system, and
the body of literature on this subject can be applied for the analysis thereof.”

As an example, Figure 5.4 shows a signal flow graph representation of the hardware process flow
diagram shown in Figure 5.2 (using the numbered convention 1 through 5).

We define the start node, or input node, as X(z). We define the finish node, or output node, as Y(z). The
system function, or transfer function H(z), is defined as the input-output relationship between X{(z) and Y(z),
as shown in Equation 5.2.

_ Y@
HO=% o
Equation 5.2
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Figure 5.4: Signal Flow Graph Representation of the Hardware Process Flow Diagram

The behavior of the signal flow graph network is captured by the transfer function H(z). The impuise
response is defined as the system response to a unit-sample sequence. !n modeling hardware
completion time, it is also a function representing the probability distribution of the completion time for the
network. Therefore, by determining the transfer function, we can determine the completion time.

5.2.1 Completion Time

To determine the completion time we must determine the transfer function H(z). To analyze a signal flow
graph and determine its transfer function, we can use standard operations on signal flow graphs [11] and
block diagram algebra [6]. Another useful technique for determining the transfer function of a signal flow
graph, particularly one with several feedback loops, is Mason’s Gain Formula [6). Mason’s Gain Formula
states that the transfer function H(z) from any input node X{(z) to any output node Y(z) can be determined
using the relation and definitions shown in Equation 5.3.

R(CONNN L ey
H@) =5 —AZ,G,. A,

where A =1 -{sum of all loop gains) + (sum of products of loop gains over all sets of two nontouching
loops) - (sum of products of loop gains over all sets of three nontouching loops) + ...
G; = gain of the ith forward path (i = 1, 2, ..., n) from input node X(z) to output node Y(z)
A= value of A if all loops that touch that ith forward path from X(z) to ¥(z) are excepted
and Forward Path is a simple, continuously directed path leading from a node X to a node Y.
Loop is a forward path where the nodes X and Y coincide.

Gain is the product of the transfer functions over all branches comprising a forward path or loop.
Nontouching denotes a set of loops such that no two of the loops have a node in common.

Equation 5.3

We can calculate the expected value of the completion time E[T] by differentiating the transfer function
H(z), and substituting z=1, as shown in Equation 5.4.

dH
E[r]= 2@
dz z=1
Equation 5.4

This result is possible due to the properties of the expression for the branch transmittance. The terms of
the transfer function are of the form puz'*. Taking the derivative, the terms are now of the form pys;ziix’.
Substituting z=1, the terms are now of the form p,t;. The sum of these terms (paths) represents the
expected value of the completion time for the process. Similarly, we can calculate the standard deviation
of the completion time STDEV(T], as shown in Equation 5.5.
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STDEV[T]= | ————4

Equation 5.5
To calculate these derivatives, we can often use the quotient rule as shown in Equation 5.6 [41].

dY(z) dX(z)
dH(z) =i( Y(z) )_ X(Z)_dz -Y(2) %
dz  di\X@)) X(z)’
Equation 5.6

Finally, given the transfer function, we can determine the Probability Distribution Function (PDF) and the
Cumulative Distribution Function (CDF) of the completion time using any number of methods. These
methods include monte carlo simulation of the signal flow graph network or polynomial division of the
transfer function.

Using the signal flow graph, similar distributions can be generated for time and cost [4]. This is not
performed here. Furthermore, the driving factors of an iterative process can also be identified for a signal
flow graph using eigenstructure decomposition {11, 24]. This analysis is almost idzntical to the
identification of design modes that was performed during controlling features analysis in Chiapter 4. This
is also not performed here.

As an example, we assume that the hardware development process shown in Figure 5.2 and Figure 5.4 is
modeled with task times ¢,; = 10, 1,3 = 5, and 13, = 7, and transition probabilities p;, = 0.3, p3; = 0.7, pg3 =
0.1, and p4s = 0.9. All of the remaining task times and transition probabilities are zero. These values are
interpreted as follows: circuit design requires 10 days, placing and routing the components requires 5
days, manufacturing the PCB requires 7 days, there is a probability of 0.3 that we will have to repeat circuit
design after placing and routing the components, and there is a probability of 0.1 that we will have to
repeat placing and iouting the components after manufacturing the PCB. The signal flow graph
representation is as follows:

FINISH
Y(2)

Mason’s Gain Formula from Equation 5.3, is applied as follows:

A=1-(z"-2"-03+7°-072"-0.1) =1-0.07z'* - 0.37"
G, =7°7-077-09 = 06377
A =1
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Finally, the transfer function H(z) is as follows:

Y(z) 0637

H(z) = X(z)  1-007z7 -03z"°

Using Equation 5.4 and Equation 5.5, the expected value of the completion time E/T] and the standard
deviation of the completion time STDEV(T] are as follows:

E[T] = 305 days STDEV([T] = 14.0 days

We conclude that the expected completion time for the hardw.:e process is 25.2 days, with a variance of
5.2 days. Performing polynomial division of the transfer function H(z), the Probability Distribution Function
(PDF) and the Cumulative Distribution Function {(CCF) of the completion time are as follows:

Probabliity Distribution Functlon (PDF) Cumulative Distribution Function (CDF)
07
08 N\ !
. 0.8
z 0.5 z
S 04 S o8
[}
-g 0.3 'E. 04
52 f a -
0.4 0.2
o & . - ES 3 1 0 - R Sy, ; : }
22 34 7 46 49 52 58 61 22 34 37 46 49 52 58 61
Time (Days) Time (Days)

Appendix C shows MATLAB code that implements the signal flow graph calculations performed in this
example (expected value of the completion time, variance of the completion time (using the quotient rule
in Equation 5.6 to perform differentiation), and polynomial division of a transfer function to return the PDF
and CDF).

5.2.2 Sensitivity Analysis

The sensitivity of the completion time T with respect to each parameter / (task times ¢, and transition
probabilities p;), is defined as shown in Equation 5.7.

o7 _ AE(T]/ E(T]
: Alll
Equation 5.7

We can use this sensitivity analysis to evaluate the effect of changes tn the task times and transition
probabilities on the completion time. This can be useful in identifying tasks that may require special
attention, assessing risk, or determining which tasks if reduced (or increased) have the greatest potential
to reduce (or increase) the completion time. Continuing our previous example, using Equation 5.7, the

sensitivities of the completion time with respect to the task times and transition probabilities are ranked as
follows:
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- seisitivity | robat

¢T3 0.4844 P32 0.3363
tas 0.2604 Paz 0.0747
Dss -0.7755

A positive sensitivity denotes a parameter that if increased, will increase the completion time A negative
sensitivity denotes a parameter that if increased, will reduce the completion time. Two conclusions can be
drawn from this sensitivity analysis. First, a reduction in the task time for circuit design (r,, = 10) will yield
the largest reduction in the completion time, relative to the other task times (sensitivity = 0.3363). Second,
an increase in the probability of manufacturing the PCB (p;, = 0.7), without having to repeat circuit design,
will yield the largest ~eduction in the completion time, relative to the other transition probabilities (sensitivity
=-0.7735).

Appendix D shows MATLAB code that implements the signal flow graph sensitivity analysis performed in
this example.

5.3 Reward Markov Chain

A reward Markov chain is comprised of states (or nodes) and stages [5, 36). A new stage is begun wher
a state is entered for the first time. A reward R; is associated with each state i, and a state variable S, is
associated with the process of moving from state j to state k, as shown in Figure 5.5.

State Variable

State i State j+1

._.-": State Variable ™,

Ri RI+1
Reward Reward

Figure 5.5: Reward Markov Chain States, Rewards, and State Varlables

The state variable can be assigned in one of two ways - by associating a rate with state occupancies or by
associating an impulse with state transitions. The former represents a continuous-time reward Markov
chain, while the latter represents a discrete-time reward Markov chain. Hare, we opt for the latter as a
means to capture the probabilistic nature cf the process we seek the model. Jawad and Johnsen write
[14]:
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“IMany] systems are probabilistic in their behavior over time, therofore stochastic
processes are used to model their behavior. Stochastic processes are ‘mathematical
models of systems which vary in time in a random manner.' Markov process
representation, a type of stochastic process, allows the consideration of time in a very
controlled manner. The Markov property is such that ‘given the present state, the past
states have no influence on the future.’ So, in general Markov chains are used, which are

"n

‘discrete parameter Markov processes whose state space is finite or countably infinite’.

In modeling hardware completion time, the states correspond to a task within each stage of the process.
A new stage is begun the first time a task is attempted. There are as many states in each stage as there
are tasks which may be undertaken in that stage, and this number increases by one for each new stage
[36]. The state variables correspond to the transition probabilities p; that if task j is attempted, that task &
will have to be repeated. The reward of each state captures the amount of time spent in each state, or the
time spent performing the associated task, and is a function of the task times ..

For purposes of our analysis, the matrix A will represent the reward Markov chain by storing the task
times 1; in the on-diagonal positions and the transition probabilities p; in the off-diagonal positions, for the
process we seek to model. An empty entry in an off-diagonal position denotes a null probability. The
information contained in this matrix is almost identical to the information contained in the Numerical
Design Structure Matrix (NDSM) described in Chapter 2 and the Work Transformation Matrix (WTM)
described in Chapter 3, only with a slightly different interpretation. Here, the off-diagonal entries denote
the probabilities associated with tasks that are coupled, as opposed to coupling strengths between tasks
(NDSM) or amounts of rework resulting from tasks that are coupled (WTM). As an example, the
hardware process flow diagram shown in Figure 5.2, would be captured as follows (using the lettered
convention A through C):

I, Pp
M = puh tb pcb
pb(' tc

In order for a reward Markov chain interpretation to be valid, the off-diagonal values (transition
probabilities) in any single column of M can add up to no greater than one. Figure 5.6 shows the
corresponding reward Markov chain representation.

pba
D |, &
pba t pc
a
R Pap Ppe
START O 2\, A8 &) >O FINISH
t t, Pbc (. 1-Pcb
a b c
Stage Stage Stage
One Two Three

Figure 5.6: Reward Markov Chain Representation of the Hardware Process Flow Diagram
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The expected reward of the Markov chain is the expected length of time that the process will spend in the
stages of the chain. By calculating this length, we determine the completion time.

5.3.1 Completion Time

To determine the completion time we must determine the expected reward of the Markov chain. We
begin at the finish end of the chain and work backwards across the stages. The total expected time is
determined by summing the expected length of time that the process will spend in each stage, given its
initial state. The n x n matrix M representing the reward Markov chain corresponds to (n? + n) / 2 states.
To determine the total expected time through the entire network, one would typically have to solve (n° +n)
/ 2 simultaneous equations. Smith and Eppinger present a calculation procedure which only involves
solving n simultaneous equations. Algebraically, the calculation is similar to Gaussian elimination (since
the expected time can be written as a set of linear equations), although the back substitution is atypical
[386]. Their Efficient Length Computation Algorithm is presented here [36].

Again, the matrix M stores the task times ¢, in the on-diagonal positions and the transition probabilities p,
in the off-diagonal positions, for the process we seek to model. First, we place the negative transpose of
the i1 x n matrix M, in an n x n matrix P, inserting ones in the on-diagonal positions, as shown in Equation
5.8.

—MJ"' [#] i=1..n
1 i=j j=1..n
Equation 5.8
The matrix P describes the reward Markov chain. Second, we place the task times in the off-diagonal
positions of M in a column vector B, as shown in Equation 5.9.
B.=M, where i=1..n
Equation 5.9

Third, using Gaussian elimination we extract the unique lower triangular, diagonal, and upper triangular
matrices of the matrix P, such that the relation shown in Equation 5.10 holds true (diagonalization).

L = lower triangular matrix
P=LDU where D = diagonal matrix
U = upper triangular matrix

Equation 5.10
Fourth, using modified back substitution we calculate the vector X, which contains the total expected time
spent in each stage of the reward Markov chain, as shown in Equation 5.11.

X'=D'L'B

Equation 5.11

Finally, we add the elements in the vector X’ to get the completion time 7, as shown in Equation 5.12.

T=Y X
i=1
Equation 5.12

A variance can be calculated for a reward Markov chain using any number of methods such as monte
carlo simulation [23]. This is not performed here.
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As an example, we assume that the hardware development process shown in Figure 5.2 and Figure 5.6 is
modeled with task times ¢, = 10, 1, = 5, and ¢, = 7, and transition probabilities p,, = 1.0, ps, = 0.3, pp. = 0.7,
and p,, = 0.1. All of the remaining transition probabilities are zero. These values are interpreted as
follows: circuit design requires 10 days, placing and routing the components requires 5 days,
manufacturing the PCB requires 7 days, there is a probability of 0.3 that we will have to repeat circuit
design after placing and routing the components, and there is a probability of 0.1 that we will have to
repeat placing and routing the components after manufacturing the PCB. Continuing our example, the
matrix M is as follows:

10 03 o]
M=[10 5 ol
0 07 7J

The reward Markov chain representation is as follows:

0.7

>O FINISH
0.9
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N~/

o O

10 5 ' 7
Stage Stage Stage
One Two Three

In order to preserve the strict precedence relationship between circuit design (Task A) and placing and
routing the components (Task B), the transition probability p,; is set equal to 1.0 (such that the sum of the
off-diagonal elements in the first column of M is equal to 1.0, given the null probability in row 3/column 1).
Any value less than 1.0 would allow the possibility that manufacturing the PCB could occur imrmediately
after circuit design, during the transition from stage 2 to stage 3, or that the process could be completed
after circuit design, during the transition from stage 3 to the finish end of the chain. Similarly, to preserve
the strict precedence relationship between placing and routing the components (Task B) and
manufacturing the PCB (Task C), the transition probability p,. is set equal to 1.0 - 0.3 = 0.7 (such that the
sum of the off-diagonal elements in the second column of M is equal to 1.0, given the null probability in
row 1/column 3). Any value less than 1.0 would allow the possibility that the process could be completed
after placing and routing the components, during the transition from stage 3 to the finish end of the chain.

To preserve all of the strict precedence relationships between tasks in an n x n matrix M representing a
reward Markov chain, the sum of the off-diagonal elements in the first n-7 columns must be equal to 1.0.
This is done by setting the transition probability below the diagonal in each column to 1-(sum of the
transition probabilities above the diagonal). All of the remaining transition probabilities below the diagonal
in the first n-2 columns must be set equal to 0. Figure 5.7 shows the matrix M for a reward Markov chain
that maintains strict precedence relationships.
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Figure 5.7: Strict Precedence Relationships in a Reward Markov Chain

Using Equation 5.8 and Equation 5.9, the matrix P and the column vector B are easily determined as
follows:

10 —10 0! 10
P=|-03 10 -07 B=|5
0 -0l 10 7

Equation 5.10, the lower triangular matrix L, diagonal matrix D, and upper triangular matrix U, are as
follows:

1.0 0 O 10 0 O 10 -10 0
=[-03 10 0 D=0 07 O u= 0 07 -07
0 -014 10 0 0 09 0 0 09

Using Equation 5.11 and Equation 5.12 the total expected time for each stage X“and the completion time
T are as follows:

100
X' =114 T = 30.5 days
9.1

We conclude that the expected completion time for the hardware development process is 30.5 days.

Appendix E shows MATLAB code that implements the reward Markov chain calculations performed in this
example (expected value of the completion time using the efficient length computation algorithm).
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5.3.2 Sensitivity Analysis

The sensitivity of the completion time T with respect to each parameter ! (task times ¢, and transition
probabilities p;), is defined as shown in Equation 5.13.

» _ AE[T]/ E[T)
! Alll
Equation 5.13

We can use this sensitivity analysis to evaluate the effect of changes to the task times and transition
probabilities on the completion time. This can be usefu! in identifying tasks that may require special
attention, assessing risk, or determining which tasks if reduced (or increased) have the greatest potential
to reduce (or increase) the completion time. Continuing our previous example, using Equation 5.13, the
sensitivities of the completion time with respect to the task times and transition probabilities are ranked as
follows:

\ Sensmv;ty Probab :
0.4844 Pba 0.3363
t. 0.2552 Pap N/A
Poc -0.7735

A positive sensitivity denotes a parameter that if increased, will increase the completion time A negative
sensitivity denotes a parameter that if increased, will reduce the completion time. Two conclusions can be
drawn from this sensitivity analysis. First, a reduction in the task time for circuit design (r, = 10) will yield
the largest reduction in the completion time, relative to the other task times (sensitivity = 0.3363). Second,
an increase in the probability of manufacturng the PCB (p,. = 0.7), without having to repeat circuit design,
will yield the largest reduction in the completion time, relative to the other transition probabilities (sensitivity
= -0.7735). The sensitivity with respect to the transition probability p,, = 1.0 is not applicable because a
reduction in this value would violate the strict dependence between circuit design and placing and routing
the components, while an increase in this value would violate the validity of the reward Markov chain (the
sum of the off-diagonal elements of M in the first column would be greater than 1.0).

Appendix E shows MATLAB code that performs the reward Markov chain sensitivity analysis performed in
this example.

5.4 Comparison of Both Models

Based on examples in the previous sections, we present a brief comparison of the signal flow graph
model and the reward Markov chain model.

The completion time that was calculated using the signal flow graph was exactly the same as the
completion time that was calculated using the reward Markov Chain (30.5 cays). This was explained by
the fact that the signal flow graph and the reward Markov chain both zllowed for the possibility of
“returning” to ail of the earlier tasks as a result of performing any of the latar tasks. For example, in the
signal flow graph model and the reward Markov chain model, if placing and routing the components was
repeated as a result of manufacturing the PCB, it was also possible that circuit design was repeated as a
result of placing and routing the components. In other words, bcoth rnodels captured the same
phenomenon. The signal flow graph calculated the expected time to traverse the process and the reward
Markov chain calculated the expected time spent within the process.

Also, the sensitivity analysis values of the reward Markov chain inodel were almost identical to the

sensitivity of the signal flow graph model. They only differed in one subtle, yet important way. Using the
signal flow graph we were able to calculate a sensitivity for the transition probability from manufacturing
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the PCB to the finish state. Using the reward Markov chain we were unable to calculate a sensitivity for
the transition probability from manufacturing the PCB to the finish state. This was explained by the fact
that this transition probability was derived from the reward Markov chain structure (the probability of
completing the process was implicitly 7-p.,, whereas with the signal flow graph structure this probability
was explicitly p4s). Otherwise, the sensitivity values were exactly the same.

5.5 Research Methodology

A digital wireless telephone consists of two kinds of hardware: an analog PCB and a digital PCB. Two
functional groups were responsible for designing and testing these PCB's, the Analog Design group and
the Digital Design group, respectively. To assess the signal flow graph and reward Markov chain models,
both were applied to the PCB in the Analog Design group only.

Figure 5.9 shows the hardware process flow diagram for the analog PCB (incidentally, it was the same as
the process flow diagram for the digital PCB). This process flow diagram was constructed from the tasks
that were identified during earlier efforts to collect data (see Section 2.8 for a description of the data
collection process). A more detailed description of these tasks can be found in Section 2.7, with the
exception of “Manufacturing: Ready-to-Build”. This task was not identified initially, but was later added to
the process flow diagram to capture the time associated with pre-manufacturing final reviews. The tasks
are numbered one through sixteen, with sixteen associated task times ¢, through 1,4, and eight associated
transition probabilities p, through p,. The tasks in the light-colored boxes (), t;, ts, ts, ts, 7, 1y, and 1,5} denote
design activities that were performed internal to the Analog Design group. The tasks in dark-colored
boxes (13, t4, tx tio, i L2 113, 114, @nd 1,5) denote design activities that were performed external to the
Analog Design group (the functional group that actually performed the task is identified by capital letters).
The transition probabilities represented either potential delays (p; and p,), potential iterations (p;, p4, ps, ps,
and p;), or a choice among parallel activities (ps, py, and p,s). Consistent with a rapid prototyping
approach, once a PCB was designed, manufactured, and tested, the next prototype would begin
development (denoted by the dash line). This global iterative loop was not taken into account during
modeling.

After completing the process flow diagram, data was collected on task times and transition probabilities for
three past prototypes of the analog PCB (an early prototype, an intermediate prototype, and a later
prototype, during the handset's development). In other words, three separate sets of sixteen task times
and eight transition probabilities were collected. The three prototypes that were selected for modeling
represented a good cross-section of the prototypes that had been performed. Each had its own unique
characteristics (e.g. functions, features, completion time, etc.).

Table 5.1 shows the estimated task time, total completion time, and estimated transition probability data
that were collected for the hardware prototypes. A member of the Project Management group estimated
the task times and provided the total completion time for each prototype. The task times were
approximations of the original estimates of the task tirmes, prior to each prototype (e.g. without knowledge
of the outcome). The total completion time was an exact measurement of the actual completion time for
each prototype (critical path). The manager of the Analog Design group estimated the transition
probabilities for each prototype. The transition probabilities were approximations based on what wouid
have been predicted, had they been asked to provide such information prior to each prototype (e.g.
without knowledge of the outcome). Consistent with a rapid prototyping approach, the transition
probabilities were also based on the nature of the functionality being introduced for each prototype. A less
challenging set of features was subject to smaller values, while a more chailenging set of features was
subject to larger values. In other words, difticult functions and features had a high likelihood of causing
iteration (note that the prototypes in Table 5.1 are ordered by decreasing levels of ditficulty).

90



“Pro to'f}}'ﬁé o

b, 050 | 020 | 005 |

t, 4
i, 40 0 0 b, 0.80 0.40 0.05
t, 4 0 0 ps 0.30 0.20 0.05
t 26 0 0 Py 0.40 0.10 0.10
ts 34 32 44 Ps 0.20 0.20 0.10
s 8 2 2 Ds 0.20 0.20 0.10
t, 0 0 0 Py 0.30 0.10 0.10
ts 4 2 2 Pe 0.05 0.05 0.08
t, 0 0 0 Do 0.90 0.90 0.84
ti 6 80 8 Do 0.05 0.05 0.08
t 60 0 154
t, 6 6 8
ts 2 16 4
the 4 12 4
ts 14 16 38
tss 46 22 24
TOTAL' 272 204 276

*total completion time (critical path).

Table 5.1: Task Times and Transition Probabilities for the Hardware Prototypes

Once the data were collected, three models were constructed: a static signal flow graph model, where the
task times remained fixed, a dynamic signal flow graph model, where the task times were subject to
change, and an adjusted reward Markov chain model, where the task times and transition probabilities
were slightly modified to maintain the reward Markov chain structure. In the following sections, we will
describe these models in greater detail, and apply each model to the three past prototypes of the anaiog
PCB at the sponsor company.

5.5.1 Static Signal Flow Graph Model!

The static signal flow graph model was based on the assumption that the task times remained fixed. For
example, a task that required 10 days during its first-pass, would also require 10 days if it were repeated.
Figure 5.8 shows the archetype for the static signat tiow graph model.

Figure 5.8: Archetype for the Static Signal Flow Graph Model

There is a probability p, (repeat probability) that Task X will have to be repeated after Teisk Y is completed,
and a probability p, (forward probability) that the process will move forward (note that pp, + p, = 1.0). The
durations for Tasks X and Y are static. For subsequent iterations, Tasks X and Y will require the same
amount of time that they required the first time they were performed. Using this archetype, we modeled
the task times in hardware development process shown in Figure 5.9, that could potertially be repeated
(ts, ts, ts, 17, AN 1y).
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Figure 5.9: Hardware Process Flow Diagram
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5.5.2 Dynamic Signal Flow Graph Model

The dynamic signal flow graph model was based on the assumption that the task times were subject to
change. For example, a task that required 10 days during its first-pass, could require 5 days if it were
repeated. Figure 5.10 shows the archetype for the dynamic signal flow graph model.

Py

Figure 5.10: Archetype for the Dynamic Signal Flow Graph Model

There is a probability p, (repeat probability) that Task X will have to be repeated after Task Y is completed
the first time, a probability p, (forward probability) that the process will move forward (note that p, + p, =
1.0), and a probability p, (terminal probability) that Task X will have to be repeated after Task Y is
completed a second time, and all subsequent iterations. The durations for Tasks X and Y are dynamic.
For their first iterations, Tasks X and Y require times , and 1, respectively. For their second and
subsequent iterations, Tasks X and Y require times «,”and 1, respectively. We call the second iteration
task times, terminal task times, because they denote the time required for the second iteration and all
subsequent iterations. Using this archetype, we modeled the tasks times in the hardware development
process shown in Figure 5.9, that could potentially be repeated (¢, ts, ts, t;, and ts).

For the dynamic signal flow graph model, we set p, = 0.01, such that the terminal probability for all of the
tasks was equal to 0.01, and r; = 0.5¢;, for all i, such that all of the terminal task times were 50% of their
corresponding first-pass task times. This was done for all three prototypes.

5.5.3 Adjusted Reward Markov Chain Model

The adjusted reward Markov chain modified the task times and transition probabilities to maintain the
reward Markov chain structure. The reason for these adjustments was that the reward Markov chain
could not capture forward tr. _ition probabilities and associated task times. A forward transition
probability is essentially a branch. It is a probabalistic choice that captures the possibility of one task
being followed in sequence by another task, versus being followed in sequence by a different task. This
scenario is depicted as follows:

Y Ps
Task X Task Y
1-p;
Y 1
Task Z [«
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We can interpret the forward transition probability p, as the probability that if Task X is performed, that
Task Y will have to be performed. Maintaining the strict precedence relationship between Task Y and
Task Z (ensuring that the sum of the off-diagonal elements in the second column of M are equal to 1), the
reward Markov chain would look as follows:

1-p
t
t, o
M=|p, 1t @ Y z >
Iy . t, 1 t,

Clearly, such a representation does not accurately depict the reward associated with Task Y. This is
because the off-diagonal values in the reward Markov chain structure denote probabalistic selections on
previous tasks, as opposed to subsequent tasks. In our example, since Task X is followed by Task Y, the
transition probability p; = p,, is the probability that if Task X if performed that Task Y will have to be
repeated, as opposed to performed for the first time. To overcome this challenge, we adjust the reward
Markov chain by modeling forward transition probabilities and associated task times as expected values.
Figure 5.11 shows the archetype for the adjusted reward Markov chain model (using the same convention
as our example).

\ 4

M=|1 pgz, ,@ )Cy} @

z b 1 pity 1 t;

Figure 5.11: Archetype for the Adjusted Reward Markov Chain

The forward transition probability p, and the associated task time 1, are modeled whereby the state
represented by Task Y has a reward that is equal to its expected value (pt,). In making this adjustment,
we continue to maintain the strict precedence relationship between Task Y and Task Z {the sum of the off-
diagonal elements in the second column of M are still equal to 1). Using this archetype, we modeled the
forward transition probabilities and associated task times of the hardware development process shown in
Figure 5.9 (p,, p2, Ps, Po, P1o, @Nd £, ty, L1, 114, £12, TESPECively).
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5.6 Results

Table 5.2 and Table 5.3 show the completion times and variances that were predicted by applying the
static signal flow graph model, the dynamic signal flow graph model, and the adjusted reward Markov
chain model, to each of the hardware prototypes.

N

. .P_rotdtyrée #1 b T
“Value ... % Error:: o . -0 " Valuel: ‘Erro
+54.9% 167.4 -17.9% . -27.9%

Static 421.4
Dynamic 261.0 -4.0% 146.2 -28.3% 224.2 -18.8%
Adjusted 413.6 +52.1% 166.2 -18.5% 215.8 -21.8%
ACTUAL 272.0 - 204.0 - 276.0 -

Table 5.2: Completion Time Results for the Hardware Prototypes

ARIA »
Static 224.8 53.3% 54.4 32.5% 53.8 24.9%
Dynamic 33.0 12.6% 53.8 36.8% 27.6 12.3%
Adjusted - - - - - -

Table 5.3: Variance Results for Hardware Development Process

From the completion time results it was clear that the dynamic signal flow graph model was the most
accurate model. It exhibited errors of -4.0%, -28.3%, and -18.8%, for each prototype respectively. The
mode! outperformed the static signal flow graph model and the adjusted reward Markov chain model on
each prototype, except Prototype #2. Both the static signal flow graph model and the reward Markov
chain model tended to overestimate the actual completion time (by as much as 54.9% and 52.1%
respectively). This was explained by the fact that both of these models assumed fixed task times.
Therefore, if a task was repeated, it required the same amount of time for each subsequent iteration. In
reality, second-pass task times were typically less than their first-pass counterparts. Interestingly, and in
support of this argument, both of these models performed almost identically with respect to their
predictions for completion time, with the largest difference being only 7.8 days.

From the variance results it was concluded that the dynamic signal flow graph model once again provided
the most useful information. Variances were not calculated for the reward Markov chain, however, the
static signal flow graph model returned variances as high as 53% of the mean. This was not considered
reflective of the environment's variability. On the other hand, the dynamic signal flow graph returned
variances as low as 12.3% and as high as 36.8% of the mean, which were considered much more
consistent with preliminary expectations.

As mentioned earlier, the dynamic signal flow graph model predicted the completion time for Prototype #1

with particularly impressive accuracy (-4.0% error). Figure 5.12 shows the PDF and CDF generated by
the dynamic signal flow graph model for Prototype #1.
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Figure 5.12: Dynamic Signal Flow Graph Model
Probability Distribution Function (PDF) of Prototype #1
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Figure 5.13: Dynamic Signal Flow Graph Model
Cumulative Disiribution Function (CDF) of Prototype #1
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From this PDF and the CDF we concluded that the probability density was fairly evenly distributed. Similar
observations were made regarding the PDF's and CDF’s of the Prototypes #2 and #3. Table 5.5 and
Table 5.4 show the sensitivity analysis results with respect to the task times and transition probabilities for
Prototype #3 (task time rankings 1-3 and 9-11 only (rankings 12-16 were zero) and transition probability
rankings 1-3 and 14-16 only).

gnNa 0 ) a gna O AC ed RHeward A 0
1 t; 0.5987 t 0.6042 1y 0.5993
2 t;s 0.1759 tis 0.1775 tis 0.1760
3 tis 0.1111 tis 0.1121 tis 0.1112
9 ts 0.0103 ts 0.0093 1y 0.0103
10 to 0.0030 to 0.0030 tio 0.0030
11 t;, 0.0030 t;2 0.0030 ty, 0.0030
Table 5.4: Sensitivity Analysis Results of the Task Times for Prototype #3
(] 0 ) Q O 1Ys dH () »
[1] Pio 33.7017
[2] Ps 11,1500
1 P9 0.6560 P9 0.6601 Ps 0.9326
2 Py 0.0058 P 0.0467 P 0.0058
3 Ps 0.0052 P 0.0009 Ds 0.0052
14 p2 0.0005 ps -0.0010 P4 0.0049
15 Pi1o -0.0423 P1o -0.0428 5 0.0025
16 Ps -0.0466 Py -0.0471 P3 0.0014

'These rankings are actually 1-5 and 11-13.

Table 5.5: Sensitivity Analysis Results of the Transition Probabilities for Prototype #3

From the sensitivity analysis with respect to the task times, it was clear that all three models performed
identically by ranking order, and were extremely close to one another by value (note that orice again, the
static signal flow graph mode! and the adjusted reward Markov chain model performed almost identically).
All of the models returned positive sensitivities, which was interpreted to mean that an increase in any of
these task times would increase the completion time. Based on past experience, it was known that
Prototype #1 was particularly sensitive to the Supply Chain Management group's ability to procure parts,
and the Analog Design group's ability to complete the unit test. Both of the task times associated with
these activities, t,, and t,5, were ranked first and third by all three models. Similar observations were made
regarding the sensitivities of Prototypes #1 and #2 with respect to the task times.

From the sensitivity analysis with respect to the transition probabilities, it was clear that all three models
performed similarly, with some slight differences in their results. The adjusted reward Markov chain
model did not produce any negative sensitivities (this was true for all of the prototypes). This was
explained by the fact that forward transition probabilities were reinterpreted as expected values (in other
words, an increase in the probability would automatically increase the completion time) and repeat
probabilities already served to increase the completion time. Consequently, the sensitivity analysis of the
adjusted reward Markov chain tended to skew the sensitivities of forward transition prcbabilities. For
example, the first and second ranked sensitivities of the adjusted reward Markov chain model were
excessively large (transition probability p,, at 33.7017 and transition probability p; at 11.1500). Both of
these probabilities were forward transition probabilities. Therefore, one of the drawbacks of the adjusted
reward Markov chain model was the loss of the ability to accurately assess the sensitivily of the
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completion time with respect to forward transition probabilities. We also observed that the static signal
flow graph model and the dynamic signal flow graph model produced identical results by ranking order
and extremely close results by value. This was explained by the fact that while both of these models
captured task times in different ways, they were very similar in the way they captured transition
probabilities. In particular, both models captured forward transition probabilities identically. Both models
also returned negative sensitivities (again, the reward Markov chain model did not), which was interpreted
to mean that an increase in any of these transition probabilities would decrease the completion time. As
expected, the sensitivity analysis of the dynamic signal flow graph model ranked the terminal probability p,
fairly high (second). Finally, as mentioned earlier, it was known that Prototype #1 was particularly
sensitive to the Supply Chain Management group's ability to procure parts. The transition probability
asscciated with this task (py) was ranked first by all three models (ignoring the skewed sensitivities from
the adjusted reward Markov chain model). Similar observations were made regarding the sensitivities of
the other prototypes with respect to the transition probabilities.

In summary, the dynamic signal flow graph model demonstrated good performance in predicting the
completion time, predicting the variance, and producing a sensitivity analysis of the hardware development
process. One of the recommendations to the sponsor company was to implement the dynamic signal flow
graph model as a tool for modeling hardware completion time in the future. Recommendations are
summarized in Chapter 7.

5.7 Discussion

In this chapter, we introduced the Signal Flow Graph and the Reward Markov Chain, analytical tools that
were used to predict the completion time of analog printed circuit boards (PCBs) at the sponsor company.
Using analytical techniques such as Mason's Gain Formula for signal flow graphs, and Smith and
Eppinger's Efficient Length Computation Algorithm for reward Markov chains, we constructed three
separate models. The static signal flow graph model assumed fixed task times. The dynamic signal flow
graph model assumed that task times were subject to change. The adjusted reward Markov chain model
modified the task times and transition probabiiities to maintain the reward Markov chain structure. All
three models also yielded a sensitivity analysis with respect to task times and transition probabilities. We
also calculated variances for the static and dynamic signal flow graph models. We did not calculate
variances for the adjusted reward Markov chain model. The main advantage of these tools, when
compared to more traditional project management tools such as PERT/CPM and GANTT charts, was the
ability to model iteration, and quantify its effect on completion time.

The static signal flow graph model and the adjusted reward Markov chain model both produced noticeably
similar results for completion times and sensitivity analyses witih respect to task times. This was explained
by similarities in the way these models captured task times. All three models performed almost identically
for sensitivity analyses with respect to task times, while the static signal flow graph model and the dynamic
signal flow graph model performed similarly for sensitivity analyses with respect to transition probabilities.
This was explained by similarities in the way these models captured transition probabilities. Both the static
signal flow graph model and the dynamic signal flow graph model produced positive and nzgativae
sensitivities with respect to transition probabilities. The adjusted reward Markov chain was unable to do
s0, as a result of modifications that were made to the rnodel in order to maintain its structure.

Overall, the dynamic signal flow graph demonstrated the best performance. It (as well as the static signal
flow graph model) also offered the additional benefits of a variance, a Probability Distribution Function
(PDF), and a Cumulative Distribution Function (CDF). Using data that were collected from managers at
the sponsor compar.y, the dynamic signal flow graph model was able to predict the completion time of
past prototype within 4% of the actual completion time. It was also able to identify scme of the critical
sensitivities for this prototype with respect to taslc times and transition probabilities, based on past
experience.

It was believed that the success of the dynamic signal tlow graph model was a direct rusult of its ability to
capture a very real phenomenon - task times that change with subsequent iterations. The static signal
flow graph model and the adjusted reward Markov chain model used completely different mathematical
constructs, yet were based on the assumption that task times did not change. The iact that both of these
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models consistently returned results that were similar to one another (completion time predictions as well
as sensitivity analyses), was a testament to the fact that such an assumption can have a tremendous
impact on the results that are generated by a model (these models overestimated the completion time by
as much as 55%).

Despite its impressive performance, the dynamic signal flow graph model presented here only allowed &
singie dynamic change for each task. The second-pass task time, which differed from the first-pass task
time, was the terminal task time. No further changes could be captured. Looking forward, a more
elaborate dynamic signal flow graph model could easily be designed to allow for the third-pass, or even
fourth-pass task times to differ from their predecessors as well. We should mention that the reward
Markov chain is capable of modeling dynamic task times [36], Fowever, such an approach requires
simulation to be performed. The methods presented here were strictly computational in nature.

Finally, our recommendation to the sponsor was to implement the dynamic signal flow graph model as a
tool for modeling hardware completion time in the future. This represented an opportunity for the model to
be further refined and benchmarked in a number of different scenarios, which would hopefully provide
even greater insight on how such a framework could be leveraged best.
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CHAPTER 6: MODELING FIRMWARE COMPLETION TIME

6.1 Modeling Firmware Development

Software denotes a set of instructions written in a programming language (e.g. C++) that are executed by
a hardware device (e.g. microprocessor). Firmware denotes the binary/hexadecimal versions of the
software as read-only memory (ROM) files for use in manufacturing. For a digital wireless teiephone,
firmware specifically refers to the software resident in the handset ihat programs the microcontroller and
the digital signal processor (DSP).

Methods for modeling firmware development have received a great deal of attention within the past
decade. This has been in response to the increasingly critical role that software has played in the
development of a vast array of products. In a number of industries, particularly the communications
industry, electronic components have become central to a product's architecture. This has caused
software to be one of the primary agents in realizing value-added functions and features. As a result of
this trend, a number of efforts have been made to codify methodologies for estimating the cost,
determining the number of errors (or faults), assessing the risk, and predicting the completion time of
firmware projects.

Historically, attempts to measure these phenomena have been somewhat ad-hoc, including those
employed by the sponsor company. Putnam and Myers describe such approaches as “...an intuitive
process, subject to great variation, when done by ditferent people [27]." Consequently, we developed the
Aggregate-Code Model, a tool that was designed specifically for the sponsor company to remove some of
the “guessing” associated with predicting completion time and predicting the amount of time spent
repairing faults on large-scale firmware projects. The model served two purposes. First, to provide a
methodology for extracting key performance metrics from the firmware product administration database.
Second, to provide a starting point for the development of more advanced models that characterize
firmware behavior. In other words, the model was not intended to supplant their existing techniques, but
rather supplement them, while at the same time establish a framework to implement better models.

In this chapter, we present the theory underlying the aggregate-code model, the methodology for
extracting the necessary inputs to the model from the sponsor company’s firmware product administration
database, and the results from applying the model to a subset of the firmware on the digital wireless
telephone at the sponsor company. We conclude with a discussion of the model's benefits and
limitations.

6.2 Aggregate-Code Model

The aggregate-code model is a simple model that can be used to predict firmware completion time and
the amount of time spent repairing faults (repair time). The model can also be used to analyze how
changes to variables such as the number of lines of code or staffing levels can impact completion time.
We first describe the relationships upon which the model is based, and then we present the theory
underlying the model itself.

6.2.1 Mode! Relationships
The aggregate-code model is based on two simple relationships:

Completion Ti Code

ompletio =

(1) mpretion Jume Productivity Rate

(2) Repair Time = Code - Fault Density - Time-To-Repair Faults
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The model variables are defined as follows:

e Completion Time represents the duratior. to cornplete the project and is typically measured in
months.

e Code represents a measure of project completeness and is typically measured in KNCSL (thousands
of non-commentary source lines) or SLOC (source lines of code}.

e Productivity Rate represents a myriaZ of factors such as the human capital required for the project,
the level of quality of requirements, the programrming language in use, the state of technology i the
software environment (e.g. software tools, ciavelopment equipment, and machine capabilities), the
skills and experience of the programmers, and the complexity of the project, and is typically measured
in KNCSL/month [27].

o Repair Time represents the time spent repairing fauits and is typically measured in months.

Fault Density represents a measure of errors or faulis per source lina of code and is typically
measured in faults/KNCSL.

o Time-to-Repair Faults represents the mean time-to-repair faults and is typically measured in
months/fault.

6.2.2 Model Theory
Figure 6.1 shows the basic framework that governs the theory underlying the aggregate-code model.

C
Productivity Productivity
Rate (No Repair) - A Rate - R*
coe | Sl T ~~“Repair” Line
"""""""""""" “No-RepaIr" Llne
0
< T . D
Completion Time (No Repair) Repair Time
Tl
Completion Timae
TIME

Figure 6.1: Aggregate-Code Model

The above diagram captures two scenarios for a firmware project - one without errors, wher2 no time is
spent repairing faults (an unrealistic scenario, that we will refer to as the “no repair” scenario) and one with
errors, where time is spent repairing faults (a realistic scenario, that we will refer to as the “repair”
scenario). The elementis of the “no repair’ scenario are the following: the number of lines of code C, the
productivity rate (no repair) R, and the completion time (no repair) T. The elements of the “repair’ scenario
are: the number of lines of code C, the productivity rate R, the completion time T*, and the repair time D.

With the absence of faults in the “no repair” scenario, given the number of lines of code C, it would be
significantly easier to predict the completion of a firmware project, relatively speaking. The productivity
rate (no repair) R would be estimated based on past experience or historical performance, and the
completion time (no repair) T could then be predicted. This is represented by the “no-repair” line to the left
of the above diagram. However, the existence of faults in the “repair’ scenario (and therefore time spent
repairing faults D) reduces the productivity rate to R” and extends the completion time to T. This is
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represented below by the “repair” line to the right of the above diagram. The completion time (no repair)
T, completion time T, and repair time D, are governed by the relation shown in Equation 6.1

T'"'=T+D
Equation 6.1

The repair time D is calculated as the product of the number of lines of code C, the fault density F, and the
mean time-to-repair faults up, as shown in Equation 6.2 (the number of faults M is equal to the product of
the nurnber of lines of code C and the fault density F).

D=C-F-pu,
Equation 6.2

In the “no repair’ scenaric, the completion time (no repair) 7, the number of lines of code C, and the
productivity rate (no repair) R, are governed by the relation shown in Equation 6.3. in the “repair’ scenario,
the completion time T, the number of lines of code C, and the productivity rate R, are governed by the
relation shown in Equation 6.4.

e . C
"R "R
Equation 6.3 Equation 6.4

Given two of the variables in either of these equations (either scenario) and the repair time D, we can
determine all of the remaining variables. We are primarily concerned with the “repair’ scenario, so we will
define the model parameters as C, R, D, and T".

The aggregate-code model seeks to predict the completion time T’ and the repair time D. Fortunately,
there are a number of existing methods to predict the number of lines of code C including fuzzy logic
sizing [43], function point sizing [2, 3], standard component sizing [26], and change sizing [40]. As we will
show in the following sections, we can estimate the productivity rate R’ from historical data on the
productivity of past projects, and use this estimate to predict the completion time 7. We will also show
that we can estimate the repair time D from historical daia on the fault density F and the mean time-to-
repair faults up of past projects. Finally, we will show that if these historical statistics are aggregated (e.g.
classified by the nature of the code) at an appropriate level of abstraction, then we can use this data to
characterize specific categories of code, as depicted in Figure 6.2.

By aggregating the code into different categories (e.g. Type 1 code, Type 3 code, and User Interiace
code), we achieve greater flexibility in that we can predict the behavior of specific types of code. For
example, the performance of a project that is comprised of a subset of the historical categories could be
modeled using only the metrics that characterize those categories.

We now present a generalized version of the aggregate-code model that determines the necessary inputs
using data that characterizes the behavior of an entire past project. This is followed by a categorized
version of the aggregate-code model that determines the necessary inputs using data that characterizes
the behavior of specific categories of code on the same project.

102



Category N
20%

Category 1
15%

Category 2

SUM C R’ D T’

30%

Figure 6.2: Aggregating the Code

In the following sections, we will use the superscript * to distinguish between current or predicted model
parameters (C, R, D, T, M) and historical model parameters (C*, R*, D* T* M*) as well as their
lowercase counterparts (e.g. C is a current model parameter that denotes the number of lines of code on
the current project, while C* is a historical model parameter that denotes the number of lines of code on a
past project). All of the remaining variables (F, up, etc., except for sensitivity values) as well as their
lowercase counterparts, are based entirely on historical data and will not be superscripted.

6.3 Generalized Version of the Aggregate-Code Model

The generalized version of the aggregate-code model characterizes the behavior of an entire firmware
project based on historical data. For example, a past project that consisted of Type 1 code, Type 3 code,
and User Interface code, would have metrics associated with the entire project as a means to characterize
their collective behavior in the future.

The required historical parameters for this version of the model are the following: the historical number of
lines of code C*, the historical productivity rate R*, the historical fault density /°, and the historical mean
time-to-repair faults u,. The required current parameter for this version of the model is the current
number of lines of code C {which can be estimated using any of the aforementioned sizing methods).
Given these parameters, the model outputs 7*(completion time) and D (repair time) are easily determined,
and a sensitivity analysis can performed with respect to the current number of lines of code C.

Table 6.1 lists the variables for the generalized version of the aggregate-code model.

6.3.1 Completion Time

To predict the completion time T“we require the following inputs: the historical productivity rate R* and the
current number of lines of code C. The historical productivity rate R* is used to predict the current
productivity rate R” It is calculated by dividing the historical number of lines of code C* by the historical
completion time T*, as shown in Equation 6.5.

RS R ==
T

Equation 6.5
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We also call the generalized version of the aggregate-code model the fixed rate version because the
productivity rate does not change over time. The predicted completion time 7“is then calculated by

dividing the current number of lines of code C by the current productivity rate R, as shown in Equation 6.6.

C

T'=—

RI
Equation 6.6

As an example, suppose a past project had a number of lines of code C* = 52.37 KNCSL and a
completion time T* = 8.94 months. Using Equation 6.5, the historical productivity rate R* is calculated as
follows:

R'—E—S% KNCSL/ th
=502 = mon

We then assume that the current productivity rate R’ is equal to the historical productivity rate R*.
Continuing our example, suppose the next generation of the same project is estimated to have a number
of lines of code C = 63.72 KNCSL. Using Equation 6.6, the predicted completion time T”is calculated as
follows:

7= 5372 _ 10,87 month
=586 o/ montas

We conclude that the current project will be completed in 10.87 months. In the next section, we describe
in detail our approach to estirnating the historical productivity rate R* using data from a past project at the
sponsor company.

- Variable: . . SO .- Description- . .. *'- Determinatio L

C Number of Lines of Code' Current KNCSL

C* Number of Lines of Code' Historical KNCSL

R’ Produtivity Rate (No Repair) Current Code/Month

R Productivity Rate (Repair) Current Code/Month

R* Productivity Rate (Repair)* Historical Code/Month

D Repair Time Predicted Months

D* Repair Time Historical Months

T Compietion Time (No Repair) Predicted Months

T’ Completion Time (Repair) Predicted Months

T* Completior Time (Repair) Historical Months

M Number of Faults Predicted Faults
M* Number of Faults Historical Faults

F Fault Density' Historical Faults/KNCSL

Up Msian Time-to-Repair’ Historical Months/Fault

E Repair Effort Historical Person-Months

U Mean Effort-to-Repair Historical Person-Months/Fauit
Np Faults Per Repair Day Historical Faults Per Repair Day

"denoles a required parameter.

Table 6.1: Variables for the Generalized Version of the Aggregate-Code Model
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6.3.2 Repair Time

To predict the repair time D we require the following inputs: the historical mean time-to-repair faults up, the
historicai fault density F, and the current number of lines of code C. The predicted repair time D is
calculated as the product of the predicted number of faults M and the historical mean time-to-repair faults
Up, where the predicted number of faults M is the product of the current number of lines of code C and the
historical fault density F, as shown in Equation 6.7.

D=M-pu, M=C-F D=C-F-yu,
(a) (®) (©)
Equation 6.7

Continuing our previous example, suppose the past project exhibited a fault density F = 2.03 faults/KNCSL
and a mean time-to-repair faults z, = 0.05 months/fault. Using Equation 6.7, the predicted number of
faults M and the predicted repair time D are calculated as follows:

M =2.03-63.72 =129 faults D =129-0.05 = 6.45 months

We conclude that 41% (4.42 months) of the completion time will be spent writing new code, while 59%
(6.45 months) of the completion time will be spent repairing 129 faults. In the next section, we describe in

detail our approach to estimating the historical mean time-to-repair faults uzp and the historical fault density
F using data from a past project at the sponsor company.

6.3.3 Sensitivity Analysis

The sensitivity of the completion time T“with respect to the number of lines of code C, is defined as shown
in Equation 6.8.

ST = ﬂ:
¢ AC
Equation 6.8

For example, we can calculate the sensitivity as the change in the completion time T”in response to a 1
KNCSL increase in the number of lines of code C, as shown in Equation 6.9.

gr_Ctl_C_ 1
C R- Rt Ro
Equation 6.9

We can use this sensitivity analysis to evaluate the effect of increases in the number of lines of cede on
the completion time. Continuing our previous example, using Equation 6.9, the sensitivity is calculated as
follows:

. 1
SE = Sgg = 017 months/ KNCSL

We conclude that a 1 KNCSL increase in the number of lines of code C, will cause a 0.17 month increase
in the completion time T".

The sensitivity of the completion time (no repair) T with respect to the number of lines of code C could also
be calculated. This is not performed here.
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6.4 Categorized Version of the Aggregate-Code Model

The categorized version of the aggregate-code model characterizes the behavior of an entire firmware
project, by sub-characterizing the behavior of specific categories of firmware based on historical data. For
example, a past project that consisted of Type 1 code, Type 3 code, and User Interface code, would have
metrics associated with each of these categories as a means to characterize their individual and collective
behavior in the future.

The categorized version of the aggregate-code model predicts performance over i=71...m time periods
(e.g. 1 month, 60 days, etc., where a new time period is defined by a change in the staffing level) across
Jj=1...n categories (e.g. Type 1, Type 3, User Interface, etc., where a category denotes a collection of files
common to some function or feature).

The required historical parameters for the categorized version of the model are the following: the historical
productivity effort rp;” for each category j, the historical fault density f; for each category j, and the
historical mean time-to-repair faults My for each category j. The required current parameters for the
categorized version of the model are the following: the current number of lines of code ¢, for each category
Jj (which can be estimated using any of the aforementioned sizing methods) and the staffing level p; for
each category j during each time period i (which are typically defined by managers). Given these
parameters, the model outputs T’ (completion time) and D (repair time) are easily determined, and a
sensitivity analysis can be performed with respect to the current number of lines of code C and the staffing
levels p;;.

Table 6.2 lists the variables for the generalized version of the aggregate-code model.

.~ .Variable’,” . . " 'Deseription = " ... . . Determination -

Cj Number of Lines of Code by Category' Current KNCSL
c;* Number of Lines of Code by Category Historical KNCSL

" th‘; '$it::fepljg‘r’ig§"£’ﬁtgp§3‘)e Historical KNCSLMonth

Variable Productivity Rate b .

ri’ Time Period and by Cattggory (Rgpair) Historical KNCSLMonth
re;’ Coding Rate by Category (Repair) Historical KNCSL/Month
rp;’ Productivity Effort by Category (Repair)" Historical KNCSL/Person-Month
d; Repair Time by Category Predicted Months
d* Repair Time by Category Historical Months

l; Time Period Defined Months

m; Number of Faults by Category Predicted Faults
m;* Number of Faults by Category Historical Faults

f Fault Density by Category' Historical Faults/KNCSL.
M, Mean Time-to-Repair Faults by Category' Historical Months/Fauit
7 Repair Effort by Category Historical Person-Months
He, Mean Effort-to-Repair Faults by Category Historical Person-Months/Fault
Staffing Level b .

Pij Time Period gnd by C:tegow' Defined People

Hy, Mean Staffing Level by Category Historical People

o Scaling Factor by Category Defined Percent

ny, Faults Per Person by Category Historical Faults/Person

denotes a required parameter.

Table 6.2: Variables for the Categorized Version of the Aggregate-Code Model
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6.4.1 Completion Time

To predict the completion time T“we rzquire the following inputs: the historical productivity effort rp;” for
each category j, the current number of lines of code ¢; for each category j, and the staffing level p; for
each category j, during each tirne period .

The historical productivity efiort rp;” is used to predict the current productivity rate R The current
productivity rate R “is calculated as a series of variable productivity rates r;”with a different productivity rate
for each time period i. The variable productivity rate for each time period r;”is calculated as the surn of the
variable productivity rates r;“for each category j, during that time period i, as shown in Equation 6.10.

n
’ ’_. ’
R =r/=3r
j=1

Equation 6.10

The variable productivity rate for each category r;’is calculated as the product of the productivity effort rp;”
for that category and the staffing level for that category, during that time period, p;, as shown in Equation
6.11.

r _ ’
Iy =1IP; " Pj
Equation 6.11

The historical productivity effort for each category rp;”is calculated by dividing the historical coding rate for
that category rc; by the mz2an staffing level for that category My, as shown in Equation 6.12.

A
rp; =
A,
Equation 6.12

The historical coding rate for each category rc; is calculated by multiplying the historical productivity rate
R* referenced in the generalized version by a scaling factor ¢; that characterizes the contribution of that
category to the historical productivity rate, as shown in Equation 6.13.

r 2
re; = Q; R

Equation 6.13

The scaling factors a; sum to 1, as shown in Equation 6.14, such that the sum of the historical coding
rates rc; is equal to the historical productivity rate R* referenced in the generalized version, as shown in

Equation 6.15.
Yo =1 2@:2@R=R
l= ]=

Equation 6.14 Equation 6.15

One approach to determine the scaling factors q; is to assume that the contribution made by a category to
the historical productivity rate is proportional to that categories percentage of the total number of lines on
the past project. For example, if a category was 50% of the code on the past project, its scaling factor
would be 0.50.
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Finally, substituting Equation 6.13 into Equation 6.12, then Equation 6.12 into Equation 6.11, then
Equation 6.11 into Equation 6.10, the variable productivity rate r; is calculated as shown in Equation 6.16.

n aj-R

,-—
=2

=t Hy,
Equation 6.16

‘P if

If average staffing levels are maintained throughout the duration of the project, the variable productivity
rate is equal to the fixed productivity rate. In other words, if p; = Hp the expression for r/ in Equation 6.16
reduces to R*. We also call the generalized version of the aggregate-code model the variable rate version
because the productivity rate changes over time. A different productivity rate characterizes each time
period, as fluctuations in the staffing level causes fluctuations in the productivity rate. The number of lines
of code generated during each time period ¢; is calculated as the product of the variable productivity rate r/
and the duration of the time period 7, as shown in Equation 6.17.

c. = p;.'- t

t i

Equation 6.17

When the sum of the number of iines of codes for each time period ¢; (the cumulative sum of written code
to-date) is equal to the final number of lines of code on the current project C (a figure which typically
changes over the duration of the project, and represents the current best estimate of the number of lines
of code that will be required for the entire project), the predicted comgletion time 7’is calculated as the

sum of each time period ¢/, as shown in Equation 6.18.

T’=Zm:t,.’

i=l
Equation 6.18

As an example, in the previous section we described a past project that exhibited a number of lines of
code C* = 52.37 KNCSL and a productivity rate R* = 5.86 KNCSL/month, while the next generation of the
same project was estimated to have a number of lines of code C = 63.72 KNCSL. If the past project was
comprised of three categories of code (X, Y, and Z) with numbers of lines of code ¢,;* = 16.76 KNCSL (X),
c* = 25.66 KNCSL (Y), and c;* = 9.95 KNCSL (Z), and mean staffing levels 4, = 2.5 people (X), z,,= 3.1
people (Y), and u,, = 1.7 people (Z), the necessary parameters are calculated using Equation 6.12 and
Equation 6.13 as follows (note the following: 1) the sum of the individual number of lines of codes ¢;* is
equal to the total number of lines of code C*, 2) the sum of the individual productivity rates rc;”is equal to
the total productivity rate R*, and 3) here, we assume that the scaling factors o; for each category are
directly proportional to the percent of the total number of lines of code for that category):

-‘ihca{égb'ry- " Code .. 7:.Code- - 7:-‘S_té_ffin_'g,'."_vQQ'ding‘R%ite' " e:Prod. Effort .’
T (KNGSL) (KNCSL %), (People)” - - (KNCSL/
16.76 0.32 2.5 1.88
Y 25.66 0.49 3.1 2.87 0.926
Z 9.95 0.19 1.7 1.11 0.653
SUM 52.37 1.00 - 5.86 -

Using Equation 6.16, the variable productivity rate r;”is calculated as follows:

r’=0.752p, +0926p,, +0.653p,,

108




Continuing our example, we assume that the next generation of the same project consists of the same
categories (X, Y, and Z) with estimated numbers of lines of code ¢, = 20.46 KNCSL (X), ¢ = 32.94 KNCSL
(Y), and ¢; = 10.32 KNCSL (2), and constant staffing levels p;; = 2 people (X), p;; = 3 people (Y), and p;; =
2 people (Z). Using Equation 6.17 and Equation 6.18, it is easy to show that the predicted completion time
T’is calculated as follows:

_ 2046 +3294 +1032 6372
T (0752-2) +(0926-3)+(0.653-2) 559

T = 11.40 months

We conclude that the current project will be completed in 11.40 months. In the next section, we describe
in detail our approach to estimating the historical productivity effort for each category rp,”using data from a
past project at the sponsor company.

6.4.2 Repair Time

To predict the repair time D we require the following inputs: the historical fault density f; for each category
j, the historical mean time-to-repair faults ,u,,}.for each category j, and the current number of lines of code c;

for each category j, The predicted repair time D is calculated as the sum of the predicted repair times d;
for each category j, as shown in Equation 6.19.

p-Sa
j=1

Equation 6.19

Similarly, the predicted number of faults M is calculated as the sum of the predicted number of faults m; for
each category j, as shown in Equation 6.20.

M= imj
j=1

Equation 6.20

The predicted repair time for each category d; is calculated as the product of the predicted number of
faults for that category m; and the historical mean time-to-repair faults for that category i, where the
predicted number of faults for each category is the product of the historical fault density for that category J;
and the current number of lines of code ¢; for that category, as shown in Equation 6.21.

d;=m;-H, m;=c;-f; di=c; fi t,
(@) (b) (c)
Equation 6.21

Continuing our previous example, suppose the past project exhibited fault densities f; = 2.79 faults/KNCSL
(X), f2 = 0.94 faults/KNCSL (Y), and f; = 4.17 faults/KNCSL (Z), and niean times-to-repair faults 4, = 0.06

months/faults (X), x, = 0.05 months/fault (Y), and x4, = 0.16 months/fault (Z). Using Equation 6.21, the

predicted number of faults for each category m; and the predicted repair time for each category 4; are
calculated as follows:
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m, = (2.79-20.46) = 57 faults d, = (57-0.06) = 3.29 months
m, =(0.94-32.94) = 31 faults d, == (31-0.05) = 1.55 months
m, =(4.17-10.32) = 43 faults d, =(43.0.16) = 2.03 months
We conclude that category X is likely to cause the largest number of errors (57 faults) and require the

largest amount of time to repair these faults (3.29 months). Using Equation 6.19 and Equation 6.20, the
predicted number of fauits M and the predicted repair time D are calculated as follows:

M =57 +31+43 =131 faults D =329 +155+2.03 = 6.87 months

We conclude that 40% (4.53 months) of the completion time will be spent writing new code, while 60%
(6.87 months) of the completion time will be spent repairing 131 fauits. In the next section, we describe in
detail our approach to estimating the historical fault density f; and the historical mean time-to-repair faults
Ha; using data from a past project at the sponsor company.

6.4.3 Sensitivity Analysis

The sensitivity of the completion time T’with respect to the number of lines of code C, is defined as shown
in Equation 6.22.

g AT
€ AC
Equation 6.22

For example, we can calculate the sensitivity as the change in the overall completion time T“in response
to a 1 KNCSL increase in number of lines of code C, as shown in Equation 6.23 (note that we are only
concerned with the effect that such an increase has during the final time period m, because it is during this
time period that resources would be dedicated to addressing the additional code).

gr _Colemitrin) €40-(emitray) 1
n r,,’, rn'I r"ll
Equation 6.23

We can use this sensitivity analysis to evaluate the effect of code increases on the completicn tirme.
Continuing our previous example, using Equation 6.23, the sensitivity is calculated as follows:

, 1
SCTM T 0.18 months/ KNCSL

We conclude that a 1 KNCSL increase in the number of lines of code C, will cause a 0.18 month increase
in the completion time 7" The sensitivity of the completion time T“with respect to the staffing level in a
category, during a time period, p;;, is defined as shown in Equation 6.24.

T _ AT’
Py Apu
Equation 6.24

For example, we can calculate the sensitivity as the change in the overall completion time T”in response
to a 1 person increase in p,;, the staffing level during the final time period m in category j, as shown in
Equation 6.25 (note the following: 1) r,,,j” denotes the new variable productivity rate resuiting from an
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additional person, and 2) c(n.;; denotes the number of lines of code in the next to last time period m-1 for
category j).

’ ’ n ’ 4
C- (c("'"'); +r, -tm) C- (c(""”; +r, -tm) p; '(C(m-l), ~ C) )

T _ o ’
Spm’. - r’ r” - roor” where rml =r,+ rpj
m m; m rm,

Equation 6.25

If we sum these values for each of the m time periods in a given category, we can also calculate the
sensitivity of the completion time to a 1 person increase in the staffing level for that category throughout
the duration of the project, as shown in Equation 6.26.

m

8, =255,

Equation 6.26

We can use the sensitivity analysis to evaluate the effect of increasing the staffing level in a category on
the completion time, during a specific time period or throughout the duration of a project. Continuing our
example, we assume that the time periods ¢’ are of equal length (1 month). Since the project is
completed in 11.40 months, at the end of the next to last time period m-1=17 the amount of code that has
been generated is (5.59 KNCSL/month) - (11 months) = 61.49 KNCSL. Using Equation 6.25, the
sensitivities during the final time period m=12 are calculated as follows:

r _0752- (61.49-63.72) _

- = —0.05 month

Pm = 559-(559+0752) oS
. 0926-(6149 - 63.72)

T _ — —

P = 559.(559+0926) .06 months

r _0653-(6149-6372) .. .

Pm— 559.(559 +0.653)

We conclude that a 1 person increase in the staffing level of category Y during the last time period will
yield the largest decrease in the completion time 7“from 11.40 months to 11.34 months. Using Equation
6.26 to sum the values for all of the 12 time periods, the sensitivities for the duration of the project are: X (-
1.35 months), Y (-1.62 months), and Z (-1.19 months). We conclude that a 1 person increase in the
staffing level of category Y throughout the duration of the project will yield the largest decrease in the
completion time T’from 11.40 months to 9.78 months.

The sensitivity of the completion time (no repair) T with respect to the number of lines of code C could also
be calculated. This is not performed here.

6.5 Research Methodology

A digital wireless telephone consists of two kinds of firmware: microcontroller firrnware and digital signal
processor firmware. At the sponsor company, .o functional groups were responsible for coding and
testing this firmware, the Microcontroller Design group and the Digital Signal Processor Design group,
respectively. To assess the aggregate-code model's potential utility, it was applied to the firmware in the
Microcontroller Design group only.
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To determine the historical parameters for both versions of the aggregate-code model, we extracted data
from the product administration database at the sponsor company. This database stored the actual
source lines of code and managed changes to these files by tracking what are known as modification
requests (MRs). MRs represent petitions to change cod« as a result of malfunctions or errors that have
been identified during coding, integration, or testing. The parameters that we were interested in extracting
from the database were the number of faults, the mean time-to-repair faults, and the fault densily on a
past project. These parameters represented necessary inputs to the model. Unfcriunaiely, MRs did not
capture these measures. MRs did record a wide range of related data includiry; the creation date (the
date the MR was generated), the submission date (the date the changes to code were finished), and the
completion time (the difference between the submission date and the creation date). To approximate the
model inputs, we made the following basic assumptions:

(1) # MRs = # Faults

) MR Completion Time = Time-To-Repair Faults
# MRs '

(3) m = Fault Density

The first assumption states that the number of modification requests was proportiona! to the number of
faults. In a number of instances, the ratio of MRs to faults was indeed 1 to 1. However, there were also
instances where a single fault generated muitiple MRs (which would skew the ratio above 1), or a single
MR referenced multiple faults (which would skew the ratio below 1). Despite these and other anomalies,
this assumption was considered valid based on the opinion that by aggregating the data, an averaging
effect would take place, causing the ratio to be close to 1.

The second assumption states that the time to complete an MR was proportional to the mean tirne-to-
repair faults. Presumably, between the time an MR was created and the time it was submitted, the
programmer(s) assigned to the MR were working to fix the problem that was identified. Clearly, there is
noise associated with this assumption given the fact that programmers were often responsible for multiple
MRs, while also attending to other non MR-related responsibilities. However, given the data that was
available from the product administration database, this was the closest approximation to the mean time-
to-repair faults.

The third assumption states that the number of MRs divided by the number of lines of code was
proportional to the fault density. This assumption was valid to the extent that the first assumption was
valid because the number of lines of code was an exact statistic. The MR data was calculated directly
from the product administration database and the number of lines of ccde was calculated directly from the
source code directories, both using UNIX shell scripts.

In the following sections, when referring to the number of faults, the mean time-to-repair faults, and the
fault density, we will actually be referring to the approximations to these metrics, unless explicitly stated
otherwise. We will also express all time-dimensioned variables in days as opposed to months (e.g.
days/fault and person-days/fault, etc.). Using these approximations, we calculated the necessary
parameters for the generalized version of the aggregate-code model and the categorized version of the
aggregate-code model, from a past project at the sponsor company.

6.5.1 Generalized Version and Parameters

For the generalized version of the aggregate-code model, we calculated model parameters that sought to
characterize the collective behavior of the microcontroller firmware on the past project. The four
parameters that served as inputs to the model were the following: the historical productivity rate R*, the
historical fault density F, the historical mean time-to-repair faults up, and the current number of lines of
code C. Here, we describe our approach to determining the historical parameters.
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The historical productivity rate R* was easily determined from the past project at the sponsor company.
Recall from Section 6.3.1, that the historical productivity rate R* can be calculated by dividing the number
of lines of code for the past project C* by the time period required to compiete the past project T*, as
shown in Equation 6.27.

R=%
T
Equation 6.27

The historical productivity rate R* was calculated as follows:

R =% _ 0166 KNCSL/ d
455 ay

The historical fault density F was calculated by dividing the number of faults on the past project M* by the
number of lines of code on the past project C*, as shown in Equation 6.28.

F=2
C
Equation 6.28
The historical fault density F was calculated as follows:
636
= ——— = §.43
F 7543 8.43 faults/ KNCSL

The historical mean time-to-repair faults z, was calculated by dividing the repair time on the past project
D* by the number of faults on the past project M*, as shown in Equation 6.29.

_D_
Hp 75
Equation 6.29

The product administration database did not provide the repair time on the past project, instead it provided
the repair effort E on the past project (measured in person-days). We postulated that the repair effort was
equal to the product of the repair time D*, the number of faults repaired per day N, and the mean effort-
to-repair faults g, as shown in Equation 6.30.

E=D"-Np- i
Equation 6.30

in other words, the effort overstated the amount of time spent repairing faults because of parallel activity.
Therefore, for each day spent repairing a fault (repair days), a number of fauits were being addressed
within that time (faults per repair day), and for each of these faulis there was an effort associated with its
repair (effort per fault). This expression in Equation 6.30 cancels as follows:

RepairDays Faulte Effort
Effort = X RepairDay X Faul
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Solving Equation 6.30 for D*, and substituting this expression into Equation 6.30, the final expression for
the historical mean time-to-repair faults y, is shown in Equation 6.31.
—£E
M -Np-ug
Equation 6.31

The number of faults repaired per day N, was estimated by managers to bz 2.50 faults/day. The mean
effort-to-repair faults x; was estimated from the product administration database to be 20.37 person-
days/fault. Finally, the historical mean time-to-repair faults up, was calculated as follows:

Hp

12956
Hp = 636.2.50.2037

= 040 days/ fault

Table 6.3 summarizes the completion time and repair time parameters for the generalized version of the
aggregate-code model.

R* Productivity Rate (Repair)' 0.166 KNCSL/day

E Repair Effort 12,956 person-days
Np Faults Per Repair Day 2.50 faults/day

U Mean Effort-to-Repair Faults 20.37 person-days/fault
Up Mean Time-to-Repair Faults' 0.40 days/fault

F Fault Density' 8.43 faults/KNCSL

*denotes an input parameter,

Table 6.3: Generalized Version of the Aggregate-Code Model
Completion Time and Repair Time Parameters

This completed the necessary parameters for the generalized version of the aggregate-code model. In
summary, the required historical inputs were the historical productivity rate R*, the historical mean time-to-
repair faults up, and the historical fault density F. Given these historical parameters and an estimate of
the current number of lines of code C, the model! could predict the completion time T“and the repair time
D.

6.5.2 Categorized Version and Parameters

For the categorized version of the aggregate-code model, we calculated model parameters that sought to
characterize the individual and collective behavior of the microcontroller firmware on the past project.
Toward that end, the firmware on the past project (e.g. each file) was segmented into the following six
categories (j=1...6):.

e Type 1 - software that exchanged messages with the base stations so that calls could be originated
and terminated, and that handoffs could be performed between base stations. Type 1 software also
supported Type 1 services software.

e Infrastructure - software that formed the run-time environment for the rest of the software including
the operating system software, interprocessor communication software, and memory systems
management software.

¢ Type 1 Services - software that provided vertical services between the handset and the base station
utilizing the basic Type 1 capabilities of exchanging messages. Such services included Type 2
messages, authentication, Type 3 service provisioning, and more.

o Type 3 - software that allowed the handset to receive and store the parameters associated with
service provisioning via Type 3 messaging, instead of being cabled to a computer.
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e User Interface - software that interacted with the user via display and keypad/buttons, to present
services to the user.

e Include and Other - files that specified data structures and defined the rules for compiling and
building the software.

The four parameters that served as inputs to the model were: the historical productivity effort rp;”for each
category j, the historical fault density f; for each category j, the historical mean time-to-repair faults M, for

each category j, and the current number of lines of code c; for each category j. Here, we describe our
approach to determining the historical parameters.

The historical productivity effort rp;”'~as easily determined from the past project at the sponsor company.
Recall from Section 6.4.1, that the historical productivity effort rp;“is defined as shown in Equation 6.32.

, oK
p; =
K,
Equation 6.32

The historical productivity rate R* was already determined for the generalized version of the model.
Therefore, the only unknowns in the expression were the scaling factors ¢; and the mean staffing levels
#, To determine the scaling factors o, we assumed that the contribution made by a category to the
historical productivity rate R* was proportional to that categories percentage of the total number of lines of
code on the past project. For example, if a category was 50% of the code on the past project, its scaling
factor was 0.50. The mean staffing levels 4, were determined from actual personnel records. Table 6.4

lists the completion time parameters for the categorized version of the aggregate-code model.

. Code ' - Code: . Staffiig :CodingRate . Pfo

. .Category < - -l (KNGSL)". (KNCSL %) (people) = (KN

oo C,

Type 1 B B 20.7

YA -l

] My

"027 | 20 | 0045 | 0022

Infrastructure 16.59 0.22 2.5 0.036 0.015

Type 1 Services 1.51 0.02 2.5 0.003 0.001

Type 3 15.84 0.21 2.0 0.035 0.017

User Interface 12.82 0.17 2.2 0.028 0.013

Include and Other 8.30 0.11 3.3 0.018 0.006
TOTAL 75.43 1.00 - 0.166 -

'denotes an input parameter.

Table 6.4: Categorized Version of the Aggregate-Code Model Completion Time Parameters

The historical fault density for each category f; was calculated by dividing the number of faults for each
category m;* on the past project by the number of lines of code for each category c;* on the past project,
as shown in Equation 6.33.

m;
f i= _+
¢j
Equation 6.33

The historical mean time-to-repair faults for each category 4, was calculated by dividing the repair time for

each category d;* on the past project by the number of faults for each category m;* on the past project, as
shown in Equation 6.34.
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Py ==
m;
Equation 6.34

As mentioned earlier, the product administration database did not provide repair times on the past project,
instead it provided repair efforts for each category e; on the past project (measured in person-days). We
postulated that the repair effort for a category was equal to the product of the repair time for that category
d;*, the number of people that worked during each repair day for that category Hy the number of faults

being addressed by each person for that category N and the mean effort-to-repair faults for that category
M.;» @s shown in Equation 6.35.

e] =dj .#P/ .nI’} .'u‘/
Equation 6.35

In other words, the effort again overstated the amount of time spent repairing faults because of parallel
activity. Therefore, for each day spent repairing a fault (repair days), a number of people were working to
repair these faults (people per repair day), and each of these people were addressing a certain number of
faults (faults per person), and for each of these faults there was an effort associated with its repair (effort
per fault). This expression in Equation 6.35 cancels as follows:

RepairBays Reople Faults , Effort
X RepairDay X Pesson X Fault

Effort =

Solving Equation 6.35 for d;*, and substituting this expression into Equation 6.34, the final expression for
the mean time-to-repair faults H is shown in Equation 6.36.

€;

m} 'ﬂp, .npl- 'ﬂzj

/‘d, =

Equation 6.36

The number of peogle that worked during each repair day for a category Hy; Was estimated as the mean

staffing level for the past project (previously obtained from personnel records for the generalized version
of the model). The number of faults worked by each person in a category #, was estimated by managers

to be 1.15. The mean effort-to-repair faults for a category He; Was astimated from the product

administration database. Table 6.5 lists the repair time parameters for the categnrized version of the
aggregate-code modei.

This completed the necessary parameters for the categorized version of the aggregate-code model. In
summary, the required historical inputs were the historical productivity effort rp,” for each category j, the
historical fault density f; for each category j, and the historical mean time-to-repair faults Hiy for each
category j. Given these historical parameters and an estimate of the current number of lines of code ; for
each category j, the model could predict the completion time T“and the repair time D.
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Typel 2810 | 267 | 115 | 1052 0.43 13.11

Infrastructure 2584 140 1.15 18.46 0.35 8.44

Type 1 Services 179 6 1.15 29.83 0.35 3.97

Type 3 465 13 1.15 35.77 0.43 0.82

User Interface 4264 89 1.15 47.91 0.40 6.94

Include and Other 2657 121 1.15 21.96 0.27 14.58
TOTAL 12959 636 - - - -

'denotes an input parameter.

Table 6.5: Categorized Version of the Aggregate-Code Model Repair Time Parameters

6.6 Results

The aggregate-code model provided valuable insight from two perspectives. First, the metrics that served
as inputs to the model were useful in assessing the performance of the past project from which they were
obtained. Second, the model's ability to predict future completion times and future repair times was useful
in assessiny performance on subsequent projects of a similar nature. In the following section, we present
observations and conclusions that were drawn as a result of analyzing the aggregate-code model metrics
and projections. Finally, we provide suggestions on how to interpret this data.

6.6.1 Model Metrics

The data that was collected to calculate the inputs to the aggregate-code model (e.g. repair effort, number
of faults) and the inputs themselves (e.g. productivity rate, fault density, and mean time-to-repair faults),
were useful in assessing the performance of the past project from which they were obtained.

Table 6.6 lists the inputs to both versions of the aggregate-code model, derived from the past project at
the sponsor company (note that for consistency we have converted the generalized productivity rate k”
from KNCSL/day to KNCSU/person-day by dividing 0.166 KNCSL/day by an average staffing level of 14.4
people on the past project).

P Prbdﬁ’c‘:t'ivityr' "?‘Tir'ﬁe't'oReba'ii'l FaultDensnt’“'
GENERALIZED VERSION ;(KN'C_SL;/P ' '

" Overall -EI_-I_-E_

_ .CATEGOFIIZED VERSION .
Type 1 0.022 " o.43 ' 13.11

Infrastructure 0.015 0.35 8.44
Type 1 Services 0.001 0.35 3.97
Type 3 0.017 0.43 0.82

User interface 0.013 0.40 6.94
Include and Other 0.006 0.27 14.58

Table 6.6: Aggregate-Code Model Metrics
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The productivity numbers were not particularly useful in that the noticeable, and intuitive, trend was that
the categories that had the largest amounts of code on the past project, generally had the highest
productivity's. Type 1 had the largest amount of code on the past project (27%) and had the highest
productivity (0.022 KNCSiUperson-day). Type 1 Services had the smallest amount of code on the past
project (2%) and had the lowest productivity (0.001 KNCSUL/person-day). This was partially a result of our
selection criteria for the scaling factors.

We did notice that the overall fault density for the project was 8.43 faults/KNCSL. This was impressively
close to manager's initial astimate of 8 faults/KNCSL at the beginning of the project. We also noticed that
the mean time-to-repair faults did not exhibit huge fluctuations across the various categories. The
difference between the highest ranked categories (Type 1 and Type 3, both at 0.43 days/fault) and the
lowest ranked category (Include and Other at 0.27 days/fault) was only 0.16 days/fault. However, it was
important to note that in addition to being ranked first by the mean time-tc-repair faults, the Type 1
category was also ranked second by fault density (13.11 faults/KNCSL). This was in sharp contrast to the
Type 3 category which was also ranked first by the mean time-to-repair faults, but ranked last by fault
density (0.82 faults/fKNCSL). We can expand on this observation by examining the remaining data.

Table 6.7 lists the number of lines of code, repair effort, and number of faults for each category of the past
project as a percent of the total number of lines of code (75.43 KNCSL), the total repair effort (12,959
days), and the total number of faults (636 faults), respectively, derived from the past project at the sponsor
company.

~- ., Code, ' RepaiEffori

»"Cv}'a' eg"_or'y - L (R (KNCSL) - " (pérson-

Typel . | 27% | 2% |  42%

Infrastructure 22% 20% 22%

Type 1 Services 2% 1% 1%

Type 3 21% 4% 2%

User Interface 17% 33% 14%

Include and Other 11% 20% 19%
TOTAL 100% 100% 100%

Table 6.7: Aggregate-Code Model Data as a Percent of Total

From this data a number of observations were made. First, it was concluded that Type 1 software was the
most challenging area on the past project, and an area that would require additional resources on future
product generations. Type 1 represented 27% of the code, yet generated almost twice as many faults
(42%). As mentioned earlier, the Type 1 category was also ranked second by fault density. It was also
the only category to exhibit a double-digit fault density, other than the Include and Other category. The
need for particular emphasis to be placed on Type 1 in the future was further bolstered by the fact that one
would expect a high fault density from the Include and Other category. This category represented code

that defined data structures and rules for compiling and building the software. Conseguer” ase files
had a high likelihood of 2xperiencing change, not due to any inherent problem w - itself, but
rather because they included global specifications that had a strong interdepende 1l of the other

categories. A change to a file in any of the other categories typically necessitated a .. ..ge to a file in the
Include and Other category.

Second, it appeared that performance in the Type 3 category was impressive (21% of the code, yet only
4% of the repair effort, 2% of the faults, and the lowest fault density at 0.89 faults/KNCSL). In reality,
these numbers were slightly skewed given the fact that the software in this category had undergone
extensive development in a separate environment, prior to being integrated onto the handset.
Consequently, many of the potential probiems with the Type 3 code were identified and resolved prior to
being tracked by the product administration database. This explained why the repair effort, number of
faults, and fault density for the Type 3 category were so low.
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Third, it appeared that the User Interface software required a significant amount of time to resolve
problems (ranked first by repair effort at 4,264 person-days and third by the mean time-to-repair faults at
0.40 days/fault). Upon closer investigation, it was revealed that many of the faults that were identified in
this category were actually very easy to fix. For example, a typical User Interface MR referenced some
inconsistency between the display text as it appeared during testing and the display text as it was
specified in the requirements document. Because fixing problems such as these was relatively
straightforward, it was believed that the User Interface’s high ranking by repair effort and the mean time-
to-repair fauits was primarily a result of programmers' tendency to aliow the associated MR to remain
open, while attending to more pressing matters. These rankings were not believed to be indicative of the
difficulty associated with addressing such problems. These measures also had to be tempered by the fact
that they did not take into account the amount of code that was changed for a given fauit. For example, a
User Interface fault may have required changing a single line of code, while a Type 1 fault may have
required changing hundreds of lines of code.

Lastly, the performance metrics for the Infrastructure category appeared to be both consistent with the
size, and commensurate with the nature of this code (ranked third by productivity, third by the mean time-
to-repair faults, and third by fault density, while representing 22% of the code, 20% of the repair effort, and
22% of the faults). In fact, most of the Infrastructure metrics were close, if not identical, to the overall
prcject metrics.

6.6.2 Model Projections

The aggregate-code model’s ability to predict future completion times and future repair times represented
a useful tool to assess the performance of second and third generation products of a similar nature. For
example, the performance of a subsequent project consisting of revisions to Type 1 Services code and
Type 3 code, could be easily assessed using the metrics from these categories only. At the time this
assignment was performed, the sponsor company was completing the product that was the focus of this
research. Therefore, the opportunity to implement the model on the next generation of the same product
and benchmark its performance against their traditional approach was unfortunately not available. As an
alternative, and as a simple means to demonstrate the model's potential usefulness, we generated model
projections on the past project to assess how the model would have performed if it had been available to
managers at the beginning of the project. In doing so, we were fully cognizant that we were using
historical metrics to model the performance of the same project from which the metrics were derived. The
primary reason for generating the projections was to demonstrate how the model could be used.

Figure 6.3 shows the projections using the generalized version (fixed rate) of the aggregate-code model.

As expected, the generalized version of the model predicted the completion time for the project exactly
(455 days). This was because the productivity rate, which governed the completion time, was based on
the number of lines of code and completion time for the project itself. From these projections, we
observed that an estimated 254 days (56%) of the completion time were spent repairing faults. We also
observed that the proliferation of 636 faults doubled the completion time, extending it from 8 months to 16
months. Finally, the sensitivity of the completion time with respect to the number of lines of code was 6.03
days/KNCSL. In other words, a 1 KNCSL increase in the number of lines of code would have added
approximately 6 days to the completion time.

Figure 6.4 shows the projections using the categorized version (variable rate) of the aggregate-code
model.

119



2 2
£x gz
-~ & J %
Ny L8
% 2 i<
g2 5 €2
| | 5 ||
Q
2
66/1/L (] 66/V/L
o
1 86119 S T 66/L19
H]
1 66/1/5 - B6/LIS
=
...................... ——--g--------166M¥ .“ - - —----~--T66F
o
% 1 66/L/E O T 66nre
d
_ _ 1 66112 - - i
k3 m o m
2 g 1 6€nnt ol < 1 esnn
E | F > 3
m g T 86/172L & a T 8e/LEL
Y $ 1 86/L/LL 2 3 86/1/18
Q & w = : w
1 gerioL = S  g6/101 =
= c =
1 86/LI6 0 1 86/18
7]
e
................... --E----t--------1g6m o - - ---p--------18618B
" > “
' 1 86/L/L w i 1 86/1/L
" N | -
" m u“n 1 86/19 m “ mcu. u“m 86/49
! - 1 86/L/S o Vg s 86/L/S
' & 5 'g S
Q Q 1 = Q
V8 = 1 86/ G " ..m /m/ 86/L/Y
'n [} [}
'o /m/ 1 86L& i 1o - 86/1E
1 e 1
! 86/1/2 ..u.-. , 86/172
. , - B A \ 4 = : . \ 4 h 4
. = + p + . 86/u/s ir b ‘ * — - seiu
m. W =3 8 Q Q 8 =3 S =1 8 8 W W =} 8 8 o
8 R 8 ] g 8 Q e s e R 3 3 g 8 t] e ©
3000 34092

Categorized Version of the Aggregate-Code Model Projections
120

Figure 6.4




The categorized version of the medel predicted the completion time for the project within 7 days (448
days) of the completion time that was predicted by the generalized version of the model. The slight loss of
accuracy was the resuit of the added flexibility the model provided. By segmenting the productivity rate
into different categories, we no longer matched the actual productivity rate. The corresponding benefit
was the availability of more focused metrics that could be used independently, depending on the nature of
the code on subsequent projects. The repair time was estimated within 13 days (241 days or 54% of the
completion time) of the repair time that was estimated by the generalized version of the model. The
categorized version also determined that the proliferation of 636 faults doubled the completion time,
extending it from 8 months to 16 months. The sensitivity of the completion time with respect to the
number of lines of code was 4.70 days/KNCSL. In other words, a 1 KNCSL increase in the number of
lines of code would have added approximately 5 days to the completion time.

Finally, the sensitivities of the completion time with respect to the staffing levels throughout the duration of
the project were ranked as follows: 1. Type 1 (-42.6 days/person), 2. Type 3 (-33.9 days/person), 3.
Infrastructure (-29.3 days/person), 4. User Interface (-25.6 days/person), 5. Include and Other (-11.4
days/person), and 6. Type 1 Services (-2.8 days/person). Again, this reinforced the need for additional
resources in the area of Type 1 on future product generations.

6.6.3 Interpreting the Data

A few points must be made in regard to interpreting the aggregate-code data. First, the sensitivity analysis
with respect to the number of lines of code is useful in evaluating the impact additional lines of code may
have on the completion time. However, it is likely that these sensitivities actually overstate the impact
such increases will have. For example, on the past project at the sponsor company there were 75.43
KNCSL written over 455 days. This corresponded to a sensitivity of 6.03 days/KNCSL. There were a
number of times throughout the project's development that the number of lines of code was actually
stagnant, and staffing resources were solely focused on repairing faults. While this served to increase the
completion time, the number of lines of code remained fixed. This would indicate that the sensitivity is
actually a worst-case sensitivity, and the real sensitivity is somewhat lower. A best-case sensitivity could
be estimated by dividing the number of lines of code by the no-repair completion time of 207 days, which
corresponds to a sensitivity of 2.66 days/KNCSL. This probably understates the true sensitivity.

Last, the sensitivity analysis with respect to the staffing level is useful in identifying areas that may require
additional resources to generate new code, but it is not useful in identifying areas that may require
additional resources to repair faults. These sensitivities are a function of the productivity rates for each
category, and are therefore valuable in identifying areas that could benefit from programmers dedicated to
writing code, not repairing code. Since these sensitivities are also partially based on historical data, the
areas they identify will inevitably be categories that in the past required significant amounts of code to be
written. Once again, this was partially the result of our selection criteria for the scaling factors. The fault
densities are the best metrics for identifying areas that may experience large numbers of faults, and could
theretore benefit from additional resources to improve the ability to repair code. Furthermore, the staffing
sensitivities are best interpreted relative to one another, instead of as absolute numbers. For example, on
the past project at the sponsor company the highest sensitivity was associated with Type 1 at -42.6
days/person. It is doubtful that the completion time would have been reduced by 43 days if an additional
person had been added to the project. However, relative to the other categories, we could conclude that
additional resources in the area of Type 1 would have been likely to have the greatest impact on reducing
the completion time.
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6.7 Discussion

In this chapter, we introduced the Aggregate-Code Model, a tool that was used to predict the completion
time and the repair time of large-scale firmware projects at the sponsor company. We presented two
versions of the model. The generalized version of the model derived the model inputs by aggregating
historical data from all of the code on a past project. The categorized version of the model derived the
model inputs by aggregating historical data from specific categories of code on the same project. The
model also yielded a sensitivity analysis with respect to the number of lines of code and the staffing levels
in each category.

The aggregate-code model served two simultaneous purposes. The model's first purpose was to provide
a means to obtain performance metrics from the firmware product admiinistration database at the sponsor
company. Based on some simple assumptions regarding the nature of modification requests (MRs), we
designed UNIX shell scripts to extract productivity rates, code counts, fault counts, repair efforts, and fault
densities, directly from the database. By postulating on how the effort numbers were generated, we were
able to derive the mean time-to-repair faults. These metrics were useful to the sponsor company in
assessing their performance on the past project. In fact, while developing the model it became clear that
the sponsor company could improve their practices for documenting MRs. One of the recommendations
to the sponsor company was to record the actual number of faults and the actual time-to-repair faults on
firmware projects in the future, to avoid the need for approximating these important metrics in the future.
Recommendations are summarized in Chapter 7. The model's second purpose was to establish a
framework to supplement existing techniques at the sponsor company for predicting completion time,
while also allowing for more sophisticated models to be implemented in the future. In fact, there are
examples of software models that require many of the same inputs as the aggregate-code model, such as
the Software Life Cycle Model [27]. One of the recommendations to the sponsor company was to
implement an advanced model to predict firmware completion time, using the aggregate-code model as a
starting point. Recommendations are summarized in Chapter 7.

The aggregate-code model demonstrated a number of strengths. It was based on historical data that was
specific to the sponsor company. A number of software models are based on industry statistics, as
opposed to firm-specific statistics [27]. These approaches are useful in the absence of indigenous
metrics, however, data that is reflective of the actual working environment is aimost always preferred. The
model also provided considerable flexibility given the fact that the metrics were divided into categories. It
allowed the model toc maintain its usefulness for subsequent projects that might be limited to only certain
types of code. The tradeoff to this flexibility was perhaps a slight loss in accuracy.

On the other hand, the model demonstrated an even greater number of weaknesses. Despite the
flexibility offered by categorizing the code, the model did not offer a sensitivity analysis with respect to the
amounts of code within these categories. Even the sensitivity analysis in the categorized version of the
model was still at an aggregate level. The reason being that the model assumed that the net productivity
rate of the individual productivity rates was equaily applied to all of the categories of code. A better
approach would have been to apply the productivity rates to their respective categories only, and calculate
the amount of code being generated in each category. Furthermore, in performing this research we
assumed that the contribution of each category to the productivity rate was proportional to its percent of
the total number of lines of code on the past project. It is not clear that this was a good assumption as it
played a noticeable role in skewing the productivity efforts and the sensitivity analyses with respect to the
number of lines of code. It is likely that there may have been a more effective approach to determining
the scaling factors using criteria that better characterized these contributions, such as the level of skill and
experience of the team members in each category. The model also assumed a linear relationship
between the number of faults and the repair time. Several research efforts have shown this relationship to
be extremely nonlinear [25]. Lastly, the model assumed that by determining the time spent writing code
and repairing faults on past projects, that one could predict the time spent writing code and repairing faults
on future projects, without taking into account any measure of project complexity. Looking forward, the
model will only be useful if the complexity of future projects is in fact equal to, or comparable to, the
complexity of the past project.
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There are two primary challenges in developing a firmware model. First, productivity is a difficult measure
to quantify. A project could remain fixed at a certain number of lines of code for months and still be
considered productive if problems are being detected and fixed. Alternatively, the number of lines of code
could actuallv diminish as a result of more efiicient coding techniques that achieve the same performance
in fewer instructions. Second, the nature of faults is very difficult to characterize. A single fault can
require months to be resolved, while multiple faults can be resolved within days. In developing this
framework, it was clear that there was considerable work to be done at the sponsor company to create a
model that could overcome these challenges. However, it was also believed that the aggregate-code
model was a positive step toward such a realization.
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CHAPTER 7: CONCLUSION

7.1 Recommendations

At the completion of this research, a number of strategic recommendations were presented to the sponsor
company. These recommendations were as follows:

Establish a cross-functional team of representatives from the Industrial Design, Supply Chain
Management, Manufacturing, and Reliability groups, charged with the joint responsibility of acquiring
parts and qualifying suppliers. Information transferred between these groups regarding parts and
suppliers was identified as a critical component of the handset's design effort. This recommendation
was the result of the information flow and dependencies analysis described in Chapter 3.

Invest more time at the beginning of the product development process specifying the requirements for
firmware, particularly Microcontroller firmware. The handset's Microcontroller Design group was found
to be heavily dependent on requirements-related information that was not properly defined, in order to
complete their responsibilities. This recommendation was the result of the information flow and
dependencies analysis described in Chapter 3.

Establish a cross-functional strategic design team of representatives from the Manufacturing, Analog
Design, Industrial Design, and Supply Chain Management groups, centered around the analog printed
circuit board (PCB). Acquiring parts for, and building the analog PCB was identified as a critical
component of the handset's design effort. This recommendation was the result of the controlling
features and total work analysis described in Chapter 4.

Establish a cross-functional strategic design team of representatives from the Microcontroller Design,
Systemn Integration, and Digital Signal Processor Design groups, centered around Type 1 firmware.
Designing and testing the handset's Type 1 firmware was identified as a critical component of the
design effort. This recommendation was the result of the controlling features and total work analysis
described in Chapter 4.

Reduce the number of audio/acoustics related tests. Noticeable redundancy of tests related to the
handset's audio/acoustics system was identified in the Industrial Design, Reliability, Human Factors,
and System Test groups. This recommendation was the result of the controlling features and total
work analysis described in Chapter 4.

Reduce the number of user interface related tests. Noticeable redundancy of tests related to the
handset's user interface was identified in the System Test, Human Factors, and System Integration
groups. This recommendation was the result of the controlling features and total work analysis
described in Chapter 4.

Implement the Dynamic Signal Flow Graph Modei as a tool for modeling hardware completion time in
the future. The dynamic signal flow graph model predicted completion time of past hardware
prototypes within 4% of the actual completion time. This recommendation was the result of the
completion time modeling of hardware described in Chapter 5.

Establish procedures to record the actual number of faults and the actual time-to-repair faults on
firmware projects in the future. At the time, these metrics were not being collected, yet they
represented important measures for assessing firmware performance and implementing models to
predict firmware completion time. This recommendation was the result of the completion time
modeling of firmware described in Chapter 5.

124



e Implement an advanced model to predict firmware completion time, using the Aggregate-Code Model
as a starting point. The aggregate-code model provided a framework to supplement existing
techniques, yet allowed for more sophistical models to be implemented. A model that was suggested
was the Software Life Cycle Model [27]. This recommendation was the result of the completion time
modeling of firmware described in Chapter 6.

Figure 7.1 shows a modified process flow diagram of the product development process at the sponsor
company previously shown in Figure 2.4, that captures many of these recommendations (identified by bold
italics).
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Figure 7.1: Modified Process Flow Diagram of the Product Davelopment Process

7.2 Key Learnings

As a result of this research, a number of key learnings were extracted. These learnings were as follows:

e The Design Structure Matrix (DSM) was an extremely versatile framework to capture a product
development process. In this research, the DSM was used to successfully model the development
process of a fairly complex product - a digital wireless telephone. This process was comprised of 114
design tasks, fifteen functional groups, and four process flow phases, using concurrent engineering in
a rapid protoyping environment. This learning was the resuit the product development process
modeling described in Chapter 3.
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DSM Representations and Coupling Analysis were moderately useful tools in analyzing information
flow and dependencies. In this research, both tools were used to assass the effective use of strategic
decoupling, concurrent engineering, and rapid prototyping. This learning was the result of the
information flow and dependencies analysis described in Chapter 3.

Partitioning and the Work Transformation Matrix (WTM) Model were powerful tools in performing
Controlling Features and Tctal Work Analysis. In this research, both tools were used to generate
recommendations related to the reorganization of tasks and the establishment of strategic design
teams. This learning was the result of the controlling features and total work analysis described in
Chapter 4.

The Dynamic Signai Flow Graph Mode! outperformed the Static Signal Flow Graph Model and the
Adjusted Reward Markov Chain Model for modeling hardware completion time. In this research, the
dynamic signal flow graph model was able to predict the completion time of a past prototype within 4%
of the actual completion time. It was believed that the success of the model was a direct result of its
ability to capture task times that change with subsequent iterations. This learning was the result of the
completion time modeling of hardware described in Chapter 5.

The Aggregate-Code Model input metrics (productivity, fault density, and mean time-to-repair faults)
for firmware completion time were useful in assessing the performance of past projects, but the model
itself only represented a framework to implement more sophisticated models. In this research, the
aggregate-code model served both of these purposes. This learning was the result of the completion
time modeling of firmware described in Chapter 6.

7.3 Future Work

As a continuation of this research, there are a number of opportunities to extend the work that has been
presented. These opportunities are as foliows:

Chapter 2: Product Development Process Modeling - To model the product development process at
the sponsor company, we constructed a task-level DSM. A parametric-level DSM of a digital wireless
telephone, or comparable product, would yield additional insight to the strengths and weaknesses of
both approaches.

Chapter 3: Analyzing Information Flow and Dependencies - To analyze information transfer at the
sponsor company, we used coupling analysis. This was a simple, yet relatively new approach to using
the DSM. It would benefit from additional use within an industrial environment to further validate (or
invalidate) its effectiveness.

Chapter 4: Analyzing Controlling Features and Total Work - To analyze design iteration at the sponsor
company, we again leveraged the information captured by a task-level DSM. In this capacity, it was
unable to model the technical subtleties of hardware design and firmware design sufficiently. It would
be a useful exercise to implement a parametric-level DSM within a rapid prototyping environment, and
evaluate whether an optimal ordering for the introduction of functions and features could be identified
[37].

Chapter 5: Modeling Hardware Completion Time - To predict the completion time of the analog PCB at
the sponsor company, we used the signal flow graph in two configurations (a static mode! and a
dynamic model) and the reward Markov chain in a single configuration (an adjusted model).
investigation of aiternative confiqurations for all three models would be an excellent way to build upon
our findings. Some examples include the following: a static signal flow graph model with transition
probabilities that are subject to change, a dynamic signal flow graph model that allows for different
first-pass, second-pass and third-pass task times, and an adjusted reward Markov chain model that
provides more accurate sensitivities for forward transition probabilities.
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e Chapter 6: Modeiing Firmware Completion Time - To predict the completion of the microcontroller
firmware at the sponsor company, we used the aggregate-code model. A logical extension to the
model would be to incorporate a non-linear relationship between the number of faults and the repair
time. However, a more useful way to levarage the framework that was established by the model
would be to implement a similar, yet more sophisticated model, such as the Software Life Cycle Model
[27].

7.4 Final Remarks

The ability to produce superior products is a source of competitive advantage. This is particularily true for
firms competing in fast-paced, high-tech industries, such as the wireless industry. In this thesis, we
examined some of the issues associated with producing a digital wireless telephione within this intensely
competitive environment. The six major themes of this research were the following:

Mode! the product development procass.
Analyze information flow and dependencies between design tasks, functional groups, and process
flow phases.
Analyze the controlling features of engineering deslgn iteration and total work.
Model hardware completion time of printed circuit boards.
e Model firmwara completion time of large-scale projects.

In performing this work, we aimed to achieve two important goals. First, to present useful and insightful
recommendations to the sponsor company. Second, to contribute to the body of knowledge upon which
this research was grounded. In the former case, our intent was to provide the sponsor company with
additional knowledge and tools to assist them in overcoming the challenges associated w'th developing
new products. Hopefully, in the latter case, we have provided the reader with exactly the same
deliverables.
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APPENDIX A: COUPLING ANALYSIS ALGORITHMS

FILE: coup.m

oP

FILE: coup.m

% COUPLING ANALYSIS

% MATLAB Version 4.0

%

% Randal D. Pinkett, Massachusetts Institute cf Technology
% May 1998

clc;

sprintf (‘Performing Coupling Analysis...’)

% Coupling-Related Variabiles

n=6; % Dimension of the NDSM
m=(2131]; % Size of Groups

n2 = size(m,2); % Dimension of the ADSM and GDSM

% First Task of Each Grouping
group = [ 1 (m(l)+m(2)) (m(2)+m(3)) (n+l) ];

% Generate Numerical Design Structure Matrix (NDSM)
NDSM1 00090.31];

NDSM2
NDSM3
NDSM4
NDSMS
NDSM6 .
NDSM = [ NDSM1 ; NDSM2 ; NDSM3 ; NDSM4 ; NDSMS ; NDSM6 };

——r————
ooocokro
OONO:.»
cowno

$ Calculate NDSM Sum
NDSM_SUM = sum(sum(NDSM)) ;

% Calculate Individual Coupling Metrics and Percentages
for j = 1:n

% Individual Coupling Metrics
input_measure(j) = sum(NDSM(j, :));
output_measure(j) = sum(NDSM(:, Jj));
volume_measure(j) = input_measure(j) + output_measure(j);
% Metric Percentages

input_percent(j) = input_measure(j) / NDSM_SUM;
output_percent (j) = output_measure(j) / NDSM_SUM;
volume_percent (j) = volume_measure(j) / NDSM_SUM / 2;

end
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% FILE: coup.m (continued)

% Generate Aggregate Design Structure Matrix (ADSM)
ADSM = zeros(n2, n2);

k = 1;
for i

= group(l+1)
1 =1+ 1;

ADSM(k, 1) = ADSM(k, 1) + NDSM(i, j);
end

% Generate Group Design Structure Matrix (GDSM)
delta = max(max (NDSM));
for i = 1:n2
for j = 1:n2
GDSM(i, j) = ADSM(i, j) / (delta * m(i) * m(j)):
end
end

% Calculate Group Coupling Metrics and Relative Percentages
for k = 1:n2

% Group Coupling Metrics

greoup_input_measure(k) = sum(ADSM(k, :));

group_output_measure (k) sum(ADSM(:, k));

group_volume_measure (k) group_input_measure (k) +
group_output_measure(k) - ADSM(k, k);

% Relative Metric Percentages
pi = delta * n * m(k);

po = delta * n * m(k);

pv = delta * (2 * n * m(k) - (m(k) * m(k)));
relative_input_percent (k) = group_input_measure(k) / pi;
relative_output_percent (k) = group_output_measure(k) / po;
relative_volume_percent (k) = group_volume_measure(k) / pv;

end

sprintf(’'Done.’)
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APPENDIX B: EXCEL/DeMAID CONVERSION ALGORITHMS

INSTRUCTIONS

> wop=

Enter the DSM data in Excel (as shown below on the sheet “D “M").

Execute the Macro CreateCode in Excel (as shown below on the sheet “Execute”).
Execute the Macro ExportCode in Excel (as shown below on the sheet “Execute”)
and the DeMAID/GA Code will be stored (as shown below on the sheet “Code”).
Use the file dsm.npt as input to DeMAID/GA.

FILE: convert.xls e SHEET: “Execute”
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FILE: convert.xls e SHEET: “DSM”
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FILE: convert.xis « SHEET: “Macro”

'FILE: convert.xls - SHEET: "Macro"

‘EXCEL/DeMAID CONVERSION

'‘Microsoft Excel Version 5.0 and DeMAID/GA Version 1.0
‘Written in Visual Basic

‘Randal D. Pinkett, Massachusetts Institute of Technology
'May 1998

*INITIALIZE GLOBAL VARIABLES
'DSM-Related Variables
Const Title = "dsm" 'Title of the DSM (arbitrary name)
Const Dimension = 6 ‘Dimension of the DSM (e.g. 10 = 10 x 10)
'Excel File-Related Variables
Const CodeFilename = "dsm.npt" ‘Output file that will contain
‘the DeMAID/GA Code

'Excel Directory-Related Variables

Const FilePath = "" ‘Path where this file is located
Const CodePath = "" ‘Output path for the DeMAID/GA Code
'Excel Sheet-Related Variables

Const ExecuteSheet = "Execute" 'Sheet to execute the macros

Const DSMSheet = "DSM" 'Sheet that contains the DSM

Const CodeSheet = "Code" 'Sheet that will contain the

'DeMAID/GA Code

'DSM and DeMAID/GA Strength Mappings

Const H = "H" 'DSM Symbol for High

Const M = "M" 'DSM Symbol for Medium

Const L = "L" ‘DSM Symbol for Low

Const High = "es" 'DeMAID/GA Mapping for High
Const Medium = "n" 'DeMAID/GA Mapping for Medium
Const Low = "ew" 'DeMAID/GA Mapping for Low

'CREATE DEMAID/GA CODE

Sub CreateCode()
SetUpCodeSheet
GenerateCode

End Sub

'EXPORT DeMAID/GA CODE
Sub ExportCode()
ExportFile CodeSheet, CodePath, CodeFilename, xlTextMac
MsgBox "DeMAID/GA Code Successfully Exported to File '" & _
CodePath & CodeFilename & "'"
End Sub
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'FILE: convert.xls - SHEET: "Macro" (continued)

'‘Clear Contents of Spreadsheet
Sub ClearContents (Sheet)
‘Clear Spreadsheet Contents
OriginalSheetName = ActiveSheet.Name
Sheets (Sheet) .Select
Cells.Select
Selection.ClearContents
Range("Al") .Select
Sheets (OriginalSheetName) . Select
End Sub

. ¥’ Setup DeMAID/GA Code Sheet .
Sub SetUpCodeSheet ()

'Format Spreadsheet

ClearContents CodeSheet

With Worksheets (CodeSheet)
.Range("Al") .ColumnWidth = 100
.Range("Al") .Formula "(title " & Title & ")"
.Range("A2") .Formula * (maximum " & (Dimension + 1) & *)"

.TextBoxes.Font.Name "Arial"
.TextBoxes.Font.Size 10
End With
End Sub
‘Generate DeMAID/GA Code
Sub GenerateCode()
‘Initialize Variables
ReDim Goal (Dimension) As Boolean ‘Tracks modules to determine
'‘DeMAID/GA "goal" module
Dim NoInput As Boolean ‘Tracks inputs to determine
‘DeMAID/GA "no-input" condition

Number = 1 'Module Number
CodeLine = 3 ‘Cell Number for DeMAID/GA Code (1 = title, 2 = maximum)

'‘Evaluate Each Column to Generate Input List
For Column = 2 To Dimension + 1

‘Evaluate Each Cell Within Each Column to Generate Input List
Inputs = "uk"
For Row = 2 To Dimension + 1
Cell = Worksheets (DSMSheet) .Cells(Row, Column) .Value
If (Cell = H) Or (Cell = M) Or (Cell = L) Then
Inputs = Inputs & " " & __
Worksheets (DSMSheet) .Cells(Row, 1) .Value
Goal (Row - 1) = True
End If
Next Row
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'FILE: convert.xls - SHEET: "Macro* (continued)

'‘Generate Input List When There Is No-Input
If Inputs = "uk" Then

Inputs = Inputs & " no-input"”
End If

'Generate Input List When There Are Input(s)
ModuleName = Worksheets (DSMSheet) .Cells(l, Column).Value
ModuleTime = " 0 " & _
Int (Worksheets (DSMSheet) .Cells (Number + 1, Number + 1).Value)
Qutput = " " & ModuleName & " "
Inputs = Inputs & ")"
‘Generate DeMAID/GA Module Code
Code = "(module " & Number & " " & ModuleName & ModuleTime & _
Output & Inputs
Worksheets (CodeSheet) .Cells (CodeLine, 1) .Value = Code
Number = Number + 1
CodeLine = CodeLine + 1
Next Column

‘Evaluate Each Column to Generate Input List
Inputs = "uk"
For Column = 1 To Dimension

If Goal(Column) = False Then

Inputs = Inputs & " " & Worksheets(DSMSheet) .Cells(1l, _
Column + 1).Value

End If

Goal (Column) = False
Next Column

'Generate DeMAID/GA Module "goal" Code

If Inputs <> "uk" Then
Code = "(module " & Number & " GOAL 0 0 goal " & Inputs & ")"
Worksheets (CodeSheet) .Cells(CodeLine, 1) .Value = Ccode
CodeLine = CodeLine + 1

End If

'Evaluate Each Cell to Generate Strengths
For Column = 2 To Dimension + 1
NoInput = True
For Row = 2 To Dimension + 1
Strength = ""

'Evaluate Strength and Assign Mapping
Cell = Worksheets (DSMSheet) .Cells(Row, Column) .Value
If Cell = H Then
Strength = High
ElseIf Cell = M Then
Strength = Medium
ElseIf Cell = L Then
Strength = Low
End If
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'PFILE: convert.xls - SHEET: "Macro" (continued)

‘Generate DeMAID/GA Strength Code
If Strength <> "" Then
NoInput = False
Goal (Row - 1) = True

Output = Worksheets (DSMSheet) .Cells(1l, Column).Value

Inputs = Worksheets (DSMSheet) .Cells(Row, 1) .Value

Code = "(strength uk " & Strength & " " & Output & _

“ " & Inputs & ")"

Worksheets (CodeSheet) .Cells (CodeLine, 1).Value = Code

CodeLine = CodelLine + 1
End If
Next Row

'Generate DeMAID/GA Strength Code For No-Input

If NoInput = True Then
Output = Worksheets (DSMSheet) .Cells(1l, Column).Value
Code = "(strength uk s " & Output & " no-input)"
Worksheets (CodeSheet) .Cells (CodeLine, 1).Value = Code
CodeLine = CodeLine + 1

End If

Next Column

‘Generate DeMAID/GA Strength "goal" Code
IsGoal = False
For Row = 1 To Dimension
If Goal (Row) = False Then
Inputs = Worksheets(DSMSheet) .Cells(Row + 1, 1).Value
Code = "(strength uk n goal " & Inputs & ")"
Worksheets {CodeSheet) .Cells(CodeLine, 1) .Value = Code
CodelLine = CodeLine + 1
IsGoal = True
End If
Next Row

If IsGoal = False Then Worksheets{CodeSheet).Range("A2").Formula

" (maximum " & Dimension & ")"
End Sub

'Export a File

Sub ExportFile(Sheet, ExportPath, ExportFilename, Fileformat)
Filename = ExportPath & ExportFilename
ActiveWorkbookName = ActiveWorkbook.Name
ActiveSheetName = ActiveSheet.Name
Sheets (Sheet) .Select
OriginalSheetName = ActiveSheet.Name
ActiveWorkbook.SaveAs Filename:=Filename, _

Fileformat:=Fileformat, CreateBackup:=False

ActiveSheet .Name = OriginalSheetName
Sheets (ActiveSheetName) .Select
ActiveFileName = FilePath & ActiveWorkbookName

ActiveWorkbook.SaveAs Filename:=ActiveFileName, Fileformat:= _

x1Normal, Password:="", WriteResPassword:="", _
ReadOnlyRecommended:=False, CreateBackup:=False
End Sub
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APPENDIX C: EIGENSTRUCTURE ANALYSIS ALGORITHMS

FILE: eigen_ex.m

% FILE: eigen_ex.m

% EIGENSTRUCTURE ANALYSIS

% MATLAB Version 4.0

% )

$ Randal D. Pinkett, Massachusetts Institute of Technology
% May 1998 .

clec; o .
sprintf (' Performing Eigenstructure Analysis...’)

% Eigenstructure-Related Variables

n_modes = 1; % Number of Design Modes to be Ranked

n_tasks = 4; % Number of Design Tasks to be Ranked

n_work = 4; % Number of Total Work Vector Tasks
% to be Ranked

% File-Related Variables

eigout = ’'eigen.out’; % Filename For Eigenstructure Output Data
% (Tabular Format)

eigcsv = 'eigen.csv’; % Filename For Eigenstructure Output Data
% (CSV Format)

% Generate the Work Transformation Matrix (WTM)

WIM1 = [ 29 0.25 0.25 0 );
WTM2 = [ 0 25 0 0.05 };
WTM3 = [ 0 0 18 0.50 ];
WTM4 = [ 0.50 0 0 37 )

WTM = [ WIM1 ; WITM2 ; WIM3 ; WTM4 ];
% Generate the Matrices A and W

W = diag(diag(WTM)) ;

A =WIM - W;

% Perform Eigenstructure Analysis
[S, L, P, U, T] = eigen(A, W);

% Output Design Modes, Design Tasks, and Total Work Vector to Files (Ranked)
eigen_out (L, P, U, n_modes, n_tasks, n_work, eigout, eigcsv);

sprintf (’Done.’)
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FUNCTION: eigen.m

% FUNCTION: ([S, L, P, U, T] = eigen(A, W)

% Perform Eigenstructure Analysis

% S - Eigenvector Matrix

% L (lambda! - Eigenvalue Matrx

% P - Participation Matrix

%$ U - Total Work Vector

% T - Total Time Vector

% A - Coupling Strength Matrix from WTM
% W - Task Time Matrix from WTM

function [S, L, P, U, T] = eigen(A, W)

% Dimension
éim = size(A, 1);

% Identity Matrix and Initial Work Vector
I = diag(ones(dim, 1),0);
u0 = ones(dim, 1);

% Perform Eigenstructure Decomposition
[s, L] = eig(A);

eigenvalues = diag(L);

S = (-1) .= S;

INVS = inv(S};

% Calculate Contribution Matrix, Total Weight Vector,
contribution = inv(I - L);

weight = contribution * INVS * u0;

U = real(S * weight);

% Calculate Participation of Tasks to the Total Work

P = [];
for i = 1:dim
eigenvector = (S(1:dim, i)'});
factor = (1 / ( 1 - eigenvalues (i) ));
cum_sum = 0;
for j = 1:dim
cum_sum = cum_sum + INVS(i,j);
end
% Calculate Paritication Factors
factors = (eigenvector * factor * cum_sum)’;
% Generate Participation Matrix
P = [ P factors ];
end

% Calculate the Total Time Vector
T =W * U;

and Total Work Vector
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FUNCTION: eigen_out.m

% FUNCTION: eigen_out (L, P, U, n_modes, n_tasks, n_work, fileout, filecsv)

% Output Design Modes (ranked) and Total Work Vector (ranked) to Files
% L (lambda) - Eigenvalue Matrx

% P - Participation Matrix

% U - Total Work Vector

% n_modes - Number of Design Modes to be Ranked

% n_tasks - Number of Design Tasks to be Ranked

% fileout - Output Datafile in Tabular Format

% filecsv - Output Datafile in Comma Separated Version (CSV) Format

function eigen_ouvt (L, P, U, n_modes, n_tasks, n_work, fileout, filecsv)

% Dimension
dim = size(P, 1);

% Open Output Data Files
fidl = fopen(fileout, 'w');
fid2 = fopen(filecsv, 'w');

% Format File Header
fprintf (£idl, ‘\n’);
for i = 1:n_modes
fprintf(fidl, ‘Design Mode #%1.0f\t’, 1i);
end
fprintf(£idl, ‘\n’);

for i = 1l:n_modes

fprintf(fidl, ’'------=-=----- \t’);
end
fprintf(£fidl, ‘\n’):;

% Format File Sub-Header
for i = 1l:n_modes
fprintf(£fidl, ‘Task\tValue\t');
end
fprintf(£idl, ‘\n’);

for i = 1:n_modes

fprintf(fidl, ’'----\t----- \t’);
end
fprintf(£idl, '\n’);

% Calculate the Ranking Factors of the Design Modes
design_modes = real([ P U ]);
ranking_ factor = ones(dim,1l) ./ (1 - real(diag(L)));
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% FUNCTION: eigen_out (continued)

% Rank the Design Modes (Total Work Vector is considerecd the last design mode)
previous = 0;
for i = 1:n_niodes

[current, mode(i)] = max({ranking_factor);

ranking_factor(mode(i)) = 0;

% Avoid Duplication of Conjugate Modes

if previous == current
[current, mode(i)] = max(ranking factor);
ranking_factor (mode(i)) = 0;

end

previous = current;
end
mode (n_modes+1) = dim+l;

% Rank the Design Task and Design Mode Contributions to the Total Work Vector
for i = 1:n_tasks
for j = 1l:n_modes
[ data(i, (2*j))

, = max(design_modes (1l:dim, mode(j)));
data(i, (2*j-1))

k ]
= k;

% Calculate Normalization Factor

if 1 ==
factor(j) = design_modes(k, mode(j));
end
design_modes (k, mode(j)) = -Inf;
datal = data(i, (2*j-1));
data2 = data(i, (2*3j));

% Write Data to Files
fprintf(£fidl, '$1.0£\t\t%5.4£f\t\t’, datal, data2);
fprintf (£id2, '%1.0f£,%5.4£,’, datal, data2);
end
fprintf(£idl, ‘\n’);
fprintf (£id2, ‘\n’);
end

fprintf(£idl, ’\nTotal Work Vector\n’);

fprintf(£fidl, ’'----------------- \n');
fprintf (£fidl, ‘'Task\tValue\n'’);
fprintf (£fidl, ’'----\t----- \n’);
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% FUNCTION: eigen_out (continued)

% Rank the Total Work Vector
for i = 1l:n_work
j = n_modes+l;
{ data(i, (2*j)), k ] = max(design_modes(l:dim, mode(j)));
data(i, (2*3j-1)) = k;
design_modes(k, mode(j)) = -Inf;
datal data(i, (2*j-~1));
data2 data(i, (2*3));

% Write Data to Files

fprintf(£idl, ‘%1.0f\t%5.4f\n’, datal, data2);

fprintf(£id2, ‘%1.0f,%5.4f\n’, datal, data2);
end

fprintf(£idl, ’'\n’);
% Close Cutput Data Files

fclose(£fidl);
fclose(£id2);

FILE: eigen.out

Design Mode #1

N bW
8]
o
(Vo
[8,]
o

3 1.9396
4 1.8792
1 1.7584
2 1.0940
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APPENDIX D: SIGNAL FLOW GRAPH ANALYSIS ALGORITHMS

FILE: sfg.m

% FILE: sfg.m

$ SIGNAL FLOW GRAPH ANALYSIS

% MATLAB Version 4.0

%

% Randal D. Pinkett, Massachusetts Institute of Technology
% May 1998

%

clc;

sprintf (/' Performing Signal Flow Graph Analysis...’)

% Signal Flow Graph-Related Variables

terms = 8; % Number of Terms for
% Probability Distribution Function (PDF) and
% Cumulative Distribution Function (CDF)
dp = 0.01; % Sensitivity Delta for Transition Probabilities
dt = 1; % Sensitivity Delta for Task Time s
% (must be an integer)
n_probs = 4; % Number of Transition Probabilities
n_tasks = 3; % Number of rask Times
% Data

data = [ 0.3 0.1 0.7 0.9 10 5 7 ];

% Raw 'fransition Probabilities and Task Times

p = data(l:n_probs);

t = data(n_probs+l:n_probs+n_tasks);

% Raw Numerator and Denominator

[numerator, denominator] = sfg_ex(0, p. t, n_probs, n_tasks);

% Calculate Probability Distribution
[distribution, expected_value] = dist(terms, numerator, denominator);

% Calculate Expected Value for Sensitivity Analysis
[expected_value, standard_deviation] = prob(numerator, denominator);

% Calculate Sensitvity Analysis
for i = 1:(n_probs+n_tasks)

Raw Transition Probabilities and Task Times
data(l:n_probs);
data(n_probs+l:n_probs+n_tasks);

%
p
t
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% FILE: sfg.m (continued)

% Sensitivity Transition Probabilities and Task Times
if i <= n_probs
p(i) = p(i) * (1 + dp);
delta = dp;
elseif i <= (n_probs+n_tasks)
t(i-n_probs) = t(i-n_probs) * (1 + dt);
delta = d4dt;
end

% Sensitiviy Numerator and Denominator
[numerator, denominator] = sfg_ex(i, p, t, n_probs, n_tasks);

% Calculate Mean and Standard Deviation
[mean, stddev] = prob(numerator, denominator);

% Peform Sensitivity Analysis
sensitivity(i) = ((mean - expected_value) / expected_value) / delta;
end

% Store Sensitivity Analysis
p_sens = sensitivity(l:n_probs);
t_sens = sensitivity(n_probs+1l:n_probs+n_tasks) ;
% Write Probability Distribution Function
probability_sum = 0;
maximum_probability = max(distribution(l:terms, 2));
dummy_vector = [];
flag = 0;
for i = l:terms
time = distribution(i, 1);
cumulative(i, 1) = time;
probability = distribution(i, 2);
probability_sum = probability_sum + probability;
cumulative(i, 2) = prokability_sum;

if time < expected_value | flag ==
dummy_value = 0;

else
dummy_value = maximum_probability + 0.05;
loc = 1 + 1;
flag = 1;

end

dummy_vector = [ dummy_vector dummy_value ];
end

% Plot Probability Distribution Function
clg:

subplot(2,1,1), plot(distribution(l:terms,1l), distribution(l:terms,2),

title(’'Probability Distribution Function’);
xlabel(’'Time (Days)’):
ylabel (' Probability’);

'y');
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$ FILE: sfg.m (continued)

% Plot Expected Value and Standard Deviation

xloc = distribution(loc + 1, 1);

yloc = maximum_probability + 0.05;

textl = sprintf(’'Expected Value = %4.1f’, expected_value);

text2 = sprintf (’Standard Deviation = $%4.1f', standard_deviation);

text (xloc, yloc, textl);

text (xloc, yloc - 0.10 * yloc, text2);

axis([ distribution(l,1l) distribution(terms,1l) 0 maximum_probability + 0.10
1);

% Dlot Cumulative Distribution Function

subplot(2,1,2), plot(cumulative(l:terms,l), cumulative(l:terms,2), ‘'y’');
title(’'Cumulatve Distribution Function'’);

xlabel (‘Time (Days)’);

ylabel (‘' Probability’);

axis([ cumulative(l,1) cumulative(terms,l) 0 cumulative(terms, 2) + 0.10 ]);

done = sprintf(’Probability sensitivity analysis stored in p_sens,\n’);
done = sprintf(’%sTask time sensitivity analysis stored in t_sens,’, done);
done = sprintf(’%s\nDone.’, done)
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FUNCTION: sfg_ex.m

% FUNCTION: [numerator, denominator] = sfg _ex(i, p, t, tp, n_probs, n_tasks)

Generate Numerator and Denominator of Transfer Function H(z) for
Signal Flow Graph Model

of 0P

numerator -~ Numerator
denominator - Denominator
i - Index i=0 for Normal Analysis
i>0 for Sensitivity Analysis
p - Probabilities
t - Task Times
n_probs - Number of Probabilities
n_tasks - Number of Tasks

0P oP 0P dP dP IP IP IP

function [numerator, denominator] = sfg_ex(i, p, t, n_probs, n_tasks)

% Transition Probability Adjustments

if i ==

p(3) =1 - p(1);
elseif i ==

p(4) =1 - p(2);
elseif i ==

p(l) =1 - p(3);
elseif i ==

p(2) =1 - p(4);
end

% Generate Numerator of Transfer Function H(z)

nl = [ zeros(1l, t(1)) 1 1;

n2 = [ zeros(l, t(2)) 1 1;

n3 = [ zeros(l, t(3)) p(3) 1;
nd = [ p(4) 1;

num = conv(conv(conv(nl, n2), n3), n4);

% Generate Denominator of Transfer Function H(z)

dli=(11];
d2 = [ zeros(l, (t(l)+t(2))) p(1) 1;
d3 = [ zeros(l, (t(2)+t(3))) (p(3)*p(2)) 1;

denom = sub(sub(dl, 42), d43);

% Polynomial Size Adjustment (removes unnecessary trailing zeros)
[numerator, denominator] = sfg_adj(num, denom);
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FUNCTION: sfg_adj.m

% FUNCTION: [x_norm, y_norm] =

sfg_adj(x, y)

% Polynomial Size Adjustment (removes unnecessary trailing zeros)

x_norm - Adjusted Polynomial 1
y_norm - Adjusted Polynomial 2
x - Polynomial 1
y - Polynomial 2

0P 0P oP of

function [x_adjust, y_adjust] =

2);
2);

size(x,

sizel =
= sizel(y,

size2

if sizel > size2
vy = [ y zeros(l, sizel-size2)
elseif size2 > sizel

x = [ x zeros(1l, size2-sizel)
end
x_adjust = x;
y_adjust = y;

norm(x, y)

|
1;

148




FUNCTION: add.m

% FUNCTION: addition = add(x, y)

% Polynomial Addition

% addition - Polynomial Addition of x and y
% x - Polynomial 1

% y - Polynomial 2

function addition = add(x, y)

size(x, 2);
size(y, 2);

sizel
size2

if sizel > size2

v = [ y zeros(l, sizel-size2) ];
elseif size2 > sizel

X = » zeros(l, size2-sizel) ];
end

addition = x + y;

FUNCTION: sub.m

% FUNCTION: subtraction = sub(x, y)
% Polynomial Subtraction

% subtraction - Polynomial Subtraction of x and y
% x - Polynomial 1
% y - Polynomial 2

function subtraction = sub(x, y)

sizel = size(x, 2);
size2 = size(y, 2);

if sizel > size2

y = [ y zeros(l, sizel-size2) ];
elseif size2 > sizel

x = [ x zeros(l, size2-sizel) ];
end

subtraction = x - y;
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FUNCTION: dist.m

% FUNCTION: [distribution, expected] = dist(terms, numerator, denominator)

oP

Calculate Probability Distribution and Expected Value

distribution - Probability Distribution
(Column 1 = Probability, Column 2 = Time/Days)
terms - Number of Terms for Probability Distribution Function (PDF)
and Cumulative Distribution Function (CDF)
expected - Expected Value
numerator - Numerator of Transfer Function H(z)
denominator - Denominator of Transfer Function H(z)

oP oP oP oP odf dP oP

function [distribution, expected] = dist(terms, numerator, denominator)
distribution = [];
% Numerator and Denominator Powers (Order)

n_power size (numerator, 2);
d_power size(denominator, 2);

for 1 = 1l:terms

% Locate First Numerator Point
for j = 1:n_power

flag = 0;
if numerator(j) ~= 0
flag = 1;
break;
end '
end
if flag == 0
break;
end
nloc = j;

for j = 1:d_power
if denominator(j) ~= 0

break;

end
end
dloc = j;
% Quotient from Division (q)
g _order = (nloc - 1) - (dloc - 1);
quotient = numerator (nloc) / denominator (dloc);
distribution(i, 1:2) = [ g_order, quotient ];

% Numerator Order > Denominator Order
if g _order > 0

% Difference From Subtraction (s)
s_order = q_order;
subtract = [ zeros(s_order, 1l)', denominator * quotient ];
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% FUNCTION: dist.m (continued)

% Numerator
n_crder = (s_order + d_power) - n_power;
numerator = [ numerator, zeros(n_order, 1)’ ] - subtract;

% Demoninator
d_order = s_order;
denominator = [ denominator, zeros(d_order, 1)’ ];

% Numerator and Denominator Powers (Order)
n_power = n_power + n_order;
' d_power d_power + d_order;

% Numerator Order < Denominator Order
else

% Difference From Subtraction (s)

s_order = q_order * (-1);

subtract = denominator * quotient;

subtract = [ subtract(s_order+l:d_power), zeros(s_order, 1)’ ];

% Numerator
numeratcr = numerator - subtract;

end

% Polynomial Size Adjustment (removes unecessary trailing zeros)
for j = n_power:-1:1

flag = 0;
if numerator(j) ~= 0
break;
end
end
nloc = j;

for j = d_power:-1:1

if denominator(j) ~= 0

break;

end
end
dloc = j;
loc = max(nloc, dloc);
numerator = numerator(l:loc);
denominator = denominator(l:loc);
n_power loc;
d_power loc;

end

% Expected Value
expected = sum(distribution(l:terms, 1) .* distribution(l:terms, 2));
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FUNCTION: prob.m

% FUNCTION: [mean, stddev] = prob(numerator, denominator)

dP

Calculate Mean and Standard Deviation

mean - Mean

stddev - Standard Deviation

numerator - Numerator of Transfer Function H(z)
denominator - Denominator of Transfer Function H(z)

0P dP oP of

function [mean, stddev] = prob(numerator, denominator)
% Calculate Mean

% Perform Derivative Using Quotient Rule
[ numl, denoml ] = deriv(numerator, denominator);

% Mean
mean = sum(numl) / sum(denoml) ;

% Calculate Standard Deviation

% Multiply "z" Term To Expected Value
numl = [ zeros(1l,1)’, numl ];

% Perform Derivative Using Quotient Rule
[ num2, denom2 ] = deriv(numl, denoml);

% Calculate Variance

mean_square = sum(num2) / sum(denom2) ;
square_mean = mean”2;

variance = abs(mean_square - squace_mean) ;

% Calculate Standard Deviation
stddev = sqrt(variance);
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FUNCTION: deriv.m

% FUNCTION: [d_numerator, d_denominator] = deriv (numerator, denominator)
% Calculate Derivative Using the Quotient Rule

% d_numerator - Numerator of the Derivative

% d_denominator - Denominator of the Derivative
% numerator - Numerator

% denominator - Denominator

function [d_numerator, d_denominator] = deriv (numerator, denominator)
(% Determine the Size of the Numerator and the Denominator

n_size size (numerator, 2);
d_size size(denominator, 2);

u
v

numerator;
denominator;

% Calculate Derivative of the Numerator
dudx = {];
for i = 0:(n_size-1)
dudx = [ dudx, i * u(i+l) ];
end
dudx = dudx(2:size(dudx,2));

% Calculate Derivative of the Denominator

dvdx = [];
for i = 0:(d_size-1)

dvdx = [ dvdx, i * v(i+1) ];
end

dvdx = dvdx(2:size(dvdx,2));

% Calculate Left and Right Terms of the Numerator
vdudx = conv(v, dudx);

udvdx = conv(u, dvdx);

vdudx_size = size(vdudx, 2);

udvdx_size = size(udvdx, 2);

% Size Adjustments
if vdudx_size > udvdx_size

udvdx = [ udvdx, zeros(vdudx_size - udvdx_size, 1)’ ];
elseif udvdx_size > vdudx_size
vdudx = [ vdudx, zeros (udvdx_size - vdudx_size, 1)' ];

end

% Calculate Numerator and Denominator of the Derivative (Using Quotient Rule)
d_numerator = vdudx - udvdx;
d_denominator = conv(v, v);
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APPENDIX E: REWARD MARKOV CHAIN ANALYSIS ALGORITHMS

FILE: rmc.m

$ FILE: rmc.m

% REWARD MARKOV CHAIN ANALYSIS

% MATLAB Version 4.0

%

% Randal D. Pinkett, Massachusetts Institute of Technology
$ May 1998

%

clc;

sprintf (’'Performing Reward Chain Analysis...’)

% Reward Markov Chain-Related Variables

dp = 0.01; % Sensitivity Delta for Transition Probabilities
dt = 1; % Sensitivity Delta for Task Times
% (must be integer)
n_probs = 4; % Number of Transition Probabilities
n_tasks = 3; % Number of Task Times

% Data
data = [ 1.0 0.3 0.7 0.2 105 7 1;

% Raw Transition Probabilities and Task Times
p = data(l:n_probs});

t = data(n_probs+l:n_probs+n_tasks) ;

% Calculate Completion Time

M = rmc_ex(0, p, t, n_probs, n_tasks);

T = markov(M);

% Calculate Sensitvity Analysis
for i = 1:(n_probs+n_tasks)

Raw Transition Probabilities and Task Times
data(l:n_probs);

%
p
t data(n_probs+l:n_probs+n_tasks);

% Sensitivity Transition Probabilities and Task Times
if i <= n_probs
p(i) = p(i) * (1 + dp);

delta = dp;

elseif i <= (n_probs+n_tasks)
t(i-n_probs) = t(i-n_probs) * (1 + dt);
delta = dt;

end

% Sensitivity Completion Time
M = rmc_ex(i, p, £, n_probs, n_tasks);
TP = markov(M);
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% FILE: rmc.m (continued)

% Peform Sensitivity Analysis
sensitivity(i) = (TP - T) / T) / delta;
end

% Store Sensitivity Analysis
p_sens = sensitivity(l:n_probs);
t_sens = sensitivity(n_probs+l:n_probs+n_tasks);

clc;

done = sprintf(’Completion Time T = %6.3f\n’, T);

done = sprintf(’'%sTransition probability sensitivity analysis stored in
p_sens,\n', done);

done = sprintf(’%sTask time sensitivity analysis stored in t_sens,’, done);
done = sprintf(’%s\nDone.’, done)

FUNCTION: rmc_ex.m

% FUNCTION: M = rmc_ex(i, p, t, n_probs, n_tasks)

% Generate Matrix for Reward Markov Chain Model

% i - Index i=0 for Normal Analysis
i>0 for Sensitivity Analysis
% p - Transition Probabilities
% t - Task Times
% n_probs - Number of Transition Probabilities
% n_tasks - Number of Task Times
% M - Reward Markov Chain Matrix

function M = rmc_ex{(i, p, t, n_probs, n_tasks)

% Transition Probability Adjustments
if i ==
p(3) =1 - p(2);
elseif i ==
p(2) =1 - p(3);
end

% Generate Matrix M
M= [ t(l) p(2) 0 ; p(l) £(2) p(4); 0 p(3) t(3) 1:
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FUNCTION: markov.m

% FUNCTION: T = markov{M)

% Calculate Total Expected Time of Reward Markov Chain
% Using Efficient Length Computation Algorithm

% M - Reward Markov Chain Matrix
% T - Total Expected Time

function T = markov (M)

% Transform Matrix into Reward Markov Chain Form
dim = size(M, 1);

P=-(M);

for i = 1:dim
P(i,i) = 1;

end

% Place Task Times in a Column Vector
b = diag(M);

% Diagonalization Using Gaussian Elimination
[L, U] = lu(P);
D = diag(diag(U), 0);

% Use Modified Back Substitution to Get Total Time in Each Stage
X = inv(D) * inv(L) * b;

% Add Elements to Get Total Expected Time
T = sum(X);
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