
Regression under a Modern Optimization Lens

by

Angela King

B.Sc. Mathematics, McGill University (2010)

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MHICVES
MASSACHUSETTS INSTITUTE

OF TECHNOLOLGY

JUN 22 2015

LIBRARIES

June 2015

@ Massachusetts Institute of Technology 2015. All rights reserved.

Signature redacted
Author

Sloan Sc 1 of Management
May 11, 2015

Certified by.................
Signature redacted

.

Dimitris Bertsimas
Boeing Leader for Global Operations Professor

Co-Director, Operations Research Center
Thesis Supervisor

Signature redacted
Accepted by

I Patrick Jaillet
Dugald C. Jackson Professor

Department of Electrical Engineering and Computer Science
Co-Director, Operations Research Center

2

Regression under a Modern Optimization Lens

by

Angela King

Submitted to the Sloan School of Management
on May 11, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract

In the last twenty-five years (1990-2014), algorithmic advances in integer optimization com-
bined with hardware improvements have resulted in an astonishing 200 billion factor speedup
in solving mixed integer optimization (MIO) problems ([16], [85], [104]). The common mind-
set of MIO as theoretically elegant but practically irrelevant is no longer justified. In this
thesis, we propose a methodology for regression modeling that is based on optimization
techniques and centered around MIO.

In Part I we propose a method to select a subset of variables to include in a linear
regression model using continuous and integer optimization. Despite the natural formulation
of subset selection as an optimization problem with an fo-norm constraint, current methods
for subset selection do not attempt to use integer optimization to select the best subset. We
show that, although this problem is non-convex and NP-hard, it can be practically solved
for large scale problems. We numerically demonstrate that our approach outperforms other
sparse learning procedures.

In Part II of the thesis, we build off of Part I to modify the objective function and
include constraints that will produce linear regression models with other desirable properties,
in addition to sparsity. We develop a unified framework based on MIO which aims to
algorithmize the process of building a high-quality linear regression model. This is the
only methodology we are aware of to construct models that imposes statistical properties
simultaneously rather than sequentially.

Finally, we turn our attention to logistic regression modeling. It is the goal of Part III
of the thesis to efficiently solve the mixed integer convex optimization problem of logistic
regression with cardinality constraints to provable optimality. We develop a tailored algo-
rithm to solve this challenging problem and demonstrate its speed and performance. We then
show how this method can be used within the framework of Part II, thereby also creating
an algorithmic approach to fitting high-quality logistic regression models.

In each part of the thesis, we illustrate the effectiveness of our proposed approach on
both real and synthetic datasets.

3

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Leader for Global Operations Professor
Co-Director, Operations Research Center

4

Acknowledgments

I would like to acknowledge and thank my supervisor, Dimitris Bertimas, for initially piquing

my curiosity in problems at the intersection of discrete optimization and statistics, and for

guiding the research projects that ultimately formed this thesis. His faith both in me and in

the work we have done together have been invaluable to my growth as a researcher. Chapter

2 of this thesis is joint work with Rahul Mazumder in addition to Dimitris. Rahul's tireless

work ethic and optimistic attitude have made him an irreplaceable coauthor. Many thanks

to him for generously taking the time to teach me and share his insights into the field of

statistics.

I would also like to thank the other ORC faculty who have played a part in my graduate

education. I would especially like to acknowledge David Gamarnik and Devavrat Shah for

supporting me by serving as part of my thesis committee and Itai Ashlagi and Retsef Levi

for guiding my initial foray into the murky world of academic research.

The community of students at the ORC has been far and away the most rewarding part of

being a graduate student at MIT. The intellectual energy buzzing at the ORC has encouraged

and inspired me, and my day-to-day for the past five years has been shaped by the ORC

students. In particular, I've pored over problem sets and braved quals with the students in

my cohort - Ben, David Z, Fernanda, Kris, Maxime, Nathan, and Will - and I couldn't have

made it through the first two years without them. Over the years, I've been lucky to have

Andre, Alex W, David F, and Ross as officemates. They have been there every day to say

hello, listen to my thoughts, and take a break. And the students in the year above me took

me under their wing from the very beginning: Adam, Allison, Andre, Florin, Gonzalo, Ross,

and Vishal. In addition to daily research, I've had the pleasure of working on two exciting

and impactful teaching projects with many of my fellow ORC students. Working on the IAP

software class with my fellow instructors Chiwei, Clark, Evan, He, lain, Jerry, Joey, John,

Miles, Ross, and Vishal has pushed me to become a better teacher and presenter, and has

been a rewarding way to give back to the ORC community. I've also gotten to think deeply

about pedagogy with Allison, lain, John, Nataly, and Velibor as we built a full-fledged online

5

analytics course along with Dimitris and watched it blossom into a class that thousands of

students around the world have already taken.

On top of being brilliant colleagues and thoughtful collaborators, so many of the ORCers

have become fantastic friends and I feel privileged to have gotten to know nearly ten years'

worth of amazing ORC students during my time at MIT. There have been countless meals

shared, trips taken, successes celebrated, drinks poured, challenges commiserated, and con-

gratulations exchanged. Thank you all for five years of friendship and laughter. A special

thank you to Fernanda and Kris, who have literally and figuratively been to the bottom of

the world with me and back. I would not have gotten to this point today without all of their

help and encouragement, and can't thank them enough for the memories.

Some of my strongest support has come from outside the ORC. Many of my friends are

scattered across the country and the world, but both those near and far have always been

close at heart, and have been there to remind me that there is a world beyond the grad school

bubble. I am grateful to my parents for ending almost every phone call with a reminder to

not work too hard, and to my sister for indulging my silly side. Finally, I'd like to thank

Doug for being a constant source of love, support, and happiness. Being with him has made

me want to be the best version of myself, and makes me smile every day.

6

Contents

1 Introduction 17

2 Best Subset Selection in Linear Regression 23

2.1 Introduction . 23

2.2 Mixed Integer Optimization Formulations . 29

2.2.1 MIO Formulations for the Best Subset Selection Problem 30

2.2.2 Specification of Parameters . 35

2.3 Discrete First Order Algorithms . 41

2.3.1 Algorithms for minimizing smooth functions subject to cardinality con-

straints 41

2.3.2 Convergence Analysis of Algorithm 1 45

2.3.3 Application to Least Squares . 50

2.4 Computational Experiments for Subset Selection with Least Squares Loss 51

2.4.1 Description of Experimental Data . 51

2.4.2 The Overdetermined Regime: n > p 53

2.4.3 The High-Dimensional Regime: p > n 58

2.5 Conclusions . 69

3 An Algorithmic Approach to Linear Regression 71

3.1 Introduction . 71

3.1.1 A spirations . 72

3.1.2 Current Practice . 72

7

3.1.3 Contribution and Structure

3.2 Desirable Properties of a Linear Regression Model

3.2.1 General Sparsity

3.2.2 Selective Sparsity

3.2.3 Robustness

3.2.4 Stability against Outliers . . .

3.2.5 Modeler Expertise

3.2.6 Statistical Significance

3.2.7 Low Global Multicollinearity .

3.3 Algorithm

3.3.1 Stage 1: Preprocessing

3.3.2 Stage 2: The MIQO model . .

3.3.3 Stage 3: Generating Additional

3.3.4 Contrast with Current Practice

3.3.5 Example 1

3.3.6 Example 2

3.4 Computational Experiments

3.4.1 Basic Structure

3.4.2 Special Structure

3.4.3 Combined Example

3.5 Conclusions

4 Logistic Regression: Subset Selection ar

4.1 Introduction

4.1.1 Literature Review

4.2 Mixed Integer Nonlinear Optimization

4.2.1 Computational Tests on Existing

Constraints

d

M

An Algorithmic

.

.

.

INLO solvers .. .

4.3 Tailored Algorithm .

4.3.1 Discrete First Order Heuristic

8

74

75

75

76

78

80

80

80

81

82

82

84

85

86

86

89

91

92

97

100

101

103

103

105

106

107

109

109

Approach

4.3.2 Outer approximation methods

4.3.3 Lazy Constraint Callbacks

4.4 Computational Results - Best Subset

4.4.1 Methodology Comparison

4.5 Algorithmic Approach to Logistic Regression . .

4.5.1 Selective Sparsity

4.5.2 Robustness

4.5.3 Modeler Expertise

4.5.4 Statistical significance

4.5.5 Low global multicollinearity

4.5.6 Formulation

4.6 Computational Results - Algorithmic Approach

4.7 Conclusions

. 112

. 113

. 114

. 117

. 117

. 119

. 120

. 120

. 120

. 121

. 122

. 12 7

9

5 Conclusion 129

. . . 110

10

List of Figures

1-1 Log of Peak Supercomputer Speed from 1993-2013. 19

2-1 Figure showing the typical evolution of the MIO formulation (2.8) for the diabetes'

dataset with n = 350, p = 64 with k = 6 (left panel) and k = 7 (right panel).

The top panel shows the evolution of upper bounds, lower bounds with time. The

lower panel shows the evolution of the corresponding MIO-Gap, with time. Global

solutions for both the problems are found quite quickly in both examples, but it

takes longer to certify global optimality via the lower bounds. As expected, the

time taken for the MIO to certify convergence to the global optimum increases with

increasing k. 32

2-2 The evolution of the MIO optimality gap (in logio(-) scale) for Problem (2.1), for the

Diabetes dataset with n = 350, p = 64 with and without warm starts for different

values of k. The MIO significantly benefits by advanced warm starts delivered by

Algorithm 2. In all of these examples, the global optimum was found within a very

small fraction of the total time, but the proof of global optimality came later. As

the number of possible solutions grows as (P), it takes longer to prove optimality

for k = 31, 35 compared to k = 42. 55

11

2-3 Figure showing the sparsity (upper panel) and predictive performances (bottom

panel) for different subset selection procedures for the least squares loss. Here, we

consider data generated as per Example 1, with n = 500, p = 100, ko = 10, for

three different SNR values with [Left Panel] p = 0.5, [Middle Panel] p = 0.8, and

[Right Panel] p = 0.9. The dashed line in the top panel represents the true number

of nonzero values. For each of the procedures, the optimal model was selected as

the one which produced the best prediction accuracy on a separate validation set,

as described in Section 2.4.2. 57

2-4 Behavior of MIO aided with warm start in obtaining good upper bounds over time

for the Leukemia dataset (n = 72,p = 1000). The vertical axis shows relative

accuracy, i.e., (ft - f*)/f*, where ft is the objective value obtained after t seconds

and f* denotes the best objective value obtained by the method after 4000 seconds.

The colored diamonds correspond to the locations where the MIO (with warm start)

attains the best solution. The figure shows that MIO improves the solution obtained

by the first order method in all the instances. The time at which the best possible

upper bound is obtained depends upon the choice of k. Typically larger k values

make the problem harder-hence the best solutions are obtained after a longer wait. 60

2-5 The effect of the MIO formulation (2.48) for the Leukemia dataset, for different

values of k. Here C = oc and Loc = Frac. For each value of k, the global

minimum obtained was the same for the different choices of LA. 63

12

2-6 The effect of the MIO formulation (2.48) for a synthetic dataset as in Example 1

with p 0.9, ko = 5, n = 50,p = 500, for different values of k. [Left Panel] E,oc =

0.511X)30111 and L -, = o for a data-set with SNR = 3. [Middle Panel] , oc

'C'3 -- 1130 1 /k and SNR = 1. [Right Panel] 6 oo ,io = 3o|i/k and SNR

= 3. The figure shows that the bounding boxes in terms of X6 (left-panel) make

the problem harder to solve, when compared to bounding boxes around 3 (middle

and right panels). A possible reason is due to the strong correlations among the

columns of X. The SNR values do not seem to have a big impact on the run-times

of the algorithms (middle and right panels). 64

2-7 The evolution of the MIO gap with varying radii of bounding boxes for MIO

formulation (2.48). The top panel has radii twice the size of the bottom panel. The

dataset considered is generated as per Example 1 with n = 50, p = 1000, p = 0.9

and ko = 5 for different values of SNR: [Left Panel] SNR = 1, [Right Panel] SNR

3. For each case, different values of k have been considered. The top panel has

a bounding box radii which is twice the corresponding case in the lower panel. As

expected, the times for the MIO gaps to close depends upon the radii of the boxes.

The optimal solutions obtained were found to be insensitive to the choice of the

bounding box radius. 65

2-8 The sparsity and predictive performance for different procedures: [Left Panel] shows

Example 1 with n = 50, p = 1000, p = 0.8, ko = 5 and [Right Panel] shows Example 2

with n = 30,p = 1000-for each instance several SNR values have been shown. . 67

2-9 [Left Panel] Shows performance for data generated according to Example 3 with

n = 30,p = 1000 and [Right Panel] shows Example 4 with n = 50,p = 2000. . . 68

4-1 Series of computational tests for Problem 2 with n = 2000, p = 200. Figure shows

number of nonzero values and predictive performance for different values of p. The

left panel is p = 0, the middle panel is p = 0.4, and the right panel is p = 0.8. The

dashed line in the top panel represents the true number of nonzero values. . . . 115

13

4-2 Series of computational tests for Problem 4 with n = 400, p = 1000. Figure shows

number of nonzero values and predictive performance for different values of p. The

left panel is p = 0, the middle panel is p = 0.4, and the right panel is p = 0.8. The

dashed line in the top panel represents the true number of nonzero values. . . . 116

14

List of Tables

2.1 Quality of upper bounds for Problem (2.1) for the Diabetes dataset, for differ-

ent values of k. We see that the MIO equipped with warm starts deliver the

best upper bounds in the shortest overall times. The run time for the MIO

with warm start includes the time taken by the discrete first order method

(which were all less than a second). 54

2.2 The quality of upper bounds for Problem (2.1) obtained by Algorithm 2, MIO

with cold start and MIO warm-started with Algorithm 2. We consider the

synthetic dataset of Example 2 with n = 30, p = 2000 and different values

of SNR. The MIO method, when warm-started with the first order solution

performs the best in terms of getting a good upper bound in the shortest time.

The metric "Accuracy" is defined in (2.46). The first order methods are fast

but need not lead to highest quality solutions on their own. MIO improves

the quality of upper bounds delivered by the first order methods and their

combined effect leads to the best performance. 59

3.1 Desirable properties of a linear regression model and how they are incorpo-

rated into the m odel. 75

3.2 Variables in the Croq'Pain dataset. 87

3.3 Sparsity; n = 500, p = 100, p = 0, AX = 0. 94

3.4 Sparsity; n = 100, p = 500, p = 0, AX = 0. 94

3.5 Pairwise Multicollinearity; n = 500, p = 100, True K 10, p = 0.9, AX = 0. 95

3.6 Pairwise Multicollinearity; n = 100, p = 500, True K 10, p = 0.8, AX = 0. 95

15

3.7 Robustness: n = 500, p = 100, True K = 10, p = 0, AX ~ Uniform(0,2). 95

3.8 Robustness: n = 100, p = 500; True K = 10, p = 0, AX - Uniform(0,1). 95

3.9 Results for Basic Structure Real Datasets. 96

3.10 The Price of Limiting Multicollinearity . 96

3.11 Independent Variables in the Concrete Compressive Strength Dataset. . . . 97

3.12 Independent Variables in the Energy Efficiency Dataset. 99

3.13 Results for Combined Example . 101

4.1 MINLO Solver Comparison Times (in seconds).109

4.2 MINLO Solver Comparison Times (in seconds). 113

4.3 Pairwise Multicollinearity; n = 1000, p 100, True K = 5, p = 0.9, AX = 0. 124

4.4 Robustness; n = 1000, p = 100, True K 5, p = 0, AX - Uniform(0,2). 124

4.5 Results for Real Datasets. 124

4.6 Magic Gamma Telescope Results with Maximum Pairwise Correlation Thresh-

old of 0.5. 125

4.7 Results for Combined Example . 126

16

Chapter 1

Introduction

The goal of this thesis is to illustrate the applicability of discrete optimization methods

to statistical problems. Mixed integer optimization (MIO) has typically not been used in

statistical contexts. However, when fitting statistical models, modelers often have discrete

goals in mind, and often use convex approximations to their true objectives, or heuristics,

rather than approach the problem via MIO. It is our aim to show that MIO is a practical tool

for statistical modeling. We study this in the context of regression modeling. In particular,

we address best subset selection in linear and logistic regression using MIO, and develop an

MIO-based framework for algorithmizing the process of building linear and logistic regression

models. We first give a brief overview of MIO, including the simply astonishing advances it

has enjoyed in the last twenty-five years, and then describe our contributions in each of the

three main chapters of the thesis.

The general form of a Mixed Integer Optimization (MIO) problem is as follows:

min h(a)

S.t. g,(a) 0 Vj J

ai E{fO71II Vi I

ajER Vj 1

17

where R denotes the real numbers, the symbol < denotes element-wise inequalities and

we optimize over a E R' containing both discrete (ac, i e I) and continuous (ai, i (I)

variables, with I C {1, ... , m}.

Types of MIO problems include mixed integer linear optimization (MILO) problems (h, gj

are linear functions), mixed integer quadratic optimization (MIQO) problems (h is quadratic,

gj are linear functions), and mixed integer nonlinear optimization (MINLO) problems (h and

gj are continuously differentiable nonlinear functions). When I = 0, MILO problems reduce

to linear optimization (LO) problems, MIQO problems reduce to quadratic optimization

(QO) problems, and MINLO problems reduce to nonlinear optimization (NLO) problems.

In the last twenty-five years (1991-2014) the computational power of MIO solvers has

increased at an astonishing rate. In [16], to measure the speedup of MIO solvers, the same

set of MILO problems were tested on the same computers using twelve consecutive versions

of CPLEX and version-on-version speedups were reported. The versions tested ranged from

CPLEX 1.2, released in 1991 to CPLEX 11, released in 2007. Each version released in these

years produced a speed improvement on the previous version, leading to a total speedup

factor of more than 29,000 between the first and last version tested (see [161, 185] for details).

Gurobi 1.0, a MIO solver which was first released in 2009, was measured to have similar per-

formance to CPLEX 11. Version-on-version speed comparisons of successive Gurobi releases

have shown a speedup factor of more than 20 between Gurobi 5.5, released in 2013, and

Gurobi 1.0 ([16], [85]). The combined machine-independent speedup factor in MIO solvers

between 1991 and 2013 is 580,000. This impressive speedup factor is due to incorporating

both theoretical and practical advances into MIO solvers. Cutting plane theory, disjunctive

programming for branching rules, improved heuristic methods, techniques for preprocessing

MIOs, using linear optimization as a black box to be called by MIO solvers, and improved

linear optimization methods have all contributed greatly to the speed improvements in MIO

solvers [16].

In addition, the past twenty years have also brought dramatic improvements in hardware.

Figure 1-1 shows the exponentially increasing speed of supercomputers over the past twenty

18

8
7

6

05-

2

1

1993 1998 2003 2008 2013
Year

Figure 1-1: Log of Peak Supercomputer Speed from 1993-2013.

years, measured in billion floating point operations per second [104]. The hardware speedup

from 1993 to 2013 is approximately 105.5 320,000. When both hardware and software

improvements are considered, the overall speedup is approximately 200 billion! Note that

the speedup factors cited here refer to MILO problems. The speedup factors for MIQO

problems are similar. MIO solvers provide both feasible solutions as well as lower bounds

to the optimal value. As the MIO solver progresses towards the optimal solution, the lower

bounds improve and provide an increasingly better guarantee of suboptimality, which is

especially useful if the MIO solver is stopped before reaching the global optimum. In contrast,

heuristic methods do not provide such a certificate of suboptimality.

The belief that MIO approaches to problems in statistics are not practically relevant

was formed in the 1970s and 1980s and it was at the time justified. Given the astonishing

speedup of MIO solvers and computer hardware in the last twenty-five years, the mindset of

MIO as theoretically elegant but practically irrelevant is no longer justified. In this thesis,

we provide empirical evidence of this fact in the context of the best subset selection problem

and in the wider context of building a high-quality regression model.

In Section 2, we present a MIO approach for solving the classical best subset selection

19

problem of choosing k out of p features in linear regression given n observations. We develop

a discrete extension of modern first order continuous optimization methods to find high

quality feasible solutions that we use as warm starts to a MIO solver that finds provably

optimal solutions. The resulting algorithm (a) provides a solution with a guarantee on its

suboptimality even if we terminate the algorithm early, (b) can accommodate side constraints

on the coefficients of the linear regression and (c) extends to finding best subset solutions

for the least absolute deviation loss function. Using a wide variety of synthetic and real

datasets, we demonstrate that our approach solves problems with n in the 1000s and p in

the 100s in minutes to provable optimality, and finds near optimal solutions for n in the 100s

and p in the 1000s in minutes. We also establish via numerical experiments that the MIO

approach performs better than Lasso and other popularly used sparse learning procedures,

in terms of achieving sparse solutions with good predictive power.

Linear regression models are traditionally built through trial and error in order to balance

many competing goals such as predictive power, interpretability, significance, robustness to

error in data, and sparsity, among others. Balancing these goals is a problem which lends

itself naturally to a mixed integer quadratic optimization (MIQO) approach, but has not been

modeled this way due to the belief in the statistics community that MIQO is intractable for

large scale problems. However, in the light of the hardware and software improvements

in MIO, we tackle this problem explicitly via MIQO in Section 3. We present an MIQO-

based algorithm for designing high-quality linear regression models that explicitly addresses

various competing objectives, and demonstrate our algorithm's effectiveness on both real

and synthetic datasets.

In Section 4, we turn our attention to logistic regression. We consider the same ques-

tions: how to choose the best subset of variables in a model, and more generally, how to

best determine a high-quality logistic regression model. The logistic regression objective

function is convex, and we can model the cardinality constraint, as in Section 2, via MIO.

However, MIO solvers for general convex programs are not nearly as developed as MILO

and MIQO solvers; while software exists, there is high variation in solver performance for

20

different problem instance families [19]. Additionally, the unconstrained logistic regression

NLO cannot generally be solved analytically in closed form.

These differences between linear and logistic regression lead to the main challenge of this

part of the thesis: developing a method to efficiently solve the mixed integer convex opti-

mization problem of logistic regression with cardinality constraints to provable optimality.

We develop a tailored algorithm to do so where we combine (a) outer approximation tech-

niques in mixed integer nonlinear optimization with (b) our discrete first order heuristic from

Section 2 and (c) lazy constraint callbacks, a feature of modern optimization solvers. We

demonstrate that our method outperforms existing MINLO software and apply this method

within the algorithmic framework developed in Section 3. By doing so, we extend the algo-

rithmic approach to linear regression to the logistic regression case. Again, we illustrate the

success of this methodology using real and synthetic data.

Finally, we give concluding remarks in Section 5.

21

22

Chapter 2

Best Subset Selection in Linear

Regression

2.1 Introduction

We consider the linear regression model with response vector ynx1, model matrix X =

[x1 ,..., x,] E R"P, regression coefficients (3E RPx and errors E E R"'X:

We will assume that the columns of X have been standardized to have zero means and unit

e2-norm. In many important classical and modern statistical applications, it is desirable

to obtain a parsimonious fit to the data by finding the best k-feature fit to the response

y. Especially in the high-dimensional regime with p > n, in order to conduct statistically

meaningful inference, it is desirable to assume that the true regression coefficient 3 is sparse

or may be well approximated by a sparse vector. Quite naturally, the last few decades have

seen a flurry of activity in estimating sparse linear models with good explanatory power.

Central to this statistical task lies the best subset problem [82] with subset size k, which is

23

given by the following optimization problem:

1
min -11y - X,311 subject to 1131o < k, (2.1)
132

where the fo (pseudo)norm of a vector 3 counts the number of nonzeros in 3 and is given

by |111o = E_ 1 1(#3 / 0), where 1(.) denotes the indicator function. The cardinality

constraint makes Problem (2.1) NP-hard [84]. Indeed, state-of-the-art algorithms to solve

Problem (2.1), as implemented in popular statistical packages, like leaps in R, do not scale to

problem sizes larger than p = 30. Due to this reason, it is not surprising that the best subset

problem has been widely dismissed as being intractable by the greater statistical community.

In this section we address Problem (2.1) using modern optimization methods, specifically

mixed integer optimization (MIO) and a discrete extension of first order continuous opti-

mization methods. Using a wide variety of synthetic and real datasets, we demonstrate that

our approach solves problems with n in the 1000s and p in the 100s in minutes to provable

optimality, and finds near optimal solutions for n in the 100s and p in the 1000s in minutes.

To the best of our knowledge, this is the first time that MIO has been demonstrated to be

a tractable solution method for Problem (2.1). We note that we use the term tractability

not to mean the usual polynomial solvability for problems, but rather the ability to solve

problems of realistic size in times that are appropriate for the applications we consider.

As there is a vast literature on the best subset problem, we next give a brief and selective

overview of related approaches for the problem.

Brief Context and Background

To overcome the computational difficulties of the best subset problem, computationally

tractable convex optimization based methods like Lasso [101, 29] have been proposed as

a convex surrogate for Problem (2.1). For the linear regression problem, the Lagrangian

form of Lasso solves

min -111 - X)3112 + A |131i, (2.2)
212

24

where the f1 penalty on 3, i.e., 11,3 1 = > I | 3iI shrinks the coefficients towards zero and

naturally produces a sparse solution by setting many coefficients to be exactly zero. There

has been a substantial amount of impressive work on Lasso [44, 25, 14, 117, 55, 121, 36, 67,

80, 108, 102] in terms of algorithms and understanding of its theoretical properties-see for

example the excellent books or surveys [21, 60, 102] and the references therein.

Indeed, Lasso enjoys several attractive statistical properties and has drawn a significant

amount of attention from the statistics community as well as other closely related fields.

Under various conditions on the model matrix X and n, p, 3 it can be shown that Lasso

delivers a sparse model with good predictive performance [21, 60]. In order to perform

exact variable selection, much stronger assumptions are required [21]. Sufficient conditions

under which Lasso gives a sparse model with good predictive performance are the restricted

eigenvalue conditions and compatibility conditions [21]. These involve statements about, the

range of the spectrum of sub-matrices of X and are difficult to verify, for a given data-matrix

X.

An important reason behind the popularity of Lasso is its computational feasibility and

scalability to practical sized problems. Problem (3.2) is a convex quadratic optimization

problem and there are several efficient solvers for it, see for example [86, 44, 50].

In spite of its favorable statistical properties, Lasso has several shortcomings. In the

presence of noise and correlated variables, in order to deliver a model with good predictive

accuracy, Lasso brings in a large number of nonzero coefficients (all of which are shrunk

towards zero) including noise variables. Lasso leads to biased regression coefficient estimates,

since the fr-norm penalizes both large and small coefficients uniformly. In contrast, if the best

subset selection procedure decides to include a variable in the model, it brings it in without

any shrinkage thereby draining the effect of its correlated surrogates. Upon increasing the

degree of regularization, Lasso sets more coefficients to zero, but in the process ends up

leaving out true predictors from the active set. Thus, as soon as certain sufficient regularity

conditions on the data are violated, Lasso becomes suboptimal as (a) a variable selector and

(b) in terms of delivering a model with good predictive performance.

25

The shortcomings of Lasso are also known in the statistical literature. In fact, there is

a significant gap between what can be achieved via best subset selection and Lasso: this is

supported by empirical (for small problem sizes, i.e., p < 30) and theoretical evidence, see

for example, [90, 120, 78, 54, 118, 97] and the references therein.

To address the shortcomings, non-convex penalized regression is often used to "bridge"

the gap between the convex fi penalty and the combinatorial fo penalty [78, 48, 46, 116, 117,

49, 123, 124, 119, 23]. Written in Lagrangian form, this gives rise to continuous non-convex

optimization problems of the form:

I l1Y _ X)3112 + Zp(I 1; -y; A), (2.3)

where p(/ 3 ; -y; A) is a non-convex function in # with A and -y denoting the degree of regu-

larization and non-convexity, respectively. Typical examples of non-convex penalties include

the minimax concave penalty (MCP), the smoothly clipped absolute deviation (SCAD), and

f, penalties (see for example, [48, 78, 124, 46]). There is strong statistical evidence indicating

the usefulness of estimators obtained as minimizers of non-convex penalized problems (2.3)

over Lasso see for example [118, 73, 116].

Problem (2.3) mainly leads to a family of continuous and non-convex optimization prob-

lems. Various effective nonlinear optimization based methods (see for example [124, 46,

23, 73, 116, 78] and the references therein) have been proposed in the literature to obtain

good local minimizers to Problem (2.3). In particular [78] proposes Sparsenet, a coordinate-

descent procedure to trace out a surface of local minimizers for Problem (2.3) for the MCP

penalty using effective warm start procedures. None of the existing approaches for solving

Problem (2.3), however, come with guarantees of how close the solutions are to the global

minimum of Problem (2.3).

The Lagrangian version of (2.1) given by

p

1y - X)31+ A 1(i # 0), (2.4)
i=1

26

may be seen as a special case of (2.3). Note that, due to non-convexity, problems (2.4)

and (2.1) are not equivalent. Problem (2.1) allows one to control the exact level of sparsity

via the choice of k, unlike (2.4) where there is no clear correspondence between A and k. Prob-

lem (2.4) is a discrete optimization problem unlike continuous optimization problems (2.3)

arising from continuous non-convex penalties.

Insightful statistical properties of Problem (2.4) have been explored from a theoretical

viewpoint in [118, 54, 55, 97]. [97] points out that (2.1) is preferable over (2.4) in terms of

superior statistical properties of the resulting estimator. None of the aforementioned papers,

however, discuss methods to obtain provably optimal solutions to problems (2.4) or (2.1),

and to the best of our knowledge, computing optimal solutions to problems (2.4) and (2.1)

is deemed as intractable.

Our Approach We propose a novel framework via which the best subset selection problem

can be solved to optimality or near optimality in problems of practical interest within a

reasonable time frame. At the core of our proposal is a computationally tractable framework

that brings to bear the power of modern discrete optimization methods: discrete first order

methods motivated by first order methods in convex optimization [87] and mixed integer

optimization (MIO), see [11]. We do not guarantee polynomial time solution times as these

do not exist for the best subset problem unless P=NP. Rather, our view of computational

tractability is the ability of a method to solve problems of practical interest in times that are

appropriate for the application addressed. An advantage of our approach is that it adapts

to variants of the best subset regression problem of the form:

min ily-X#jj

s.t. ||)3||o < km A~~,3 I
A/3 b,

where A3 b represents polyhedral constraints and q E {1, 2} refers to a least absolute

deviation or the least squares loss function on the residuals r := y - X,3. We will explore

27

such polyhedral constraints in Chapter 3 in the context of building a high quality linear

regression model. For the moment, we consider only the basic version - that is, Problem 2.1.

Existing approaches in the Mathematical Optimization Literature In a seminal

paper [52], the authors describe a leaps and bounds procedure for computing global solutions

to Problem (2.1) (for the classical n > p case) which can be achieved with computational

effort significantly less than complete enumeration. leaps, a state-of-the-art R package uses

this principle to perform best subset selection for problems with n > p and p <; 30. [10]

proposed a tailored branch-and-bound scheme that can be applied to Problem (2.1) using

ideas from [521 and techniques in quadratic optimization, extending and enhancing the pro-

posal of [15]. The proposal of [10] concentrates on obtaining high quality upper bounds for

Problem (2.1) and is less scalable than the methods presented here.

Contributions We summarize the contributions we make in this chapter below:

1. We use MIO to find a provably optimal solution for the best subset problem. Our

approach has the appealing characteristic that if we terminate the algorithm early, we

obtain a solution with a guarantee on its suboptimality. Furthermore, our framework

can accommodate side constraints on / and also extends to finding best subset solutions

for the least absolute deviation loss function.

2. We introduce a general algorithmic framework based on a discrete extension of modern

first order continuous optimization methods that provide near-optimal solutions for the

best subset problem. The MIO algorithm significantly benefits from solutions obtained

by the first order methods and problem specific information that can be computed in

a data-driven fashion.

3. We report computational results with both synthetic and real-world datasets that show

that our proposed framework can deliver provably optimal solutions for problems of

size n in the 1000s and p in the 100s in minutes. For high-dimensional problems with

28

n E {50, 100} and p E {1000, 2000}, with the aid of warm starts and further problem-

specific information, our approach finds near optimal solutions in minutes but takes

hours to prove optimality.

4. We investigate the statistical properties of best subset selection procedures for practical

problem sizes, which to the best of our knowledge, have remained largely unexplored

to date. We demonstrate the favorable predictive performance and sparsity-inducing

properties of the best subset selection procedure over its competitors in a wide variety of

real and synthetic examples for the least squares and absolute deviation loss functions.

The structure of this chapter is as follows. In Section 2.2, we present the proposed MIO

formulations for the best subset problem as well as some connections with the compressed

sensing literature for estimating parameters and providing lower bounds for the MIO formu-

lations that. improve their computational performance. In Section 2.3, we develop a discrete

extension of first order methods in convex optimization to obtain near optimal solutions

for the best subset problem and establish its convergence properties, a method that may

be of independent interest. In Section 2.4, we perform a variety of computational tests on

synthetic and real datasets to assess the algorithmic and statistical performances of our ap-

proach for the least squares loss function for both the classical overdetermined case n > p,

and the high-dimensional case p > n. In Section 2.5, we include our concluding remarks.

2.2 Mixed Integer Optimization Formulations

We present the proposed MIO formulations for the best subset problem as well as some

connections with the compressed sensing literature for estimating parameters and providing

lower bounds for the MIO formulations that improve their computational performance.

29

2.2.1 MIO Formulations for the Best Subset Selection Problem

We first present a simple reformulation to Problem (2.1) as a MIO (in fact a MIQO) problem:

Z= min y - X0112

s.t. -Mzuzi < A Muzi, i = 1, P
(2.5)

ziE {,l}, i =1, ... ,p

Zzi <k,
i=1

where z E {0, 1}P is a binary variable and Mu is a constant such that if)3 is a minimizer

of Problem (2.5), then Mu 11)31,. If zi = 1, then #il : MU and if zi = 0, then /i = 0.

Thus, Ep. 1 zi is an indicator of the number of zeros in 3.

Provided that MU is chosen to be sufficently large with My 1)311O, a solution to

Problem (2.5) will be a solution to Problem (2.1). Of course, Mu is not known a priori, and

a small value of MU may lead to a solution different from (2.1). The choice of M affects

the strength of the formulation and is critical for obtaining solutions quickly in practice. In

Section 2.2.2 we describe how to find appropriate values for Mu.

Formulation (2.5) leads to interesting insights, especially via the structure of the convex

hull of its constraints, as illustrated next

p

Conv : fil :5 Muzi, zi E {0, 1}, i = 1, ... , , zi < k
({ i=1)

= {3: I/3Ho < Mu, 113111 < Muk}

C { 3: 111< Muk}.

Thus, the minimum of Problem (2.5) is lower-bounded by the optimum objective value of

30

both the following convex optimization problems:

Z2 :=min y - X 23| subject to ||/3|oo Mu, 11,31 Muk (2.6)

1
Z3 :=min - y - X 23| subject to 11,I11 Muk, (2.7)/32

where (2.7) is the familiar Lasso in constrained form. This is a weaker relaxation than

formulation (2.6), which in addition to the f constraint on 3, has box-constraints controlling

the values of the /3i's. It is easy to see that the following ordering exists:

Z3 '-" Z2 '< ZI,

with the inequalities being strict in most instances.

In terms of approximating the optimal solution to Problem (2.5), the MIO solver begins

by first solving a continuous relaxation of Problem (2.5). The Lasso formulation (2.7) is

weaker than this root node relaxation. Additionally, MIO is typically able to significantly

improve the quality of the root node solution as the MIO solver progresses toward the optimal

solution.

To motivate the reader we provide an example of the evolution (see Figure 2-1) of the

MIO formulation (2.8) for the Diabetes dataset [44], with n = 350, p = 64 (for further details

on the dataset see Section 2.4).

Since formulation (2.5) is sensitive to the choice of Mu, we consider an alternative MIO

formulation based on Specially Ordered Sets [11] as described next.

Formulations via Specially Ordered Sets Any feasible solution to formulation (2.5)

will have (1 - zi)#i = 0 for every i e {1, ... ,p}. This constraint can be modeled via integer

optimization using Specially Ordered Sets of Type 1 [11] (SOS-1). In an SOS-1 constraint,

at most one variable in the set can take a nonzero value, that is

(1 - zi)3i = 0 <= (/i, 1 - zi) : SOS-1,

31

k=6

0 100 200 300 400

k=7

- Upper Bounds
- - Lower Bounds
- Global Minimum

0 2 4 I I I
0 200 400 600 800 1OOC

LO

0

0

0

0
0
0

0 100 200 300 400

Time (secs)

0 200 400 600 800 1000

Time (secs)

Figure 2-1: Figure showing the typical evolution of the MIO formulation (2.8) for the diabetes'

dataset with n = 350, p = 64 with k = 6 (left panel) and k = 7 (right panel). The top panel shows

the evolution of upper bounds, lower bounds with time. The lower panel shows the evolution of

the corresponding MIO-Gap, with time. Global solutions for both the problems are found quite

quickly in both examples, but it takes longer to certify global optimality via the lower bounds. As

expected, the time taken for the MIO to certify convergence to the global optimum increases with

increasing k.

for every i = 1,... , p. This leads to the following formulation of (2.1):

min 11 |y -X)3112
/3,z

s.t. (#,1-zi) : SOS- 1, i = 1, . .. ,P

32 (2.8)

zj- {0, 1},i = 1, ... 'p

P
zi k,

- Upper Bounds
- - Lower Bounds

- Global Minimum

0

0.

0

The objective function in Problem (2.8) is a convex quadratic function in the continuous

variable /, which can be formulated explicitly as:

minimize ,TXTXf - 2(X'y,/3) +y

subject to (/3 , 1 - zi) : SOS type-1, i = 1,...P

Zi E {o, i}, i = 1, ..., P
(2.9)

p

Z.zi < k
i=1

-MU < A < MM, = 1, ... ,P

We also provide problem-dependent constants Mu and Me E [0, oc]. Mu provides an

upper bound on the absolute value of the regression coefficients and Me provides an upper

bound on the f1 -norm of 3. Adding these bounds typically leads to improved performance of

the MIO. In Section 2.2.2 we describe methods to compute these parameters from the data.

33

We also consider another formulation for (2.9):

mmi ICTC-_(X'y)3) + 1 ly1

s.t. = XO

(0i I - zi) : SOS- 1, i = 1, ... ,P

ziE {0, 1},i =, ... ,p

S5k(2.10)
i1

-MAu i301 Mu~i 11... Ip

1/ <1 Me

<li Mn

where the optimization variables are 3 c RP, C c R, z E {0, 1}P and Mu, Mt, M 1 , MC

[0, oc] are problem specific parameters. Note that the objective function in formulation (2.10)

involves a quadratic form in n variables and a linear function in p variables. Problem (2.10)

is equivalent to the following variant of the best subset problem:

min 1|| - X011

s.t. I|0110 < Mu, 113011 Me (2.11)

IIXOJo < MI, |IX/3 I < M.

Formulations (2.9) and (2.10) differ in the size of the quadratic forms that are involved.

The current state-of-the-art MIO solvers are better-equipped to handle mixed integer linear

optimization problems than MIQO problems. Formulation (2.9) has fewer variables but a

34

quadratic form in p variables-we find this formulation more useful in the n > p regime,

with p in the 100s. Formulation (2.10) on the other hand has more variables, but involves a

quadratic form in n variables-this formulation is more useful for high-dimensional problems

p > n, with n in the 100s and p in the 1000s.

The bounds on 3 and C are not required, but if these constraints are provided, they

improve the strength of the MIO formulation. We next show how these bounds can be

computed from given data.

2.2.2 Specification of Parameters

In this section, we obtain estimates for the quantities Mu, Mj, M , M such that an optimal

solution to problem (2.11) is also an optimal solution to Problem (2.1), and vice-versa.

Coherence and Restricted Eigenvalues of a Model Matrix

Given a model matrix X, [106] introduced the cumulative coherence function

p [k] max max (X, Xj)j,
111=k j~fiE

where, X3 , j = 1, ... ,p represent the columns of X, i.e., features.

For k = 1, we obtain the notion of coherence introduced in [40, 38] as a measure of the

maximal pairwise correlation in absolute value of the columns of X:

p := P[1] = maxI(Xi, X).
i~j

[26, 24] (see also [21] and references therein) introduced the notion that a matrix X

satisfies a restricted eigenvalue condition if

Amin(X'XI) r/ for every I C {1, . . ,p} : 1I1 k, (2.12)

where Amin(X' X1) denotes the smallest eigenvalue of the matrix X'1X1 . An inequality linking

35

p[k] and ?7k is as follows.

Proposition 1. The following bounds hold

(a) [1061: p[k] < p -k.

(b) [381 rik > I - p-[k - 1] > I - p (k - 1).

The computations of p[k] and r/k for general k are difficult, while p is simple to compute.

Proposition 1 provides bounds for 1 [k] and rk in terms of the coherence y.

Operator Norms of Submatrices

The (p, q) operator norm of matrix A is

||AIlp,q := max |lAullp.
IlUlql=

We will use extensively here the (1, 1) operator norm. We assume that each column vector

of X has unit e2-norm. The results derived in the next proposition borrow and enhance tech-

niques developed by [106] in the context of analyzing the f1-fo equivalence in compressed

sensing.

Proposition 2. For any I C {1,... ,p} with I = k we have:

(a) ||X'Xj - II|1,1 < p[k - 1].

(b) If the matrix X'JXI is invertible and IIX'X1 - I1 1, < 1, then

1
I|(X'1X 1)| 1

1 ; .1 (2.13)
P -ro[k - 1]

Proof

36

(a) Given a set I, we define G := 'X - I, and let gij denote the (i, j)th entry of G. For

any u E Rk we have

max |IGull=
I1u1i=1

k k

max _ gijuj
i=1 j=1

k k

i max _Il = 1 _ _1
uI I gigz

k

_ j=1 i

K max
1luH11=1

I g i) (gjj = 0)

(p[k - 1] Iu 1)

= 4k - 1].

(b) Using X'X1 = I + G and standard power-series convergence (which is valid since

||Gil 1,1 < 1) we obtain

00 1 1
11 (X'Xj)-1 1,1 = 11(1 + G)-1 111,1 F]

We note that Part (b) also appears in [106] for the operator norm 1|(X'Xi)- 1 .

Given a set I C {1,... ,p} with III = k we let 3, denote the least squares regression

coefficients obtained by regressing y on Xi, i.e., 3, = (X'Xi)- 1 X'y. If we append 31 with

zeros in the remaining coordinates we obtain /3:

,3cE arg min Ily -X3I1'

Note that 3 depends on I but we will suppress the dependence on I for notational conve-

nience.

37

i|1 gij| I <p[k - 1]

Recall that Xj, j = 1, ... , p represent the columns of X; and we will use xi, i = 1,... , n

to denote the rows of X. As discussed above X = 1. We order the correlations I(Xj, y)1:

(1), Y)| 2(X(2), y)| . (X(p >i Y)-

We finally denote by I|xI|1:k the sum of the top k absolute values of the entries of xij, j E

{1, 2, ... ,p}.

Theorem 1. For any k > 1 such that p[k - 1] < 1 any optimal solution 0 to (2.1) satisfies:

(a) II$I|1 1 - 1 X ,(2.14)
I u[k -1]=Z

(b) | 01o 0 min{
j1 1X(j) y 2

(c) ||X/3|1 < min Ix |illoo131i, Vk'IYI|2}

(d) ||XOI 0 M ax lxi 1i|:k) 0110o.

(a) Since)3, = (X'X) 1 X'y we have

(2.18)

Note that

I|X'y 1 = I(X , y)
jeI

< x
max(Xj,

IIIkjEI

Applying (2.13) and (2.19) to (2.18), we obtain (2.14)

(b) We write 3, = Ay for A = (X'1X)- 1 X'. If aj, i = 1,... , k denote the rows of A we

38

I |y 12 .

Proof

(2.15)

(2.16)

(2.17)

k

y) 7 1 N(Xj), y). Ij=
j=1

(2.19)

1|)3|1 = 3,11|1 ! II(XI) |,1X'y1.

have:

oc = max I(aj,y)j < max
i=1,...,k i=l,...,k ||ail12) 1y13 2. (2.20)

For every i = 1,..., k we have

Ilai112 max IIAuI 21U112=1

= max ||(X'IXI) Xu 2
1|U112=1

<Amax ((X'II)X'1)

=max , . . . , , (2.21)11

where di,... , dk are the (nonzero) singular values of the matrix XI. To see how one

arrives at (2.21) let us denote the singular value decomposition of X, = UDV' with

D = diag (di, d2 ,.. . , dk) . We then have

(X'X1)-X' = (VD- 2V')(UDV')' = VD- 1 U'

and the singular values of (X'1Xi)-X' are thus 1/di, i = 1,..., k.

The eigenvalues of X'X1 are d? and from (2.12) we obtain that d? > rik. Using (2.21)

we thus obtain
1

max ||ail2 . (2.22)
i=1,...,k k

Substituting the bound (2.22) to (2.20) we obtain

1..
(2.23)

39

|#1|oo5 - |y|2.

Using the notation A =(X'Xi)-, we have

)3, = max I(i, X'y)
i=1,...,k

<(max
i=,...,kl

S-((X'XI)-)X'y2

-(max - (X3, y) 12

k

< E I (X(j),I y) 12.

77k j=1

Combining (2.23) and (2.24) we obtain (2.15).

(c) We have

ZI(xi3i)I E
i=1 i=1 i=1

Ixi II II /3I

Let PI := XI(X'Xi)-X' denote the projection onto the columns of XI.

|PIy11 2 < ||Y112, leading to:

IIXIO 1k = |PIy11 1 < VkI|PIy11 2 V/kIlYII2,

(2.25)

We have

(2.26)

where we used that for any a c R', we have foil1a|| 2 ;> 11alli. Combining (2.25)

and (2.26) we obtain (2.16).

(d) For any vector 31 which has zero entries in the coordinates outside I, we have:

X)3 1 loo < max I(xi,/31)J < max |X111:kIIk o,

leading to (2.17).

40

(2.24)

1:

11 k' 112) ||X'y1|2

IIx i 11 - 113 ,|1,

2.3 Discrete First Order Algorithms

In this section, we develop a discrete extension of first order methods in convex optimiza-

tion [87, 86] to obtain near optimal solutions for Problem (2.1). Our approach applies to

the problem of minimizing any sufficiently smooth convex function subject to cardinality

constraints.

We will use these discrete first order methods to obtain solutions to warm start the MIO

formulation. In Section 2.4, we will demonstrate how these methods greatly enhance the

performance of the MIO.

2.3.1 Algorithms for minimizing smooth functions subject to car-

dinality constraints

Related work and contributions In the signal processing literature [17, 18] proposed

iterative hard-thresholding algorithms in the context of to-regularized least squares problems,

i.e., Problem (2.4). The authors establish convergence properties of the algorithm under the

assumption that X satisfies coherence [17] or Restricted Isometry Property [18]. The method

we propose here applies to a larger class of cardinality constrained optimization problems

of the form (2.27), in particular, in the context of Problem (2.1) our algorithm and its

convergence analysis do not require any form of restricted isometry property on the model

matrix X.

Our proposed algorithm borrows ideas from projected gradient descent methods in first

order convex optimization problems [87] and generalizes it to the discrete optimization Prob-

lem (2.27). We also derive new global convergence results for our proposed algorithms as

presented in Theorem 2.

Consider the following optimization problem:

min g(o) subject to I1011o < k, (2.27)
13

41

where g(/) > 0 is convex and has Lipschitz continuous gradient:

||Vg(3) - Vg(3) 1 < flo - 11. (2.28)

The first ingredient of our approach is the observation that when g(j3) = 11 - ci ' for a

given c, problem (2.27) admits a closed form solution.

Proposition 3. An optimal solution, denoted as Hk(c), to the problem

min 13- c , (2.29)
10||0< 2k

can be computed as follows: Hk (c) retains the k largest (in absolute value) elements of c E RP

and sets the rest to zero, i.e., if c(1)I Ic(2)| ... |c(p , denote the ordered values of the

absolute values of the vector c, then:

ci, if i E {(1), .. . , (k)},
(Hk(c)), = (2.30)

0, otherwise.

Proof

It suffices to consider Ici > 0 for all i. Let 3 be an optimal solution to Problem (2.29)

and let S := {i : #i -f 0}. The objective function is given by EiOs ci 2 + EiS(pi - ci) 2 . Note

that by selecting f3 = ci for i E S, we can make the objective function E s Ici 2 . Thus, to

minimize the objective function, S must correspond to the indices of the largest k values of

icili 1. l

The operator (2.30) is also known as the hard-thresholding operator [37]-a notion that

arises in the context of the following related optimization problem:

1+,3 c arg min -110 - C112 + A l1311ol (2.31)
0 2

42

where 3 admits a simple closed form expression given by f3 = ci if Ici > A and 0i 0

otherwise, for i = 1, ... , p.

Given a current solution 3, the second ingredient of our approach is to upper bound the

function g(q) around g(,3). To do so, we use ideas from projected gradient descent methods

in first order convex optimization problems [87, 86].

Proposition 4. ([87, 861) For a convex function g(,3) satisfying condition (2.28) and for

any L > f we have :

g(77) QL(Th/ 3

22 + (V7g(/3),rn - 0) (2.32)

for all 3, 77 with equality holding at / = 7.

Applying Proposition 3 to the upper bound QL(7, /3) in Proposition 4 we obtain

L 1 2
arg min QL (q,/3) = arg min - T - - -Vg(3)

||iI|o|5k ||u||o<k 2 L 2

= arg min n -
|1 ||1o| k

=Hk (-

1 V(0)
L17

I Vg (3)11 + g(3)

2

2

(2.33)

where Hk(-) is defined in (2.30). In light of (2.33) we are now ready to present Algorithm 1

to find a local optimal solution to problem (2.27).

Algorithm 1

Input: g(o), L, e.

Output: A local optimal solution 3*.

Algorithm:

1. Initialize with 3, E RP such that 1,31 1o k.

43

1Vg(63),

2. For m > 1, apply (2.33) with)3 = Irm to obtain 13m+ as:

3m+1 = Hk (Om -- IV(m)

3. Repeat Step 2, until |#m+i - /3m |12 < E.

4. Let 3 m := (m1,. . . , /mp) denote the current estimate and let I = Supp(13 m)

{i : #ni 4 0}. Solve the continuous optimization problem:

min g(3), (2.35)
)3,,S=O, igi

and let 3* be a minimizer.

The convergence properties of Algorithm 1 are presented in Section 2.3.2. A variant of

Algorithm 1 that has better empirical performance and uses line searches is presented next.

Algorithm 2 (with Line Search)

1. Initialize with 01 E RP such that I131o < k.

2. For m > 1,

77m =Hk (Om ~ V7(0m))

OLm+i =Amm + (1 - Am)/3m,

where Am is chosen to minimize the one-dimensional optimization problem:

Am E arg min g (A7m + (1 - A)3m).
A

3. Repeat Step 2, until 1177- 1-1 - 7lm 112 < E

44

(2.34)

(2.36)

(2.37)

4. Let qim denote the current estimate and let I = Supp(im). Solve problem (2.35) and

let 3* be a mininizer.

Note that the iterate 3m in Algorithm 2 need not be k-sparse (i.e., need not satisfy:

JI 3|m|Jokk), however, Tm is k-sparse (I TmIIo k). Moreover, the sequence may not lead to

a decreasing set of objective values, but it satisfies:

2.3.2 Convergence Analysis of Algorithm 1

In this section, we study convergence properties for Algorithm 1. Before we embark on the

analysis, we need to define the notion of first order optimality for Problem (2.27).

Definition 1. Given an L > f, the vector T E RP is said to be a first order stationary point

of Problem (2.27) if ||||o k and it satisfies the following fixed point equation:

Hk - 1V(T). (2.38)

We next define the notion of an E-approximate first order stationary point of Prob-

lem (2.27):

Definition 2. Given an e > 0, and L > f we say that T satisfies an c-approximate first

order optimality condition of Problem (2.27) if ||||o < k and

Ti - Hk T -- Vg()) 2

Let)3m = (/m, . ,/ 3 p) and Lm = (ei,... ,ep) with ej = 1, if fjmj #0, and e3 = 0, if

mj = 0, j = 1,... ,p, i.e., 1 m represents the sparsity pattern of the support of Om.

Proposition 5. Consider g(,3) and f as defined in (2.27) and (2.28). Let 1m,M > 1 be the

sequence generated by Algorithm 1. Then we have :

45

(a) For any L > f, the sequence g(/3m) satisfies

(2.39)g(3) - g(/m+ 1) ! L - 11)3m+1 - 1 ,2

is decreasing and converges.

(b) If L > e, then/3mn+1 ~m- 0 as m - oc.

(c) If L > f and 1 rlim infmoo 3m||o = k then the sequence 1m converges after finitely

many iterations, i.e., there exists an iteration index M* such that 1m = 1 m+1 for all

m > M*. Furthermore, the sequence 3m is bounded and converges to a first order

stationary point.

(d) If L > f and lim infm,+o43m|o < k, then g(f3m) - g(/*) where 3* E arg min g() is

an unconstrained minimizer.

Proof

(a) Let 3 be a vector satisfying 1131o < k. Using the notation = Hk (/ - Vg(#)) we

have the following chain of inequalities:

g(0) = QL(/3,/3)

> inf QL ('73)
I1nIjo~k

=inf L ~ 17-,1'+ (V~g(3), vq - /3) + g(/3))

=~ ~ I'q~~k(()3- _IVg ()3)) : - 11I7g(3)112 + g(/3))

inf -k

L 1

- (- V() - 1Vg()3)1 + g(3)

(- 311 + (Vg(/), -/3) + g(/)

(From (2.33))

46

/L 1- -)1' 1 31 V(3= - n 2 -(-'3) + g(3)

2
> L 1 12 + 11$- _'3112+ (Vg(3), - - 3) + g(3)

>L - f 1)11 ()
2 | + g(). (From (2.32))

This chain of inequalities leads to:

0(-) - g() L- (2.40)

Applying (2.40) for 3 = Im and - = /m+1, the vectors generated by Algorithm 1, we

obtain (2.39). This implies that the objective values g(3m) are decreasing and since

the sequence is bounded below (g(,3) > 0), we obtain that g(/3m) converges as m -+ oc.

(b) If L > f and from part (a), the result follows.

(c) We begin by observing that the condition 11lim infmo /3m lo = k is equivalent to

lim infmno mini:lmio I/3mi > 0. We next prove that the support of /3m converges.

For the purpose of establishing of contradiction suppose that the support does not

converge. Then, there are infinitely many values of m' such that 1 m' / 1 m'+1. Using

the fact that |/3#mIIo = k for all large m we have

110m' - /3m'+11 2 m2r'i + 'j > I' P , (2.41)

where i, j are such that /m'+1,i = m',j = 0. As m' -÷ oc, the quantity in the rhs

of (2.41) remains bounded away from zero since lim infmo, mini:flmio I 3
mi > 0. This

contradicts the fact that 3m+1 - 3m -+ 0, as established in part (b). Thus, 1m con-

verges, and since 1
m is a discrete sequence, it converges after finitely many iterations,

that is 1m = 1m+1 for all m > M*. Algorithm 1 becomes a vanilla gradient descent

algorithm, restricted to the space 1m for m > M*. Since a gradient descent algorithm

for minimizing a convex function over a closed convex set leads to a sequence of iter-

47

ates that converge [92, 87], we conclude that Algorithm 1 converges. Therefore, the

sequence 3,m converges to 3, a first order stationarity point

Hk(
1 L

L /

(d) Let Tm C {1, ... , p} denote the set of k largest values of the vector (,3m - Vg(,m).

in absolute value. By the definition of Hk ()3m - ig(/m)), we have

(3 '796(3mn)) 7Vg(/m)> O

for all i, j with i E TEn and j -En. Thus,

lim inf min M - IVg(OM) > lim inf
M--O<o i61m L mi M-o(

max
j Im

(Om -
1 '79(m))
L

Moreover,

otherwise.

Using the fact that omn~ - 3m 0 we have

(Vg(/3,))j-+ 0, i E Im and Imj -+ 0, j Im

as m -÷ oc. Combining with (2.42) we have that:

lim inf min miI > lim inf max
m-4oo iElm m-+oo MI

1
L (Vg(3m))3

1
= - lim inf

L moo
IIVg(/3M) aO.

Since, lim infmoo minielm I/3mil = 0 by hypothesis, the lhs of the above inequality

equals zero, which leads to lim infmnooo IIVg(W.) 1100= 0. Thus, there is a subsequence

m' C {1,2,... , } such that Vg(3m,) -> 0, i.e., liminfm+o, Vg(3m) -+ 0.

48

(2.42)

Since,

1 (I7g(#m))j,
-)3 Hk (1M - L V9 (0,n))

g(/3 m) is a decreasing sequence, this implies that g(3m) a g(O*), where, 3* is an

unconstrained (without cardinality constraints) solution to min g(,3). E

Proposition 5 establishes that Algorithm 1 either converges to a first order stationarity

point (part (c)) or it converges to a global optimal solution (part (d)), but does not quantify

the rate of convergence. We next characterize the rate of convergence of the algorithm to an

c-approximate first order stationary point.

Theorem 2. Let L > f and 3 denote a first order stationary point of Algorithm 1. After

M iterations Algorithm 1 satisfies

2(g(3 1) - g(3))
min I/#m+i- #mII2 M(-

m=1,...,M M(L -)

where g(/3,) 4 g(/3) as m -+ o.

Proof

Summing inequalities (2.39) for 1 K m K M. we obtain

(9(3m) - g(13m+1)) 2- 2 e
m=1

113m+i - m,12,
m=1

M(L - f)
2

min I)3m+1 - /3mII2
m=1,...,M

Since the decreasing sequence g(/3 m+) converges to g(,3) by Proposition 5 we have:

g(3 1) - g(,3)
M

g(0 1) - g(#m+,)
M

> (L -) min I|I3m+1)3m |2-
2 m=1,...,M

Theorem 2 implies that for any e > 0 there exists M = O() such that for some 1 K

m* K M

II/3m*+1 ~0m*112 K E.

49

(2.43)

leading to

(2.44)

l

Polishing coefficients on the active set

Algorithm 1 detects the active set after a few iterations. Once the active set stabilizes, the

algorithm may take a number of iterations to estimate the values of the regression coefficients

on the active set to a high accuracy level.

In this context, we found the following simple polishing of coefficients to be useful. When

the algorithm has converged to a tolerance of e (~ 10-'), we fix the current active set, I,

and solve the following lower-dimensional convex optimization problem:

min g(/). (2.45)

In the context of the least squares the optimization Problem (2.45) reduces to to a smaller

dimensional least squares which can be solved very efficiently up to a very high level of

accuracy.

2.3.3 Application to Least Squares

For the support constrained problem with squared error loss, we have

g(3) = I - X3112, Vg(0) = (y - X'3)

The general algorithmic framework developed above applies in a straightforward fashion for

this special case. Note that for this case f = Amax(X'X).

The polishing of the regression coefficients in the active set can be performed via a least

squares problem on y, Xj, where I denotes the support of the regression coefficients.

50

2.4 Computational Experiments for Subset Selection with

Least Squares Loss

In this section, we present a variety of computational tests to assess the algorithmic and

statistical performances of our approach. We consider both the classical overdetermined

case with n > p (Section 2.4.2) and the high dimensional p >> n case (Section 2.4.3) for the

least squares loss function with support constraints.

2.4.1 Description of Experimental Data

We demonstrate the performance of our proposal via a series of experiments on both synthetic

and real data.

Synthetic Datasets. We consider a collection of problems where xi - N(O, E), i =

1, ... , n are independent realizations from a p-dimensional multivariate normal distribution

with mean zero and covariance matrix E := (o-s). The columns of the X matrix were sub-

sequently standardized to have unit e2 norm. For a fixed Xnx,, we generated the response

y as follows: y = X,3 0 + E, where ei H N(0, a2). We denote the number of nonzeros in 30

by ko. The choice of X,J30, a determines the Signal-to-Noise Ratio (SNR) of the problem,

which is defined as:

var(x'3
0)

SNR= -

We considered the following four different examples:

Example 1: We took auj = pI--1l for i, j e {1, ... p} x {1, ... ,p}. We consider different

values of ko E {5, 10} and #ff = 1 for ko equi-spaced values. In the case where exactly

equi-spaced values are not possible we rounded the indices to the nearest large integer value.

of i in the range {1, 2,... p}.

Example 2: We took E = Ix,, ko = 5 and 30 = (1' x , 0'5 x)' E RP.

Example 3: We took E = Ix,, ko = 10 and 43 = j + (10 - j i = 1,... ,10 and

= 0, Vi > 10 - i.e., a vector with ten nonzero entries, with the nonzero values being

51

equally spaced in the interval [1, 10].

Example 4: We took E = Ip,,, ko = 6 and o4 = (-10, -6, -2,2,6, 10, 0p6), i.e., a vector

with six nonzero entries, equally spaced in the interval [-10, 10].

Real Datasets. We considered the Diabetes dataset analyzed in [44]. We used the dataset

with all the second order interactions included in the model, which resulted in 64 predictors.

We reduced the sample size to n = 350 by taking a random sample and standardized the

response and the columns of the model matrix to have zero mean and unit f2-norm.

In addition to the above, we also considered a real microarray dataset, the Leukemia

data [33]. We downloaded the processed dataset from http://stat. ethz. ch/dettling/

bagboost.html, which had n = 72 binary responses and more than 3000 predictors. We

standardized the response and columns of features to have zero means and unit f2 -norm. We

reduced the set features to 1000 by retaining the features maximally correlated (in absolute

value) to the response. We call the resulting feature matrix X, with n = 72, p = 1000. We

then generated a semi-synthetic dataset with continuous response as y = X,3 0 + E, where the

first five coefficients of 30 were taken as one and the rest as zero. The noise was distributed

as Ej d N(0, U 2), with 0.2 chosen to get a SNR=7.

Computer Specifications and Software Computations were carried out in a linux 64

bit server-Intel(R) Xeon(R) eight-core processor 0 1.80GHz, 16 GB of RAM for the overde-

termined n > p case and in a Dell Precision T7600 computer with an Intel Xeon E52687

sixteen-core processor A 3.1GHz, 128GB of Ram for the high-dimensional p > n case. The

discrete first order methods were implemented in MATLAB 2012b. We used Gurobi [63]

version 5.5 and the MATLAB interface to Gurobi for all of our experiments, apart from the

computations for synthetic data for n > p, which were done in Gurobi via its Python 2.7

interface.

52

2.4.2 The Overdetermined Regime: n > p

Using the Diabetes dataset and synthetic datasets, we demonstrate the combined effect of

using the discrete first order methods with the MIO approach. Together, these methods show

improvements in obtaining good upper bounds and in closing the MIO gap to certify global

optimality. Using synthetic datasets where we know the true linear regression model, we per-

form side-by-side comparisons of this method with several other state-of-the-art algorithms

designed to estimate sparse linear models.

Obtaining Good Upper Bounds

We conducted experiments to evaluate the performance of our methods in terms of obtaining

high quality solutions for Problem (2.1).

We considered the following three algorithms:

(a) Algorithm 2 with fifty random initializations'. We took the solution corresponding to

the best objective value.

(b) MIO with cold start, i.e., formulation (2.9) with a time limit of 500 seconds.

(c) MIO with warm start. This was the MIO formulation initialized with the discrete first

order optimization solution obtained from (a). This was run for a total of 500 seconds.

To compare the different algorithms in terms of the quality of upper bounds, we run for

every instance all the algorithms and obtain the best solution among them, say, f'. If falg

denotes the value of the best subset objective function for method "alg", then we define the

relative accuracy of the solution obtained by "alg" as:

Relative Accuracy = (faig - f*)/f*, (2.46)

where alg E {(a), (b), (c)} as described above.

1we took fifty random starting values around 0 of the form min(i - 1, 1)C, i 1,...,50, where ~
N(Op x1 , 41). We found empirically that Algorithm 2 provided better upper bounds than Algorithm 1.

53

We did experiments for the Diabetes dataset for different values of k (see Table 2.1). For

each of the algorithms we report the amount of time taken by the algorithm to reach the

best objective value during the time of 500 seconds.

Discrete First Order MIO Cold Start MIO Warm Start
Accuracy Time Accuracy Time Accuracy Time

9 0.1306 1 0.0036 500 0 346
20 0.1541 1 0.0042 500 0 77
49 0.1915 1 0.0015 500 0 87
57 0.1933 1 0 500 0 2

Table 2.1: Quality of upper bounds for Problem (2.1) for the Diabetes dataset, for different
values of k. We see that the MIO equipped with warm starts deliver the best upper bounds
in the shortest overall times. The run time for the MIO with warm start includes the time
taken by the discrete first order method (which were all less than a second).

Using the discrete first order methods in combination with the MIO algorithm resulted

in finding the best possible relative accuracy in a matter of a few minutes.

Improving MIO Performance via Warm Starts

We performed a series of experiments on the Diabetes dataset to obtain a globally optimal

solution to Problem (2.1) via our approach and to understand the implications of using

advanced warm starts to the MIO formulation in terms of certifying optimality. For each

choice of k we ran Algorithm 2 with fifty random initializations. They took less than a

few seconds to run. We used the best solution as an advanced warm start to the MIO

formulation (2.9). For each of these examples, we also ran the MIO formulation without any

warm start (we refer to this as "cold start"). Figure 2-2 summarizes the results. The figure

shows that in the presence of warm starts, the MIO closes the optimality gap significantly

faster than those without advanced warm starts.

Statistical Performance

We considered datasets as described in Example 1, Section 2.4.1-we took different values

of n, p with n > p, p with ko = 10.

54

k=5

- Warm Start
- Cold Start

0 20 40

k=31

0

0

N-

k=-9

- Warm Start
- Cold Start

k=20

0

02

60 80 0 500 1000 1500 2000 2500 3000 3500

k=35

- Warm Start
- Cold Start

0 500 1000 1500 2000 2500 3000 3500
Time (secs)

0

0?

- Warm Start
- Cold Start

0 500 1000 1500 2000 2500 3000 3500

Time (secs)

0

0
1N

0
C,)-

0

(N

Figure 2-2: The evolution of the MIO optimality gap (in logiO(.) scale) for Problem (2.1), for
the Diabetes dataset with n = 350, p = 64 with and without warm starts for different values of k.
The MIO significantly benefits by advanced warm starts delivered by Algorithm 2. In all of these
examples, the global optimum was found within a very small fraction of the total time, but the
proof of global optimality came later. As the number of possible solutions grows as (P), it takes
longer to prove optimality for k = 31,35 compared to k = 42.

Competing Methods and Performance Measures For every example, we considered

the following learning procedures for comparison purposes: (a) the MIG approach equipped

warm starts from Algorithm 2 (annotated as "MIO" in the figure), (b) the Lasso, (c) Sparsenet

and (d) stepwise regression (annotated as "Step" in the figure).

We used R to compute Lasso, Sparsenet and stepwise regression using the glmnet 1.7.3,

55

- Warm Start
- Cold Start

0 500 1000 1500 2000 2500 3000 3500

k=42

- Warm Start
- Cold Start

0 500 1000 1500 2000 2500 3000 3500

Time (secs)

I0

C1

02

0

Sparsenet and Stats 3.0.2 packages respectively, which were all downloaded from CRAN

at http: //cran. us. r-proj ect. org/.

For each procedure, we obtained the "optimal" tuning parameter by selecting the model

that achieved the best predictive performance on a held out validation set. Once the model

,3 was selected, we obtained the prediction error as:

Prediction Error = IX/3 -- X)30 1/11X3 0 1. (2.47)

We report "prediction error" and number of non-zeros in the optimal model in our results.

The results were averaged over ten random instances, for different realizations of X, E. For

every run: the training and validation data had a fixed X but random noise C.

Figure 2-3 presents results for data generated as per Example 1 with n = 500 and p

100. We see that the MIO procedure performs very well across all the examples. Among the

methods, MIO performs the best, followed by Sparsenet, Lasso with Step(wise) exhibiting

the worst performance. In terms of prediction error, the MIO performs the best, only to

be marginally outperformed by Sparsenet in a few instances. This further illustrates the

importance of using non-convex methods in sparse learning. Note that the MIO approach,

unlike Sparsenet certifies global optimality in terms of solving Problem 2.1. However, based

on the plots in the upper panel, Sparsenet selects a few redundant variables unlike MIO.

Lasso delivers quite dense models and pays the price in predictive performance too, by

selecting wrong variables. As the value of SNR increases, the predictive power of the methods

improve, as expected. The differences in predictive errors between the methods diminish with

increasing SNR values. With increasing values of p (from left panel to right panel in the

figure), the number of non-zeros selected by the Lasso in the optimal model increases.

We also performed experiments with n = 1000, p = 50 for data generated as per Exam-

ple 1. We solved the problems to provable optimality and found that the MIO performed

very well when compared to other competing methods. We do not report the experiments

for brevity.

56

40--

C
0
L6-

.0

E
z

10]

0.25 -

60.20-

E

0

0 .0 -

0.00

I.
1.58 3.17 6.33

Method

I Lasso

F Sparsenet

1.58 3.17 6.33
Signal-to-Noise Ratio

Figure 2-3: Figure showing the sparsity (upper panel) and predictive performances (bottom panel)

for different subset selection procedures for the least squares loss. Here, we consider data generated

as per Example 1, with n = 500,p = 100, ko = 10, for three different SNR values with [Left Panel]

p = 0.5, [Middle Panel] p = 0.8, and [Right Panel] p = 0.9. The dashed line in the top panel

represents the true number of nonzero values. For each of the procedures, the optimal model was

selected as the one which produced the best prediction accuracy on a separate validation set, as

described in Section 2.4.2.

MIO model training

We trained a sequence of best subset models (indexed by k) by applying the MIO approach

with warm starts. Instead of running the MIO solvers from scratch for different values of k,
57

174 348 6.97

Method
M10
Lsso

Sparsenet

1.74 3.48 6.97
Signal-to-Noise Ratio

I

2.18 4.37 8.73

Method
a M10
0 Lasso

Sparsenet

2.18 4.37 8.73
Signal-to-Noise Ratio

we used callbacks, a feature of integer optimization solvers. Callbacks allow the user to solve

an initial model, and then add additional constraints to the model one at a time. These

"cuts" reduce the size of the feasible region without having to rebuild the entire optimization

model. Thus, in our case, we can save time by building the initial optimization model for

k = p. Once the solution for k = p is obtained, a cut can be added to the model: EP, zi < k

for k = p - 1 and the model can be re-solved from this point. We apply this procedure until

we arrive at a model with k = 1.

For each value of k tested, the MIO best subset algorithm was set to stop the first time

either an optimality gap of 1% was reached or a time limit of 15 minutes was reached.

Additionally, we only tested values of k from 5 through 25, and used Algorithm 2 to warm

start the MIO algorithm. We observed that it was possible to obtain speedups of a factor

of 2-4 by carefully tuning the optimization solver for a particular problem, but chose to

maintain generality by solving with default parameters. Thus, we do not report times with

the intention of accurately benchmarking the best possible time but rather to show that it

is computationally tractable to solve problems to optimality using modern MIO solvers.

2.4.3 The High-Dimensional Regime: p > n

In this section, we investigate

(a) the evolution of upper bounds in the high-dimensional regime,

(b) the effect of a bounding box formulation on the speed of closing the optimality gap,

(c) the statistical performance of the MIO approach in comparison to other state-of-the

art methods

Obtaining Good Upper Bounds

We performed tests similar to those in Section 2.4.2 for the p > n regime. We tested a

synthetic dataset corresponding to Example 2 with n = 30, p = 2000 for varying SNR values

(see Table 2.2) over a time of 500s. As before, using the discrete first order methods in

58

combination with the MIO algorithm resulted in finding the best possible upper bounds in

the shortest possible times.

k Discrete First Order MIO Cold Start MIO Warm Start
Accuracy Time Accuracy Time Accuracy Time

a 5 0.1647 37.2 1.0510 500 0 72.2
11 6 0.6152 41.1 0.2769 500 0 77.1
4 7 0.7843 40.7 0.8715 500 0 160.7

8 0.5515 38.8 2.1797 500 0 295.8
9 0.7131 45.0 0.4204 500 0 96.0

5 0.5072 45.6 0.7737 500 0 65.6
1 6 1.3221 40.3 0.5121 500 0 82.3

P 7 0.9745 40.9 0.7578 500 0 210.9
8 0.8293 40.5 1.8972 500 0 262.5
9 1.1879 44.2 0.4515 500 0 254.2

Table 2.2: The quality of upper bounds for Problem (2.1) obtained by Algorithm 2, MIO
with cold start and MIO warm-started with Algorithm 2. We consider the synthetic dataset
of Example 2 with n = 30, p = 2000 and different values of SNR. The MIO method, when
warm-started with the first order solution performs the best in terms of getting a good
upper bound in the shortest time. The metric "Accuracy" is defined in (2.46). The first
order methods are fast but need not lead to highest quality solutions on their own. MIO
improves the quality of upper bounds delivered by the first order methods and their combined
effect leads to the best performance.

We also did experiments on the Leukemia dataset. In Figure 2-4 we demonstrate the

evolution of the objective value of the best subset problem for different values of k. For each

value of k, we warm-started the MIO with the solution obtained by Algorithm 2 and allowed

the MIO solver to run for 4000 seconds. The best objective value obtained at the end of

4000 seconds is denoted by f,. We plot the Relative Accuracy, i.e., (ft - f,)/f,, where ft is

the objective value obtained after t seconds. The figure shows that the solution obtained by

Algorithm 2 is improved by the MIO on various instances and the time taken to improve the

upper bounds depends upon k. In general, for smaller values of k the upper bounds obtained

by the MIO algorithm stabilize earlier, i.e., the MIO finds improved solutions faster than for

larger values of k.

59

Ii
- - k=6

k=8
k=1fl

tL

16

k=12
k=16
c=18

0 500 1000
1 20 i i i

1500 2000 2500 3000 3500

Time (secs)

Figure 2-4: Behavior of MIO aided with warm start in obtaining good upper bounds over time for

the Leukemia dataset (n = 72, p = 1000). The vertical axis shows relative accuracy, i.e., (ft - f)/f ,
where ft is the objective value obtained after t seconds and f, denotes the best objective value

obtained by the method after 4000 seconds. The colored diamonds correspond to the locations

where the MIO (with warm start) attains the best solution. The figure shows that MIO improves

the solution obtained by the first order method in all the instances. The time at which the best

possible upper bound is obtained depends upon the choice of k. Typically larger k values make the

problem harder-hence the best solutions are obtained after a longer wait.

Bounding Box Formulation

With the aid of advanced warm starts as provided by Algorithm 2, the MIO obtains a very

high quality solution very quickly-in most of the examples the solution thus obtained turns

out to be the global minimum. However, in the typical "high-dimensional" regime, with

p >> n, we observe that the certificate of global optimality comes later as the lower bounds

of the problem "evolve" slowly. This is observed even in the presence of warm starts and

using the implied bounds as developed in Section 2.2.1 and is aggravated for the cold-started

MIO formulation (2.10).

To address this, we consider the MIO formulation (2.48) obtained by adding bounding

60

I')

05
CU

0

CU

(D

boxes around a local solution. These restrictions guide the MIO in restricting its search space

and enable the MIO to certify global optimality inside that bounding box. We consider the

following additional bounding box constraints to the MIO formulation (2.10):

{/3: i X13 - Xf30111 ! 4I,}, nl {3: lio/ - I3,Ili 'dc}

where 00 is a candidate sparse solution. The radii of the two fi-balls above, namely, L.,i1 c

and L30 are user-defined parameters and control the size of the feasible set.

Using the notation = X,3 we have the following MIO formulation (equipped with the

additional bounding boxes):

min
)3,z,C

s. t. C = XO

(j, I - zi) : SOS type-1, i = 1, .. ., p

ZiE {0, 1}, i = 1,... ,p

E zi < k
i=1

-Mu < / Mui = 1, ... ,p

1f11i< me

(2.48)

For lrge vlues o c0 (respectively, L~'1C the constraints on X,3 (respectively, /3) become

61

ineffective and one gets back formulation (2.10). To see the impact of these additional cutting

planes in the MIO formulation, we consider a few examples as illustrated in Figures 2-5,2-

6,2-7.

Interpretation of the bounding boxes. A local bounding box in the variable = X,3

directs the MIO solver to seek for candidate solutions that deliver models with predictive

accuracy "similar" (controlled by the radius of the ball) to a reference predictive model, given

by Co. In our experiments, we typically chose (0 as the solution delivered by running MIO

(warm-started with a first order solution) for a few hundred to a few thousand seconds. More

generally, (0 may be selected by any other sparse learning method. In our experiments, we

found that the run-time behavior of the MIO depends upon how correlated the columns of

X are.

Similarly, a bounding box around / directs the MIO to look for solutions in the neighbor-

hood of a reference point 30. In our experiments, we chose the reference 0 as the solution

obtained by MIO (warm-started with a first order solution) and allowing it to run for a few

hundred to a few thousand seconds. We observed in our experiments that the MIO solver

in presence of bounding boxes in the 3-space certified optimality and in the process finding

better solutions; much faster than the C-bounding box method.

Note that the 3-bounding box constraint leads to O(p) and the (-box leads to O(n)

constraints. Thus, when p > n the additional C constraints add a fewer number of extra

variables when compared to the 3 constraints.

Experiments In the first set of experiments, we consider the Leukemia dataset with n =

72, p = 1000. We took two different values of k E {5, 10} and for each case we ran Algorithm 2

with several random restarts. The best solution thus obtained was used to warm start the

MIO formulation (2.10), which we ran for an additional 3600 seconds. The solution thus

obtained is denoted by 30. We then consider formulation (2.48) with C I = 00 and different

values of CLifc = Frac (as annotated in Figure 2-5) - the results are displayed in Figure 2-5.

We consider another set of experiments to demonstrate the performance of the MIO

62

Leukemia dataset: Effect of a Bounding
k=5

0 1000 2000

Time (secs)

0)

0

3000 4000

Box for MIO formulation (2.48)
k =10

-- F r

0 500 1000

Time (secs)

Figure 2-5: The effect of the MIO formulation (2.48) for the Leukemia dataset, for different values
of k. Here C , oc and LiO = Frac. For each value of k, the global minimum obtained was thefjoc -,loc

same for the different choices of C-

in certifying global optimality for different synthetic datasets with varying n, p, k as well

as with different structures on the bounding box. In the first case, we generated data as

per Example 1 with p = 0.9, ko = 5. We consider the case with X = X30, C o= and

jloc = 0.511X,3 0 11, where ,3 is a k-sparse solution obtained from the MIO formulation (2.10)

run with a time limit of 1000 seconds, after being warm-started with Algorithm 2. The results

are displayed in Figure 2-6[Left Panel]. In the second case (with data same as before) we

obtained 30 in the same fashion as described before-we took a bounding box around 30,

and left the box constraint around X30 inactive, i.e., we set L ioc = o and Li03 = 1II301 1 /k.

We performed two sets of experiments, where the data were generated based on different

SNR values-the results are displayed in Figure 2-6 with SNR=1 [Middle Panel] and SNR

= 3[Right Panel].

In the same vein, we have Figure 2-7 studying the effect of formulations (2.48) for syn-

thetic datasets generated as per Example 1 with n = 50, p = 1000, p = 0.9 and ko = 5.

63

Frac=2.2
Frac=2

a-
(9
0

- Frac=2

1500 2000

Evolution of the MIO gap for (2.48), effect of type of bounding box (n = 50,p = 500).

.1 -.. - k=5

I I I

0 500 1000

Time (secs)

0

9-

0~

N

0

06

0

k=91

V ~ - 013

I A k015

I I I I1 1

80 100 0 20 40 60

Time (secs)

Figure 2-6: The effect of the MIO formulation (2.48) for a synthetic dataset as in Example 1 with
p = 0.9, ko = 5, n = 50, p = 500, for different values of k. [Left Panel] 6,loc = 0.511X301 1 and

LflC = oc for a data-set with SNR = 3. [Middle Panel] Lf,10C = 00 eloc = 1130 01 /k and SNR = 1.

[Right Panel] , oc = 1 30 11/k and SNR = 3. The figure shows that the bounding boxes
in terms of X0 (left-panel) make the problem harder to solve, when compared to bounding boxes
around 3 (middle and right panels). A possible reason is due to the strong correlations among the
columns of X. The SNR values do not seem to have a big impact on the run-times of the algorithms
(middle and right panels).

Statistical Performance

To understand the statistical behavior of MIO when compared to other approaches for learn-

ing sparse models, we considered synthetic datasets for values of n ranging from 30 -50 and

values of p ranging from 1000 - 2000. The following methods were used for comparison

purposes

(a) Algorithm 2. Here we used fifty different random initializations around 0, of the form

min(i - 1, 1)N(Op 1 , 41), i = 1, ... ,50 and took the solution corresponding to the best

objective value.

64

0

I I I I

0 20 40 60

Time (secs)

N

0

k=91

0 k13

I k015

%. %

% %

%

I I
80 100

Evolution of the MIO gap for (2.48), effect of bounding box radii (n = 50,p = 1000).

loc = o and loc

- k=4
- - k=9

k=11
- - k=13

k=15

Co

C)

0

CN

0

Ip _
0

0 1000 2000 3000

Time (secs)

= 211/ 0 111/k

- k=4
-- k=9

Sk=11
- k=13

k=15

(0 '

0 500 1000 1500 2000 2500 3000 3500

oc 0

CR
0

C)

0

0
0

4000 5000 0 500 1000 1500 2000

Time (secs)

2500 3000 3500

Figure 2-7: The evolution of the MIO gap with varying radii of bounding boxes for MIO

formulation (2.48). The top panel has radii twice the size of the bottom panel. The dataset

considered is generated as per Example 1 with n = 50, p = 1000, p = 0.9 and k0 = 5 for different

values of SNR: [Left Panel] SNR = 1, [Right Panel] SNR = 3. For each case, different values of k

have been considered. The top panel has a bounding box radii which is twice the corresponding case

in the lower panel. As expected, the times for the MIO gaps to close depends upon the radii of the

boxes. The optimal solutions obtained were found to be insensitive to the choice of the bounding

box radius.

65

CL
CM
0!
0

CL
Ca
(9
0

0 1000 2000 3000 4000 5000

, c o: an

- k=4
-- k=9

k=11
k=13
k=15

a

0

0
0

- k=4
-- k=9

- k=13
k=15

I i 1

(b) The MIO approach with warm starts from part (a).

(c) The Lasso solution.

(d) The Sparsenet solution.

For methods (a), (b) we considered ten equi-spaced values of k in the range [3, 2ko] (including

the optimal value of ko). For each of the methods, the best model was selected in the same

fashion as described in Section 2.4.2 using separate validation sets.

In Figure 2-8 and Figure 2-9 we present selected representative results from four different

examples described in Section 2.4.1.

In Figure 2-8 the left panel shows the performance of different methods for Example 1

with n = 50, p = 1000, p = 0.8, ko = 5. In this example, there are five non-zero coefficients:

the features corresponding to the non-zero coefficients are weakly correlated and a feature

having a non-zero coefficient is highly correlated with a feature having a zero coefficient. In

this situation, the Lasso selects a very dense model since it fails to distinguish between a zero

and a non-zero coefficient when the variables are correlated-it brings both the coefficients

in the model (with shrinkage). MIO (with warm-start) performs the best-both in terms of

predictive accuracy and in selecting a sparse set of coefficients. MIO obtains the sparsest

model among the four methods and seems to find better solutions in terms of statistical

properties than the models obtained by the first order methods alone. Interestingly, the

"optimal model" selected by the first order methods is more dense than that selected by

the MIO. The number of non-zero coefficients selected by MIO remains fairly stable across

different SNR values, unlike the other three methods.

In Figure 2-8 the right panel shows Example 2, with n = 30, p = 1000, ko = 5 and all

non-zero coefficients equal one. In this example, all the methods perform similarly in terms

of predictive accuracy. This is because all non-zero coefficients in 30 have the same value.

In fact for the smallest value of SNR, the Lasso achieves the best predictive model. In all

the cases however, the MIO achieves the sparsest model with favorable predictive accuracy.

In Figure 2-9, for both the examples, the model matrix is an iid Gaussian ensemble. The

underlying regression coefficient 30 however, is structurally different than Example 2 (as in

66

U)
0

N

0z
4-
0

Ez3
z

40-

30-

20-

10-

0

Method
First Order + MIO
Lasso
First Order Only
Sparsenet l

3 7 10
Signal-to-Noise Ratio

Method
First Order + MIO
Lasso
First Order Only
Sparsenet

3 7 10
Signal-to-Noise Ratio

Figure 2-8: The sparsity and predictive performance for different procedures: [Left Panel] shows
Example 1 with n = 50, p = 1000, p = 0.8, ko = 5 and [Right Panel] shows Example 2 with
n = 30, p = 1000-for each instance several SNR values have been shown.

Figure 2-8, right-panel). The structure in 30 is responsible for different statistical behaviors

of the four methods across Figures 2-8 (right-panel) and Figure 2-9 (both panels). The

alternating signs and varying amplitudes of 30 are responsible for the poor behavior of Lasso.

The MIO (with warm-starts) seems to be the best among all the methods. For Example 3

(Figure 2-9, left panel) the predictive performances of Lasso and MIO are comparable-the

MIO however delivers much sparser models than the Lasso.

67

7 10

a)
CU,

0

0 1

0-

0.0

10

I

I

3

I
I

4 -

40-

30-

20-

10--

0 -
10

Method
First Order + MIO
Lasso
First Order Only
Sparsenet

3 7 10
Signal-to-Noise Ratio

3 7

Method
First Order + MIO
Lasso
First Order Only
Sparsenet

3 7 10
Signal-to-Noise Ratio

Figure 2-9: [Left Panel] Shows performance for data generated according to Example 3 with

n = 30, p = 1000 and [Right Panel] shows Example 4 with n = 50, p = 2000.

The key conclusions are as follows:

1. The MIO best subset algorithm has a significant edge in detecting the correct sparsity

structure for all examples compared to Lasso, Sparsenet and the stand-alone discrete

first order method.

2. For data generated as per Example 1 with large values of p, the MIG best subset

algorithm gives better predictive performance compared to its competitors.

68

;FlA

U)
0~
a)
N
C
0z
4--
0

E
z

3

1~

10

(D

C

C

0

a)

0.2-

01 -

rlf"_

7

I

I

3. For data generated as per Examples 2 and 3, MIO delivers similar predictive models

like the Lasso, but produces much sparser models. In fact, Lasso seems to perform

marginally better than MIO, as a predictive model for small values of SNR.

4. For Example 4, MIO performs the best both in terms of predictive accuracy and

delivering sparse models.

2.5 Conclusions

We have revisited the classical best subset selection problem of choosing k out of p features

in linear regression given n observations using a modern optimization lens, i.e., MIO and

a discrete extension of first order methods from continuous optimization. Exploiting the

astonishing progress of MIO solvers in the last twenty-five years, we have shown that this

approach solves problems with n in the 1000s and p in the 100s in minutes to provable

optimality, and finds near optimal solutions for n in the 100s and p in the 1000s in minutes.

Importantly, the solutions provided by the MIO approach significantly outperform other state

of the art methods like Lasso in achieving sparse models with good predictive power. Unlike

all other methods, the MIO approach always provides a guarantee on its sub-optimality even

if the algorithm is terminated early.

While continuous optimization methods have played and continue to play an important

role in statistics over the years, discrete optimization methods have not. The evidence here

as well as in [91 suggests that MIO methods are tractable and lead to desirable properties

(improved accuracy and sparsity among others) at the expense of higher, but still reasonable,

computational times.

69

70

Chapter 3

An Algorithmic Approach to Linear

Regression

3.1 Introduction

We consider the linear regression model with response vector ynx 1, model matrix X =

[x1 , ... , x,] E R"'P, regression coefficients 3 E RP"X and errors E E R"':X

y = X'3 + .

The linear regression model is a powerful tool for modeling the relationship between a

dependent variable and explanatory variables, and is well studied in theory as well as widely

applied in practice. However, going from raw data to a high quality linear regression model

is a non-trivial task; the modeler must ensure that all modeling assumptions are met, while

building a parsimonious model that is able to separate signal from noise. The modeler

rarely builds a single model. Rather, she undertakes an iterative process of refinement to

produce the best model she can. This task manifests itself as a series of checks during the

model building process: is there evidence of multicollinearity? of outliers? Are there too

many variables present, or not enough? How well does the model generalize? What about

71

measurement error in the data, or missing data? Are the variables significant? Does the

resulting model make sense for the application at hand? And so on.

The modeler must balance these competing objectives as she creates a regression model

as best as she can. In this paper, we propose an algorithmic, optimization-based method for

jointly balancing such objectives.

3.1.1 Aspirations

Currently, regression modeling is done in a fairly ad hoc manner. The various properties of

a high quality linear regression model are typically built into the model one at a time and

through repeated trial and error by the modeler. Hence, there is no guarantee that the final

model produced satisfactorily addresses all of them, let alone optimally addresses them. The

goal of this work is to design an optimization-based algorithm which simultaneously takes

into account these desirable properties and, whenever it is not possible to satisfy all these

properties simultaneously, the algorithm provides a guarantee that it is indeed infeasible to

do so. The output of such an algorithm is a set of high quality regression models containing

as many of the desired properties as possible.

We feel that humans and machines have different strengths and our proposed approach

aims to utilize both these strengths. The modeler typically has subject matter expertise;

for example, she may know of a particular structure present in the data, or can require that

certain variables be present in the final model. While humans have intuition and contextual

knowledge and understanding, computers have significantly more computational power. Our

aspiration in this work is to empower modelers with a methodology that builds models with

properties that a human modeler can require based on intuition and expertise.

3.1.2 Current Practice

Fitting regression models has long been viewed as an art, left to the savvy modeler who

manages often-competing goals. The result is that two modelers may begin with the same

set of data and end with quite different models.

72

We consulted several widely-used regression textbooks (Regression Analysis by Example

by [28], Applied Regression Analysis by [41], Linear Regression Analysis by [96], and Applied

Linear Regression by [110]) to see how modelers are instructed to approach the difficult

task of fitting a linear regression model, and our findings show that while many textbooks

discuss these competing objectives individually, most textbooks do not provide guidance to

modelers on how to balance these objectives in organizing their search for the best model.

For instance, [41], [96], and [110] each contain a chapter on model selection and discuss topics

such as selection criteria, the best subset problem, stepwise methods, shrinkage methods, and

computational approaches. Many techniques are offered, but little guidance is provided as to

which method a modeler should use, if any, under particular circumstances. [28] also contains

a chapter on model selection with a similar set of topics, but differs from the other texts

in that it also provides a potential strategy for fitting regression models. In our experience,

many modelers follow a process similar to what is outlined in [28]. We summarize their

suggestions here, and henceforth refer to this as "the standard approach":

1. Examine the variables one by one, looking for outliers and making transformations.

2. Construct pairwise scatterplots for each variable, if possible. Examine the correla-

tion matrix and delete redundant variables. Calculate the condition number of the

correlation matrix to understand the extent of the effect of multicollinearity.

3. Fit the full ordinary least squares model and delete variables with insignificant t-

tests. For the reduced model, examine the residuals for linearity, heteroscedasticity,

autocorrelation, and outliers.

4. See if additional variables can be dropped and/or if new variables need to be brought

in. Repeat step 3.

5. Check variance inflation factors (VIFs) and residual diagnostics.

6. Validate the fitted model on a test set, or using other methods such as cross validation,

bootstrapping, etc.

73

In [28], the authors are quick to note that the procedure they outline is frequently im-

plemented synchronously rather than entirely sequentially, and that it may be necessary to

repeat the steps several times. They qualify their recommended steps by noting that "One

important component that we have not included in our outlined steps is the subject matter

knowledge of the analyst in the area in which the model is constructed. ... After all is said

and done, statistical model building is an art. The techniques that we have described are

the tools by which this task can be attempted methodically."

In contrast our goal is to design an algorithm that eliminates the modeler's tedious task

of repeating the model-building steps several times and produce a high quality set of models.

3.1.3 Contribution and Structure

In this section of the thesis, we propose an MIQO. approach to model a variety of desired

properties in statistical models. In Table 3.1 we summarize the properties we model and

how they are built into the MIQO model in Section 3.3. Our approach provides the only

methodology we are aware of to construct models that impose statistical properties simulta-

neously. Using both real and synthetic data, we demonstrate that the approach is generally

applicable, tractable in the sense of providing solutions in realistic timelines and provides a

guarantee of suboptimality as it is based on a MIQO model. Specifically, when the MIQO

is infeasible we obtain a guarantee that imposing distinct statistical properties is simply not

feasible.

This chapter of the thesis is structured as follows. We begin in Section 3.2, by introducing

and discussing the beneficial statistical properties we want the regression model to have. In

Section 3.3, we develop the MIQO-based algorithm to impose these properties. In Section 3.4,

we provide empirical evidence of our algorithm's abilities using a wide variety of real and

synthetic datasets. We conclude this chapter in Section 3.5.

74

Table 3.1: Desirable properties of a linear regression model and how they are incorporated
into the model.

[Property Chapter Section MIQO Model
General Sparsity 3.2.1 Constraint (4.8d)
Group Sparsity 3.2.2 Constraint (4.8e)
Limited Pairwise Multicollinearity 3.2.2 Constraint (4.8f)
Nonlinear Transformations 3.2.2 Constraint (4.8g)
Robustness 3.2.3 Objective (4.8a)
Stable to Outliers 3.2.4 Objective (4.8a)
Modeler Expertise 3.2.5 Constraint (4.8h)
Statistical Significance 3.2.6 Constraint (4.8i)
Low Global Multicollinearity 3.2.7 Constraint (4.8i)

3.2 Desirable Properties of a Linear Regression Model

In this section, we review desirable characteristics of a linear regression model. We discuss our

MIQO approach to build these properties into a model, and contrast it to other approaches

to achieving each property.

3.2.1 General Sparsity

When the number of potential features is large, we often wish to identify a critical subset

which are primarily responsible for producing the response. This leads to more interpretable

models, and aids prediction accuracy by eliminating noise variables to increase the model's

ability to generalize.

To achieve sparsity, we follow the approach we developed in Chapter 2 and use a com-

bination of continuous and discrete optimization methods to efficiently solve the best sub-

set regression problem [82]. That is, we will solve the following problem for all values of

k E {1, ... , p} and return the solution and value of k with the smallest residual sum of

squares:

min 1y - X,311| subject to 11,31|o < k. (3.1)

Due to the difficulty of scaling algorithms like leaps and bounds [52J, research on the

best subset regression problem in the past few decades has mainly focused on methods that

75

solve a convex approximation of Problem (3.1). For example, Lasso ([1011, [29]) is a popular

model that solves the following problem:

min 1y - X312 + Al1)|11. (3.2)

The fi penalty on 3 in Problem (3.2) shrinks the coefficients towards zero and sets

many coefficients to be exactly zero, which induces a sparse estimate of 3. Under sufficient

regularity conditions, it has been shown that the sparsity pattern of this solution perfectly

coincides with the true underlying sparsity pattern ([21]). However, the regularity conditions

required to guarantee this are difficult to verify in practice, and are not typically satisfied

by highly correlated data - which is a common occurrence in practice.

3.2.2 Selective Sparsity

We use the term "selective sparsity" to refer to settings where we would like to constrain the

joint inclusion of subsets of independent variables. Modeling selective sparsity via MIQO

can cover a broad range of settings and we will consider several here: group sparsity, pairwise

multicollinearity, and nonlinear transformations.

Group Sparsity

Some applications exhibit a block- or group-sparse structure, with groups of independent

variables whose coefficients are either all zero or all nonzero. Categorical variables, when

expressed as a collection of dummy variables, form a natural group structure. Clear group

formations also appear in compressed sensing ([45]), microarray analysis ([75]), and other

applications.

By encoding this structure directly into the MIQO model, we ensure that the resulting

solution preserves the group sparsity property. Moreover, MIQO can easily handle overlap-

ping groups - a common phenomenon in microarray data, where some genes may play a role

in several functional groups ([641). Group sparsity has been highly studied in recent years

(for example, see [115], [1], [122]). The most common approach is group lasso, proposed by

76

[115], and therefore much of the literature focuses on how well the group sparsity property

is recovered. With an MIQO approach, a feasible solution guarantees the group sparsity

property. To the best of our knowledge, there has not been previous work on group sparsity

via MIQO.

Limited Pairwise Multicollinearity

A near-linear relationship between independent variables obfuscates the true contribution of

each feature to the response and leads to unstable parameter estimates. In the worst case,

multicollinearity can even cause parameter estimates to take the opposite sign from their true

contribution to the response. To avoid these issues and produce interpretable models, a high

quality regression model will contain features that are as orthogonal as possible. Of course,

real data do not come with guarantees of orthogonality and are often far from this ideal.

Thus, we suggest using pairwise correlation between independent variables as a measurement

of multicollinearity, and building in selective sparsity by limiting the independent variables

in the regression model to those which have relatively low pairwise correlation with the

other included variables . This is a standard technique in practice - for example, in their

textbook, [100] recommend that "independent variables with a pairwise correlation more

than 0.70 should not be included in multiple regression analysis."

Principal Components Regression (PCR), proposed in [77], orthogonalizes the data ma-

trix X via principal components analysis, and the response y is regressed upon the new,

uncorrelated feature variables. While this effectively solves the issue of multicollinearity, it

does not lend itself to interpretable models, as it is difficult to interpret the new features and

therefore unclear the extent to which the original variables affect the response. Similarly,

Partial Least Squares (PLS), proposed by [112] derives new, orthogonalized features, but

differs from PCR in that the response is also used to create the new features. PLS models

are similarly difficult to interpret. Penalized regression, which gives biased estimates but

reduces variance, is another common method of attacking the inflated variances that result

from multicollinearity. While this may induce lower variances, the shrinkage induced by

77

these methods does not actually make the data any less correlated, and hence we do not

view it as an appropriate tool for encouraging interpretable models.

Detecting Appropriate Nonlinear Transformations

The data may not be collected in the units that are most explanatory of the dependent

variable. It may turn out that a nonlinear transformation of an independent variable results

in a new variable which can explain the variance in the dependent variable much better than

the original measured variable could.

Typically, modelers detect the need for nonlinear transformations through graphical ex-

amination and trial and error. Alternatively, an automated method for detecting nonlin-

ear transformations is the Box-Tidwell procedure ([20J), which is an iterative process that

suggests statistically significantly power transformations of independent variables. The sug-

gested transformations need to be interpreted by a human analyst before being incorporated

into a model, since they are rarely interpretable whole-number powers. They also do not

take into account other constraints we would like to include.

For a fixed set of nonlinear transformations, MIQO can optimally determine whether to

use the original variable or a transformed version of the variable. For any variable j for which

nonlinear transformations may be desired, we simply include all the potential transformed

versions of the variable in the dataset passed to the algorithm. Let the set T contain the

original variable j and its nonlinear transformations. Then we incorporate selective sparsity

by including a constraint in the MIQO model that at most one of the variables from the set

T can appear in the final model.

3.2.3 Robustness

Data quality varies widely based on the nature of the data being collected and the collection

process. In [58], the authors define gross errors as errors due to a source of deviations which

acts only occasionally but are quite powerful. They estimate that while high quality data may

contain next to no gross errors, routine data usually contain 1-10% gross errors. In addition

78

to the inaccuracies of gross errors, systematic errors may lead to imprecise measurements.

Robust optimization directly addresses errors in the data by considering uncertainty sets

for the data and calculates solutions that are immune to worst-case uncertainty under these

sets (see [3] and [4]). For the linear regression problem with data (y, X), the data associated

with the independent variables have error AX that belong to a given uncertainty set U. For

example,
n P)/p

U = AX I ||AXp-F =(EZ AXiP <) F.
i=1 j=1

The robust least squares problem is then

min max -1|y - (X + AX),31p. (3.3)
i3 AXEU2

The key result is as follows.

Theorem 3. ([6], [113]) Problem (3.3) is equivalent to

min illy - X,3Ip+ 1 11311. (3.4)

This result demonstrates that penalized regression models like Lasso are actually robust

models against uncertainty in data. Although Lasso is revered for its ability to induce sparse

solutions and much work has been done on the ability of Lasso to recover the true model (see

[21] for an overview of the conditions under which Lasso identifies the true sparsity pattern),

its predictive power is a result of being robust to uncertainty in data. In our algorithm,

we regularize our MIQO model as a way to immunize the model from data uncertainty.

As there are many cases in which regularization alone is not able to ensure sparsity ([90J,

[120], [78], [54], [118], [97]), we use the regularization approach in addition to the general

sparsity approach outlined in Section 3.2.1. The robust optimization approach focuses on

the worst-case error in the data. The approach is flexible in that it can handle different

regularization parameters for different corresponding coefficients. For a characterization of

the relation between robustification and regularization see [5].

79

3.2.4 Stability against Outliers

In the ideal modeling scenario, all data is representative of the population from which it is

gathered. The presence of outliers can render a model's coefficient estimates useless, and can

seriously impede the model's generalization ability. For the purpose of avoiding the effect

of outliers we can use a median regression objective function rather than a least squares

objective. The least squares objective is known to produce coefficients which are highly

sensitive to outliers. Coefficient sensitivity to outliers is typically quantified using the metric

of finite sample breakdown point [39]. The least squares objective leads to estimates with

a limiting breakdown point of zero ([571). The Least Absolute Deviations objective, which

minimizes the fl-norm of the residuals rather than the 2-norm also has a breakdown point of

zero. However, the Least Median of Squares (LMS) objective, introduced in [93j, minimizes

the median of the 2-norm of the residuals. The limiting breakdown point of LMS estimators

is 50% - the maximum achievable. In [9], the authors formulate the LMS regression problem

using MIQO. Their approach is easily adapted to our setting. To address outliers, we can

adopt the LMS objective in place of the least squares objective in Problem (3.5), while

retaining the other constraints and the regularization parameter in the objective.

3.2.5 Modeler Expertise

In some cases, the modeler has particular expertise with the application at hand. In that case,

she might wish to specify that certain independent variables must be included in the final

regression model, due to a known correlation with the response. This can be incorporated

directly into the model building process by adding a constraint to the MIQO model.

3.2.6 Statistical Significance

Statistical inference relies not just on parameter estimates, but on specifications of uncer-

tainty and confidence regarding those estimates. It is critical when interpreting parameters

to have a sense of whether the model is truly detecting an underlying correlation between the

80

variable and the response. The standard way of quantifying this in the scientific literature is

through the concept of statistical significance. An independent variable in a regression model

is labeled as "statistically significant" if, in the presence of the other variables in the model,

the probability a that the observed effect occurred by chance is low, conventionally 5% or

less. Modelers typically exclude insignificant variables from regression models, because they

can only give murky interpretations of their effects on the response. Of course, this occasion-

ally results in Type II error - excluding a variable which does have a true effect - but the

chances of this are minimized in a model that is not severely affected by multicollinearity, a

property our MIQO model already builds in.

We would like our algorithm to provide confidence intervals and judge whether a given

variable is statistically significant. However, we would also like our methodology to be

free of distributional assumptions, to handle high dimensional settings, and to incorporate

regularization, as described Section 3.2.3. All these properties invalidate the standard least

squares assumptions. Our approach, then, is not to compromise these goals but rather to use

bootstrapping techniques to generate confidence intervals and test for statistical significance.

The bootstrap method was introduced in the seminal paper [43], and bootstrapped confidence

intervals have been shown to be asymptotically more accurate than standard confidence

intervals obtained using sample variance and normality assumptions ([34]).

Coming up with analytical formulae for significance measures and confidence intervals

in regularized, potentially high-dimensional settings is challenging, and an area of current

research (see [65] and [72], for example). We prefer our methodology to be flexible and able

to handle a variety of objective functions and constraints, and so we opt for a bootstrapping

approach instead, which harnesses the power of modern computing.

3.2.7 Low Global Multicollinearity

We note that it is possible to have multicollinearity without having any high pairwise corre-

lations; see [94] for an example where four variables all have pairwise correlation < 0.57 but

have a perfect linear relationship. Thus, using a pairwise correlation threshold as a surrogate

81

for eliminating multicollinearity may not catch all cases of multicollinearity.

Global multicollinearity can be measured by checking the condition number of the corre-

lation matrix resulting from the submatrix of included variables. A high condition number

indicates a multicollinearity problem. A condition number greater than 15 is usually taken as

evidence of multicollinearity and a condition number greater than 30 is usually an instance

of severe multicollinearity ([28]).

3.3 Algorithm

In this section, we describe our algorithm for producing high quality regression models. The

algorithm applies to any dataset that an analyst wishes to model using linear regression.

The algorithm is composed of three stages: (1) preprocessing, (2) building and solving the

MIQO model, and (3) generating any additional constraints and repeating step (2).

3.3.1 Stage 1: Preprocessing

The first stage begins with dataset preprocessing and parameter-setting. The dataset is split

randomly 50%/25%/25% into a training, validation, and test set. Each set is standardized

so that the training set has columns with zero mean and unit f2-norm. The modeler may

also choose to set the number of robustification parameters F to be tested in the model (the

default is 10), and p, the maximum pairwise correlation that will be allowed between included

variables (the default is 0.8). The algorithm then generates the correlation matrix for the

training data and identifies variables which are correlated in absolute value beyond p, and

calls this set of pairs of variables 7C, for highly correlated variables. The algorithm identifies

categorical variables and expresses them as groups of dummy variables. At this point, the

modeler can specify any additional group-sparsity structure. We denote the mth set of group-

sparse variables as gSm. The modeler can specify a set of variables to be considered for a

nonlinear transformation, and generates transformed versions of those variables. The default

transformations for variable x are x 2, /2, and log x. We denote the mh set of transformed

82

variables by Tm. If the modeler believes the dataset to contain a significant number of outliers,

he can specify at this point to use the median objective function, rather than the least squares

objective. Finally, if the modeler has subject expertise, she can specify a set I of variables

that must be included in the model. Then the algorithm calculates kmax, the maximum

possible subset size such that the selective sparsity and modeler expertise constraints are

still feasible. This is determined by solving a maximum independent set problem. We

construct a graph containing vertices corresponding to each of the p potential variables and

an edge between nodes i, j such that (i, j) E HC. Then a maximum independent set, or

stable set, for this graph is a set such that no two vertices are adjacent. The cardinality of

this set is exactly equal to the maximum value of k that will result in a feasible MIO model,

and is the objective value of the following MIO problem:

p

kmax = max

s.t. zi + z < V(i, j) E HC

If the maximum independent set problem produces an objective value of 0, the algorithm

stops and reports to the user that there is no subset of variables satisfying the maximum

correlation value specified. Otherwise, the algorithm sets the parameter kmax to the objective

value, and then proceeds to determine a set of F values to test. By default, the set is

logarithmically spaced between 0 and the value of F that would force 3 = 0 if the problem

were completely unconstrained. This allows a wide variety of robustification parameters to

be tested. At this point, all the parameters of the algorithm have been set and the algorithm

proceeds to Stage 2.

83

3.3.2 Stage 2: The MIQO model

The algorithm solves the following MIQO model for each value of k from 1 to kmax and each

value of F using the training data y and X.

1
min -y - X)311 +]F 1311, (3.5a)
O,z 2

s.t. zeE{O,1}, l, . .. ,p, (3.5b)

- Mzt:5 Ot :5 Mzi, f = 1, .. . ,p, (3.5c)

Z zi < k, (3.5d)
f=1

z1 = ... = ze (1,...,E GSm, Vm, (3.5e)

zi + z 1 V(i, j) E 7HC, (3.5f)

Zi < 1 Vm, (3.5g)

ze = l V C I, (3.5h)

E z, < isil - VS1, . .. , Sj. (3.5i)
ZzE 1i1 i,.

In the objective function (4.8a), the robustification parameter F immunizes the resulting

model against uncertainty in the data. In Constraint (4.8b), a binary indicator variable ze

is introduced for every Oe in the model. For a large enough constant M, the constraint

(4.8c) ensures that #f will only be included in the model if ze = 11. The constraint (4.8d)

limits the number of total variables that will be included in the model. This ensures general

sparsity of the resulting model. The constraints in (4.8e), (4.8f), and (4.8g) are selective

sparsity constraints. For the mth set of variables with a group sparsity structure, the set

of constraints defined in (4.8e) ensures that the variables in 9Sm are either all zero, or all

nonzero. The set of constraints in (4.8f) ensure that the resulting model is free from extreme

pairwise multicollinearity. The set Tm refers to the mh variable which was flagged as a

'M can be estimated from data (see Chapter 2 for details).

84

candidate for transformation and all of its possible nonlinear transformations. The set of

constraints (4.8g) ensure that at most one of the variables from the set T will be included

in the final model for each of the candidate variables m. If I / 0, Constraint (4.8h) will

be included in the model and will ensure that each of the specified independent variables

appears in the final model. (4.8i) is a set of constraints to exclude particular solutions Si,

such as those with high global multicollinearity or containing variables which are statistically

insignificant. Si is the set of indices corresponding to nonzero 3 value in the ith solution.

The initial MIQO model will not contain line (4.8i); these constraints will be generated in

Stage 3, if necessary.

Once the MIQO model is run for all potential values of k and IF, the algorithm chooses

the three sets of 3 with the highest R2 on the validation set as the top three regression

models, and proceeds to Stage 3.

3.3.3 Stage 3: Generating Additional Constraints

We denote the top three sets of 3 by S1, S2, and S3. For each of the sets Si, the algorithm

computes the significance levels for each of the variables via bootstrap methods, and cal-

culates the condition number of the model. If a set Si produces undesirable results - a

condition number higher than desired, or a model with insignificant variables - the algo-

rithm generates the Constraint (4.8i) to exclude that set from the candidates of sets of best

regression models.

Excluding set Si can be achieved by "cutting off" the corner from the binary hypercube

formed by the z variables using the constraint EfEs, ze ISi I - 1. For example, to exclude

set S1 = {1, 4, 7}, we can insert the constraint zI +z 4 +z 7 2 into Problem (3.5) and resolve.

The algorithm generates these additional constraints to exclude sets S1, . . . , Si as needed,

and returns to Stage 2. The modeler may set the maximum condition number she will accept

in the model, as well as the number of iterations she will permit between Stage 2 and Stage

3. The defaults are 30 and 3, respectively. In our experience, if a linear regression model is

a good fit for the data, few iterations are necessary.

85

When the algorithm ends, it presents the top three models, along with their condition

numbers and confidence intervals of the bootstrapped coefficients. Confidence histograms

and diagnostic plots can also be generated.

3.3.4 Contrast with Current Practice

In many ways, our algorithm simply automates several of the steps outlined in the standard

approach. However, we highlight a few key differences.

1. Our algorithm validates models out-of-sample, rather than relying on in-sample crite-

ria. This ensures that the model selected does not overfit the training data.

2. Our algorithm does not have to choose which model properties to favor by performing

the steps in a certain order; since it is based on optimization these properties can be

addressed jointly rather than sequentially. For example, rather than noticing pair-

wise multicollinearity and preemptively deleting one variable, our MIQO model simply

chooses which variable is best to delete in the course of the optimization.

3. Our algorithm is capable of handling datasets with more variables than a modeler can

address manually. The steps suggested in [28] become difficult when p is large, and

the modeler must often resort to a computational method for variable selection prior

to performing the rest of the steps.

4. Our algorithm is capable of returning a set of high-quality models, rather than focusing

on refining a single good model.

As an example we illustrate our algorithm's performance on two datasets and compare

it to a model that a modeler might develop using these data.

3.3.5 Example 1

We compare and contrast our algorithm with the standard approach using the Croq'Pain

dataset from [8].

86

The dataset originally comes from Croq'Pain, a French "restaurant rapide", and contains

data on sixty Croq'Pain stores. For each store, the dataset provides information on the store

and the surrounding area. There are a total of sixteen variables provided per store (see

Table 3.2 for details).

Table 3.2: Variables in the Croq'Pain dataset.
Variable Description

EARN Operating earnings in $1000s
SIZE Total area inside store
EMPL Number of employees as of Dec. 31, 1994
P15 Number of 15-24 year olds in a 3 km radius
P25 Number of 25-34 year olds in a 3 km radius
P35 Number of 35-44 year olds in a 3 km radius
P45 Number of 45-54 year olds in a 3 km radius
P55 Number of people age 55+ in a 3 km radius
TOTAL Total population in a 3 km radius
INC Average income in town/neighborhood surrounding site
COMP Number of competitors in 1 km radius
NCOMP Number of restaurants that do not compete with Croq'Pain in a 1 km radius
NREST Number of non-restaurant businesses in a 1 km radius
PRICE Monthly rent per square meter of retail properties in the same locale
CLI Cost of Living Index
K Invested capital

The case described in [8] asks the student to use these data to build a regression model to

help Croq'Pain decide whether to open a new store. The decision will be based on the store's

performance ratio, which is measured as the ratio of operating earnings to invested capital.

The goal is to build a high quality regression model with performance ratio as the dependent

variable, and the first step of this - the fitted model with all independent variables included

- is given in [8].

The Standard Approach

The model with all fourteen independent variables has an R2 value of 0.867. Five of the

fourteen variables are significant at the 0.05 level, and it seems that some of the coefficient

87

estimates may take the opposite signs from what is expected. For example, the coefficients

for number of employees and for total surrounding population are both negative.

A quick look at the correlation matrix shows that there are a number of independent

variables which are highly correlated: for example, P35 and TOTAL have a correlation co-

efficient of 0.96. However, the 14 x 14 matrix is unwieldy to work with manually. Instead

of trying to eliminate correlated variables first, we begin to refine this model by removing

variables that are insignificant at the 0.05 level, starting with those with the lowest t-value.

Removing variables one at a time according to this method until all variables left are signifi-

cant results in a new model with only five independent variables (SIZE, P15, INC, NREST,

and PRICE) and an training set R2 value of 0.856. At this point, the number of independent

variables is low enough to investigate the correlation matrix manually. None of the remain-

ing five independent variables have correlation over 0.18 in magnitude, so we feel assured

that multicollinearity is not a problem in this reduced model. We "sign-check" each of the

remaining five independent variables and validate that the signs agree with our intuition.

We move on to residual diagnostics, and check for normality of the residuals by plotting a

histogram and for heteroscedasticity by plotting each of the independent variables against

the residuals. There is no evidence of non-normality or of heteroscedasticity. Therefore, we

use this model as the final model.

MIQO-Based Approach

In the original case in [8], the students are first instructed to train their model using the

entire dataset. The second part of the case asks them to rebuild using the first fifty data

points to train the model and the last ten to validate. As our MIQO-based approach requires

a training set and a validation set, we go with the second option.

We run our MIQO-based algorithm on the dataset using the default settings: 0.8 as the

maximum pairwise correlation and 10 potential values of F. It takes less than 1 minute to

run, and returns a model with five independent variables: SIZE, P15, INC, NREST, and

PRICE; exactly the same five we chose via the standard approach. The first four variables

88

are significant at the 0.001 level, the last at the 0.01 level. The model has an out-of-sample

validation set R2 value of 0.80.

With the Croq'Pain data, the MIQO-based approach and the standard approach pro-

duced essentially the same model. In cases like these, we feel the main advantage of the

MIQO-based approach is the amount of time saved from iterating through potential models.

Although the computational time executing the MIQO-based approach is longer, the total

time spent model-building is far shorter. In other cases, the standard approach may not lead

to as clear of a path to a high-quality solution, or the dataset may contain enough variables

to render it intractable for a human modeler. It is these cases for which the MIQO-based

approach is not simply a time-saver, but a strong improvement over existing tools. The next

example illustrates this case.

3.3.6 Example 2

We consider the Ames Housing Dataset ([32]). The dataset originally comes from the Ames

City Assessor's Office and contains data on property sales in Ames, Iowa between 2006 and

2010. The variables include discrete, continuous, nominal, and ordinal variables which de-

scribe the quality and quantity of physical attributes of each property sold. The physical

attributes measured include building type and style, square footage and lot details, quality

and materials of the property's interior and exterior, and many more. The dataset was cu-

rated for use as a final group project in a semester-long regression class and is available along

with full details in [32]. The prepared dataset contains 2930 observations and 80 variables.

After expanding categorical variables into dummy variables and removing outliers and miss-

ing values, the final number of observations and variables is 2271 and 315, respectively. The

potential project described in [32] asks the student to use these data to build a regression

model to predict housing sale prices.

89

The Standard Approach

This dataset is large and complex enough that there is no single clear best model. Indeed, this

is the motivation in [32] behind assigning this dataset as a final course project; the richness

of the data leads to fruitful discussion of students' different approaches. [32] mentions that

by using only the categorical variable for neighborhood and the two continuous variables

that together comprise the property's total square footage leads to a model that explains

80% of the variability. At the other end of the spectrum, the author also admits to spending

a fair amount of time constructing a 36-variable model (using some variables he created

through recoding and interactions) that explains 92% of the variation in sales. [32] does not

give further details of the model. While this may be overly complicated, it illustrates the

challenge of building a high-quality regression model using the standard approach.

MIQO-Based Approach

After removing missing values and splitting the dataset into training, validation, and test

sets, we ran our MIQO-based algorithm on the dataset using the default settings: 0.8 as the

maximum pairwise correlation and 10 potential values of F.

The best model generated contained 20 independent variables, all of which were significant

at the 0.05 level, and had a test set R2 value of 0.920. This is competitive with the predictive

power of the more complicated 36-variable model constructed by [32], while being more

interpretable and still retaining statistically significant variables. The best MIQO model

contained variables such as the overall quality and condition of the property, whether the

property is identified as being in a particular neighborhood, the number of half bathrooms,

whether the foundation of the home constructed from stone or not, the year the garage was

built, various measurements of square footage, and the type of electrical system.

In cases like this, where the standard approach does not lead to an obvious single best

model, the MIQO algorithm automatically balances desirable qualities such as complexity,

predictive power, interpretability, and significance.

90

3.4 Computational Experiments

In this section, we illustrate our algorithm's capabilities by demonstrating its performance

on a wide variety of datasets. We include datasets that are real as well as synthetic; that

are from the classical overdetermined regime with n > p as well as from the undetermined

high-dimensional regime with n < p; and that contain various different structures and built-

in properties. Our goal is to demonstrate that all of the desirable characteristics outlined in

Section 3.2 can be achieved with MIQO in practical settings.

We begin by examining basic datasets, where all variables are continuous and there is

no special structure. In such datasets, the main properties we would like to ensure are

interpretability (via general sparsity and limited pairwise multicollinearity constraints) and

robustness (via a regularization parameter in the objective function). We consider synthetic

examples to highlight the algorithm's performance on these properties individually and real

datasets in which we look at all three together. In each case, we compare our algorithm's

performance to Lasso, as Lasso is designed to give interpretability and robustness.

We then go on to give results for datasets with additional features: datasets with the

group sparsity property, with variables that need a nonlinear transformation, with outliers,

and so on. We again compare our results to Lasso, and compare it also to the published

approach taken by the modeler, if available, or to specific algorithms designed for the setting

at hand (e.g. group lasso for the group sparsity case).

Synthetic Data

We generated data such that xi ~ N(O,), i = 1, ... , 2n are independent realizations from

a p-dimensional multivariate normal distribution with mean zero and covariance matrix

E := (a-j). The data was randomly split 50%/25%/25% into training, validation, and test

set, respectively. The columns of the X matrix were standardized such that the training set

had columns with zero mean and unit e2 -norm. For a fixed Xfl)<p, we generated the response

y as follows: y X3 + E, where Ei hd N(0, a2). We denote the number of nonzeros in 3 by

k. The choice of X,/3, - determines the Signal-to-Noise Ratio (SNR) of the problem, which

91

is defined as:

SNR = var(x'/)

In particular, we took aoj = plI-il for i,j E .1, ... ,p} X f1 ... ,p}. In our experiments, we

consider k = 10 and /I = 1 for i E {,... , p} such that i mod p/k = 0 to generate k equally

spaced values.

Real Data

We tested our algorithm on a number of publicly-available datasets. We obtained the datasets

White Wine Quality, Red Wine Quality, Yacht Hydrodynamics, and CPU from the Univer-

sity of California Irvine Machine Learning Repository ([21). We obtained the datasets Eleva-

tor, Pyrimidines, and Compact from a data repository at the University of Porto ([105]). We

obtained the datasets LPGA 2008, LPGA 2009 and Airline Costs from a data repository at

the University of Florida ([111]). We obtained the Diabetes dataset from the lars package

within R. The HIV dataset comes from the study [91] and is available at [59].

Computational Specifications

All computational tests were performed on a Dell Precision T7600 computer with an Intel

Xeon E5-2687W (3.1 GHz) processor, 16 cores, and 128 GB of RAM. We used Gurobi 6.0.0

([63]) as the optimization solver, and implemented the algorithm in Julia 0.3.3 ([12]), a

technical computing language. We used JuMP 0.7.0 ([74]), an algebraic modeling language

package for Julia, to interface with Gurobi. We used the GLMNet 0.0.2 package in Julia to

compute Lasso solutions. We used the grplasso package 0.4-4 in R ([89]) to compute group

lasso solutions.

3.4.1 Basic Structure

Our main goals are to achieve interpretability and robustness, while retaining predictive

power. In order to judge how well our algorithm achieves interpretability we will report

on the size k of the subset chosen, the maximum pairwise correlation, and the condition

92

number of the final model. Although our algorithm returns the top three models, we only

present results for the top model for brevity. To judge robustness and predictive power, we

will report on the F chosen by the algorithm on the validation set and the test set R2 value.

We will compare these results to the size k of the subset chosen by Lasso, the maximum

pairwise correlation in the Lasso model, and the test set R 2 value in the Lasso model. For the

synthetic datasets, we also report the number of true positives achieved by each algorithm.

We aim to return solutions in practical amounts of time, so we imposed a time limit

on each optimization problem solved: 20 seconds in the n > p case and 40 seconds in the

n < p case. Often optimality is reached before the time limit. Note that for each dataset,

Kmax x (# of values of F tested) x (# of iterations of Stage 3) MIQO problems are solved.

We present results in Tables 3.3 - 3.8 for synthetic datasets for the default parameters of

the algorithm: ten values of F tested and 0.8 as the maximum pairwise correlation allowed.

Each experiment corresponds to two rows in a table. The top row presents average results

over five trials of the same experiment and the bottom row presents the standard error.

We use the following notation: SNR = signal-to-noise ratio, K* = value of k chosen by

the algorithm, TP = number of true nonzero variables identified by the algorithm, MC

= the maximum pairwise correlation present in the final model, and Cond = condition

number. Time for the MIQO algorithm is presented in hours, and is not meant to accurately

benchmark the best possible time but to show that it is computationally tractable to solve

these problems in a practical amount of time on standard computers.

Tables 3.3 and 3.4 show results for datasets designed to illustrate general sparsity, for the

n > p and n < p case, respectively. Here we observe that the MIQO algorithm consistently

identifies the true nonzero variables, and does not bring more than 1-2 additional noise

variables into the model. In contrast, Lasso does correctly identify the true nonzero variables,

but brings ~ 24 noise variables into the model in the n > p case and -:: 45 noise variables

into the model in the n < p case. The MIQO models and Lasso models perform similarly in

terms of predictive power.

Tables 3.5 and 3.6 show results for datasets designed to illustrate pairwise multicollinear-

93

ity, for the n > p and n < p case, respectively. Again in these cases, the MIQO models

and Lasso models perform similarly in terms of predictive power. However, the final Lasso

models contain very high pairwise collinearity and condition numbers that indicate severe

multicollinearity issues. On the other hand, the MIQO algorithm returns models that gener-

ally have half or less of the maximum pairwise collinearity as the corresponding Lasso model,

and the condition numbers do not show evidence of severe multicollinearity.

Tables 3.7 and 3.8 show results for datasets designed to illustrate robustness, for the n > p

and n < p case, respectively. As described in Section 3.2.3, Lasso is designed to be robust

to error in data. Indeed, in both the n > p and n < p case, Lasso and the MIQO algorithm

achieve similar predictive power. The maximum pairwise collinearity and condition numbers

of the MIQO-based models are lower.

Tb 33 S ~rit n

MIQO Lasso
SNR r* K* TP R2 MC ICon Time K* TP R2 MC Con
6.32 0.014 10.6 10 0.716 0.119 1.61 0.448 34.8 10 0.701 0.148 2.782

0.010 0.358 0 0.007 0.007 0.02 0.011 3.51 0 0.007 0.010 0.127
3.16 0.011 10.6 10 0.909 0.119 1.27 0.439 34.4 10 0.904 0.148 2.805

0.010 0.358 0 0.003 0.007 0.29 0.011 3.72 0 0.002 0.010 0.146
1.58 0.011 10 10 0.975 0.117 1.58 0.304 34.6 10 0.974 0.160 2.797

0.009 0 0 0.001 0.007 0.04 0.011 4.40 0 0.001 0.016 0.194

Table 3.4: Sparsity; n = 100, p 500, p = 0, AX_= 0.
MIQO 2 CLass2

SNR * K* TP R2 _C Cn Time K*sso TP R2 MC Con

10.54 0.107 10.2 10 0.991 0.249 2.664 1.00 55 10 0.982 0.323 139
0 0.028 0.179 0 0.000 0.026 0.195 0.08 7.33 0 0.001 0.006 97
6.32 0.041 10 10 0.976 0.231 2.793 1.18 56 10 0.952 0.323 1472
0 0.023 0 0 0.001 0.018 0.217 0.00 8.78 0 0.003 0.006 1290
3.16 0.076 11 10 0.896 0.216 3.348 1.64 58.2 10 0.813 0.343 5215
0 0.027 0.283 0 0.006 0.012 0.192 0.42 9.10 0 0.012 0.014 4634

We present results on real data in Table 3.9. All optimization problems were solved

to optimality except for the diabetes dataset and HIV dataset where a time limit of 20

seconds per optimization problem solved was enforced. Again, for each dataset, Kma, x

(# of values of IF tested) x (# of iterations of Stage 3) MIQO problems are solved. Note that

94

MIQO Lasso
SNR 1 * K* TP R2 MC Con Time K* TP R2 MC{Con
8.73 0.02 10.00 10.00 0.99 0.40 4.15 0.30 34.40 10.00 0.99 0.91 126.28

0.01 0.00 0.00 0.00 0.01 0.17 0.02 2.65 0.00 0.00 0.00 13.15
4.37 0.02 10.40 10.00 0.95 0.47 5.65 0.34 37.20 10.00 0.94 0.91 146.36

0.02 0.36 0.00 0.00 0.07 1.25 0.04 3.66 0.00 0.00 0.00 20.83
2.18 0.03 11.40 9.60 0.81 0.63 7.92 0.63 36.60 10.00 0.81 0.91 142.17

0.02 0.54 0.22 0.01 0.08 2.25 0.15 3.37 0.00 0.01 0.00 18.89

Table 3.6: Pairwise Multicollinearity; n = 100, p = 500, True K = 10, p = 0.8, AX = 0.
MIQO Lasso

SNR 1 * K* TP{ R{2 MC Con Time K* TP R2 MC Con
10.5 0.090 10.4 10 0.990 0.331 5.58 1.99 56.2 10 0.979 0.850 119.8
0 0.029 0.358 0 0.001 0.089 1.48 0.517 2.92 0 0.004 0.005 8.2
6.32 0.049 10.4 10 0.976 0.436 6.11 2.12 57 10 0.941 0.846 122.2
0 0.020 0.219 0 0.003 0.118 1.24 0.395 2.65 0 0.010 0.005 7.47
3.16 0.037 12.4 8.8 0.835 0.433 4.38 2.11 61.2 9.8 0.768 0.846 245.4
0 0.011 0.219 0.72 0.041 0.099 0.51 0.514 3.70 0.18 0.029 0.005 117.9

Table 3.7: Robustness: n = 500, p = 100, True K = 10, p = 0, AX - Uniform(0,2).
MIQO Lasso

SNR r* K* TP R2 MC Con Time K* TP R 2 MC Con

6.32 0.011 10 10 0.975 0.117 1.58 0.448 34.6 10 0.974 0.160 2.797
0.009 0.000 0 0.001 0.007 0.04 0.011 4.40 0 0.001 0.016 0.194

3.16 0.011 10.6 10 0.909 0.119 1.27 0.439 34.4 10 0.904 0.148 2.805
0.010 0.358 0 0.003 0.007 0.29 0.011 3.72 0 0.002 0.010 0.146

1.58 0.014 10.6 10 0.716 0.119 1.61 0.304 34.8 10 0.701 0.148 2.782
0.010 0.358 0 0.007 0.007 0.02 0.011 3.51 0 0.007 0.010 0.127

Table 3.8: Robustness: n = 100, p = 500, True K = 10, p = 0, AX - Uniform(0,1).
MIQO Lasso

SNR IF* K* TP R2 MC Con Time K* TP R2 MC Con
10.5 0.065 10.6 9.6 0.880 0.282 2.777 1.173 53.8 10 0.856 0.376 53.8
0 0.036 0.607 0.358 0.034 0.021 0.131 0.000 4.66 0 0.013 0.018 22.5
6.32 0.044 10 9.4 0.828 0.246 2.716 1.643 53.4 10 0.829 0.357 107.3
0 0.025 0.632 0.358 0.033 0.017 0.268 0.419 7.69 0 0.029 0.014 75.3
3.16 0.038 11 9.4 0.769 0.262 2.475 1.876 61.8 10 0.705 0.338 763.0
0 0.025 0.85 0.358 0.030 0.027 0.585 0.420 10.27 0 0.035 0.010 546.8

n here indicates the size of the training dataset - the original dataset has 2n observations.

Our algorithm achieves similar predictive performance to Lasso, but is significantly more

interpretable, choosing fewer variables in general and successfully limiting the degree of

95

Table 3.5: Pairwise Multicollinearity; n = 500, p = 100, True K 10, p = 0.9, AX = 0.

Table 3.9: Results for Basic Structure Real Datasets.
Dataset n p MIQO K* R MaxCor Lasso K* [R 2 MaxCor

CPU 105 6 5 0.869 0.716 6 0.861 0.716
Yacht 154 6 1 0.600 NA* 1 0.602 NA*
White Quality 2499 11 10 0.270 0.619 9 0.280 0.828
Red Quality 800 11 6 0.384 0.40 7 0.386 0.69
Compact 4096 21 15 0.717 0.733 21 0.725 0.942
Elevator 8280 18 10 0.808 0.678 15 0.809 0.999
Pyrimidines 37 26 15 0.175 0.781 20 0.367 0.928
LPGA 2008 78 6 2 0.877 0.02 3 0.873 0.234

LPGA 2009 73 11 7 0.814 0.784 10 0.807 0.943
Airline Costs 15 9 2 0.672 0.501 9 0.390 0.973
Diabetes 221 64 4 0.334 0.423 14 0.381 0.672
HIV 528 98 11 0.945 0.662 39 0.944 0.760
*Note that both the MIQO and Lasso algorithms choose only one independent variable for the Yacht

Hydrodynamics dataset, hence there is no maximum pairwise correlation in this case.

Table 3.10: The Price of Limiting Multicollinearity
Dataset n p MIQO K* R' MaxCor Lasso K* R2 MaxCor

Pyrimidines 37 26 18 0.375 0.870 20 0.367 0.928

multicollinearity present in the final model.

We notice that the Pyrimidines dataset has significantly lower predictive power than

Lasso. This is the price of insisting on interpretability, despite a relatively low ratio of

observations to variables. We demonstrate the algorithm's performance on this dataset when

the maximum correlation threshold is set to 1 (i.e., no limit) and record the performance in

Table 3.10.

In these cases it is up to the analyst to judge which model is preferable; one with better

predictive performance or one with coefficients that are more interpretable. The benefit of

using our algorithm is that it is simple for an analyst to tweak the parameters and quickly

understand the tradeoffs.

96

3.4.2 Special Structure

Nonlinear Transformations

We investigate our algorithm's capability to identify when a nonlinear transformation of

an independent variable may be useful. For this task, we used the Concrete Compressive

Strength dataset from [114] available in the UCI Machine Learning Repository [2]. The

dataset contains 8 independent variables and 1030 observations. As before, we randomly

split the dataset into a training set (50%), validation set (25%), and test set (25%).

Table 3.11: Independent Variables in the Concrete Compressive Strength Dataset.
Variable Units
Concrete Compressive Strength MPa
Cement kg/m 3

Blast Furnace Slag kg/M3

Fly Ash kg/M3

Water kg/M3

Superplasticizer kg/M3

Coarse Aggregate kg/M3

Fine Aggregate kg/M3

Age day

The independent variable is the compressive strength of concrete, and the dependent

variables are the ingredients as well as the age of the concrete (see Table 3.11 for details).

The practical goal in civil engineering is to design a concrete mixture which will have high

compressive strength. However, concrete compressive strength is known to be a highly

nonlinear function of its age and ingredients.

On the original data, both our algorithm and Lasso chose to use all covariates and

produced a test set R2 of 0.609. We then reran our algorithm with an extended dataset,

which contained each of the original columns x as well as three transformed versions of each

column: x2, V, and log(x). For the variables which take zero values (blast furnace slag, fly

ash, and superplasticizer), we adjusted the log transformation to be log(x + 0.00001). We

included Constraint (4.8g) in the optimization model to ensure that for each column x, at

most one of x, x2, , and log(x) appeared in the final model.

97

As expected, the inclusion of transformed covariates significantly improved upon the

models created with just the original variables. The MIQO algorithm selected six covariates

to appear in the top model. The six covariates chosen were blast furnace slag, water, log(fly

ash), log(super plasticizer), log(day), and cement'/2 . Each covariate was significant at the

a = 0.001 level and test set R 2 was 0.823, a significant improvement over the original test

set R2 of 0.609.

We also tested Lasso on the dataset that included the nonlinear transformations. Lasso

selected a model with twelve covariates which resulted in a test set R2 of 0.834. In ad-

dition to the first five covariates chosen by our algorithm, Lasso also selected cement2 ,

super plasticizer 2 , day 2 , log(cement), log(coarse aggregate), log(fine aggregate), and /cement.

In our opinion, the minor increase in test set R 2 does not warrant using a significantly less

interpretable model.

Although the number of variables went from 8 to 32 when we included nonlinear trans-

formations, the MIQO algorithm took the same amount of time (roughly 1-1.5 minutes) to

execute in both cases. By imposing limiting constraints on transformations and pairwise

correlation, the feasible space is not significantly enlarged by including nonlinear transfor-

mations.

Group Sparsity

We demonstrate our results in a group sparsity setting using the Energy Efficiency dataset

from [107] available on the UCI Machine Learning Repository ([2]). The dataset has 768

observations of six continuous independent variables and two categorical independent vari-

ables. The independent variables describe building properties (see Table 3.12 for details).

There are two dependent variables available: heating load and cooling load. We test our

method on both dependent variables.

The binary expansion of the categorical variable orientation into three new binary vari-

ables and of glazing area distribution into five new binary variables meant that the dataset

passed to the algorithm contained fourteen independent variables. When we ran the algo-

98

Table 3.12: Independent Variables in the Energy Efficiency Dataset.
Variable Type
Relative Compactness Continuous
Surface Area Continuous
Wall Area Continuous
Roof Area Continuous
Overall Height Continuous
Orientation Categorical; 4 levels
Glazing Area Continuous
Glazing Area Distribution Categorical; 6 levels

rithm, the best model contained three variables: wall area, overall height, and glazing area.

We found identical results when predicting cooling load. Our algorithm chose not to use

either of the categorical variables provided. The top heating load model had test set R2 of

0.88 and the top cooling load model had test set R 2 values of ~ 0.85.

In [107], the original study of this dataset, the authors found that wall area, roof area, and

relative compactness were the variables that appear mostly associated with heating load and

cooling load, although all variables appear in their model. Using the Random Forest method,

they also found importance scores for each variable and found that glazing area was the most

important variable. They note that "Interestingly, the most important variable (glazing area)

is not the most correlated with either output variable. From an engineering perspective, it

can be intuitively understood that the glazing area is of paramount significance... "

We find it notable that our algorithm did not identify the same three variables as most

critical for predicting the responses, and could not have: due to correlation of -0.86 between

roof area and relative compactness, these two variables could not have both been in our

algorithm's final model. However, glazing area, which the authors point out as having

paramount significance, is in all three of our top models for both response variables.

We also tested group lasso. The group lasso models for predicting the two response

variables each chose to use thirteen of the fourteen variables, including both categorical

variables. The only variable excluded was surface area. The heating load model had a test

set R2 of ~ 0.91 and the cooling load model had a test set R 2 value of ~ 0.86.

99

3.4.3 Combined Example

In the previous sections we have demonstrated how our algorithm can handle a wide variety of

individual situations: detecting sparsity, limiting pairwise correlation, identifying nonlinear

transformations, and others. In this section, we will show the full force of our algorithm: to

identify all these properties when presented together. Specifically, we consider an example

whose structure incorporates general sparsity, selective sparsity in terms of both high pairwise

multicollinearity and group sparsity, and modeler expertise in a single dataset. We test this

example on the high-dimensional case where n = 100 and p = 1000.

We generated a synthetic data matrix X for n = 100, p = 500 according to the process

outlined in Section 3.4.1, using a value of p = 0.8 to ensure that there is high pairwise

multicollinearity present between some columns of X. To generate nonlinear transformations,

for each column j of X we included an additional column consisting of the squared entries

of j, bringing the total number of potential covariates up to 1000. As before, we consider

k = 10. However, we generated fi = 1 so that 7 positive values occurred in the original 500

columns and 3 were located in the 500 transformed columns. The response y was generated

as before as y = X,3 + E. To test our robustness to error in data, we generated a matrix

AX ~ Unif(0,f) and considered X + AX for various values of f. We assume the modeler

has some expertise with this sort of data, and knows one of the values of i such that /i is

truly nonzero. Finally, the modeler is also aware of a group sparsity structure and knows

that 0a, b, 0, and 3d are all either all zero or all nonzero and that 0e, f, fg, and h are

either all zero or all nonzero, where {a, b, c, d} E {ilf i = 1} and {e, f, g, h} E {ilfi = 0}.

Table 4.7 presents results for this combined example. As before, the top row presents

average results over five trials of the same experiment and the bottom row presents the

standard error.

100

Table 3.13: Results for Combined Example
MIO Lasso

E AX I'* K* TP R2 MC Con Time K* TP R2 MC Con
0.5 0 0.026 10.4 10 0.981 0.437 4.654 1.14 46.6 10 0.969 0.836 118.1

0.020 0.219 0 0.001 0.020 0.382 0.17 4.15 0 0.004 0.007 17.4
0.5 1 0.000 11.2 10 0.913 0.556 6.995 1.34 65.8 10 0.854 0.798 424.0

0.000 0.522 0 0.013 0.073 1.422 0.22 6.97 0 0.017 0.006 177.5
0.5 2 0.030 11.0 9 0.742 0.501 5.291 1.88 69 9.2 0.598 0.708 8147

0.027 0.490 0.28 0.030 0.061 0.508 0.42 8.54 0.18 0.045 0.006 6994
1 0 0.026 11.2 10 0.931 0.468 5.322 1.08 45.6 10 0.878 0.836 113.9

0.022 0.522 0 0.007 0.018 0.531 0.04 3.99 0 0.016 0.007 18.2
1 1 0.041 10.4 10 0.878 0.478 4.998 1.61 69.2 10 0.759 0.796 362.8

0.036 0.219 0 0.016 0.059 0.696 0.43 4.92 0 0.033 0.006 96.4
1 2 0.099 9.8 7.6 0.573 0.436 4.224 1.64 72.4 8.6 0.503 0.702 573.8

0.041 0.867 0.22 0.042 0.061 0.576 0.42 5.89 0.36 0.064 0.006 228.0
2 0 0.090 10 8.8 0.720 0.451 4.687 1.35 39.4 8.6 0.599 0.836 74.0

0.045 0.283 0.34 0.046 0.025 0.289 0.23 4.01 0.46 0.055 0.007 9.76
2 1 0.116 9.4 8.2 0.614 0.426 4.262 2.05 53.4 7.8 0.509 0.782 113.5

0.037 0.358 0.59 0.078 0.025 0.137 0.39 4.41 0.96 0.067 0.010 20.7
2 2 0.032 8.2 4 0.245 0.403 3.506 1.46 55.8 5.8 0.368 0.680 8141

0.017 0.657 0.98 0.129 0.074 0.720 0.22 10.1 0.52 0.061 0.011 7236

3.5 Conclusions

We have leveraged the power of MIQO and proposed an approach for incorporating a va-

riety of desired properties into a linear regression model. Our approach provides the only

methodology we are aware of to construct models that impose statistical properties simulta-

neously. This results in a generally applicable, unified framework for addressing all aspects

of the model-building process. Using both real and synthetic data, we demonstrate that the

approach produces high-quality linear regression models in realistic timelines.

101

102

Chapter 4

Logistic Regression: Subset Selection

and An Algorithmic Approach

4.1 Introduction

Logistic regression is a common classification method for fitting models where the response

variable is binary. In a logistic regression model, the log-odds of an observation are assumed

to be a linear function of the independent variables. That is, for the response vector Ynx1,

model matrix X = [x',..., x'] E RxP, and regression coefficients 3 E RPxl, we assume the

following model:

log = = l#Xi))3'xi. (4.1)
(P(yi = O|X)

Logistic regression minimizes the negative log-likelihood of the data given the model.

The negative log-likelihood in logistic regression is given by

n
f(,3) = S-y(3'xi) + log (1 + exp(,3'xi)) ,

and so the regression coefficients 3 can be found by solving the following convex optimization

problem:

103

min f() (4.2)

As in linear regression, it is often preferable to obtain a parsimonious fit of the data.

Thus, we would like to solve the analogous best subset problem for logistic regression:

min f(3) subject to 1111o < k (4.3)

where, as before, the to (pseudo)norm of a vector 3 counts the number of nonzeros in 3

and is given by 11, = Z11 1(3 # 0).

The objective function in Problem 4.3 is convex, and the cardinality constraint can be

modeled, as in Chapter 2, via MIO. However, MIO solvers for general convex programs

are not nearly as developed as MIO for linear or quadratic problems; while software exists,

there is high variation in solver performance for different problem instance families [19].

Additionally, the unconstrained logistic regression problem 4.2 cannot generally be solved

analytically in closed form. Typically logistic regression is solved via iterative methods, with

gradient descent and iteratively reweighed least squares being two popular options.

These differences between linear and logistic regression lead to the main challenge of this

part of the thesis: developing a method to efficiently solve the mixed integer convex optimiza-

tion problem of logistic regression with cardinality constraints to provable optimality. We

develop a tailored algorithm to do so where we combine (a) well-known techniques in mixed

integer nonlinear optimization with (b) our discrete first order heuristic from Chapter 2 and

(c) lazy constraint callbacks, a feature of modern optimization solvers. We demonstrate that

our method outperforms existing MINLO software and also extend the algorithmic approach

to linear regression to the logistic regression case.

4.1.1 Literature Review

Even the unconstrained logistic regression problem (4.2) cannot generally be solved analyt-

ically in closed form, and is typically solved via iterative methods such as gradient descent

104

and iteratively reweighed least squares. Problem (4.3) adds a combinatorially challenging

cardinality constraint. In [521, the authors propose solving Problem (4.3) via an implicit

enumeration algorithm when f(3) is the linear regression objective function. [61] showed

that software implementing the algorithm of [52] can be used directly in the case of logistic

regression as well. However, the algorithm of [52] does not scale past p = 30, leading much

of the statistics community to view solving Problem (4.3) as generally intractable, and to

turn to convex relaxations of Problem (4.3).

The familiar f, penalty approach is not nearly as straightforward to implement in the

case of logistic regression as it is for its linear regression counterpart, since this makes the

negative log-likelihood function non-differentiable. Thus, much of the literature on subset

selection in logistic regression focuses on how to solve an fr-regularized likelihood problem.

Many algorithms and computational techniques have been suggested in recent years to

solve the fl-regularized likelihood problem. In [51] the authors propose a cyclical coordinate

descent algorithm along a regularization path which estimates generalized linear models with

convex penalties. In [71], the authors proposed a modified version of iteratively reweighed

least squares which cleverly builds the regularization into the iterative process. Bound

optimization, which has the flavor of an expectation-maximization algorithm, is suggested

in [69]. [68] reformulates the fl-penalized logistic regression model as an equivalent convex

optimization problem, and suggests an approach based on interior point methods.

An alternative to using a regularizer is to use a prior which encourages sparsity. There

is a family of sparse classification algorithms which form classifiers as weighted linear com-

binations of basis functions. To induce sparsity, the likelihood of the weights is frequently

regularized by a prior which promotes sparsity. The Laplacian prior is a common choice,

as it gives an f, penalty. Relevance vector machines [103], sparse probit regression [47],

and the joint classifier and feature optimization algorithm [70] all fall within this family of

algorithms.

The only work we are aware of which suggests addressing subset selection in logistic

regression using modern MIO solvers is [95]. The authors formulate an optimization problem

105

with an objective that includes a weight on a piecewise linear version of the log likelihood and

an information criterion which penalizes the number of parameters included. They show that

MIO outperforms traditional stepwise methods with respect to the information criterion, and

suggest solving the full MINLO rather than a linear approximation as a direction of future

research. In this chapter, we will directly consider the MINLO.

4.2 Mixed Integer Nonlinear Optimization

MINLOs form a challenging class of optimization problems, due to their inclusion of both

integer variables and nonlinear functions. For additional background on MINLO see [191. A

subclass of MINLOs which is much more tractable is convex MINLO. This refers to the case

where, when integer constraints are relaxed, the resulting problem forms a convex nonlinear

program. This convexity leads to particular algorithms designed for convex MINLO. As

Problem 4.3 is in the class of convex MINLO, we will restrict our attention henceforth to

convex MINLO.

Developing algorithms for solving convex MINLO to provable optimality has been an

active area of research since the 1970s, and a wide variety of MINLO solvers have been built

based on these algorithms. Such algorithms integrate techniques from nonlinear optimiza-

tion, integer optimization, and linear optimization. Typically these algorithms rely on two

major solution techniques:

1. Branch and bound with nonlinear relaxations.

2. Linear relaxations of h and gj.

The first technique typically obtains the nonlinear relaxation by relaxing the integrality

requirements. The second technique, on the other hand, maintains the integrality require-

ments but replaces the nonlinear functions h and gj by linear relaxations. Two major classes

of methods that fall into this category are outer approximations (OA) and extended cutting

planes (ECP). OA methods obtain linearizations of h and gj from gradients at NLO sub-

problem solutions and add these cutting planes to a reduced master MILO problem. ECP

106

methods do not solve an NLO subproblem but instead generate cutting planes around lin-

earizations of the most violated constraint in an iteratively updated MILO reduced master

problem. There are a few other techniques that MINLO solvers use: for example, integrating

linearizations into the branch and cut process or alternating between LO and NLO relax-

ations during branch and bound. However, the majority of solvers fall into the first two

categories. See [22] for a complete categorization of twenty-four existing MINLO solvers.

4.2.1 Computational Tests on Existing MINLO solvers

MINLO has benefited substantially from improvements both in MIO and in NLO. We docu-

mented advances in MIO in the introduction; in [1091, Waltz suggests that problem instances

that can be solved by NLO are growing by almost an order of magnitude each decade. Nev-

ertheless, there is still substantial variation among solver performance on different problem

classes and instances. [19] documents this phenomenon by comparing many MINLO solvers

on the same set of problems.

The NEOS server, operated by the University of Wisconsin, makes many optimization

solvers freely available for use on their servers ([31], [35], [56]). By using the NEOS server,

we were able to test six different solvers side by side using an AMPL interface and confirm

that solver variation is indeed the norm for best subset logistic regression.

We built three test problems in order to compare MINLO solver performance.

In each case, we generated data such that xi ~ N(0, E), i = 1,... , n were independent

realizations from a p-dimensional multivariate normal distribution with mean zero and co-

variance matrix E := (a-j). The columns of the X matrix were standardized such that the

training set had columns with zero mean and unit e2-norm. For a fixed X",<7 , we generated

the response y as follows: yi = Round ((1/ (1 + exp(-3'xi + ci))), where i Wd N(0, U.2).

We denote the number of nonzeros in 3 by k. In particular, we took -i = pIi-A for

i,j E {1,. . . ,p} x {1,.. . ,p}. In our experiments, we consider k = 5 and fl = 1 for

i E {,... , p} such that i mod p/k = 0 to generate k equally spaced values.

The exact parameters of each of the three test problems were as follows:

107

Problem 1: n = 100, p = 10, k = 5, p = 0.4, = 2.

Problem 2: n = 1000, p = 100, k = 5, p = 0.4, = 2.

Problem 3: n = 2000, p = 200, k = 5, p = 0.4, o = 2.

We used the AMPL interface to the NEOS server, and tested all six solvers for which an

AMPL interface was available: Bonmin, KNITRO, FilMINT, MINLP, SCIP, and Couenne.

We did not change the default options on any of the solvers.

The default algorithm in Bonmin 1.6.0 implements an NLO-based branch and bound

algorithm using the MIO solver Cbc 2.7.6 and the NLO solver Ipopt 3.10.2. KNITRO does

automatic algorithm selection between interior-point and active-set methods. FilMINT com-

bines the MINTO branch-and-cut framework for MIO with filterSQP, an active set solver

for solving the NLO subproblems. MINLP implements an NLO-based branch-and-bound

algorithm. The NLO problems at each node of the branch and bound tree are solved

using filterSQP. SCIP is a constraint integer optimization solver. Couenne implements a

reformulation-based branch and bound algorithm. Table 4.1 presents a comparison of times

(in seconds) for each solver to reach optimality on each test problem, up to a maximum cut

off time of 7200 seconds (2 hours). Note that we did not solve each test problem for every

value of k, but only for the value of k corresponding to the true value of k. Thus the times

presented are the solve times for a single instance of the problem, averaged over five runs.

To truly solve the best subset problem, we would need to solve each test problem for every

value of k. We do not present the time results with the goal of accurately benchmarking the

best time possible, but rather to give a sense of generally expected solve times under the

standard conditions of operating on a shared server.

The solve times presented in Table 4.1 represent the time to build and solve the problem.

Thus, if we can embed the solver within a optimization language such that the problem does

not have to rebuilt for successive values of k, we can expect that subsequent re-solves for

additional values of k would be much faster. With this in mind, the solve time of the first

four solvers on the NEOS server for Problem 1 may be efficient enough for practical purposes,

especially since p = 10 in Problem 1. However, the increased complexity of Problems 2 and

108

Table 4.1: MINLO Solver Comparison Times (in seconds).
Solver Problem 1 [Problem 2 Problem 3

Bonmin 11 168 2370
KNITRO 16 29 145
FilMINT 10 1283 633
MINLP 11 e 300* 6000*
SCIP cut off cut off cut off
Couenne cut off cut off cut off

Note that the VIITNLP solver did not provide timestamps for solve times beyond 1 minute so these are
rounded times based on computer clock time.

3 indicated the variability between solvers - and the inability to scale effectively to problems

of a typical size. This provided the motivation to create our own tailored algorithm to solve

the best subset logistic regression problem to optimality efficiently.

4.3 Tailored Algorithm

Our tailored algorithm for efficiently solving the mixed integer convex optimization problem

of logistic regression with cardinality constraints to provable optimality consists of three

main ingredients:

1. Our discrete first order heuristic from Chapter 2.

2. Outer approximation methods, a well-known technique in MINLO.

3. Lazy constraint callbacks, a feature of modern optimization solvers.

4.3.1 Discrete First Order Heuristic

The discrete first order heuristic we developed in Chapter 2 significantly aided the speed

in finding MIO solutions when used to warm-start the best subset problem in linear regres-

sion. This heuristic applies to any problem of minimizing a convex function with Lipschitz-

continuous gradient subject to cardinality constraints.

109

*

Proposition 6. The logistic regression objective function f('3) of Problem 4.2 has Lipschitz

constant t given by f = !9Amax(X'X).

Proof. Since f is twice differentiable, it will have Lipschitz-continuous gradient if there exists

a value of f such that U >- V2 f, that is, if there is a value of f which uniformly upper bounds

the largest eigenvalue of the Hessian. In this case, V 2f = X'WX where W is a diagonal

matrix with wii = P(yi = 11xi) - P(yi = 01xi). Then since P(yi = lxi) -P(yi = Olxi) < 1,

Amax(X'WX) < 4Amax(X'X). E

By Proposition 6, the heuristic is applicable in the logistic regression setting, and we can

use this heuristic as part of solving the MINLO logistic regression problem.

4.3.2 Outer approximation methods

The outer approximation algorithm for convex MINLO was introduced by Duran and Gross-

mann in 1986 ([42]). The algorithm alternates between solving a mixed integer linear op-

timization problem and a pure nonlinear optimization problem, where linearizations of the

objective function around solutions to the NLO are added to the MILO. These lineariza-

tions are obtained by the convexity and differentiability of f: for any value of 3 E RP, the

following linear inequality is valid: f(3) ;> f(3) + Vf(13)'(,3 -).

In the case of best subset logistic regression, the algorithm proceeds as follows. First,

Problem 4.2 is solved and has optimal solution #NLO. The following mixed integer optimiza-

tion problem, which we call the reduced master problem (RMP), is formed:

110

min r
/3

s.t. ;> f(3NLO) +Vf(3 NLO)(/ _ 3 NLP)

-Mz 0 f 3 Mz (4.4)

P
Lzi < k
i=1

Zi E to,1}, i =1, ..., .A

The reduced master problem 4.4 is solved to optimality. The support of the resulting

solution, '3 RMP, is then fixed, and the following nonlinear optimization problem is solved:

min f(3)
(4.5)

s.t. support(3) = support(RMP)

The solution to Problem 4.5 is a new 13 NLO. Linearizations around this new /3 NLO are

added to the reduced master problem 4.4, and the algorithm continues to alternate between

problems 4.4 and 4.5. At each stage, these cutting plane linearizations cut off the current

integer solution to Problem 4.4 unless the integer solution is optimal for Problem 4.3. As

the algorithm progresses, the reduced master problem 4.4 becomes an increasingly closer

approximation to Problem 4.3. The global minimum of Problem 4.3 is reached when the

objective function of the reduced master problem 4.4 is within some pre-specified tolerance

c of the objective function of the NLO problem 4.5.

We incorporate our discrete first order heuristic at the beginning of this procedure by

adding a linearization around the solution to Problem 4.5 with ,3 RMP taken as the first order

heuristic solution. By doing this in the very first step, we ensure that a high-quality cutting

plane is added immediately to Problem 4.4, causing the outer approximation algorithm

to converge much more quickly. Additionally, we implement an efficient way to solve the

reduced master problem 4.4 that only requires building one branch and bound tree using

111

lazy constraint callbacks.

4.3.3 Lazy Constraint Callbacks

Callbacks are a general programming concept and not specific to optimization: in general,

a callback is a piece of executable code which is passed as a parameter to other code, to be

invoked at some pre-specified time. Optimization solvers which allow callbacks give the user

the option to monitor and modify the behavior of the solver. Callbacks can be used to access

information or provide a status update during the course of the optimization; they can be

used to terminate optimization if a particular condition is reached; they can also be used to

update bounds on constraints and variables and add user-generated solutions and cutting

planes. In our case, we will use lazy constraint callbacks which dynamically (or lazily) add

cutting planes to the model whenever an integer feasible solution is found. Unless the current

integer solution is optimal, this will refine the feasible region of the problem by cutting off

the current integer solution.

Lazy constraint callbacks are a relatively new type of callback. CPLEX 12.3 introduced

lazy constraint callbacks in 2010 and Gurobi 5.0 introduced lazy constraints in 2012. To date,

the only MIO solvers which provide lazy constraint callback functionality are CPLEX([991),

Gurobi ([631), and GLPK 153]. Lazy constraints are particularly helpful in a few situations:

(1) when the pool of constraints is known, but is so large that including all of them explicitly

would significantly slow down solver progress; (2) when the pool of constraints is too large

to be generated a priori, as in the traveling salesman problem, or (3) when the required

constraints are not known at the outset. Cutting plane linearizations generated by the outer

approximation method fall into the third category.

It is important to note that the outer approximation method for solving convex MINLO

does not require lazy constraint callbacks, but if we do exploit the functionality of lazy

constraint callbacks, only one branch and bound tree needs to be built. This saves the

rework of rebuilding a new branch and bound tree every time a new integer feasible solution

is found in the MIO problem.

112

Lazy constraints are a fairly new feature within optimization solvers. Although many

problems within statistics are naturally formulated as MIO or MINLO problems, to the

best of our knowledge, we are the first to integrate the optimization-based concept of lazy

constraints into the process of building a statistical model.

4.4 Computational Results - Best Subset

The computational tests. in Table 4.2 were performed on a computer with an Intel Xeon

E5440 (2.8 GHz) processor with 8 cores and 32 GB of RAM in order to fairly compare times

with the NEOS server. All other computational tests were performed on a computer with

an Intel Xeon E5687W (3.1 GHz) processor, 16 cores, and 128 GB of RAM. We used Gurobi

6.0.0 ([63]) as the optimization solver, and implemented the algorithm in Julia 0.3.3

([12]), a technical computing language. We used JuMP 0.7.0 ([74]), an algebraic modeling

language package for Julia, to interface with Gurobi.

We begin by comparing our algorithm's performance to the same set of three test problems

from Section 4.2.1, again averaging times over five trials:

Table 4.2: MINLO Solver Comparison Times (in seconds).
Solver Problem 1 Problem 21 Problem 3

- Bonmin 11 168 2370
KNITRO 16 29 145
FilMINT 10 1283 633
MINLP 11 300 6000
SCIP cut off cut off cut off
Couenne cut off cut off cut off
OUR ALGORITHM <1 15 16

In these trials, our tailored algorithm was uniformly faster than the six optimization

solvers we tested on the NEOS server. Moreover, this speed comparison indicates that our

algorithm can scale to higher dimensional problems more easily than other existing MINLO

software. Next, we compare the performance of solving the best subset logistic regression

using MINLO compared to heuristic methods.

113

4.4.1 Methodology Comparison

As indicated in Section 4.1.1, logistic regression with an f -penalty is the primary method for

inducing sparsity in logistic regression models. In this section we compare our methodology

with Lasso for logistic regression and report sparsity and predictive performance. We measure

predictive performance using area under the ROC curve (AUC) as our metric.

Overdetermined Regime We begin by considering the traditional overdetermined regime

with n > p. Figure 4-1 shows a representative case within the overdetermined regime with

n = 2000 and p = 200. We note that the MINLO approach and the Lasso approach perform

almost identically with respect to AUC across many different noise (-) and correlation (p)

levels. Where we notice a large difference between the two methods is in the number of

nonzero coefficients chosen by the two methods. MINLO significantly outperforms Lasso in

this respect. In this example, there are five true nonzero coefficients. MINLO never selects

more than seven. Lasso selects far more variables to enter the model, and is less consistent

than MINLO: we observe far greater standard error over the ten trials.

High Dimensional Regime Our method is applicable both in the traditional overde-

termined n > p regime and in the increasingly common high dimensional underdetermined

n < p regime. The tailored approach of using mixed integer optimization in conjunction

with warm starts and lazy constraint cutting planes generated by pure nonlinear optimiza-

tion rapidly finds the optimal solution.

However, in the n < p regime, we observe that the lower bounds of the mixed integer

optimization problem progress slowly, so while the optimal solution may have been found,

certification of optimality happens slowly, if at all.

To address this, we consider adding bounding box constraints to the MINLO formulation,

as in Chapter 2. These constraints limit the search space, and allow the solver to certify

optimality within the bounding box. In particular, using the notation from Chapter 2, we

consider the following additional bounding box constraints to the reduced master problem

114

60

co 50-0

C 40-
0
Z

30 -

-020-
E

10

1.00-

0.75-

~0.50

0.25-

0.00-1

1 2 5

Method
M10

iLasso

1 2
noise

5

I

1 2

Method
M10

SLasso

1 2
noise

5

2 5

Method
IM1O

I Lasso

1 2
noise

Figure 4-1: Series of computational tests for Problem 2 with n = 2000,p = 200. Figure shows
number of nonzero values and predictive performance for different values of p. The left panel is

p = 0, the middle panel is p = 0.4, and the right panel is p = 0.8. The dashed line in the top panel
represents the true number of nonzero values.

(4.4):

where 30 is a candidate sparse solution. The radius of the f-ball above, that is, Li,t,1oc)

is a user-defined parameter which controls the size of the feasible set.

In our experiments, we ran our tailored algorithm for 180 seconds, and used the resulting

solution as 00. We then generated the box constraint using toc /30= | /k.

115

I
I

Figure 4-2 gives sparsity and predictive performance results

dimensional regime with n = 400 and p = 1000.

80-

0

60 -
N
0z
10540

.0
E
5 20-z

1.00--

0.75 -

o0-

0.25-

0.00--

I
I I

I
I

2 5

Method

SLasso

1 2
noise

5

Method

SLasso

1 2
noise

5

for an example in the high

I

1 2 5

Method

SLasso

1 2
noise

5

Figure 4-2: Series of computational tests for Problem 4 with n = 400, p = 1000. Figure shows

number of nonzero values and predictive performance for different values of p. The left panel is
p = 0, the middle panel is p = 0.4, and the right panel is p = 0.8. The dashed line in the top panel

represents the true number of nonzero values.

We notice that in this example, Lasso frequently, but not always, has slightly better

predictive performance than MINLO. Nevertheless, the number of nonzero coefficients chosen

by Lasso are far higher than the number selected by MINLO. MINLO consistently chooses

a number of nonzeros in the neighborhood of the true number; the Lasso solution exhibits

much higher standard error of the mean, and is usually 2-4 times the true number of non

116

I

11

2 5

zeros.

These observations about predictive performance and sparsity in the high dimensional

regime are commensurate with our observations in Chapter 3 that Lasso is a robust method

first and foremost, and a sparsity-inducing method second. Even so, we doubt that the minor

increase in predictive performance that Lasso's robustness may induce is worth the tradeoff

of introducing so many variables into the model.

4.5 Algorithmic Approach to Logistic Regression

As with linear regression, logistic regression models are customarily constructed through

an iterative process of trial and error in order to balance several competing objectives. In

addition to sparsity, we may want to build other properties into a high quality classification

model. The framework that we have built for the best subset selection problem in logistic

regression is directly adaptable to the case where we have many other goals for our model

that can be modeled by mixed integer optimization.

We briefly review desirable characteristics of a logistic regression model. As these closely

mirror desirable properties of a linear regression model, we do not go into great detail about

each property. Rather, we compare our MINLO approach to achieving these properties in

logistic regression models with existing approaches in the literature.

4.5.1 Selective Sparsity

As in Section 3.2.2, we use the term "selective sparsity" to refer to settings where we would

like to constrain the joint inclusion of subsets of independent variables. The settings where

selective sparsity may be desirable that we will consider here are group sparsity, pairwise

multicollinearity, and nonlinear transformations.

117

Group Sparsity

Some applications exhibit a block- or group-sparse structure, with groups of independent

variables whose coefficients are either all zero or all nonzero. Group Lasso, first proposed for

linear regression in [115], has analogously been proposed for logistic regression ([66], [79]).

The group Lasso behaves like Lasso but on the group level; for large enough regularization

parameters, entire groups of variables may drop out of the model. Computational methods

for group Lasso in logistic regression continue to be a present area of research [98].

Limited Pairwise Multicollinearity

Multicollinearity in logistic regression models leads to the same problematic instability in

parameter estimates that we observed with linear regression. Indeed, to quote [81], "Because

the concern is with the relationship among the independent variables, the functional form of

the model for the dependent variable is irrelevant to the estimation of collinearity." Similarly,

we recommend limiting the pairwise multicollinearity present in the final logistic regression

model to a tolerable threshold.

Detecting Appropriate Nonlinear Transformations

As in linear regression, the need for a nonlinear transformation of an independent variable

in a logistic regression model is often detected by trial and error or by graphical examina-

tion. The Box-Tidwell procedure to automate detection of nonlinear transformations [20]

can be extended to logistic regression ([621, [81]). This iterative process suggests statisti-

cally significantly power transformations of independent variables. As before, the suggested

transformations need to be interpreted by a human analyst before being incorporated into a

model, since they are rarely interpretable whole-number powers. They also do not take into

account other constraints we would like to include.

118

4.5.2 Robustness

As in the linear regression case, we will approach errors in data with a robust optimization

approach. Robustness in logistic regression has mainly focused on developing alternative

objectives to maximum likelihood which are robust against outliers. For example, [27] sug-

gested using a weighted maximum likelihood estimator which downweights high leverage

points. [88] introduced robust M-estimates for the logistic regression model, and [13] pro-

posed modifying this M-estimator with a correction term. [30] offered guidance for parameter

choice in the estimator given in [13] to obtain estimates with bounded influence. See [76] for

a detailed overview of the literature on robust logistic regression.

The MINLO approach is flexible, and can accommodate any of the proposed modifications

to the logistic regression maximum likelihood function suggested in the robust statistics

literature. Instead, we consider structural uncertainty in data, and address it via robust

optimization. As with the other methods, this ultimately involves a modification of the

traditional maximum likelihood objective.

Robust optimization directly addresses errors in the data by considering uncertainty sets

for the data and calculates solutions that are immune to worst-case uncertainty under these

sets (see [3] and [4]). For the logistic regression problem with data (y, X), the data associated

with the independent variables have error AX that belong to a given uncertainty set U. For

example,

U = {AX E RTnx I |Axilla F}

where Ix II1 = (ZE X')l/. The robust logistic regression problem is then

n

min max -yi(3'(xi + Axi)) + log (1 + exp(3'(xi + Axi))) . (4.6)
3 AXEU

The key result is as follows.

119

Theorem 4. ([71) Problem (4.6) is equivalent to

min -yi ('xi + (-1)Yir|13K1) + log (I + exp(3 'xi + (-1)YiF|J|3J)). (4.7)
i=1-

Note that this differs from the recent work of [831 which considers robustness in logistic

regression in a distributional sense. [83] aims to minimize the worst case expected log

loss with respect to an uncertainty set consisting of a family of possible data generating

distributions.

4.5.3 Modeler Expertise

As with linear regression in Section 3.2.5, there may cases where the modeler has domain

knowledge about the features in the model. In that case, she might wish to specify that

certain independent variables must be included in the final logistic regression model, due to

a known correlation with the response. This can be incorporated directly into the model

building process by adding a constraint to Problem 4.4.

4.5.4 Statistical significance

Statistical significance of logistic regression models is typically estimated via a likelihood

ratio test, Wald's test, or a Lagrange multiplier test (also known as score test) ([621). These

three tests are asymptotically equivalent, and all measure some aspect of the likelihood

function. However, since we consider a regularized and constrained version of maximum

likelihood, none of these tests is directly applicable to our case. As in Section 3.2.6, we will

maintain an assumption-free approach by using bootstrapping methods in order to estimate

confidence intervals for each feature in the model selected by our algorithm.

4.5.5 Low global multicollinearity

Multicollinearity is a property of the data of the independent variables, and not of the

functional form of the regression equation. So, logistic regression may be subject to the same

120

difficulties in catching all cases of multicollinearity using a pairwise correlation threshold as

linear regression. Again, global multicollinearity can be measured by checking the condition

number of the correlation matrix resulting from the submatrix of included variables. A high

condition number indicates a multicollinearity problem. A condition number greater than

15 is usually taken as evidence of multicollinearity and a condition number greater than 30

is usually an instance of severe multicollinearity ([28]).

4.5.6 Formulation

To scientifically determine a logistic regression model, we propose using the framework we

developed for linear regression. Therefore, we will have a preprocessing stage, followed by

solving a MINLO problem for different input parameters using the method described in this

chapter, and finally solving the MINLO again with any additional constraints. The heart of

the method is the following MINLO problem which incorporates all of the above desirable

properties. We describe the MINLO here.

n

min -yi (#'xi+ (-1)YiF1| ,| + log (I + exp(3'xi + (-1)Yirj I|II &)) , (4.8a)

s.t. Zf E f0, 1}, f = 1, .IA ,p (4.8b)

- M ze < i <Mzt, = 1, ... ,p, (4.8c)

Zz, k, (4.8d)

z1 = j .f e(1) (E smi VMI (4.8e)

zj + zj < I V(i, j) E 7HC, (4.8f)

I zi 1 Vm, (4.8g)
iETm

ze = 1 Vf E -, (4.8h)

I: z, < Isd - I VS1, . .. , Si. (4.8i)

121

In the objective function (4.8a), the robustification parameter F immunizes the resulting

model against structural uncertainty in the data. In Constraint (4.8b), a binary indicator

variable ze is introduced for every /3 in the model. For a large enough constant M, the

constraint (4.8c) ensures that #j will only be included in the model if ze = 1. The constraint

(4.8d) limits the number of total variables that will be included in the model. This ensures

general sparsity of the resulting model. The constraints in (4.8e), (4.8f), and (4.8g) are

selective sparsity constraints. For the m' set of variables with a group sparsity structure,

the set of constraints defined in (4.8e) ensures that the variables in GSm are either all zero,

or all nonzero.

We do not describe the preprocessing initial stage or the third stage where we generate

additional constraints, as these are exactly the same as the linear case with the minor

difference of evaluating models based on AUC rather than R2 .

4.6 Computational Results - Algorithmic Approach

As in Chapter 3, our main goals of the algorithmic approach to logistic regression are to

achieve interpretability and robustness, while retaining predictive power. We present analo-

gous results for the logistic regression case in the tables below.

First, we present results in Tables 4.3 and 4.4 for synthetic datasets for the default

parameters of the algorithm: five values of F tested and 0.7 as the maximum pairwise

correlation allowed. These are designed to illustrate the algorithmic's approach ability to

handle datasets with high multicollinearity and to be robust against added noise. Then,

we tested our algorithm on five publicly-available real datasets and present these results in

Table 4.5. Finally, as in Chapter 3, we consider a combined synthetic example designed to

demonstrate the capacity of the algorithmic approach to identify various properties when

presented in concert. Note that in all cases, all variables selected by the algorithmic approach

are significant at the 0.05 level.

122

Preliminaries We use the same notation as in Chapter 3. Each experiment corresponds

to two rows in a table. The top row presents average results over ten trials of the same

experiment and the bottom row presents the standard error. We use the following notation:

K* = value of k chosen by the algorithm, TP = number of true nonzero variables identi-

fied by the algorithm, for the synthetic datasets, MC = the maximum pairwise correlation

present in the final model, and Con = condition number. Time for the MINLO algorithm is

presented in seconds, and is not meant to accurately benchmark the best possible time but

to show that it is computationally tractable to solve these problems in a practical amount

of time on standard computers. The real datasets were obtained from the University of

California Irvine Machine Learning Repository ([2]). We abbreviate each real dataset's

name as follows: "Bank" stands for the Banknote Authentication dataset; "Telescope" corre-

sponds to the Magic Gamma Telescope dataset; "Mass" stands for the Mammographic Mass

dataset; "Ozone 8" corresponds to the Ozone Detection Level Eight dataset; and "Ozone 1"

stands for the Ozone Detection Level One dataset. We aim to return solutions in practi-

cal amounts of time, so we imposed a 60-second time limit on each optimization problem

solved. Often optimality is reached before the time limit. Note that for each dataset,

Kmax x (# of values of F tested) x (# of iterations of Stage 3) MINLO problems are solved.

Results Table 4.3 shows results for synthetic logistic regression datasets with high pairwise

multicollinearity. We observe that the MINLO model achieves the same, or slightly higher,

AUC than Lasso. The MINLO model performs better in terms of sparsity, however, as noise

increases, this is at the expense of recovering the true set of nonzero coefficients. However,

the final Lasso models contain very high pairwise collinearity and condition numbers that

indicate severe multicollinearity issues.

Table 4.4 shows results for datasets designed to illustrate robustness. The MINLO model

achieves very slightly better predictive power than the Lasso model. In the highest noise

setting (- = 5), MINLO does not always fully recover the true set of nonzero coefficients.

Nevertheless, the proportion of coefficients selected that are truly nonzero remains quite high

on average (4.8/5.3 = 90.6%) compared to Lasso (5.0/17.4 = 28.7%).

123

MINLO Lasso

p [o j * K* TP AUC [MC ICon Time K* TP AUC MC [Con

0.9 1 0.000 4.6 4.6 0.941 0.163 4.8 5606 23.9 5.0 0.938 0.904 84.6
0.000 0.2 0.2 0.003 0.007 1.3 470 5.7 0.0 0.002 0.002 21.5

0.9 2 0.000 4.8 4.4 0.839 0.223 2.4 4859 20.5 4.9 0.834 0.870 69.7
0.000 0.2 0.2 0.004 0.053 0.6 583 5.3 0.1 0.006 0.019 21.7

0.9 5 0.001 4.8 2.6 0.658 0.296 1.7 4778 27.2 3.8 0.658 0.824 109.1
0.000 0.3 0.3 0.004 0.064 0.4 462 8.8 0.3 0.005 0.077 44.7

Table 4.4: Robustness; n - 1000, p = 100, True K 5, p = 0, AX - Uniform(0,2).
MINLO Lasso

p a * K* TP AUC MC Con Time K* TP AUC MC Con

0 1 0.0000 5.1 5.0 0.873 0.057 1.2 1196 27.5 5.0 0.867 0.088 1.8
0.0000 0.1 0.0 0.004 0.005 0.0 26 7.3 0.0 0.005 0.007 0.2

0 2 0.0002 5.2 5.0 0.793 0.059 1.2 989 19.9 5.0 0.788 0.088 1.6
0.0001 0.2 0.0 0.007 0.004 0.0 29 5.4 0.0 0.008 0.009 0.1

0 5 0.0000 5.3 4.8 0.655 0.064 1.2 1027 17.4 5.0 0.641 0.091 1.6
0.0000 0.2 0.1 0.007 0.005 0.0 14 4.6 0.0 0.008 0.005 0.1

We tested our algorithm on five publicly-available real datasets and present these results

in Table 4.5. Note that n here indicates the size of the training dataset - the original dataset

has 2n observations.

Table 4.5: Results for Real Datasets.
MINLOLasso

[Dataset n p K* AUC MC Con Time K* AUC MC Con

Bank 686 4 2.9 0.956 0.360 3.8 4.1 3.9 0.994 0.783 12.1
0.1 0.002 0.011 0.2 1.0 0.1 0.000 0.003 0.4

Telescope 9510 10 4.8 0.832 0.668 7.2 1145.3 3.2 0.822 0.272 2.7
0.2 0.002 0.027 0.8 166.0 0.2 0.002 0.068 0.8

Mass 415 10 4.8 0.875 0.406 6.3 24.0 6.2 0.873 0.434 9.5
0.6 0.007 0.016 1.3 3.8 0.8 0.006 0.019 2.3

Ozone 8 924 72 3.1 0.869 0.283 2.6 1583.1 38.1 0.895 0.982 9293.8
0.3 0.005 0.047 0.4 271.2 3.6 0.007 0.010 2827.0

Ozone 1 924 72 6.5 0.885 0.644 20.0 725.5 38.9 0.888 0.984 12283.9
1_ _ 0.8 0.013 0.026 4.9 122.9 4.8 0.016 0.010 4869.6

In the Banknote Authentication dataset, MINLO achieves slightly better sparsity, but

slightly worse AUC; this is the price of interpretability, since with a threshold of 0.7 as the

maximum pairwise correlation, the MINLO model cannot include as many variables as the

Lasso model. In the Magic Gamma Telescope dataset, however, we see the opposite result:

124

Table 4 3: Pairwise Mu ;tclinai n = 1000 pD 100 True K = 5 p = 0.9 AX = 0.

Lasso outperforms MINLO with respect to sparsity, at the expense of AUC. MINLO achieves

a slightly higher AUC within the bounds of a 0.7 maximum pairwise correlation limit. It

is not surprising that the algorithmic approach trades off the desirable properties of low

multicollinearity, sparsity, and predictive performance in different ways for different datasets.

In fact, what we can be assured of is that the MINLO model trades these properties off in an

optimal way given the constraints the modeler specifies. It is likely that if a lower maximum

correlation threshold were given, the Magic Gamma Telescope results would show a lower

K* selected - but possibly a lower test set AUC as well. We verified this intuition by running

the Magic Gamma Telescope dataset again with a maximum pairwise correlation threshold

of 0.5 - results are in Table 4.6. Likewise, were a higher maximum correlation threshold

specified, it is likely that the Banknote Authentication test set AUC would match Lasso's -

but with a higher pairwise correlation, and higher condition number. The Mammographic

Mass dataset is an example where the MINLO approach outperforms Lasso on all levels:

a lower K* selected, higher test set AUC, and lower maximum correlation and condition

number. The Ozone Detection datasets both have a much greater number of potential

variables than the other three datasets. As we have come to expect in such cases, the

MINLO model significantly outperforms Lasso with respect to sparsity here. Predictive

performance is similar, although slightly lower in the MINLO case. However, the resulting

maximum collinearity is drastically improved in the MINLO model.

Table 4.6: Magic Gamma Telescope Results with Maximum Pairwise Correlation Threshold
of 0.5.

MINLO Lasso
K* AUC MC Con Time K* AUC MC Con
3.3 0.815 0.232 1.9 128.8 3.0 0.819 0.184 1.6
0.2 0.002 0.029 0.2 17.0 0.0 0.003 0.002 0.0

Finally, we consider a combined synthetic example which we created in order to test

the algorithm's ability to identify many properties when presented together. Specifically,

we consider an example whose structure incorporates general sparsity, selective sparsity in

terms of both high pairwise multicollinearity and group sparsity, and modeler expertise in a

125

single dataset. We test this example in the case where n = 2000 and p = 200, and noise is

high.

We generated a synthetic data matrix X for n = 2000, p = 100 according to the process

outlined previously in this chapter. We used a value of p = 0.9 to ensure that there is high

pairwise multicollinearity present between some columns of X, and - = 5 to ensure high

noise. To generate nonlinear transformations, for each column j of X we included an addi-

tional column consisting of the squared entries of j, bringing the total number of potential

covariates up to 1000. As before, we consider k = 10. However, we generated /3 = 1 so that 7

positive values occurred in the original 100 columns and 3 were located in the 100 transformed

columns. The response y was generated as before as yj = Round ((1/ (1 + exp(-3'xi + cj))),

where ci -'- N(0, a') To test our robustness to error in data, we generated a matrix AX

Unif(0,2) and considered X + AX. We assume the modeler has some expertise with this sort

of data, and knows one of the values of i such that #i is truly nonzero. Finally, the modeler

is also aware of a group sparsity structure and knows that 03 , Ob,
3,, and 3d are all either

all zero or all nonzero and that e, Of, /g, and A
3 are either all zero or all nonzero, where

{a, b, c, d} E {icjl = 1} and {e, f, g, h} E {iji~ = 0}.

Table 4.7 presents results for this combined example. As before, the top row presents

average results over five trials of the same experiment and the bottom row presents the

standard error. In this combined example, we see that MINLO produces a much lower

Table 4.7: Results for Combined Example
MINLO Lasso
J7* K* TP AUC MC Con Time K* TP AUC MC Con

0.0004 11.2 6.2 0.76 0.56 5.9 1761.3 64.2 9.2 0.77 0.71 32.7
0.0002 0.6 0.6 0.00 0.03 0.5 40.9 6.9 0.3 0.00 0.00 1.1

total number of variables and lower pairwise multicollinearity and condition number while

maintaining a similar test set AUC to the Lasso model. Although the true positive rate is

lower for MINLO than Lasso in this challenging case, the precision (ratio of number of true

positives chosen to total number of variables chosen) is much higher for MINLO.

The general pattern that these computational experiments of our algorithmic approach

126

to logistic regression is that MINLO and Lasso typically exhibit very similar predictive

performance. However, MINLO is frequently able to reduce the number of variables selected

and/or reduce the maximum pairwise correlation and overall multicollinearity in the model.

The balance between these properties depends on the modeler's own input to the MINLO

model.

4.7 Conclusions

In this chapter, we have developed a tailored algorithm for solving the best subset problem

in logistic regression to provable optimality. This is the first algorithm that we are aware

of to make use of callbacks within optimization software to solve a statistical problem. We

have demonstrated that our algorithm converges to the optimal solution in faster times

than existing off-the-shelf MINLO software. Our approach is competitive with existing

sparsity-inducing heuristics for logistic regression, namely, Lasso, with respect to predictive

performance. Moreover, it outperforms Lasso with respect to sparsity detection.

We have extended this technique to the framework introduced in Chapter 3, thereby

developing an algorithmic approach to logistic regression. We have demonstrated the effec-

tiveness of this approach on real and synthetic datasets in producing high-quality logistic

regression models within reasonable timeframes.

127

128

Chapter 5

Conclusion

As the world is growing ever more data-rich, it is of paramount importance that we are able

to make sense of this data. Statistical and machine learning models aim to learn patterns

from data by maximizing signal and minimizing noise. Indeed, many statistics and machine

learning problems are fundamentally optimization problems: for example, linear regression

is the problem of minimizing squared error, support vector machines are margin-maximizing

classifiers, and clustering algorithms try to maximize some notion of distance between groups.

Often, the true underlying optimization problem that a statistical or machine learning model

is trying to solve contains discrete elements. However, to date, discrete optimization methods

have not played a large part in statistical modeling.

During the past twenty-five years, MIO solvers have been constantly improving in effi-

ciency, and the effect has been compounded by the great improvements in computer hard-

ware. In this thesis, we have aimed to dispel the popular notion that mixed integer opti-

mization is not a viable tool in the context of statistical modeling.

In particular, we have modeled the best subset problem in linear regression as an MIO,

and demonstrated that, when combined with novel continuous optimization methods, this

approach is highly practical. Indeed, MIO can solve problems with thousands of observations

and hundreds of variables in minutes to provable optimality, and can find near-optimal

solutions in minutes in the high-dimensional regime where there are thousands of variables

129

and only hundreds of data points. The solutions produced by MIO methods match or improve

upon the predictive performance achieved by other state-of-the-art methods, and typically

outperform these methods with respect to sparsity.

In addition to modeling challenging cardinality constraints, we are able to use MIO to

model a wide variety of desirable statistical properties in linear regression. Typically model-

ers approach model-building iteratively in order to ultimately produce a high-quality model.

Our approach is the first to provide a unified framework for incorporating such properties

simultaneously rather than sequentially. We have demonstrated that this methodology con-

structs high-quality linear regression models in practical timeframes.

Logistic regression is one of the canonical classification methods, and modelers are often

faced with the same questions when building a logistic regression model that they encounter

in linear regression: which variables should be included? And overall, what is the best high-

quality model that can be produced from this data? We have extended our MIO approach

for answering these questions to the setting of logistic regression. The tailored method we

developed for solving the resulting MINLO outperforms existing MINLO solvers. As in

the linear regression case, the solutions produced by our method match or improve upon the

predictive performance achieved by other state-of-the-art methods, and typically outperform

these methods with respect to sparsity.

The work presented in this thesis only scratches the surface of potential statistical prob-

lems where MIO methods can improve upon the status quo. We hope that our work helps

pave the way for the development of more MIO-based methods in statistics.

130

Bibliography

[1] Francis R Bach. Consistency of the group lasso and multiple kernel learning. The
Journal of Machine Learning Research, 9:1179-1225, 2008.

[2] Kevin Bache and Moshe Lichman. UCI machine learning repository. http: //archive.
ics.uci.edu/ml, 2014. Accessed: 2014-08-20.

[3] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization.
Princeton University Press, 2009.

[4] Dimitris Bertsimas, David B Brown, and Constantine Caramanis. Theory and appli-
cations of robust optimization. SIAM review, 53(3):464-501, 2011.

[5] Dimitris Bertsimas and Martin Copenhaver. Characterization of the equivalence of
robustification and regularization in linear, median, and matrix regression. Submitted
to Annals of Statistics, 2014.

[6] Dimitris Bertsimas and Apostolos Fertis. On the equivalence of robust optimization
and regularization in statistics. Technical Report, 2009.

[7] Dimitris Bertsimas and Apostolos Fertis. Robust logistic regression. Technical report,
Massachusetts Institute of Technology, 2011.

[8] Dimitris Bertsimas and Robert Freund. Data, Models, And Decisions: The Fundamen-
tals Of Management Science. Dynamic Ideas Press, Belmont, Massachusetts, 2004.

[9] Dimitris Bertsimas and Rahul Mazumder. Least quantile regression via modern opti-
mization. Annals of Statistics, 42(6):2494-2525, 2014.

[10] Dimitris Bertsimas and Romy Shioda. Algorithm for cardinality-constrained quadratic
optimization. Computational Optimization and Applications, 43(1):1-22, 2009.

[111 Dimitris Bertsimas and Robert Weismantel. Optimization over integers. Dynamic
Ideas Belmont, 2005.

[12] Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman. Julia: A fast
dynamic language for technical computing. CoRR, abs/1209.5145, 2012.

131

[13] Ana M Bianco and Victor J Yohai. Robust estimation in the logistic regression model.
Springer, 1996.

[14] Peter Bickel, Ya'acov Ritov, and Alexandre Tsybakov. Simultaneous analysis of lasso
and dantzig selector. The Annals of Statistics, pages 1705-1732, 2009.

[15] Daniel Bienstock. Computational study of a family of mixed-integer quadratic pro-
gramming problems. Mathematical programming, 74(2):121-140, 1996.

[16] Robert E Bixby. A brief history of linear and mixed-integer programming computation.
Documenta Mathematica, Extra Volume: Optimization Stories, pages 107-121, 2012.

[17] Thomas Blumensath and Mike Davies. Iterative thresholding for sparse approxima-
tions. Journal of Fourier Analysis and Applications, 14(5-6):629-654, 2008.

[18] Thomas Blumensath and Mike Davies. Iterative hard thresholding for compressed
sensing. Applied and Computational Harmonic Analysis, 27(3):265-274, 2009.

[19] Pierre Bonami, Mustafa Kiling, and Jeff Linderoth. Algorithms and software for convex
mixed integer nonlinear programs. In Mixed integer nonlinear programming, pages 1-
39. Springer, 2012.

[20] George EP Box and Paul W Tidwell. Transformation of the independent variables.
Technometrics, 4(4):531-550, 1962.

[21] Peter Biihlmann and Sara van-de-Geer. Statistics for high-dimensional data. Springer,
2011.

[22] Michael R Bussieck and Stefan Vigerske. Minlp solver software. Wiley Encyclopedia
of Operations Research and Management Science, 2010.

[23] E. Candes, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted f, minimization.
Journal of Fourier Analysis and Applications, 14(5):877-905, 2008.

[24] Emmanuel Candes. The restricted isometry property and its implications for com-
pressed sensing. Comptes Rendus Mathematique, 346(9):589-592, 2008.

[25] Emmanuel Candes and Yaniv Plan. Near-ideal model selection by f1 minimization.
The Annals of Statistics, 37(5A):2145-2177, 2009.

[261 Emmanuel Candes and Terence Tao. Near-optimal signal recovery from random pro-
jections: Universal encoding strategies? Information Theory, IEEE Transactions on,
52(12):5406-5425, 2006.

[27] Raymond J Carroll and Shane Pederson. On robustness in the logistic regression
model. Journal of the Royal Statistical Society. Series B (Methodological), pages 693-
706, 1993.

132

[28] Samprit Chatterjee, Ali S Hadi, and Bertram Price. Regression analysis by example.
John Wiley & Sons, New York, 5th edition, 2012.

[29] Scott Chen, David Donoho, and Michael Saunders. Atomic decomposition by basis
pursuit. SIAM Journal on Scientific Computing, 20(1):33-61, 1998.

[30] Christophe Croux and Gentiane Haesbroeck. Implementing the bianco and yohai esti-
mator for logistic regression. Computational statistics & data analysis, 44(1):273-295,
2003.

[31] Joseph Czyzyk, Michael P Mesnier, and Jorge J More. The neos server. Computing in
Science and Engineering, 5(3):68-75, 1998.

[32] Dean DeCock. Ames, iowa: Alternative to the boston housing data as an end of
semester regression project. Journal of Statistics Education, 19(3), 2011.

[33] Marcel Dettling. Bagboosting for tumor classification with gene expression data. Bioin-
formatics, 20(18):3583-3593, 2004.

[34] Thomas J DiCiccio and Bradley Efron. Bootstrap confidence intervals. Statistical
Science, pages 189-212, 1996.

[35] Elizabeth D Dolan. Neos server 4.0 administrative guide. arXiv preprint cs/0107034,
2001.

[36] D. Donoho. For most large underdetermined systems of equations, the minimal fl-norm
solution is the sparsest solution. Communications on Pure and Applied Mathematics,
59:797-829, 2006.

[37] D. Donoho and I. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrika,
81:425-455, 1993.

[38] David Donoho and Michael Elad. Optimally sparse representation in general

(nonorthogonal) dictionaries via f, minimization. Proceedings of the National Academy
of Sciences, 100(5):2197-2202, 2003.

[391 David Donoho and Peter Huber. The notion of breakdown point. A Festschrift for
Erich L. Lehmann, pages 157-184, 1983.

[40] David Donoho and Xiaoming Huo. Uncertainty principles and ideal atomic decompo-
sition. Information Theory, IEEE Transactions on, 47(7):2845-2862, 2001.

[41] Norman Richard Draper and Harry Smith. Applied Regression Analysis. John Wiley
& Sons, New York, 3rd edition, 1998.

[42] Marco A Duran and Ignacio E Grossmann. An outer-approximation algorithm for a
class of mixed-integer nonlinear programs. Mathematical programming, 36(3):307-339,
1986.

133

[43] Bradley Efron. Bootstrap methods: another look at the jackknife. The Annals of
Statistics, pages 1-26, 1979.

[44] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle
regression (with discussion). Annals of Statistics, 32(2):407-499, 2004.

[45] Yonina C Eldar .and Gitta Kutyniok. Compressed sensing: theory and applications.
Cambridge University Press, London, 2012.

[46] Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and
its oracle properties. Journal of the American Statistical Association, 96(456):1348-
1360(13), 2001.

[471 Mirio AT Figueiredo. Adaptive sparseness for supervised learning. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 25(9):1150-1159, 2003.

[48] I. Frank and J. Friedman. A statistical view of some chemometrics regression tools
(with discussion). Technometrics, 35(2):109-148, 1993.

[49] Jerome Friedman. Fast sparse regression and classification. Technical report, Depart-
ment of Statistics, Stanford University, 2008.

[50] Jerome Friedman, Trevor Hastie, Holger Hoefling, and Robert Tibshirani. Pathwise
coordinate optimization. Annals of Applied Statistics, 2(1):302-332, 2007.

[51] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for gen-
eralized linear models via coordinate descent. Journal of statistical software, 33(1):1,
2010.

[52] George M Furnival and Robert W Wilson. Regressions by leaps and bounds. Techno-
metrics, 16(4):499-511, 1974.

[53] GLPK. Gnu linear programming kit. http: //www. gnu. org/software/glpk/glpk.
html, 2015. Accessed: 2015-03-06.

[54] Eitan Greenshtein. Best subset selection, persistence in high-dimensional statistical
learning and optimization under fi constraint. The Annals of Statistics, 34(5):2367-
2386, 2006.

[55] Eitan Greenshtein and Ya'Acov Ritov. Persistence in high-dimensional linear predictor
selection and the virtue of overparametrization. Bernoulli, 10(6):971-988, 2004.

[56] William Gropp and Jorge More. Optimization environments and the neos server.
Approximation theory and optimization, pages 167-182, 1997.

[57] Frank R Hampel. A general qualitative definition of robustness. The Annals of Math-
ematical Statistics, 42(6):1887-1896, 1971.

134

[58] Frank R Hampel, Elvezio M Ronchetti, Peter J Rousseeuw, and Werner A Stahel.
Robust statistics: the approach based on influence functions, volume 114. John Wiley
& Sons, New York, 2011.

[59] Trevor Hastie. Trevor hastie lectures and talks. http: //www- stat. stanf ord. edu/
~hastie/TALKS/glmnetwebinar_Rsession. tgz, 2015. Accessed: 2015-02-11.

[60] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning, Second Edition: Data Mining, Inference, and Prediction (Springer Series in
Statistics). Springer New York, 2 edition, 2009.

[61] David W Hosmer, Borko Jovanovic, and Stanley Lemeshow. Best subsets logistic
regression. Biometrics, pages 1265-1270, 1989.

[62] David W Hosmer Jr and Stanley Lemeshow. Applied logistic regression. John Wiley
& Sons, 2004.

[63] Gurobi Inc. Gurobi optimizer reference manual. http: //www. gurobi. com, 2014. Ac-
cessed: 2014-08-20.

[64] Laurent Jacob, Guillaume Obozinski, and Jean-Philippe Vert. Group lasso with over-
lap and graph lasso. In Proceedings of the 26th Annual International Conference on
Machine Learning, pages 433-440. ACM, 2009.

[651 Adel Javanmard and Andrea Montanari. Confidence intervals and hypothesis testing
for high-dimensional regression. arXiv preprint arXiv:1306.3171, 2013.

[66] Yuwon Kim, Jinseog Kim, and Yongdai Kim. Blockwise sparse regression. Statistica
Sinica, 16(2):375, 2006.

[67] K. Knight and W. Fu. Asymptotics for lasso-type estimators. Annals of Statistics,
28(5):1356-1378, 2000.

[68] Kwangmoo Koh, Seung-Jean Kim, and Stephen P Boyd. An interior-point method
for large-scale 11-regularized logistic regression. Journal of Machine learning research,
8(8):1519-1555, 2007.

[69] Balaji Krishnapuram, Lawrence Carin, Mario AT Figueiredo, and Alexander J
Hartemink. Sparse multinomial logistic regression: Fast algorithms and generalization
bounds. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(6):957-
968, 2005.

[70] Balaji Krishnapuram, AJ Harternink, Lawrence Carin, and Mario AT Figueiredo. A
bayesian approach to joint feature selection and classifier design. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 26(9):1105-1111, 2004.

135

[71] Su-In Lee, Honglak Lee, Pieter Abbeel, and Andrew Y Ng. Efficient F 1 regularized
logistic regression. In Proceedings of the National Conference on Artificial Intelligence,
volume 21, page 401. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT
Press; 1999, 2006.

[72] Richard Lockhart, Jonathan Taylor, Ryan J Tibshirani, Robert Tibshirani, et al. A
significance test for the lasso. The Annals of Statistics, 42(2):413-468, 2014.

[731 Po-Ling Loh and Martin Wainwright. Regularized m-estimators with nonconvexity:
Statistical and algorithmic theory for local optima. In Advances in Neural Information
Processing Systems, pages 476-484, 2013.

[74] Miles Lubin and lain Dunning. Computing in operations research using julia. IN-
FORMS Journal on Computing, 27(2):238-248, 2015.

[75] Shuangge Ma, Xiao Song, and Jian Huang. Supervised group lasso with applications
to microarray data analysis. BMC bioinformatics, 8(1):60, 2007.

[76] Ricardo Maronna, R. Douglas Martin, and Victor Yohai. Robust statistics. John Wiley
& Sons, Chichester. ISBN, 2006.

[77] William F Massy. Principal components regression in exploratory statistical research.
Journal of the American Statistical Association, 60(309):234-256, 1965.

[78] Rahul Mazumder, Jerome Friedman, and Trevor Hastie. Sparsenet: Coordinate de-
scent with non-convex penalties. Journal of the American Statistical Association,
117(495):1125-1138, 2011.

[791 Lukas Meier, Sara Van De Geer, and Peter Biihlmann. The group lasso for logistic
regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
70(1):53-71, 2008.

[80] N. Meinshausen and P. Biihlmann. High-dimensional graphs and variable selection
with the lasso. Annals of Statistics, 34:1436-1462, 2006.

[81] Scott Menard. Applied logistic regression analysis, volume 106. Sage, 2002.

[82] Alan Miller. Subset selection in regression. CRC Press Washington, 2002.

[83] Peyman Mohajerin. Distributionally robust logistic regression. Submitted to Interna-
tional Conference on Machine Learning, 2015.

[84] Balas Natarajan. Sparse approximate solutions to linear systems. SIAM journal on
computing, 24(2):227-234, 1995.

[85] George Nemhauser. Integer programming: the global impact. Presented at
EURO, INFORMS, Rome, Italy, 2013. http: //euro2013. org/wp-content/uploads/
Nemhauser_EuroXXVI.pdf. Accessed: 2013-12-04.

136

[86] Y. Nesterov. Gradient methods for minimizing composite objective function. Technical
report, Center for Operations Research and Econometrics (CORE), Catholic University
of Louvain, 2007. Technical Report number 76.

[87] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer, Norwell, 2004.

[88] Daryl Pregibon. Logistic regression diagnostics. The Annals of Statistics, pages 705-
724, 1981.

[89] R Core Team. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria, 2014.

[90] Garvesh Raskutti, Martin Wainwright, and Bin Yu. Minimax rates of estimation for
high-dimensional linear regression over-balls. Information Theory, IEEE Transactions
on, 57(10):6976-6994, 2011.

[91] Soo-Yon Rhee, Jonathan Taylor, Gauhar Wadhera, Asa Ben-Hur, Douglas L Brutlag,
and Robert W Shafer. Genotypic predictors of human immunodeficiency virus type
1 drug resistance. Proceedings of the National Academy of Sciences, 103(46):17355-
17360, 2006.

[92] Ralph Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1996.

[93] Peter Rousseeuw. Least median of squares regression. Journal of the American Sta-
tistical Association, 79(388):871-880, 1984.

[94] Thomas P Ryan. Modern regression methods, volume 655. John Wiley & Sons, New
York, 2008.

[95] Toshiki Satoa, Yuichi Takanob, Ryuhei Miyashiroc, and Akiko Yoshised. Feature subset
selection for logistic regression via mixed integer optimization. Submitted to Compu-
tational Statistics and Data Analysis, 2015.

[96] George AF Seber and Alan J Lee. Linear regression analysis. John Wiley & Sons,
New York, 2nd edition, 2003.

[97] Xiaotong Shen, Wei Pan, Yunzhang Zhu, and Hui Zhou. On constrained and regular-
ized high-dimensional regression. Annals of the Institute of Statistical Mathematics,
65(5):807-832, 2013.

[98] Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A sparse-group
lasso. Journal of Computational and Graphical Statistics, 22(2):231-245, 2013.

[99] IBM ILOG CPLEX Optimization Studio. Cplex optimizer. http: //www-01. ibm. com/
software/commerce/optimization/cplex-optimizer/index.html, 2015. Accessed:
2015-03-06.

137

[100] Barbara G Tabachnick, Linda S Fidell, et al. Using multivariate statistics. Allyn and
Bacon, Boston, 2001.

[101] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58:267-288, 1996.

[1021 Robert Tibshirani. Regression shrinkage and selection via the lasso: a retrospective.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(3):273-
282, 2011.

[103] Michael E Tipping. Sparse bayesian learning and the relevance vector machine. The
journal of machine learning research, 1:211-244, 2001.

[1041 Top500.org. Top500 Supercomputer Sites, Directory page for Top500 lists. Result
for each list since June 1993. http: //www.top500. org/statistics/sublist/, 2013.
Accessed: 2013-12-04.

[105] Luis Torgo. Regression datasets. http://www.dcc.fc.up.pt/~ltorgo/Regression/
DataSets.html, 2014. Accessed: 2014-08-20.

[106] Joel Tropp. Just relax: Convex programming methods for identifying sparse signals in
noise. Information Theory, IEEE Transactions on, 52(3):1030-1051, 2006.

[107] Athanasios Tsanas and Angeliki Xifara. Accurate quantitative estimation of energy
performance of residential buildings using statistical machine learning tools. Energy
and Buildings, 49:560-567, 2012.

[108] Martin Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery
using-constrained quadratic programming (lasso). Information Theory, IEEE Trans-
actions on, 55(5):2183-2202, 2009.

[109] R. Waltz. Current challenges in nonlinear optimization. http: //www. sdsc. edu/
us/training/workshops/2007sac-studentworkshop/docs/SDSCO7.ppt, 2007. Ac-
cessed: 2015-03-08.

[110] Sanford Weisberg. Applied linear regression. John Wiley & Sons, New York, 4th
edition, 2014.

[111] Larry Winner. Miscellaneous datasets. http://www.stat.ufl.edu/~winner/
datasets .html, 2014. Accessed: 2014-08-20.

[1121 Svante Wold, Arnold Ruhe, Herman Wold, and WJ Dunn, III. The collinearity problem
in linear regression. the partial least squares (pls) approach to generalized inverses.
SIAM Journal on Scientific and Statistical Computing, 5(3):735-743, 1984.

[113] Huan Xu, Constantine Caramanis, and Shie Mannor. Robustness and regularization of
support vector machines. The Journal of Machine Learning Research, 10:1485-1510,
2009.

138

[114] I-Cheng Yeh. Modeling of strength of high performance concrete using artificial neural
networks. Cement and Concrete Research, 28(12):1797-1808, 1998.

[115] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
68(1):49-67, 2006.

[116] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty.
The Annals of Statistics, 38(2):894-942, 2010.

[117] Cun-Hui Zhang and Jian Huang. The sparsity and bias of the lasso selection in high-
dimensional linear regression. Annals of Statistics, 36(4):1567-1594, 2008.

[118] Cun-Hui Zhang and Tong Zhang. A general theory of concave regularization for high-
dimensional sparse estimation problems. Statistical Science, 27(4):576-593, 2012.

[119] Tong Zhang. Analysis of multi-stage convex relaxation for sparse regularization. The
Journal of Machine Learning Research, 11:1081-1107, 2010.

[120] Yuchen Zhang, Martin Wainwright, and Michael I Jordan. Lower bounds on the
performance of polynomial-time algorithms for sparse linear regression. arXiv preprint
arXiv:1402.1918, 2014.

[121] P. Zhao and B. Yu. On model selection consistency of lasso. Journal of Machine
Learning Research, 7:2541-2563, 2006.

[122] Peng Zhao, Guilherme Rocha, and Bin Yu. The composite absolute penalties family
for grouped and hierarchical variable selection. The Annals of Statistics, 37(6A):3468-
3497, 2009.

[123] H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical
Association, 101:1418-1429, 2006.

[124] Hui Zou and Runze Li. One - step sparse estimates in nonconcave penalized likelihood
problems. The Annals of Statistics, 36(4):1509-1533, 2008.

139

