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Abstract

Visual perception of objects is a computationally challenging problem and fundamen-
tal to human well-being. Extensive previous research has revealed that the inferior
temporal cortex (IT), a high-level visual area, is involved in various aspects of visual
perception. Yet, little is known about: how IT neural responses to objects support
human perception of the objects; and how IT responses are produced from retinal
images of objects.

The goal of this research is to tackle these two related questions and find out
explicit, quantitative mechanisms that describe human core visual perception of ob-
jects, a remarkable ability achieved with brief (<200ms) image viewing duration. We
first operationally define the core visual perception by measuring behavioral reports
of human subjects in hundreds of visual tasks. These tasks are designed to system-
atically assess subjects' ability to estimate key visual parameters of an object in an
image, such as the object's category, identity, position, size, and viewpoint angles.
Combined with a rich dataset of monkey visual neural responses to the same task
images, we systematically explore a large number of explicit hypotheses that might
explain the human behavioral reports. Here, we demonstrate that weighted linear
sums of IT responses robustly predict the human pattern of behavior. Moreover,
we show that performance-optimized hierarchical neural networks explain a large
portion of neural responses of high-level visual areas including IT. These results
establish a working mechanistic model of core visual perception by providing an end-
to-end understanding of the human visual system from images to neural responses
to behavior.

Thesis Supervisor: James J. DiCarlo, MD, PhD
Title: Professor of Neuroscience
Head, Department of Brain and Cognitive Sciences at MIT
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Chapter 1

Introduction

Humans parse complex visual scenes rapidly and accurately. Such rapid visual per-

ception feels effortless to us, yet it serves as a fundamental neural substrate that

supports a wide range of human functions that are critical to survival, such as ob-

stacle avoidance, threat detection, resource detection, navigation, to name a few.

Its seemingly uncomplicated processing of visual information is deceiving however.

In fact, it is far from being trivial, because low-level pixel data can undergo drastic

changes from variation in position, size, pose, lighting, occlusion, while still represent-

ing the same high-level content. Understanding computational mechanisms that are

tolerant to these changes but sensitive to distinctions (e.g., identifying one particular

object among similar ones, noticing change in the object position, etc.) is a signif-

icant computational feat. Knowing how the brain accomplishes this feat presents a

unique scientific challenge and could have tremendous implications for a deep un-

derstanding of cortical information processing, artificial intervention and repair of

the visual system, building computer vision systems, and a broader understanding

of human cognition.
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1.1 Visual perception and the ventral visual stream

Visual perception of objects is the ability to interpret, analyze, and understand vari-

ous aspects of objects in scenes by processing images that carry the information of the

scenes. Humans rapidly and accurately interpret visual scenes from their surround-

ing, an ability that is critical to normal functioning. One facet of visual perception

of objects is view-invariant object recognition, which involves detection and identifi-

cation of objects while discounting changes in low-level image statistics [Gross, 1994;

Miyashita, 1993; Rolls, 2000; Orban, 2008; DiCarlo and Cox, 2007; DiCarlo et al.,

2012]. Visual perception of objects involves estimating a variety of other properties

besides an object's category or identity, such as position, size, pose, lighting, occlu-

sion, clutter, non-rigid deformation, and many other factors of the object that are

normally discarded during invariant object recognition but are essential for defining

scenes [Edelman, 1999; Koenderink and van Doorn, 19791.

The ventral visual stream in the brain houses the computational machinery that

enables visual perception of objects. It consists of a set of brain areas in the occipital

and temporal lobes of humans [Grill-Spector et al., 2001; Kourtzi and Kanwisher,

2001; Malach et al., 2002], with highly homologous areas in the non-human primate

[Kriegeskorte et al., 2008b]. Anatomically, the ventral stream is composed of a

set of cortical areas, each thought to convey a distinct representation of the visual

image [Felleman and Van Essen, 1991; DiCarlo and Cox, 2007]. The connectivity

patterns and latency of responses in each ventral stream area reveal a hierarchical

organization (Fig. 1.1). Visual information travels from the retina to the lateral

geniculate nucleus of the thalamus (LGN), and then through successive visual cortical

areas: V1, V2, V4, and the inferior temporal cortex (IT) [Felleman and Van Essen,

1991; DiCarlo et al., 2012]. Just about 100 ms after photons strike the retina, IT

12



a
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Retina LG N

b (IT representation)
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Retina -1 M (RCG representation)

Figure 1.1: (a) The anatomical organization of the ventral visual stream in
macaque, and the flow of visual information from retina to IT. AIT, CIT, and PIT
stand for anterior, central, and posterior IT, respectively. (b) Hierarchical struc-
ture of the ventral stream. The area of each box is proportional to the surface
area of the corresponding visual area [Felleman and Van Essen, 1991]. The number
in the right bottom corner of each box shows the approximate number of neurons
in both hemispheres. The number above each area is the approximate representa-
tion dimensionality of the area based on the number of layer 2/3 projection neurons
[Collins et al., 2010; O'Kusky and Colonnier, 1982]. The colored portion corresponds
to the central 100 of the visual field [Brewer et al., 2002]. The right column lists the
approximate median response latency [Nowak and Bullier, 1997; Schmolesky et al.,
1998]. Figure adopted from [DiCarlo et al., 2012].
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represents image-evoked neural responses [Hung et al., 2005c; DiCarlo and Maunsell,

2000a; Desimone et al., 1984a; Kobatake and Tanaka, 1994; Tanaka, 1996; Logothetis

and Sheinberg, 19961, most likely produced by a combination of intra-area processing

and feed-forward inter-area processing of the visual image [DiCarlo et al., 2012].

Lesions or inactivation of the highest area of the ventral stream - IT - produce

selective deficits in object recognition [Yaginuma et al., 1982; Horel, 1996; Holmes and

Gross, 1984; Weiskrantz and Saunders, 1984; Schiller, 1995]. Disruption of specific

ventral stream sub-regions disrupts specific object discrimination tasks [Pitcher et al.,

2009], and artificial activation of sub-regions predictably shifts percepts of complex

objects [Afraz et al., 2006; Verhoef et al., 2012].

It has also been experimentally observed that IT cortex normally associated with

object recognition appears to retain some sensitivity to object position [Li et al., 2009;

DiCarlo and Maunsell, 2003; MacEvoy and Yang, 2012; Sayres and Grill-Spector,

2008; Sereno et al., 2014] and other properties [Nishio et al., 2014]. However, it is

not clear how much and exactly what kinds of non-categorical information is present

in higher ventral cortex, nor how these properties are integrated with the categorical

representation.

A framing hypothesis (Fig. 1.3a) for how the brain achieves visual perception is

that the ventral visual stream successively transforms and encodes low-level pixel-like

patterns of neural responses into completely novel patterns of IT population neural

responses that more explicitly represent high-level image content (e.g., object iden-

tity or category; for reviews, see [Gross, 1994; Miyashita, 1993; Rolls, 2000; Orban,

2008; DiCarlo and Cox, 2007; DiCarlo et al., 20121) and that the neural responses

are decoded by the downstream areas to solve various tasks of visual perception

[Miyashita, 1993; Freedman et al., 2003]. For example, the initial image-evoked IT

neural population responses (100 ms latency) can directly support robust invariant

14



visual object categorization and identification [Hung et al., 2005c; Li et al., 2006;

Rust and DiCarlo, 2010], and IT population responses are far more useful for such

tasks than are earlier ventral stream representations [Rust and DiCarlo, 2010; Frei-

wald and Tsao, 2010] or non-ventral stream representations [Lehky and Sereno,

2007]. However, it is unknown whether the initial IT neural population responses

are sufficient to quantitatively explain human pattern of performance over a wide

range of visual perception tasks.

1.2 Models of the ventral visual stream

Model building is a fundamental part of the scientific process, where observations

are reconciled and understood through the creation of explanatory frameworks and

models. The merit of such models is ultimately measured by their ability to explain

existing data and predict new observations. In neuroscience, where the subject of

study is effectively a biological computer, the creation of accurate models has not

only the power to explain observed data, but also to potentially recreate the abilities

of the brain, many of which cannot be rivaled by current artificial systems. As the

ventral visual stream enables various aspects of visual perception, the development

of robust ventral stream models has been a central problem in the field of computa-

tional neuroscience and machine perception. Information processing up to the first

stage of the ventral stream (VI) is reasonably well captured by image-based com-

putational models [Lennie and Movshon, 2005; Carandini et al., 2005b; Keat et al.,

2001; Jagadeesh et al., 1993; Reid and Alonso, 1996]. However, processing in higher

stages (V2, V4, IT) remains poorly understood and difficult to model (but see [David

et al., 2006; Connor et al., 2007; Brincat and Connor, 2004; Yamane et al., 2008J).

Over the past decades, neuroscientists have revealed that each ventral stream

15



area shares a common canonical anatomical architecture, including shared motifs

for incoming inputs from upstream areas and outputs to downstream areas. This

argues for the widely-held hypothesis that each ventral stream area may implement

a common information processing strategy, and that the increasingly sophisticated

representations found in the ventral stream result from the "stacking" of these areas

[DiCarlo et al., 20121. This "stacked cortex" hypothesis is adopted in many compu-

tational models of the ventral stream [Fukushima, 1980; Riesenhuber and Poggio,

1999a; Serre et al., 2007a; Mel, 1997; Lecun et al., 2004; Wallis and Rolls, 1997]

and bio-inspired computer vision models [Bengio, 2009; Edelman, 1999; Zhu and

UOU 1  UC U5 UI2LC

k,=2e

k1=2 I

k,=3

I PIk1=5

Figure 1.2: An example of "stacked cortex" hypothesis employed in a seminal work on
Neocognitron by Fukushima [1980]. This hypothesis generalizes Hubel and Wiesel's
idea of simple and complex cells in VI. Figure adopted from [Fukushima, 1980].
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Mumford, 2006; Riesenhuber and Poggio, 2000; Pinto et al., 2008b,b]. These models

typically include a stack of several hierarchically arranged layers, each implementing

AND-like operations to build selectivity and OR-like operations (e.g., MAX, in the

HMAX class of models [Riesenhuber and Poggio, 1999a; Serre et al., 2007a]) to build

tolerance to identity preserving transformations.

It is thought that these models have a capacity to reliably explain the information

processing in the ventral visual stream. These models produce model neurons that

signal object identity with invariance to identity-preserving transformations [Wallis

and Rolls, 1997; Riesenhuber and Poggio, 1999a; Serre et al., 2007a]. More recent

work from our group and others has used high-throughput techniques to search the

large parameter spaces of these models families, leading to increases in performance

[Pinto et al., 2009; Krizhevsky et al., 2012; Zeiler and Fergus, 20131. While this is

exciting progress, it still remains unclear whether these new models are capable of

reliably predicting high-level neural responses to a wide range of complex, naturalistic

images. We also argue that enormous potential remains untapped in leveraging

cutting-edge neurophysiology and psychophysical data to inform modeling efforts.
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1.3 Statement of problem and organization of

this thesis

While much progress has been made, the field of neuroscience does not yet know a

quantitative mechanism of the ventral visual stream that operates on visual images to

successfully explain high level neuronal data and human object perception behavior

(Fig. 1.3a). Specifically, little is known about: how IT neural responses to objects

support human perception of the objects (decoding problem); and how IT responses

are produced from retinal images of objects (encoding problem).

Image Neural Population Responses 0 Behavioral Report

Neuron 1 I I I I
Neuron 2 || I | 11 I "Airplane"
Neuron 3 | | |||

b

Category X-axis position Size Width Major axis angle X, Y, Z-axis
Identity Y-axis position Perimeter Height Aspect ratio rotation

Figure 1.3: (a) Information processing in visual perception. The ventral visual
stream is thought to process information about the form and structure of objects in
the environment and encode the information as neural population responses. Then,
downstream brain areas decode the neural responses to extract useful information to
perform visual perception. For example, when a subject is asked to solve a visual task

(e.g., "what is in this image?"), relevant visual properties are decoded to produce the
behavioral report (e.g., "airplane") for the task. (b) Example visual tasks deployed
in this work to operationally define human core visual perception of objects.
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The goal of this research is to tackle these two related problems and find out ex-

plicit, quantitative mechanisms that describe human core visual perception of objects,

a remarkable ability achieved with brief (<200ms) image viewing duration within the

central 100 of visual field. This viewing time well approximates typical fixation dur-

ing natural visual exploration [DiCarlo and Maunsell, 2000a; Lehky, 2000; Sheinberg

and Logothetis, 2001; Yarbus, 1967], and the spatial range best approximates the

retinal region most strongly covered by the ventral visual stream [Ungerleider et al.,

2008; Op de Beeck and Vogels, 2000].

1.3.1 Careful measurement of human visual perception be-

havior

Since the ultimate function of the visual system is to guide behavior, and because

our goal is to understand the function and performance of the visual system, careful

measuring of the pattern of behavioral report is essential to produce mechanistic

models of the ventral stream. It is important to note that human subjects are

imperfect on various visual perception tasks. In fact, we observe that there is a rich

structure in the pattern of behavioral reports, and we argue that this "finger print"

of the ventral stream function should guide the development of mechanistic models

of perception.

In Chapters 2 and 3, we first operationally define the core visual perception by

measuring behavioral reports of human subjects in hundreds of visual tasks. These

tasks are designed to systematically assess subjects' ability to estimate key visual

parameters of an object in an image, such as the object's category, identity, position,

size, and viewpoint angles (Fig. 1.3b). Our main experimental paradigm is a brief

19



(100ms) presentation of an image, followed by a set of possible answer choices to

choose from.

1.3.2 High-quality neural data collection

Our goal to uncover mechanisms underlying visual perception critically depends on

large quantities of high-quality neurophysiology data in higher-level visual areas (IT

and V4). To enable this, our team has developed a powerful preparation with large-

scale multi-electrode array recordings in the visual cortex of macaques. This tech-

nique allows robust recording from hundreds of sites each day, for up to several

months. In Chapter 2, we train non-human primates to view images, and we record

population neural responses to the same task images we used to collect human be-

havioral data. All procedures using animals are done in accordance with the MIT

Institutional Animal Care and Use Committee.

Here, we deliberately decide to collect monkey neural data to understand human

visual perception. Key neural data cannot currently be obtained in human subjects

at sufficient spatial and temporal resolution, so such data must be obtained in an

animal model. Done correctly (i.e., exact same sensory stimuli, as we do here), the

only assumption is that the relevant neuronal substrates and mechanisms are shared

between the animal model and the human. This monkey-to-human assumption is

widely held and is a key justification for the use of non-human primates in neuro-

science research.

In vision, it is supported by behavioral data showing very close matches be-

tween humans and non-human primates in a range of visual tasks [Shadlen et al.,

1996; Newsome et al., 1989; Britten et al., 1992, 1996; DeValois, 1965, 1978], and by

consistent organization of visual areas in cerebral cortex [Orban et al., 2004] and con-
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sistency between monkey neuronal data and human fMRI in IT [Kriegeskorte et al.,

2008a,b]. Nevertheless, we acknowledge that, for complex tasks that, for example,

heavily rely on human-specific knowledge, the monkey-to-human assumption might

be ungrounded, and thus, we carefully analyze our data to detect any failure in this

assumption.

1.3.3 IT-to-behavior linking mechanism (decoding)

With the large-scale human behavioral and monkey neural response data on the

task using the same images, we systematically explore a large number of explicit

hypotheses about the neural basis of human behavioral reports. Neurons produce

spikes, as opposed to the behavioral report of human subjects. In order to predict

behavioral reports from neural responses, we first convert each neuronal unit's spikes

into per-image scalar value (i.e., rate code spike counting) and concatenate the values

across all units to make the response vector for the image. Then, the per-image

response vector is "decoded" into (predicted) behavioral report by a decoder (e.g., a

simple weighted linear sum), which is an explicit hypothesis of linking mechanism. In

Chapters 2 and 3, we employ this approach to compute many explicit, quantitative

hypotheses that span ideas in the literature, and we ask which ones robustly explain

human patterns of behavioral reports over all visual tasks, and which are ruled out

by the data.

1.3.4 Image-to-IT linking mechanism (encoding)

We aim to characterize the cortical transform that produces the output of high-level

visual areas (IT and V4) as a function of image input in Chapter 4. We start with
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combining' simple classes of models for a single cortical layer; use high-throughput

methods to identify high-performing models on, for example, categorization tasks2;

and test candidate models against empirical metrics that evaluate the models' power

in predicting neural responses; identify places where models succeed or fail to capture

IT and V4 structures; and then use that information to constrain a new round of

model development, building model sophistication as necessary.

As a starting point, and inspired by previous neuronal modeling work David

et al. [2006]; Connor et al. [2007]; Brincat and Connor [2004]; Yamane et al. [2008];

Rust et al. [2006], we limit the constituent operations of cortical processing in a

single layer to a set of simple computational elements, including: (1) a filtering

operation, implementing template matching; (2) a simple nonlinearity, for example,

thresholding; (3) a local pooling/ aggregation operation, such as softmax; and (4) a

local competitive normalization. Each of these operations is in fact a large family of

possible operations, specified by a set of parameters 3 . Each simulated neural unit in

the n-th layer is then modeled as a function of population activity of the (n - 1)-th

layer and specific choice of these computation elements, e.g.,

Simulated unit in the n-th layer =

Poolo, (NormalizeoN (Thresholdo, (FilteroF ((n - 1)-th layer input))))

where the parameters 0, ON, OT, and OF describe each of the constituent operations,

'That is, "stacked cortex" hypothesis in Section 1.2
2We do not optimize directly for e.g. neural responses, as the model is poorly constrained by

the neurophysiology data. This approach is not only computationally more tractable, but also: (1)
a stronger form of generalization; and (2) capable of providing a key insight into how the ventral
steam is "developed." See 1.2 for details.

3For example, fan-in and fan-out, threshold values, pooling exponents, the spatial extent over
which the operations operate, and the size/ shape/content of the templates that are matched
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and the starting layer is simply the input image.

Simulated neural units are compared against recorded monkey neural responses.

This comparison can be characterized at many levels of abstraction, from low-level

neural output prediction to high-level behavioral concordance. A reasonable low level

metric could be the per-unit explain variance across spike counts for images during a

behaviorally-relevant interval (i.e., rate code). At higher level measure, we attempt

to evaluate the population level match by using neural representation similarities, as

in [Kriegeskorte et al., 2008a,b].
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Chapter 2

Inferior Temporal Neuronal Firing

Rates Accurately Predict Human

Core Object Recognition

Performance*

To go beyond qualitative models of the biological substrate of object recognition, we

ask: can a single ventral stream neuronal linking hypothesis quantitatively account

for core object recognition performance over a broad range of tasks? We measured

human performance in 64 object recognition tasks using thousands of challenging

images that explore shape similarity and identity preserving object variation. We

then used multi-electrode arrays to measure neuronal population responses to those

same images in visual areas V4 and IT (Inferior Temporal Cortex) of monkeys. We

*This chapter is modified from a study that has been submitted to Journal of Neuroscience as
of May 2015. This work has been done in collaboration with Najib Majaj, Ethan Solomon, and
James DiCarlo.
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tested leading candidate linking hypotheses and control hypotheses - each postu-

lating how ventral stream neuronal responses underlie object recognition behavior.

Specifically, for each hypothesis we computed the predicted performance on the 64

tasks and compared it to the measured pattern of human performance. All tested

hypotheses based on low and mid-level visually-evoked activity (pixels, V1, and V4)

were very poor predictors of the human behavioral pattern. However, simple learned,

weighted sums of distributed average IT firing rates exactly predicted the behavioral

pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational

structure, finer IT temporal codes, or ones that strictly respect the known spatial

sub-structures of IT ("face patches") did not improve predictive power. While these

results do not reject those more elaborate hypotheses, they suggest a simple, suffi-

cient quantitative model: each object recognition task is learned from the spatially

distributed mean firing rates (100 ms) of -60,000 IT neurons, and is executed as a

simple weighted sum of those firing rates.

2.1 Introduction

The detailed mechanisms of how the brain accomplishes viewpoint invariant object

recognition remain largely unknown, but lesion studies point to the ventral stream

(V1-V2-V4-IT) as critical to this behavior [Holmes and Gross, 1984; Biederman et al.,

1997]. Previous ventral stream studies have focused on understanding the non-linear

transformations between the retina and neural responses [Gallant et al., 1996; Hegd6

and Van Essen, 2000; Pasupathy and Connor, 2002; Connor et al., 2007; Freeman

et al., 2013], including evidence that IT is better at recognition than early repre-

sentations [Hung et al., 2005c; Rust and DiCarlo, 2010], and that IT responses are

partially correlated with perceptual report [Sheinberg and Logothetis, 1997; Op de
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Beeck et al., 2001; Kriegeskorte et al., 2008b]. While such studies tell us much about

visual processing and support the belief that the ventral stream is critical to object

representation, they do not present a single linking hypothesis that is quantitatively

sufficient to explain how ventral stream neural activity accounts for object recogni-

tion performance over all recognition tasks. This study aimed to provide that link for

a subdomain of object recognition - core object recognition [DiCarlo et al., 2012]

- in which images are presented for 100 ms in the central 10 degrees of the visual

field.

To do so, our strategy was to: (1) develop a stringent behavioral assay, (2)

obtain sufficient neuronal sampling, (3) implement specific hypotheses that each

predict perceptual report from neural activity, and (4) compare those predictions

with actual perceptual reports. We addressed each challenge as follows:

1. We characterized human core object recognition performance using large im-

age sets that explore shape similarity and identity preserving image variation,

and assumed that monkey and human patterns of performance are equivalent

(see Discussion). The 64 recognition tasks we used set a high bar, because

performance on them varies widely and is not explained by low-level visual

representations (see below).

2. We measured neuronal responses in visual area V4 and along IT cortex [Felle-

man and Van Essen, 1991] using the same pool of images used in the behavioral

testing. We relied on multi-electrode arrays to monitor hundreds of sites each

tested with multiple repeats of 5760 images (See Methods). Our measured

neuronal population was adequate for quantifying uncertainty with respect to

neuronal sampling and allowed us to extrapolate to larger numbers of neurons.

3. We tested specific quantitative versions of previously proposed hypothetical
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links between neuronal activity and recognition behavior, as well as control

hypotheses. Each neuronal linking hypothesis is a postulated mechanism of

how downstream neurons integrate ventral stream activity to make a decision

about which object label the observer will report in each image [Connor et al.,

1990; Parker and Newsome, 1998; Johnson et al., 20021.

4. Ideally, a sufficient linking hypothesis should predict the perceptual report

for each and every image. Here we focused on predicting the mean human

recognition accuracy d' for all object recognition tasks, where each task contains

many images. Specifically, we compared the predicted pattern of d' with that

measured in humans on the same 64 tasks (which could lead to a range of

outcomes; see Figure 2.1b).

We report here that simple, Learned Weighted Sums of Randomly-selected Av-

erage neuronal responses spatially Distributed over monkey IT (referred to here as

"LaWS of RAD IT") are able to meet that high bar (Figure 2.1b, upper right panel).

In contrast, other linking hypotheses based on neuronal responses from IT or other

visual areas fall short. While this is compatible with previous ideas about IT's role

in object recognition [Tanaka, 1993; Kobatake and Tanaka, 1994; Tanaka, 1997], it

is, to our knowledge, the first demonstration that a single, specific neural linking

hypothesis is quantitatively sufficient to explain behavior over a wide range of core

object recognition tasks.

28



2.2 Results

2.2.1 Quantitative characterization of human

core object recognition

To characterize human core object recognition abilities [DiCarlo et al., 2012], we

designed 64 core object recognition tasks, and obtained an unbiased measure of

human ability (d', see Methods) on each task. Figure 2.3a uses a color scale to

show human d' values for each of the 64 tasks. The wide range of values is not

due to subject variability, as the pattern of values over the 64 tasks from any one

subject is highly correlated with the pattern of values from the pooled results of

all other subjects (median correlation = 0.93, see Figure 2.3b). Instead, it shows

that all humans find some object recognition tasks to be easy (d' ~ 5; corresponds

to an unbiased accuracy of 99.4% percent correct in a "one-vs-rest" classification,

where 50% is chance), others to be more difficult (d' ~ 2; 84.1% correct), and

others to be very challenging (d' ~ 0.5; 59.9% correct). Two unsurprising qualitative

trends are noted. First, human object recognition ability is dependent on shape

similarity: we found high d's for basic-level categorization tasks ("Ccars") vs. "non-

cars", "faces" vs. "non-faces", "animals" vs. "non-animals", etc.; mean d' across all

levels of object view variation = 3.46), lower d's for car identification tasks (easy

subordinate, e.g., "car 1" vs. "not car 1"; mean d' = 1.49), and even lower d's for face

identification tasks (challenging subordinate, e.g., "face 1" vs. "not face 1"; mean

d' = 0.50). Second, human object recognition ability drops as variation in object

view (position, scale, pose) increases: mean d' = 2.39 for low variation, 1.89 for

medium, and 1.50 for high variation. While these results show that humans are

not completely invariant, they confirm that humans tolerate significant amounts of

29



object view variation. Figure 2.3a also shows that tolerance interacts with shape

similarity, with humans being least tolerant for the most difficult subordinate tasks

[Biederman and Gerhardstein, 1993; Tarr and Biilthoff, 1998; Tjan and Legge, 1998].

We note that these measurements of human object recognition ability were designed

and carried out independently of any neuronal data collection.

2.2.2 Candidate linking hypotheses that might predict human

object recognition behavior

A candidate linking hypothesis that aims to predict the observed pattern of human

recognition accuracy must have at least two components: (1) a specification of the

"features" of neural activity that are relevant to behavior (a.k.a. neuronal code), and

(2) a specification of a biologically plausible mechanism that translates that neural

code to a behavioral choice on each trial.

Based on the existing literature, the "features" of neural activity of high inter-

est include: the tissue region where the neuronal responses are found (V4, IT, IT

inside "face patches", IT outside "face patches"), the size of the neuronal population

(number of neural sites or units), the temporal window over which the responses

are considered, the temporal grain of those measurements (e.g., spike timing codes

vs. rate codes), and consideration of the so-called "trial-by-trial" population-wide

correlation of activity. One can imagine many variants and combinations of these

ideas, not all of which can be fully explored in a single study, but we aimed to specify

and then test some of the most widely believed ideas. That is, we used our data to

measure the code specified by each hypothesis, and then we asked how well that code

predicted the measured object recognition performance.

To compute the predictions of each code, a linking hypothesis must also specify
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a biologically plausible mechanism (decoder) that translates the measured (neural

response) features into an object label on each trial. For example a "car" decoder

translates the measured neuronal features into the binary decision: is a car present

in the image or not? In this study, we tested simple linear classifiers (a.k.a. linear

discriminants) each such decoder computes a simple weighted sum of the features

in the proposed population code. While this study is agnostic with respect to how

this type of decoder might be implemented in downstream brain areas (e.g., PFC

[Freedman et al., 2001], perirhinal cortex [Pagan et al., 2013]), it is known to be bio-

logically plausible: each synapse on a hypothetical downstream neuron corresponds

to a "weighting" on part of the neuronal code, and the neuron's output is determined

by the weighted sum of all its inputs-corresponds to a decision by the decoder

(e.g., [Shadlen et al., 1996]). Different types of decoders correspond to different as-

sumptions about how those downstream neurons learn the synaptic weights (e.g., in

humans, this might correspond to learning to map visual inputs to specific words

in the lexicon). In this study, because we were primarily interested in the neuronal

features that best predict adult object recognition performance, our approach was

to start with a simple, well-known decoder, hold that idea, and then later explore

different types of decoders to determine their impact on our conclusions (see Figure

2.10). All performance measures reported in this paper are based on neural responses

to images that were never previously seen by the decoder (a.k.a. cross validation,

see Methods).

In sum, to test each conceptual neuronal linking hypothesis we: (1) instantiated

the idea by measuring the proposed neural code in the population data, (2) learned

a hypothesized downstream decoder (e.g., one for each of the 24 noun labels) that

takes that neuronal code as input and finds the simple weighed sum that gives the

highest performance on that task (see Methods for details), and (3) compute the
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behavioral predictions of that hypothesis for each of the 64 tasks using previously

unseen images.

To the extent that each neuronal linking hypothesis predicts a different pattern of

behavioral performance across the 64 tasks, not all linking hypotheses can accurately

predict the observed pattern of human behavioral performance. A priori, it was also

possible that none of the linking hypotheses would accurately predict the human

pattern of behavior-for example, we may not have sampled enough neurons to reveal

that a hypothesis is sufficient, or perhaps monkey and human performance patterns

are different and thus no linking hypothesis tested on monkey neuronal codes can

predict human patterns of performance. Nonetheless, we reasoned that we could use

the strategy of comparing the predicted vs. actual object recognition performance of

each neuronal linking hypothesis to infer which hypothesis corresponds most closely

to the mechanisms at work in the brain.

The 64 human population d's were the benchmark to which we compared our

candidate linking-hypotheses. To capture the four possibilities for such a comparison

(Figure 2.1b), we defined two metrics, consistency and relative performance. To

quantify the match between the pattern of predicted and human d's, we computed

consistency, the rank correlation between predicted d' and actual human d' across all

64 object recognition tasks. To quantify the match on average between predicted and

actual human d', we computed relative performance, the median ratio of predicted

d' and actual human d' across all 64 object recognition tasks. To estimate the

human subject-to-subject variability for consistency and performance we selected

one subject from each task set and combined the task performance of the three

task sets to produce 64 "individual" human d's (Figure 2.3b). We repeated this

procedure multiple times to construct an ensemble of individual human subjects. We

used this ensemble to compute the median consistency (Spearman rank correlation
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coefficient) and performance (1 by definition) between individual human d's and

pooled population human d's and the 68% confidence intervals around that median.

In total, we tested 944 linking hypotheses, in each case varying the number of

neural sites included, thereby translating that conceptual linking hypothesis into

an exact specification which makes falsifiable predictions. For example, one specific

linking hypothesis we tested was: learn simple weighted sums of the mean firing rates

across 128 IT neural sites, distributed across IT measured in a 70-170 ms time win-

dow, ignoring trial-by-trial correlations (Figure 2.4). To facilitate visual inspection,

the behavioral predictions of this linking hypothesis are strung out in a single color

coded vector (Figure 2.4c). Most candidate linking hypotheses produced different

predicted patterns of behavioral performance; sometimes these differences were small,

but often they were dramatic (see Figure 2.5a for examples). For visual comparison,

Figure 2.5a also shows human performance on the same 64 object recognition tasks

(data from Figure 2.3a, replotted), and it illustrates that some candidate linking

hypothesis lead to very poor predictions of the pattern of human performance, while

others lead to surprisingly good predictions. Next we ask: which, if any, candidate

neuronal linking hypotheses predict the human pattern of behavior over all 64 tasks

(Figure 2.3a)?

2.2.3 A specific monkey IT based linking hypothesis predicts

human core object recognition behavior

Before delving into the large space of linking hypotheses that we explored, we start

by summarizing our main result. Our analyses revealed that Learned Weighted Sums

of Randomly-selected Average neuronal responses spatially Distributed over IT (here

termed the LaWS of RAD IT linking hypothesis) produced a pattern of behavioral
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performance that perfectly predicted the observed pattern of human behavioral per-

formance. Figure 2.4 shows the predictions of a specific instance of the LaWS of

RAD linking hypothesis based on the following specification: (1) randomly chosen

128 sites of (2) IT, with the response (3) averaged over a (4) 70-170 ms time win-

dow after image onset. The pattern of predictions for the 64 recognition tasks is

statistically indistinguishable from the pattern of human behavior (Figure 2.3a) and

is clearly superior to an identical LaWS of RAD linking hypothesis based on 128 V4

neuronal sites (comparisons quantified in Figures 2.5a,b and 7).

In total, we collected the responses of 168 spatially separate neuronal sites in IT

(Ml: 58, M2: 110) and 128 sites in V4 (MI: 70, M2: 58). We pooled neuronal

sites across IT because we did not see any strong differences between its subdivision

(PIT, CIT, AIT; see Figure 2.9). We measured each site's spiking response pattern

to each of 5760 images, drawn from the same pool used in the human psychophysical

testing. Each image was presented at least 28 (typically > 47) times per site (i.e. a

total of ~250,000 visual stimulus tests at each site). We could not collect this large

volume of data in a single day-it required -30 days of recording in each animal. The

initial linking-hypotheses we explored were based on multi-unit activity (MUA) and

assumed stability of that measure at each recording site over the 30 recording days

[Chestek et al., 2011]. We then examined how our main finding might change if we

used single unit response data instead, and examined our assumption of the stability

of each recording site over days (see Methods and Figure 2.8). We also considered

the fact that we only sampled a small number of IT neuronal sites (relative to the

millions of neurons in IT cortex). While these factors are important for estimating

the number of neurons needed to predict behavior, they turn out to have little impact

on our main finding.
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2.2.4 Quantifying the goodness of a linking hypothesis:

consistency

Following previous work [Hyvarinen et al., 1968; Newsome et al., 1989; Connor et al.,

1990], we reasoned that the neuronal linking hypotheses that are most likely to cor-

respond to the mechanisms at work in the brain are those that produce the most

quantitatively consistent relationship with the human behavior (i.e. the linking hy-

pothesis's pattern of colors in Figure 2.5a should best match the pattern of colors in

Figure 2.3a). To quantify that consistency, we computed Spearman's rank correla-

tion coefficient over the 64 d's [Yoshioka et al., 2001].

The most stringent application of this method is that, for a linking hypothesis to

remain viable, it must produce behavior that is indistinguishable from the behavior of

individual subjects. Based on this stringent criterion, all V4-based linking hypotheses

we tested failed to accurately predict the observed human behavioral pattern (See

Figures 2.5b and 2.6), as did all V1-based linking hypotheses. For comparison,

Figure 2.5a,b also shows the predictions of linking hypotheses based on populations of

baseline computer vision features, all of which failed to predict the pattern of behavior

(see Methods for details). Despite our best efforts, we found that the V4 and VI

based linking hypotheses could not be "rescued" by increasing the number of neurons

in the linking hypothesis, or by changing the type of decoder (i.e. learner; Figures

2.5 and 2.6). We also considered the possibility that V4-based linking hypotheses

might have been handicapped by receptive field limitations of our neural sampling.

In particular, we narrowed our images to only those with objects presented in the

contralateral field or at the center of gaze. While V4 populations showed the expected

pattern of higher d's for contralaterally presented objects, neither test substantially

improved the ability of V4-based linking hypotheses to predict the pattern of human
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behavior (see Methods), even though these same V4 populations often outperformed

humans in some of the behavioral tasks (see below). These results do not argue that

VI and V4 play no role in object recognition behavior. Instead, they suggest that

neural representations (a.k.a. codes) conveyed by those areas do not directly underlie

object recognition behavior (compatible with previous suggestions [Sheinberg and

Logothetis, 1997; Brincat and Connor, 2004; Rust and DiCarlo, 2010; DiCarlo et al.,

20121. These results also show that the approach we employed, the combination of

images and tasks, is a powerful test of neuronal linking hypotheses that cannot easily

be "passed" by lower level (e.g., VI) or even mid-level (V4) representations.

In contrast to the results in V4 and (simulated) V1, we found that some IT-based

linking hypotheses accurately predicted the behavioral pattern of human observers.

For example, based on previous work [Hung et al., 2005c], one of the first specific

linking hypotheses we tested was: the mean firing rate of each IT neurons in a 70-

170 ms time window, where IT neurons are sampled in a distributed manner over IT

cortex (i.e. ignoring IT spatial sub-structure such as "face-patches"), and ignoring

correlations across the population (Figure 2.5d). We tested this linking hypothe-

sis using different numbers of IT neural sites, and we were surprised to find that,

once we included ~100 sites, this IT-based linking hypothesis was not only a more

accurate predictor of human behavior than other hypotheses (e.g., V4-based link-

ing hypotheses), but that its predictions were statistically indistinguishable from the

measured pattern of human d's (linking hypotheses that pass into the gray region in

Figure 2.5b). Following up on this result, we also found this simple IT-based linking

hypothesis continued to accurately predict the pattern of human object recognition

ability, even when we varied: the number of neuronal sites participating in the link-

ing hypotheses (> 64 sites), the type of decoder used, and the training provided to

the decoder (Figures 2.7, 2.8, and 2.10).
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We explored several other IT-based linking hypotheses that have been suggested

in the literature. First, we considered the idea that trial-by-trial correlations in

neuronal firing across the IT population might be important to consider when asking

if a neuronal linking hypothesis is consistent with behavior [Zohary et al., 1994;

Averbeck et al., 2006; Liu et al., 2013]. Because we had collected responses at many of

our neuronal sites simultaneously, we were able to compare neuronal codes produced

across the population on actual single trials, with codes produced on artificial single

trials in which any population correlation structure is removed by shuffling the trials

(e.g., so the responses of IT unit 1 on presentation p of image i are considered along

with the responses of IT unit 2 on presentation q of image i). We found that a

LaWS of RAD IT linking hypothesis that maintained the trial-by-trial population

correlation structure had no increased (or decreased) ability to explain the pattern

of human behavior, even when lowering the number of neurons so that we might be

able to see that increase (Figures 2.7-8).

Second, we considered the idea of finer grained temporal codes. To do this, we

took the simple 70-170 ms post-stimulus time window (above) where the LaWS of

RAD IT linking hypothesis was highly predictive, and we broke it into successively

smaller and smaller time windows, giving each learned decoder full access to the neu-

ral response in all such time windows. Because all of the same spiking information

in these finer-grained temporal codes is still available to each decoder, this approach

can only maintain or increase performance on each of the 64 behavioral tasks (until

data limits are reached). However, because accuracy on some tasks might improve

relative to others, it could either increase, decrease, or have no effect on, the consis-

tency of the pattern of performance over all 64 human behavioral tasks. The results

showed that, relative to the simple 100-ms window mean firing rates in the LaWS

of RAD linking hypothesis, these more complex, finer-grained IT temporal codes led
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to no measurable change in the linking hypothesis's consistency with the pattern of

human behavior.

Third, we considered modular IT linking hypotheses, where different sub-regions

of IT are devoted exclusively to certain kinds of tasks. The strongest experimentally-

motivated example of a modular linking hypothesis is that certain spatial regions

of IT (face "patches" in monkeys; FFA, OFA in humans) are devoted to certain

types of "face-related" tasks, such as face discrimination (one face vs. others) and

face detection (faces vs. other categories). Our data allowed us to examine such

hypotheses because 19 of our 64 tasks are face-related tasks, and we could label

~19% of our IT neural sites as likely belonging to one or more of the 6-10 IT face

patches (based on the high purity of these regions for units that have high face

vs. non-face object selectivity [Tsao et al., 2006]). We first note that our findings

are consistent with weaker forms of modularity of face processing, such as spatial

clustering of neural sites that are most important for face detection. Indeed, it

was not surprising (as it is nearly by definition) that, of the IT sites that were

weighted most strongly by the decoders (i.e. the top 5% most heavily weighted)

in our three face detection tasks, 87.5% of those were face-patch-likely sites. More

interestingly though, we also found that only 12.5% of the most highly-weighted

sites in our 16 face discrimination tasks were face-patch-likely sites, arguing that

face discrimination might not rely exclusively on IT face-patch tissue. To test a

stronger form of the face modularity hypothesis using the consistency approach of

this study, we asked if neuronal linking hypotheses based only on the face-patch-likely

population of sites were more consistent with the pattern of human performance on

face-related behavioral tasks (compared with linking hypotheses based on all of IT

or based only on face-patch-unlikely populations within IT; Figure 2.5e). We found

that this did not significantly change the accuracy of the behavioral fits-if anything,
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the trend suggested a decreased accuracy. In sum, while our results are consistent

with weaker forms of the face-modularity linking hypothesis (i.e. face detection tasks

are best performed by "face (detection) neurons" which are spatially clustered [Tsao

et al., 2006; Issa and DiCarlo, 20121, our data find no support for the stronger form of

the face-modularity hypothesis (i.e. all face-related tasks exclusively depend on the

responses of neurons in face patches). However, our data do not falsify that strong

form either.

2.2.5 Goodness of a candidate linking hypothesis:

performance

While the consistency metric evaluates the similarity between the pattern of d's

predicted by each candidate linking hypothesis and the measured human d's, we

next asked: what number of neurons is required for a LaWS of RAD IT linking

hypothesis to account for the actual d's across all our 64 tasks? In particular, one

can imagine neuronal linking hypotheses that are highly predictive of the pattern

of d's over the 64 tasks (as in Figure 2.5), but with absolute levels that are far

below the measured human d's (see Figure 2.1b for a schematic demonstration of

correlated but unequal d's). Indeed, we found examples of such linking hypotheses

(see blue points in Figure 2.6 that are within the top gray band, but outside of the red

dashed circle). We found that, for both V4 and IT-based codes, once the number of

neural sites was greater than ~100, measures of consistency were largely insensitive

to further increases in the number of neural sites in the code. However, performance,

the median of the ratio between predicted and actual (human) d' across all 64 tasks,

of any specific neural code was strongly dependent on the number of neuronal sites.

For example, while we found it effectively impossible to vary the number of neural
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sites to make, for example, a V4-based linking hypothesis match the human pattern

of performance (Figure 2.7b), for many V4-based linking hypothesis, we could, by

extrapolation, estimate the number of neurons that could, in principle, match the

median human d' over the 64 tasks.

2.2.6 Effect of number of units on consistency and

performance

We systematically explored the effect of changing the number of neural sites on

consistency and performance. This is illustrated in Figure 2.7 for two families of

linking hypotheses-the simple LaWS of RAD IT linking hypothesis family reviewed

above, and the simple LaWS of RAD V4 linking hypothesis family. For both families,

median predicted performance increased as the number of sites increased, however,

only the LaWS of RAD IT linking hypothesis became fully consistent with human

performance. That is, with 128 neuronal sites (or more), the LaWS of RAD IT linking

hypothesis in Figure 2.7 perfectly predicted the entire pattern of performance over

all 64 tasks in that the Spearman correlation (Figure 2.7a,b) was indistinguishable

from the human-to-human consistency (the horizontal dotted line in Figure 2.7b;

the gray region indicate the variability of individual human subjects).

Figure 2.7a also illustrates why the non-IT-based linking hypotheses we tested

failed to explain the pattern of human performance. In particular, it shows that the

LaWS of RAD V4 linking hypothesis fails both because it cannot achieve high d's on

some tasks (e.g high variation tasks, green filled circles in Figure 2.7a), and because it

achieves d's that are better than humans in other tasks (e.g., some low variation tasks,

green open circles in Figure 2.7a). Increasing the number of neurons participating

in the LaWS of RAD V4 linking hypothesis cannot fix this obvious discrepancy with
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behavior, and the result argues against the idea that we did not collect sufficient

information from V4 neurons. In sum, distributed, learned V4 population rate codes

do better than humans on some particular behavioral tasks, but they fail to produce

the human pattern of d's over all 64 tasks.

2.2.7 Sufficient single-trial, single-unit population

linking hypotheses

As shown in Figure 2.7, both the consistency and performance of IT-based linking

hypotheses are dependent on the number of neural sites assumed to be participating

in the behavior. The plot shows that only a small number (hundreds) of neural sites

are needed before the consistency of LAWs of RAD IT hypothesis plateaus. That is,

that linking hypothesis achieves a pattern of performance that is indistinguishable

from humans after it includes -100 sites (y-axis in Figure 2.7b), and the inclusion

of more neural sites does not improve consistency. However, another constraint

on the number of neuronal sites comes from how the mean performance of a specific

linking hypothesis compares with the mean performance of human subjects (x-axis in

Figure 2.7b; see the caption for the definition of performance). Unlike consistency,

performance is an unbounded metric that depends on signal-to-noise ratio. Too

few neuronal sites lead to median predicted performance that is below observed

performance, and too many lead to performance that is superior to behavior. This

offers the opportunity to find the number of neural sites where the linking hypothesis

matched human performance (Fig. 2.1b, upper right). However, to estimate that

number of neurons, it becomes very important to consider exactly how the hypothesis

is implemented and its relationship to brain circuitry. In particular, we and others

assume that neurons in downstream brain areas can listen to the spikes of some

41



number of single neurons (e.g., neurons in IT) and produce, on each behavioral trial,

a guess as to the object label (the task we asked the humans to perform, Figure

2.3a).

In that regard, it is critical to note that the neural data and analyses used to

generate Figures 2.4-7 differed from that assumption in two ways: (1) we did not

distinguish single units from multi-units, and (2) we averaged the responses of each

neural site over many repetitions (typically 50, minimum 28). Neither of these details

substantially altered our conclusions about the behavioral consistency of LaWS of

RAD IT linking hypotheses. However, they are important for estimating how many

single neurons would be needed to match human level accuracy on single image

presentations.

Figure 2.8a examines the difference between multi-unit activity (MUA) and the

activity of sorted single units (SUA). Linking hypotheses based on single-unit and

multi-unit IT data shared highly comparable consistency-performance relationship,

except that single-unit linking hypotheses required approximately two times as many

neural sites to reach a similar level of consistency or performance. This similarity

is perhaps surprising (see Discussion), but is compatible with previous work that

examined the same issue (Hung et al., 2005c].

Figure 2.8b explores the issue of averaging and compares the results of a simple

model of single trial decoding to the results of decoding while averaging across all

available trials. While we did not expect this analysis choice to change our conclu-

sions about the behavioral consistency of LaWS of RAD IT linking hypotheses, we

expected that it would affect the estimated number of IT neurons that must partic-

ipate in that linking hypothesis to achieve human-level performance on single trials

(because averaging improves the single-to-noise of each neuronal site). The single-

trial analysis in Figure 2.8b gives a consistency-performance relationship similar to
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that of average-trial analysis if ~60 times as many IT units are provided. That is, we

estimate that -60 independent IT neural sites (operating in parallel) are sufficient

to stand in for a single, "repetition-averaged" neural site, and this estimate accounts

for how neuronal variability ("noise") affects both the decoding (e.g., as in [Shadlen

et al., 1996]) and the learning of the decoder (see more below).

Taken together, the analyses presented in Figure 2.8 converge to suggest that spike

counts from -60,000 (529 rep-averaged IT multi-unit (see Fig. 2.7b) x -2 x ~ 60)

distributed single units in IT cortex can, when read with simple, biologically-plausible

downstream neural decoders, perfectly predict both the behavioral pattern of per-

formance and the median level of performance over all 64 tasked object recognition

tasks. This number is an extrapolation, as our methods are not yet capable of

recording that many IT neurons, and other factors such as "noise correlation" might

alter that estimate (see Discussion). Furthermore, because performance depends on

parameters of how the code is learned to be read (decoded), this estimate could be

somewhat higher or lower, as analyzed in detail in Figure 2.10. However, we note

that this number is far less than the total number of neurons estimated to project

out of IT to downstream targets (~10 million [DiCarlo et al., 20121).

2.2.8 Effect of time window on consistency

To further explore the precise parameters of the LaWS of RAD IT family of linking

hypotheses, we varied the starting time and duration of the time window over which

the mean rate was read from the IT population (Figure 2.7c,d). We found that the

LaWS of RAD IT linking hypothesis begins to be highly consistent with behavior

at a center latency of 100 ms (time window of [50, 150] ms after image onset),

and that consistency remains at a high plateau for nearly 100 ms before dropping
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off. During this entire plateau, the predicted pattern of performance of this linking

hypothesis is statistically indistinguishable from the human pattern of performance.

For comparison, all LaWS of RAD V4 linking hypotheses we tested failed to pass

this consistency test for all temporal windows.

2.3 Discussion

We propose a framework for comparing neural responses to behavior. Instead of

qualitatively comparing performance on a selected set of conceptual tasks, we de-

vised a "Turing" test-a battery of behavioral tasks that explore the range of human

subjects' capabilities in core object recognition. This operational definition of object

recognition provided a strong consistency test by which we could quantitatively eval-

uate different neuronal linking hypotheses that might explain behavior. As expected,

many neural (and non-neural) linking hypotheses failed to predict object recognition

behavior, including: Pixel-based codes, Vi-like-based codes, multiple Computer Vi-

sion codes, V4-based codes, and several IT-based codes. However, we were surprised

to find that simple, learned weighted sums of randomly-selected average responses of

distributed IT neurons (LaWS of RAD IT linking hypothesis family) perfectly pre-

dicted the human pattern of behavioral performance across all 64 recognition tasks.

More precisely, the data argue that a simple rate code (100 ms time scale, [70, 170]

ms onset latency) read out on single-trials, learned from a distributed population of

-60 thousand single IT units can fully explain both the pattern and the magnitude

of human performance over a large battery of recognition tasks.

Initially, we were surprised that this simple linking hypothesis is virtually perfect

at predicting the pattern of performance. Nevertheless, we explored other ideas mo-

tivated from theoretical considerations [Averbeck et al., 2006] and neuronal response
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findings [Sugase et al., 1999; Tsao et al., 2006]. First, we found that the LaWS of

RAD linking hypothesis was not strongly affected by trial-by-trial correlational struc-

ture in the population responses (Figure 2.5d). We suspect that this is due to the

dimensionality of our neuronal populations (>100) combined with the fact that cor-

relational "noise" structure can either increase and decrease performance depending

on the layout of the task-relevant "signal" structure in the population representation

[Averbeck et al., 2006]. Second, we explored finer-grained temporal codes (Figure

2.5c), which revealed no change in the accuracy of the behavioral predictions. We

are careful to note that our results do not imply that trial-by-trial correlational struc-

ture is not a limiting factor for some tasks (e.g., [Mitchell et al., 2009; Cohen and

Maunsell, 2010]), or that finer-grained temporal neuronal codes in IT are falsified by

our data. Instead, our results argue that such ideas do not yet add any measurable

value for the real-world motivated set of object tasks explored here.

Our study was not aimed to improve upon the previously documented spatial-

clustering of "face neurons" in IT [Desimone et al., 1984b; Tsao et al., 2006; Issa

and DiCarlo, 2012]. However, we did explore the idea that IT is not best considered

as a distributed neural representation, but that it consists of at least two spatially

segregated parts "face patches" that are a priori devoted to "face" tasks (part A)

and other parts that are devoted to non-face tasks (part B). Our results are entirely

consistent with the hypothesis that "Part A" neurons are heavily weighted in adult

face detection tasks. That is, prior to learning face detection, downstream neurons

accept inputs that are distributed over all of IT, but in the adult, learned state, those

downstream readers will most heavily weight neurons that are best at supporting

face detection. This hypothesis is consistent with the idea (e.g., [Tsao et al., 2006])

that "face neurons" (and "face patches") are heavily causal in adult face detection

behavior [Afraz et al., 2006]. We also considered a stronger form of domain-specific
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face processing: that all face related tasks causally depend only on neurons in part

A, while all other tasks causally depend on neurons in part B [Tsao et al., 2006]. We

tested this idea by restricting the parts of IT the downstream decoders are allowed

to read from-decoders for face-related tasks can read only from neurons in part A

and decoders for all other tasks can read only from part B. Our results showed that

such parcelling did not improve the accuracy of the behavioral predictions. Instead,

the (non-significant) trend was in the wrong direction (Figure 2.5e). As such, our

results do not support the strong face modularity hypothesis, but they do not falsify

that idea either.

We are not the first to compare neural responses to object recognition behavior.

Using shape similarity judgements some studies have shown agreement between neu-

ral representation in monkey IT and perceptual "distances" between parameterized

shapes in both monkeys and human [Op de Beeck et al., 2001; Kriegeskorte et al.,

2008b]. While pioneering, there is a limit to such qualitative comparisons. Primarily,

there is a question as to whether shape similarity is a good surrogate for recognition

behavior. But even if that assumption was granted, previous work did not attempt

to rule out V4 or even VI as viable candidates, nor did it attempt to distinguish

among the large space of IT-based linking hypotheses.

Other studies focused on documenting IT's computational prowess at invariant

object recognition [Hung et al., 2005c; Rust and DiCarlo, 2012]. Absolute accuracy

was used as the metric, with IT neural populations having a clear advantage over

pixels [Hung et al., 2005c] and over V4 [Rust and DiCarlo, 2010] in discriminating be-

tween objects across limited changes in view. Here we show that V4-based rate codes

are unlikely to directly underlie all object recognition tasks because they outperform

humans on some tasks and underperform in others. This points out the fragility of

using performance on a single task as a metric for determining which neuronal linking
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hypothesis underlies behavior. Absolute performance strongly depends on parame-

ters that control the noisiness of a neuronal population (e.g., number of neurons),

making it very difficult to expose the key factors of interest (i.e. which neurons and

which features of the neuronal response). For example, we here replicate previous

work [Zohary et al., 1994; Hung et al., 2005c; Cohen and Maunsell, 2009; Rust and

DiCarlo, 2010] showing that increasing the number of neurons improves performance

on our recognition tasks, but we now show that it keeps the relationships between

easy and difficult tasks the same. Thus, the pattern of performance across many

tasks emerges as a more robust measuring stick by which we can evaluate different

neuronal codes [Johnson et al., 2002].

Our comparison of non-human to human primates deviates from approaches that

combine neural recording with behavioral testing in the same subjects [Britten et al.,

1996; Luna et al., 2005; Cohen and Maunsell, 2011]. It was motivated by our desire

to get both high fidelity behavioral and neuronal population data, a fruitful first-line

strategy when a perceptual domain is poorly understood (e.g., [Mountcastle et al.,

1969; Johnson et al., 2002]). Such comprehensive characterization of object recog-

nition ability is difficult and time consuming in non-human primates, and current

human fMRI lacks the appropriate spatial and temporal resolution necessary for

characterizing neuronal population at the level we accomplished here (But see [Kay

et al., 2008; Naselaris et al., 2009]).

The fact that monkey neuronal population responses can accurately predict hu-

man performance patterns adds evidence to the assumption of highly conserved vi-

sual capabilities across the two species [Merigan, 1976; Sigala et al., 2002]. Fur-

thermore, our results show that simple, learned weighted sums of randomly-selected

distributed average responses (LaWS of RAD) in non-human primate IT are suffi-

cient to account for human performance, even on object categories outside the realm
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of typical monkey experience (e.g., planes, cars, boats, etc.). We interpret this to

mean that primates share a generic neural representation of "shape" [Kriegeskorte

et al., 2008b; Zoccolan et al., 2009], suitable for dealing with the difficulties of identity

preserving image transformations without being restricted to object categories and a

lexicon that is shaped by each subject's real world experience [Freedman et al., 2001].

Specifically, our results argue that primates share a non-semantic IT visual "feature"

representation upon which semantic understanding can be learned, and constitutes

a performance bottleneck in primate object recognition. This inference is agnostic

as to how much of this feature representation is innate, versus learned during the

statistically shared postnatal experience of primates [Li and DiCarlo, 2008].

Our results set the stage for new directions in linking neurons to object behavior.

One natural extension is to increase the scope of our images and tasks and explore

non-categorical visual properties, such as position, size, and viewpoint variation.

This avenue of research is studied in Chapter 3.Another obvious direction is to obtain

more precise behavioral data for the images we already tested neurally to look closely

at the ability of the LaWS of RAD IT linking hypothesis to predict the image-by-

image confusion patterns in humans. Both directions will facilitate more stringent

neuronal-to-behavioral comparisons, and increase the resolution at which neuronal

linking hypotheses can be distinguished. Eventually, more comprehensive behavioral

tests might force us to turn to more complex underlying neural codes that were

not necessary here (e.g., fine-timing or synchrony based codes [Engel et al., 20011),

and might open the door for investigating a role for feedback in tasks that require

inference (e.g., [Kersten et al., 2004; Oliva and Torralba, 2006]).

More comprehensive behavioral assays will necessitate conducting them in both

humans and non-human primates to determine when the cross-species assumption

breaks down. As in other sensory areas [Connor et al., 1990; Shadlen et al., 1996;
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Cohen and Maunsell, 2010], simultaneous recording from behaving animals will re-

veal a better estimate of the neuronal population size needed for object recognition,

and produce accurate trial-by-trial performance predictions. The LaWS of RAD

IT linking hypothesis reported here brings us a step closer to predicting the im-

pact of direct manipulation of IT neurons on object recognition behavior. In such a

framework future investigations of the behavioral changes in recognition induced by

artificial neuronal manipulation (e.g., [Afraz et al., 2006; Verhoef et al., 2012] can be

used to further refine IT based linking hypotheses.

This study sidesteps the important question of how IT neuronal responses are

produced. Ongoing work is systematically characterizing the non-linear transforma-

tions from retina, through V1, V2, and V4 [Pasupathy and Connor, 1999; Hegd6 and

Van Essen, 2000; Rust and DiCarlo, 2012; Freeman et al., 2013; Yamins*, Hong*,

Cadieu, Solomon, Seibert, and DiCarlo, 2014]. Those approaches need to be com-

bined with the framework presented here to achieve an end-to-end understanding

of the neuronal mechanisms that support core object recognition behavior [DiCarlo

et al., 2012]. We explore this in Chapter 4.

2.4 Methods

2.4.1 64 object recognition tasks

To characterize human object recognition abilities (which we assume are similar to

those of monkeys, see Discussion), we designed a behavioral assessment tool, images

and tasks that span the range of human performance in core object recognition. To

explore shape similarity, we used objects that can be parsed into basic-level cate-

gories with multiple exemplars per category, allowing us to test human performance
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on coarse and fine discriminations. To explore identity preserving object transfor-

mations - the "invariance problem," a hallmark of object recognition [DiCarlo and

Cox, 2007; DiCarlo et al., 2012] - we used ray tracing software to photo-realistically

render each object while parametrically varying, its position, size and pose. Finally,

to insure that the tasks were challenging for current computer vision algorithms, we

placed each object on a randomly chosen natural background that was uncorrelated

with its identity [Pinto et al., 2011]. To focus on the so-called "core object recogni-

tion" -recognition during a single, natural viewing fixation [DiCarlo et al., 2012] -

each task image was presented as an 8 degree patch directly at the center of gaze for

100 ms. The culmination of our effort was a set of 64 core object recognition tasks

(24 noun labels, each at 2 or 3 levels of variation; see Figure 2.3) that constitutes a

reasoned attempt at exploring the power of human object recognition. We do not

claim this to be an exhaustive characterization of human object recognition, but as

an initial operational definition that can be sharpened and extended to explore other

aspects of object recognition and shape discrimination (see Discussion).

2.4.2 Image generation

High-quality images of single objects were generated using free ray tracing software

(http: //www . povray. org; [Plachetka, 1998]). Image consisted 2D projections of

3D models (purchased from Dosch Design and TurboSquid) added to random back-

grounds. No two images had the same background, in a few cases the background

was, by chance, correlated with the object (plane on a sky background) but more

often they were uncorrelated, with the background on average giving no information

about the identity of the object.

This general approach allowed us to create a database of 5760 images, based on
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64 objects. The objects were chosen based on eight "basic-level" categories (animals,

boats, cars, chairs, faces, fruits, planes, tables), with eight exemplars per category

(BMW, Z3, Ford, ... ). By varying six viewing parameters, we explored three types

of identity preserving object variation, position (x and y), rotation (x, y, and z), and

size. The parameters were varied concomitantly, each was picked randomly from a

uniform range that corresponded to one of three levels of variation (low, medium,

and high). For the low variation image set the parameters were fixed and picked

to correspond to a fixed view and size of each object centered on the background.

For example, cars were presented in their side view, while faces were presented with

a frontal view. We did vary the backgrounds however, so that each object was

presented on 10 randomly picked backgrounds resulting in a total 640 images. For

medium and high variation, we generated 40 images per object resulting in 2560

images per variation (total 5760 = 640 + 2 x 2560). Each image was rendered with

a pooled random sample of the 6 parameters and presented on a randomly picked

background. In sum, object view parameter ranges for the three variation levels

were:

" Low variation: All objects placed at image center (x = 0, y = 0), with a

constant scale factor (s = 1) translating to objects occluding 40% of image on

longest axis, and held at a fixed reference pose (rxy = rxz = ryz = 0).

* Medium variation: Object position varies within one-half multiple of total

object size ( xJ, lyj < 0.3), varying in scale between s = 1/1.3 ~ .77 and s = 1.3,

and between -45 and 45 degrees of in-plane and out-of-plane rotation (< 450).

" High variation: Object position varies within one whole multiple of object

size (JxJ, y < 0.6), varying in scale between s = 1/1.6 - .625 and s = 1.6, and

between -90 and 90 degrees of in-plane and out-of-plane rotation (< 900).
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2.4.3 Human psychophysics and analysis

A total of 104 observers participated in one of three visual task sets: an 8-way clas-

sification of images of eight different cars, an 8-way classification of images of eight

different faces, or an 8-way categorization of images of objects from eight different

basic-level categories. Observers completed these 30 to 45 minute tasks through

Amazon Mechanical Turk, an online platform where subjects can complete experi-

ments for a small payment. All the results were confirmed in the lab setting with

controlled viewing conditions, and virtually identical results were obtained in the lab

and web populations (Pearson correlation = 0.94 0.01).

Each trial started with a central fixation point that lasted for 500 ms after which

an image appeared at the center of the screen for 100 ms, following a 300 ms delay, the

observer was prompted to click one of 8 "response" images that matched the identity

or category of the stimulus image. The image presentation time (100 ms) was chosen

based on results showing that core object recognition performance increase quickly

such that accuracy for that presentation time is within 92% of performance at 2

seconds (see Figure S2.2 in [Cadieu et al., 2014]). Results were very similar with

slightly shorter (50 ms) or longer (200 ms) viewing duration. To enforce the need

for view tolerant "object" recognition (rather than image matching) each response

image displayed a single object from a canonical view, without background. After

clicking a response image, the subject was given another fixation point before the

next stimulus appeared. No feedback was given. The "response" images remained

constant throughout a block of trials that corresponded to one set of tasks (i.e., an

8-way categorization block contained eight embedded binary tasks).

Human object recognition performance was determined by computing a d' for each

binary task. Specifically, for a given 8-way task set and variation level (e.g., basic-
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level categorization at hard variation or car subordinate identification at medium

variation), we constructed the raw 8 x 8 confusion matrix for each individual observer.

Then, we computed the population confusion matrix by taking the sum of these raw

confusion matrices across individuals. From the population confusion matrix, we

computed the d' for each task of recognizing one target class against seven distractor

classes (a.k.a. "binary" task). We obtained 72 d' measurements by performing this

procedure over all combinations of three task sets and three variation levels (3 task

sets x 8 targets per task set x 3 levels of variation). We excluded face-identification

at high variation because none of the 8 d's were statistically distinguishable from

random guessing, leaving a total of 64 behavioral tasks for the main results presented.

Inclusion of these 8 d's had no significant effect on the results. All human studies were

done in accordance with the MIT Committee on the Use of Humans as Experimental

Subjects.

Typically each human observer only participated in one of the three task sets

(basic-level categorization and car and face subordinate-level identification task set;

4 out of 104 subjects participated in both the car and face task sets). For the

8-way basic-level categorization task set, each observer (n = 29) judged a subset

of 400 randomly sampled images at each variation level (400 out of 640 for low

variation and 400 out of 2560 for medium and high variation levels). For the 8-way

car (n = 39) and 8-way face (n = 40) identification task sets, each observer saw all

80 images at the low variation level and all 320 images at both medium and high

variation levels. The presentation of images were randomized and counterbalanced

so that the number of presentations of each class was approximately the same in the

given variation level. Variation levels were presented in successively harder blocks,

so observers would see a full set of low variation ("easy") images before moving to

medium and then high variation ("difficult") images. On a few additional observers
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(n = 10) we interleaved the different task sets (basic categorization, car and face

identification at low variation) and we saw no significant effect of interleaving on

the pooled population d's (the Pearson correlation coefficient between blocked and

interleaved was 0.903 0.057; see the next paragraph for the procedures to compute

the pooled population d's).

While no single observer judged all the images in our image database, our pool of

human observers did. To compute the pooled population human d's, we started with

each observer's data, and computed a 8 x 8 confusion matrix for each variation level.

We then constructed the population-confusion matrix for each task set and variation

level (e.g., 8-way low variation car identification) by summing across individual sub-

ject's confusion matrices. We used standard signal detection theory to compute pop-

ulation d's from the pooled population confusion matrix (d' = Z(TPR) - Z(FPR),

where Z is the inverse of the cumulative Gaussian distribution function, and TPR

and FPR are true positive and false positive rates respectively).

The 64 human population d's were the benchmark to which we compared our

candidate linking-hypotheses. To capture the four possibilities for such a comparison

(Figure 2.1b), we defined two metrics, consistency and relative performance. To

quantify the match between the pattern of predicted and human d's, we computed

consistency, the rank correlation between predicted d' and actual human d' across all

64 object recognition tasks. To quantify the match on average between predicted and

actual human d', we computed relative performance, the median ratio of predicted

d' and actual human d' across all 64 object recognition tasks. To estimate the

human subject-to-subject variability for consistency and performance we selected

one subject from each task set and combined the task performance of the three

task sets to produce 64 "individual" human d's (Figure 2.3b). We repeated this

procedure multiple times to construct an ensemble of individual human subjects. We
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used this ensemble to compute the median consistency (Spearman rank correlation

coefficient) and performance (1 by definition) between individual human d's and

pooled population human d's and the 68% confidence intervals around that median.

To investigate the effect of image subsampling on our results, we computed the

sampling induced standard error of the pooled population d's on the basic-level cate-

gorization task set. The standard error was minimal (median = 2.1% of correspond-

ing d') since the entire image set was presented multiple times to our large pool of

observers (n = 29). Assuming the effect of this error to be additive and independent,

the predicted consistencies of a linking hypothesis would be increased by ~0.15% if

each of our observers judged the entire 5760 image in the basic-level categorization

task set.

We also generated two predictions on how consistency might improve if we had

collected human data on all images. If we assume that the human-to-human consis-

tency will eventually be 1 as the number of presented images increases to infinity,

the Spearman-Brown prediction formula allows us to estimate the human-to-human

consistency and its confidence interval (CI) as if we had collected human data on all

images in our image set. This assumption resulted in an increase of only ~1.9% to

the human-to-human consistency and the CI results presented in the main text. If

we assumed a more reasonable asymptote of 0.95, the increase was only -0.59%. In

combination the above two analyses suggest that image subsampling in the human

basic-level categorization task set had no significant effect on our main results.

2.4.4 Animals, surgeries, and training

The non-human subjects in this experiment were two adult male rhesus monkeys

(Macaca mulatta, 7 and 9 kg). Before training we surgically implanted each monkey
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with a head post under aseptic conditions. We monitored eye movement using video

eye tracking (SR Research EyeLink II). Using operant conditioning and juice reward,

our two subjects were trained to fixate a central red square (0.250) within a square

fixation window that ranged from 10 to 2.5' for up to 4s. Outside of maintaining

fixation, no additional attempt was made at controlling spatial or feature attention.

We recorded neural activity using 10x 10 micro-electrode arrays (Blackrock Mi-

crosystems). (96 electrodes were connected, the corners were not connected). Each

electrode was 1.5 mm long, and the distance between adjacent electrodes was 400p1m.

Before recording, we implanted each monkey with three arrays in the left cerebral

hemisphere, 1 array in V4 and 2 arrays in IT, as shown in Figure 2.2b. Array

placement was guided by the sulcus pattern which was visible during surgery. The

electrodes were accessed through a percutaneous connector that allowed simultaneous

recording from all 96 electrodes from each array (three connectors on each animal).

All behavioral training and testing was performed using standard operant condition-

ing (juice reward), head stabilization, and real-time video eye tracking. All surgical

and animal procedures were performed in accordance with the National Institute

of Health guidelines and the Massachusetts Institute of Technology Committee on

Animal Care.

2.4.5 Monkey behavior, image presentation, and recording

procedures

Our goal was to assess neuronal activity patterns that are automatically evoked by

presenting a visual image to an awake, alert visual system. Thus, the monkey's only

task was to maintain gaze on a fixation dot in the middle of a screen for 2-4 seconds

as images were serially presented at the center of gaze. The monkeys initiated each

56



trial by fixating a central red square. After initiating fixation (160ms), a sequence of

5-10 images were presented each for 100ms with 100ms of blank screen in between.

Each image was presented at the center of gaze, and subtended 80 of the visual field

with a resolution of 32 pixels/deg and a pixel luminance range of 0.3-300cd/m 2 . The

images were presented in a randomized order, and each image was presented for at

least 28 repetitions (typically ~50). We recorded neural responses for 5760 images

drawn from the same pool that we used in our human psychophysical testing, with

nearly identical visual presentation parameters.

During each recording session, bandpass filtered (250Hz to 7.5kHz) neural ac-

tivity was monitored continuously, sampled at 30kHz using commercially available

hardware (Blackrock Microsystems). The majority of the data presented in this pa-

per were based on multi-unit activity (see Figure 2.8a,b) for single unit analysis).

A multi-unit spike event was defined as the threshold crossing when voltage (falling

edge) deviated by less than three times root mean squared error (RMSE) of base-

line voltage. Threshold was typically set once during the beginning of a recording

session, while the animal was viewing a blank gray screen. Out of 576 implanted

electrodes (3 arrays x 96 electrode x 2 monkeys), we focused on the 296 (128 V4 and

168 across PIT, CIT, and, AIT) most visually driven neural sites. To pick these sites

we estimated evoked visual response using an independent set of images (typically

795 images with a minimum of 350 images). Visual drive was then defined as the

cross-validated average of the top 10% evoked image responses (d' between neural

response to image versus blank). Receptive fields were mapped with briefly flashed

bars, and expected contralateral receptive field biases were observed in V4.

We recorded all spike time events at all recorded neural sites. As described in

the text, we defined different neuronal codes by considering spike counts in different

time windows relative to image presentation. Our array placements allowed us to
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sample neural sites from V4 and different parts of IT. For most analyses, we grouped

all sites into either a V4 or an IT population. The response of all neural sites in a

population (V4 or IT) to an image formed a vector, the image vectors in turn formed

a matrix (described further below) summarizing the population response to all 5760

tested images (Figure 2.2a). To fill a response matrix and its multiple repetitions

neural responses were collected over multiple days (68 days for MI and 65 days for

M2; stability and its impact on the results is discussed later).

2.4.6 The construction of specific, candidate linking hypothe-

ses and their predicted behavioral performance

A neuronal linking hypothesis is a formal rule for converting neural activity to overt

behavior (e.g., a choice of object class). Here, each candidate linking hypothesis

learns a neural code that converts neural responses into a prediction of the type of

object that is present in the world (as conveyed by the visual image). Defining each

linking hypothesis requires the specification of two components: (1) A "response

matrix" of neural (or, in some case, computer generated) responses to each and

every image. This specification includes which neurons are included (e.g., responses

of 100 spatially distributed IT neurons) as well as a specification of the relevant

aspects of that neural activity (e.g., time window, mean rate). (2) A specific type

of presumed downstream neural decoder along with a training procedure for the

decoder that specified how to estimate its final learned state. After specifying these

two components for each linking hypothesis, we computed its predicted behavioral

performance for each of the 64 object recognition tasks using independent test images.
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Response matrix

Neural response matrix: For neuronal linking hypotheses, the response matrix

is a N x I matrix where N is the number of neuronal sites considered to be part of

the linking hypothesis and I is the total number of images tested. Since our image

set (n = 5760) was very large, we collected neural responses piecemeal over multiple

days. Each entry of the matrix is the "response" of a particular neural site to a

particular image. We considered V4 and IT separately. For each visual area, the

"response" was computed as follows. First, we counted the number of spike events

elicited by each image, in each neural site, over a given time window. For example,

one possibility is the time window 70-170 ms after image onset, but many other

possibilities exist, and we explored some of those. From this response, we subtracted

the neural site's background response for that day (mean response to "blank" images).

Finally, the evoked response of each neural site, was normalized by the site's sample

standard deviation (over all tested images that day). This normalization was done

to compensate for day-to-day variation and had no effect on pattern of performance

and a small effect on absolute performance (-5% increment). The full matrix was

collected multiple times (typically -50 repetitions, minimum 28) and averaged across

all repetitions.

Feature response matrix: We also constructed linking hypotheses where the "re-

sponses" were simulated, rather than directly measured from neural activity. These

included pixels, Vi-like simulated neurons, and several popular algorithms in the

computer vision community. These algorithms each take an image, and produce the

values of a fixed number of "features" (operators on the image). For each algorithm

we computed the response of all its feature outputs for each of our images. We treat
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these feature outputs as analogous to neuronal populations, and thus construct a

responses matrix for each algorithm. We explored pixel (n ~_ 16000 features that

have comparable visual-drivenness as neuronal features), V1-like (n ~ 76000 features,

again, visually-driven), PHOG (n ~ 3000 visually-driven features), SIFT (n ~_ 59000

visually-driven features), an HMAX variant called SLF (n ~ 4000 visually-driven fea-

tures), and an L3 algorithm (n ~ 4000 visually-driven features) [Pinto et al., 2011].

Downstream neuronal decoders and training procedures

To estimate what information downstream neurons could easily "read" from a given

neural population, we used simple, biologically-plausible linear decoders (a.k.a. linear

classifiers, linear discriminants). Such decoders are simple in that they can perform

binary classifications by computing weighted sums (each weight is analogous to the

strength of synapse) of input features and separate the outputs based on a decision

boundary (analogous to a neuron's spiking threshold). The decoders differ in how the

optimal weights and decision boundary are learned. We mainly explored two types

of linear decoders, support vector machines (SVMs) and correlation-based classifiers

(CC). The SVM learning model generates a decoder with a decision boundary that is

optimized to best separate images of the target object from images of the distractor

objects. The optimization is done under a regularization constraint that limits the

complexity of the boundary. We used LibSVM software package [Chang and Lin,

2011] with the linear C-SVC algorithm and L2 regularization (the regularization con-

stant C was set to 5x104 except for the linking hypotheses in Figures 2.5c-e where

the C was optimized by a 3-fold cross validation on training data). The CC (correla-

tion classifier) learning model [Meyers et al., 2008] produces a decoder with the use

of the target class center estimated by computing the mean across the target images
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in the training data. The resulting decoder determines the test image's membership

by computing the Pearson correlation coefficient between the class center and the im-

age. Correlation-based decoders are simpler than SVMs in two regards: (1) they are

determined by class centers in the training data without mathematical optimization,

and (2) they do not have free parameters that are unrelated to the data that impact

the optimization procedure [Meyers et al., 20081. For completeness we also explored

simpler single feature decoders (max, 95th quantile, 90th quantile, median). These

decoders were built by searching for features based on certain criteria. For example,

a "max" decoder is built by finding the feature or neural site that has the best d'

for each behavioral task. All of these decoders could potentially be implemented by

downstream neurons, as they involve two basic operations: weighted sums of inputs

followed by a threshold.

For a given task set (e.g., 8-way basic-level classification), and variation level (low,

medium, or high) (see "Human Psychophysics" above for details), the corresponding

portion of the response matrix was split into "training" and "testing" sets. The mean

and variance of each unit or feature was normalized so that its responses to the

training set have zero mean and unit variance. The training set was then used to

optimize eight "one-vs-rest" linear decoders by finding weights that would maximize

classification performance of each. To construct an 8-way decoder, analogous to what

the human observers were asked to do, we applied all eight decoders and scored the

decoder with the largest output margin as the behavioral "choice" of the linking

hypothesis.
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Generating the predicted behavioral performance of each candidate link-

ing hypothesis

After constructing each candidate linking hypothesis (i.e. after learning how to read

the "code" for each task), we used the "testing" image set (never seen by the de-

coder) to generate the linking hypothesis's predicted behavioral performance in each

of the three task sets. Each such 8-way classification scheme resulted in an 8x8

confusion matrix summarizing the predicted performance (hits and false arms) of a

particular linking hypothesis on a particular task set and variation level. This was

done multiple times with at least 50 training/testing splits. The average confusion

matrix across all splits was then used to compute linking hypothesis d's exactly anal-

ogous to the human d's. We also tested a binary two-way classification scheme more

common in the computer vision community. The two alternative schemas resulted

in similar absolute performance (~5% difference in average performance level) and

the practically identical pattern of performance (~2% difference in consistency with

humans).

2.4.7 Face Selectivity Index

We defined face selective IT sites as the ones that have absolute face selectivity index

(FSI) larger than 1/3. The FSI of a site was computed as the following, where F

and NF denote the site's mean response to face and non-face stimuli respectively

[Tsao et al., 2006; Issa and DiCarlo, 2012]:

FSI_ F= NF
|FJ +|INF1
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2.4.8 Stability and assumption of combining neural activity

across recording days

To collect a large number of repetitions from the thousands of tested images, we

had to collect data from the recording arrays over -45 days (Ml, 43 days and M2,

47 days). While the recording arrays are fixed in tissue and are thus sampling the

same cortical location across days, these methods cannot guarantee that the exact

same neurons are recorded over all days. Such absolute stability, while desirable, is

not strictly required to test the neuronal linking hypotheses that we consider here

(which assume randomly selected samples of IT neurons). Nevertheless, we sought

to understand if our presented results might be different if the exact same neurons

had been recorded over all days. To do this, we compared performance obtained

by averaging the neural responses to six presentations of all images collected on the

same day (assuming stable set of neurons during the day) to performance obtained by

averaging the responses to the same number of image presentations (6 presentations),

but sampled randomly from multiple days without replacement (always sampled from

the same electrode). Each of the two methods produced a pattern of 64 predicted

d' values (as in the main text), and we found that those patterns were very similar

the mean Pearson correlation coefficients between the two sets of performances

was 0.908 ( standard deviation of 0.016 across different samples of trials; n = 64

d's) for IT and 0.923 ( standard deviation of 0.016) for V4. Thus while it is possible

that there is some day-to-day variation of recorded activity on each electrode, that

variation is small in that it does not substantially change the pattern of results (e.g.,

some IT linking hypotheses predict human performance and V4 linking hypotheses

do not) and thus is unlikely to change our main result.
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2.4.9 Consistency and performance of neuronal linking hy-

potheses when objects were presented in the ipsilateral

versus the contralateral visual field

Since all arrays were placed in the left hemisphere, we wondered whether performance

of our neuronal linking hypotheses was affected by object position in the visual field.

To address this we divided the response matrix of each visual area (V4, IT) into two

groups based on whether the object centers were in the ipsilateral, or contralateral

visual field. We then compared performance on the two groups of images using

analogous training and testing procedures to what we used for our main results.

Consistent with the known contralateral visual field bias in V4, our results showed

a ~20% reduction in performance of V4 for ipsilaterally-presented objects, while IT

showed only a -3% reduction. However, even when only considering objects in the

contralateral visual field, the pattern of behavioral performance predicted by V4 was

still very different than the actual human performance (Consistency = 0.470 0.111,

error is computed by sampling over of behavioral tasks and assuming that human

pattern of performance does not depend on visual hemifield).

2.4.10 Consistency and performance of neuronal linking hy-

potheses when objects were only presented foveally

Since V4 units typically have smaller receptive fields than eccentricity-matched IT

units, and the array placements focused on foveal V4, we also wondered whether

V4-based linking hypotheses could be improved by restricting our image set to ob-

jects positioned close to the fovea. To test this hypothesis we re-measured human

behavior and neuronal responses (V4 and IT) for a new set of images that did not
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contain any variation in object position. We used a total of 32 behavioral tasks -24

low variation tasks (8 basic-level, 8 car identification, and 8 face identification tasks)

and 8 new basic-level tasks based on images rendered specifically for this analysis

(i.e., objects were rendered with randomly picked pose (rotation around x, y and z)

and size parameters, but position (x, y) was fixed at the center of the image). Each

linking hypothesis consisted of 58 units, and we used correlation decoders for this

analysis. All other details were optimized to obtain best performance. For this set

of 32 tasks, the median human-to-human consistency was 0.887 (with the 68% CI =

[0.740, 0.947] due to the sampling of individuals and object recognition tasks). The

consistency between the LaWS of RAD IT linking hypothesis and human perfor-

mance was 0.868 (with a 68% CI = [0.791, 0.909] due to the sampling of behavioral

tasks). And the consistency between the LaWS of RAD V4 linking hypothesis and

human performance was -0.196 (CI = [-0.358, 0.001]). While the performance of

the LaWS of RAD IT linking hypothesis was indistinguishable from human subjects

in terms of consistency (p = 0.411, bootstrap test), the LaWS of RAD V4 linking

hypothesis had significantly lower consistency (p < 0.001, bootstrap test). This low

consistency was not caused by the low performance of the V4-based linking hypothe-

ses (similar to Figure 2.7a, open green circles); in 12 behavioral tasks (usually low

variation identification tasks), V4-based linking hypotheses outperformed the pooled

human population. This analysis confirms that the performance of these V4 linking

hypotheses is not limited by receptive field size and argues instead for an inferior and

potentially more tangled V4 representation [DiCarlo and Cox, 2007; DiCarlo et al.,

2012].
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2.4.11 Computer vision algorithm based linking hypotheses

We compared our biological results on consistency and performance to a variety

of computational models, including: The trivial pixel control, in which the original

256x256 square images were down-sampled into 150x150 pixels and flattened into

a 22500-dimensional "feature" representation. The pixel features provided a control

against the most basic types of low-level image confounds. All following computer

vision features were computed based on this downsized 150x150 pixel features. An

optimized Vi-like model, built on grid of Gabor edges at a variety of frequencies,

phases, and orientations [Pinto et al., 2011], each image was represented by 86400

features. PHOG (Pyramid Histogram Of Gradients) is a spatial pyramid represen-

tation of shape based on orientations gradients of edges extracted with a Canny

detector [Lazebnik et al., 2009]. We fixed the angular range to 360 degrees and the

number of quantization bins to 40 to produce 3400 dimensional features. The base-

line SIFT computer vision model provided another control against low-level image

confounds [Lowe, 2004]. The SIFT descriptors were computed on a uniform dense

grid with a spacing of 10 pixels and a single patch size of 32 by 32 pixels. Each

image was represented by 67712 features. The bio-inspired Sparse Localized Features

(SLF) are extensions of the C2 features from the Serre et al. HMAX model [Riesen-

huber and Poggio, 1999a; Serre et al., 2007a; Mutch and Lowe, 2008]. HMAX is

a multi-layer convolutional neural network model targeted at modeling higher ven-

tral cortex. Because it is a deep network, HMAX has large IT-like receptive fields.

HMAX is one of many existing "first-principles"-based models that attempt to build

up invariance through hierarchical alternation of simple and complex cell-like layers.

There were 4096 features per image. L3 is a recent three-layer convolutional neural

network, which also has large IT-like receptive fields and which was discovered via a
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high-throughput screening procedure [Pinto et al., 2011]. We used the top-5 models

identified in [Pinto et al., 2011], and the dimensionality of each was 15488, 6400,

2048, 4608, 10368, respectively.
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Figure 2. 1: (a) Object recognition tasks. To explore a natural distribution of
shape similarity, we started with eight basic-level object categories and picked eight
exemplars per category resulting in a database of 64 3D object models. To explore
identity preserving image variation, we used ray tracing algorithms to render 2D im-
ages of the 3D models while varying position, size and pose concomitantly. In each
image, six parameters (horizontal and vertical position, size, rotation around the
three cardinal axes) were randomly picked from pre-determined ranges (see Meth-
ods). The object was then added to a randomly chosen background. All task images
were achromatic. Human observers performed all tasks using an 8-way approach (i.e.
see one image, choose among eight; see Methods). Two kinds of object recognition
tasks were tested: (1) Basic-level categorization (e.g., "Car" vs. "not car") or (2) Sub-
ordinate identification (e.g., "Car 1" vs "not car 1"). We characterized performance for
each of 8 binary tasks (e.g., "Animals" vs "not animals", "Boats" vs. "not boats", etc.)in each 8-way recognition block at 2-3 levels of variation, resulting in 64 behavioral
tasks (64 d' values). (b) Possible outcomes for each tested linking hypothe-
sis. We defined multiple candidate neuronal and computational linking hypotheses
(Figure 2.5), and determined the predicted (i.e. cross-validated) object recognition
accuracy (d') of each linking hypothesis on the same 64 tasks (y-axis in each scatter
plot), and compared those results with the measured human d' (x-axis in each scatter
plot). A priori, each tested linking hypothesis could produce at least four possible
types of outcomes. The pattern of predicted d' might be unrelated to or strongly
related to human d' (left vs. right scatter plots). We quantified that by computing
consistency-the correlation between predicted d' and actual human d' across all 64
object recognition tasks. Average predicted d' might be low or matched to human d'
(lower vs. upper scatter plots). We quantified that by computing performance-the
median ratio of predicted d' and actual human d' across all 64 object recognition
tasks. For brevity, we will refer to these two metrics as consistency and performance
from here on. Our goal was to find at least one "sufficient" code: a linking hypothesis
that perfectly predicted the human d' results on all object recognition tasks (upper
right scatter plot).

69

a Objects Image generation Tasks b Possible outcomes



Image index
1 2 3 4 5 6 5760

168

IT

1

128

V4

100 ms

b Subject: Ml

PIT

ClT

Subject: M2

PIT

CIT
AIT

70

a

2

C<0
L.



Figure 2.2 (preceding page): Neural Responses. (a) We used multi-electrode
arrays to record neural activity from two stages of the ventral visual stream (V4 and
IT (= PIT + CIT + AIT)) of alert rhesus macaque monkeys. We recorded neural

responses to the same images used in our human psychophysical testing. Each image
was presented multiple times (typically -50 repeats, minimum 28) using standard
rapid visual stimulus presentation (RSVP). Each stimulus was presented for 100ms
(Black horizontal bar) with 100ms of neutral gray background interleaved between
images. While some of our neural sites represented single neurons, the majority
of our responses were multi-unit (see Figure 2.8a). The rasters for repeated image
presentations were then tallied within a defined time window (e.g., 70-170ms after
image onset, red rectangle, black vertical line indicated stimulus onset) to compute
an average firing rate in impulses per second. The mean evoked firing rate is an
entry in a response vector (green vertical vector, green saturation is proportional
to response magnitude) that summarizes the population response to a single image.
The concatenation of the response vectors produces a response matrix representing
the population neural response of a particular visual area to our database of 5760
images. We parsed our neural population into V4 and IT, treating the various parts
of IT as one population. We recorded from 168 neural sites in IT and 128 neural
sites in V4. (b) The approximate placement of the arrays in V4 (Green shaded areas)
and IT (Blue shaded area) is illustrated by the black squares on two line drawings
representing the brains of our two subjects.
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Figure 2.3: Human core object recognition results. (a) Each color matrix from
left to right summarizes the pooled human d' for each of the three task sets rang-
ing from basic level categorization, to subordinate level face identification. In each
matrix, the amount of identity preserving image variation was increased from low
(bottom) to high (top), resulting in a total of 64 behavioral tasks. Red, represents
high performance (d' = 5), and blue, low performance (d' = 0). For each 8-way
task set and each level of variation the computed eight d's were based on the av-
erage confusion matrix of multiple observers (Basic level categorization, n=29, car
identification, n = 39, face identification, n=40; see Methods for more information).
(b) Human to human consistency. The scattergram shows the performance (d') of
one human observer plotted against the performance (d') of the pooled population
of human observers across all 64 tasks. The individual human observer was created
by randomly combining the performance of three subjects on the three tasks sets
(basic-level categorization and car and face subordinate-level identification). The
population performance was computed based on a confusion matrix that combined
the judgement of our entire pool (n = 104) of human observers. The Spearman
correlation coefficient in this example was 0.941 (with a 68%-CI = [0.921, 0.946] over
the choice of behavioral tasks). Median relative performance was 0.999 (with a task-
induced 68%-CI = [0.965,1.073] over the choice of behavioral tasks). (c) Example
Images. Each octet of images are image samples representing all eight objects used
for each of the three tasked task sets at three example variation levels (Basic level
categorization (high variation), car identification (low variation), face identification
(medium variation)).
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Figure 2.4 (preceding page): Predicted performance pattern of an example
LaWS of RAD IT neuronal linking hypothesis. In this example, the hypoth-
esized neural activity that underlies behavior is: in IT, from 128 units, mean firing
rate, in a time window of 70-170 ms; and the decoder is an SVM decoder. (a)
Based on the aforementioned features of neural activity, a depiction of the outputs
of two example decoders for two tasks from two different task sets. For each task
set (basic categorization, subordinate identification), and each variation level (low,
med, high), we randomly divided our image responses into "training" and "testing"
samples. We used the "training" samples, depicted by the green response vectors, to
optimize eight "one-vs-rest" linear decoders. The performance of each decoder was
then evaluated on the "testing" images. The red and black distributions summarize
the response output of two such decoders to a sample of "testing" images. (b) Pre-
dicted pattern of behavioral performance for all 64 behavioral tasks. To generate
these predictions, we constructed an 8-way decoder for each of the three task sets.
Analogous to what the human observers were asked to do, for each task set, we ap-
plied all eight decoders and scored the decoder with the largest output margin as the
behavioral "choice" of the linking hypothesis. Our final d's are the average of at least
50 iterations of randomly picked train/test splits. Similar to Figure 2.3, the color
matrices depict predicted performance (d') for this example linking hypotheses for
all task sets and variation levels (64 predicted d' values). (c) To facilitate comparison
amongst different linking hypotheses and with human behavior (see Figure 2.5) we
strung out the color matrices into a color vector grouping task sets at each variation
level.
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Figure 2.5 (preceding page): Candidate linking hypotheses. (a) The candidate
linking hypotheses we explored were drawn from a space defined by four key parame-
ters: spatial location of sampled neural activity, the temporal window over which the
response of our units was computed (mean rate in this window), the number of units,
and the type of hypothesized downstream decoder. Each candidate linking hypothe-
sis is a specific combination of these parameters. For example, in green is a V4 based
linking hypothesis, with a temporal window of 70-170ms, that includes 128 neural
sites and uses a support vector machine (SVM) decoder. The predicted performance
of each linking hypothesis for each behavioral task is depicted as a color vector where
blue signifies low predicted performance (d'-= 0) and red signifies high predicted per-
formance (d'= 5). The goodness of each linking hypothesis can be visually evaluated
by comparing its color pattern to that of the human population. (b) Consistency.
To quantify the ability of each linking hypothesis to predict the pattern of human
performance (i.e. the similarity between color vectors in panel (a)), we computed
the Spearman rank correlation coefficient between predicted performance and actual
(pooled human, 104 subjects) across all task d's. Median human-to-human corre-
lation is indicated by the dashed line (median Spearman correlation coefficient of
0.929). The gray region signifies the range of human-to-human consistency (68%-CI
= [0.882, 0.957]). Each bar represents a different candidate linking hypothesis (bar
length is proportional to task-induced variability). For pixel features (open symbol),
V1-like features (filled black symbol), and computer vision features (red filled sym-
bols) we picked the linking hypothesis that performed best. For neural features (V4
(green) and IT (blue)) we matched the number of units at 128. Only bars that enter
the gray region correspond to linking hypotheses that successfully predict human
behavior. Within the context of IT-based linking hypothesis, we explored finer grain
temporal codes (c) We also took advantage of our simultaneous multi-electrode array
recording to assess the impact of trial-by-trial firing rate correlation on the pattern of
performance predicted by our most successful linking hypothesis (d) We considered
the idea of a modular IT linking hypothesis, with different sub-regions of IT being
devoted exclusively to certain kinds of tasks (e) First we compared the performance
of "face patch likely" sites to "non-face patch" sites on all tasks. We then stitched to-
gether an "expert linking hypotheses where each task is performed by neuronal sites
that are tailored to that task (e.g., "face" detection is only done by "face neurons"
while "car" detection is done by non-face neurons). To be complete, we compared
the performance of our different modular IT linking hypotheses on both face tasks
only (n = 17 of the 64 tasks) and non-face tasks only. Like in panel (b) pattern of
performance was always compared to human-to-human consistency indicated by the
gray region.
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Figure 2.6 (preceding page): Exploring a large set of linking hypotheses.
The y-axis shows consistency (defined in Figure 2.5b), and the x-axis shows per-
formance-the median of the ratio between predicted and actual (human) d' across
all 64 tasks. In total, we tested 944 types of linking hypotheses, varying the number
of neurons /features in each case, for a grand total of 50,685 instantiations consid-
ered. Here we show the results of 755 of those hypotheses. The result of each specific
instantiation is shown as a point in the plot with color used to indicate the "spatial"
location of the features (IT, V4, V1, or computer vision). We show these examples to
illustrate the parameters that we varied which included, spatial location, temporal
window, number of units, type of decoder, as well as a variety of training proce-
dures and train/test splits (see Figure 2.10a). The horizontal dashed line indicates
the average human-to-human consistency, and the horizontal grey band represents
variability in human-to-human consistency. The vertical dashed line indicates the
average relative human-to-human performance and by definition is at 1, and the ver-
tical grey band shows the human-to-human variability in relative performance. Any
linking hypothesis that falls in the red dashed circle is perfectly predicting human
performance on these 64 tasks. Note that much of the scatter in the IT-based link-
ing hypotheses (blue) is due to varying the number of neural sites, as illustrated in
Figure 2.7b.
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Figure 2.7 (preceding page): Effect of number of units and temporal window
on consistency and performance. Here we show the results for the LaWS of
RAD linking hypotheses (see text), but results are qualitatively similar for other
hypotheses. (a) The scattergrams show predicted performance (d') of these two
neuronal linking hypotheses (IT (blue), V4 (green)) plotted against the actual human
performance on all 64 tasks (low variation (open circles), medium and high variation
(filled circles). The number of units increases from 16 neural sites (left) to 128
neural sites (right). For each linking hypothesis we also computed its performance:
the median of the ratio between predicted and actual human performance across all
d's for all 64 tasks. (b) Performance (defined in Fig. 2.6) versus consistency for the
V4- and IT-based linking hypotheses as a function of the number of (trial-averaged)
units. The curve fits are: r2 of 0.996 for IT; and r2 of 0.91 for V4. They predict
that -529 IT trial-averaged neural sites and ~22,096 V4 trial-averaged neural sites
would match human performance under the LaWS of RAD linking hypothesis. (c)
Consistency for different temporal windows of reading the neural activity. Each point
is computed with a 100 ms-wide window, and the x-axis shows the center of that
window. The number of trial-averaged neural sites was fixed at 128. (d) Consistency
versus performance for the LaWS of RAD IT linking hypothesis at several progressive
temporal windows with the center location starting at the time of image onset (0 ms)
and up to 500 ms after image onset. The width of the temporal window was fixed
at 100 ms (code details are same as (b) except the number of trial-averaged neural
sites was fixed at 128).
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Figure 2.8 (preceding page): (a) Single unit activity (SUA) versus Multi-unit
activity (MUA) linking hypotheses. We employed a profile based spike sorting
procedure [Quiroga et al., 2004] and an affinity propagation clustering algorithm
[Frey and Dueck, 2007b] to isolate the responses of 16 single units from our sample
of 168 IT neuronal sites (minimum signal-to-noise ratio (SNR) for each single unit
cluster was set to 3.5, with SNR defined as the amplitude of the mean spike profile
divided by root mean square error (RMSE) across time points). (b) Consistency
with the human pattern of performance versus performance for SUA (red)
and MUA (black). We estimate that twice as many neurons are needed so that
the consistency-performance relationship of our SUA linking hypothesis matches
that of our MUA linking hypothesis. All parameters and training procedures of
SUA and MUA based linking hypotheses were identical (performance was based
on the average of 5 repetitions using a correlation based decoder (CC) where the
units were randomly divided into non-overlapping groups to estimate error from
independent sampling of units). (c) Single trial versus averaged trials linking
hypotheses. Because human subjects were asked to make judgements on single
image presentations, we also explored a "single trial" training and testing analysis
where we treated the responses of the neural units to each images presentation as a
new and independent set of neural units (i.e., "unrolled" the trial dimension into the
unit dimension). (d) Consistency versus performance for of the single-trial
LaWS of RAD linking hypothesis (red) and the averaged-trial LaWS of
RAD linking hypothesis (black). We estimate that ~60 as many neurons are
needed so that the consistency-performance relationship of our single-trial linking
hypothesis matches that of our averaged-trials linking hypothesis. Error bars are
standard deviations induced by independent sampling of units as in (a).
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Figure 2.9: No significant difference in consistency and performance of IT
subpopulations when parsed based on anatomical subdivision: PIT versus
CIT versus AIT. Based on anatomical landmarks we could conservatively divide
our population of 168 IT neural sites into: 76 in PIT, 75 in CIT, and 17 in AIT. (a) A
comparison of the Consistency values for IT populations when neural sites respected
anatomical boundaries (PIT versus CIT versus AIT) in contrast with a "Control"
populations where the sites were randomly picked from all three anatomical subdi-
visions. There was no significant difference between the IT populations independent
of whether we restricted our population to 17 neural sites (limiting our analysis to
the number of neural sites in AIT our least sampled anatomical subdivision), or we
expanded to 75 neural sites and compared PIT and CIT). Similarly, performance (b)
showed no significant differences between the different IT populations. It is impor-
tant to note that the decrease in consistency and neural performance is expected
based on the smaller population sizes (see Figure 2.7b). Consistency and perfor-
mance were computed based on our typical 70-170 temporal window using an SVM
decoder.
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Figure 2.10: (a) The effect of training procedure. Consistency values for LaWS
of RAD V4 and IT linking hypotheses under different training procedures. The
number of units was fixed to 128 units and the temporal window was 70-170ms after
the onset of the image presentation. Two types of decoders were tested (Support
vector machines and correlation decoders). We also varied the number of images used
to train the decoder (Leave-2-out: for each class, all images but two were used as the
training set, and the remaining two were used for testing; 80%: 80% of images were
used for training, and the held-out 20% were used for testing; 20%: similar to 80%,
but 20% were used for training, and 80% for testing). In the blocked training regime,
the training and testing of a decoder was done for each variation level separately. For
the unified training regime, the decoders were trained across all variations and tested
on each variation level separately. (b) Trade-off between the sufficient number of
units and the number of training images per object for the LaWS of RAD IT linking
hypothesis (where temporal window was fixed at 70-170ms and SVM decoders were
used). In each data point, the performance of the linking hypothesis was projected
to reach the human-to-human consistency (within the subject-to-subject variability)
and the human absolute performance (relative performance of one). On the y-axis,
the numbers shown in black indicate the projected number of repetition-averaged,
multi-unit neural sites that are sufficient, while the numbers in red indicate the
number of single-trial, single-unit sites that are sufficient (120 x larger). For example,
the asterisk indicates a LaWS of RAD IT linking hypothesis of -60,000 single units
discussed above, and the plot shows that it would require ~40 training examples per
object to learn de novo (with a 68%-CI ~_ [30, 60], not shown in the plot).
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Chapter 3

Representation of Non-Categorical

Visual Properties in Inferior

Temporal Cortex*

Extensive previous research, including our work in Chapter 2, has examined the role

of inferior temporal (IT) cortex in viewpoint-invariant object recognition, revealing

robustness of the IT neural population's category encoding to identity-preserving

transformations. Here we systematically explore IT encodings for object position,

size, pose, and a variety of other "identity-orthogonal" visual properties. We find

that IT outperforms lower visual areas such as V1 and V4 in estimating all these

visual properties, including those (e.g., position) that are normally considered low-

level visual features. We also find high IT-human consistency in both cross-task

performance patterns and a plausible number of neural sites to match human per-

formance. Information is distributed broadly in the neural population, rather than

*This work has been done in collaboration with Dan Yamins, Najib Majaj, and James DiCarlo.
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factored into property-specific units. Our results suggest that IT jointly encodes a

spectrum of object-based visual features relevant for scene understanding.

3.1 Introduction

Humans rapidly and accurately process visual scenes from their environment, an

ability that is critical to normal functioning. One facet of scene understanding is

view-invariant object recognition [DiCarlo et al., 2012], a challenging computational

problem because two images of objects in the same high-level category can have vastly

different low-level statistics due to variation in object geometry, position, size, pose,

lighting, occlusion, clutter, non-rigid deformation, and many other factors [DiCarlo

and Cox, 2007]. Extensive research in visual systems neuroscience has uncovered

the role of the ventral visual stream, a series of connected cortical areas present in

humans and non-human primates, in solving this challenge. The ventral stream is

thought to function as a sequence of hierarchical processing stages [Tanaka, 1996;

Logothetis and Sheinberg, 1996; Gross, 1994] that encode image content (e.g., object

identity and category) increasingly explicitly in successive cortical areas [Vogels and

Orban, 1994; DiCarlo and Cox, 2007; DiCarlo et al., 2012]. For example, neurons in

the lowest area, V1, are well-described by Gabor-like edge detectors [Carandini et al.,

2005a], though the VI population does not show robust tolerance to complex image

transformations [DiCarlo et al., 2012]. In contrast, rapidly-evoked population activity

in inferior temporal (IT) cortex, the cortical area at the top of the ventral hierarchy,

can directly support real-time, invariant object categorization [Hung et al., 2005a;

Rust and DiCarlo, 2010; Yamins*, Hong*, Cadieu, Solomon, Seibert, and DiCarlo,

2014].

Scene understanding involves estimating a variety of other properties besides an
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object's category or identity [Edelman, 1999; Koenderink and van Doorn, 1979].

However, many of these properties - where is the object? how big is it? what

orientation and heading is it at? - are precisely the "nuisance" variables that must

be discounted to achieve invariant recognition. Since humans do in fact perceive all

these visual object properties in images, this begs the question: what overall neu-

ral architecture underlies both the ability to discount identity-preserving variable

transformations for object recognition tasks while being sensitive to these same vari-

ables for other scene-understanding tasks? One major class of hypotheses [Mishkin

et al., 1983; Goodale and Milner, 1992; Ungerleider and Haxby, 1994] is that identity-

specific properties (e.g., category membership) are represented in higher ventral cor-

tical areas such as IT, while identity-orthogonal variables (e.g., position) are either

represented in lower cortical areas (e.g., V1, [Bosking et al., 2002]) or outside the

ventral stream (e.g., the dorsal stream [Mishkin et al., 1983]). These ideas are at-

tractive, because they are consistent with the fact that higher ventral areas have

larger receptive fields and are less retinotopic than lower areas, and suggest an intu-

itively understandable mechanism for how invariance is built in the ventral stream -

namely, by aggregating view-tuned units at each physical scale to produce partially

view-invariant units that can themselves be aggregated at a larger scale.

However, this separation induces the so-called binding problem, in which multiple

separate streams of information would then have to be brought together somewhere

in the brain, potentially using feedback connections [Deco and Rolls, 2004; Chikkerur

et al., 2010]. A line of theoretical work has suggested that factored representation

schemes that retain the "nuisance" variable information while still building category

selectivity could avoid this binding problem to begin with [Edelman, 1999; DiCarlo

and Cox, 2007]. It has also been experimentally observed that IT cortex normally

associated with invariant recognition appears to retain some sensitivity to object
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position [Li et al., 2009; DiCarlo and Maunsell, 2003; MacEvoy and Yang, 2012;

Sayres and Grill-Spector, 2008; Sereno et al., 2014] and other properties [Nishio

et al., 2014]. However, it is not clear how much and exactly what kinds of non-

categorical information is present in higher ventral cortex, nor how these properties

are integrated with the categorical representation.

Here, we investigated this issue systematically by recording neural responses in IT

and V4 cortex to a large set of visual stimuli containing a range of real-world objects

with significant simultaneous variation along object position, size, and pose variables

(see Chapter 2 and [DiCarlo et al., 2012; Yamins*, Hong*, Cadieu, Solomon, Seib-

ert, and DiCarlo, 2014]). This image set allows us to characterize neural encodings

for standard categorical tasks as well as a variety of identity-orthogonal estimation

tasks. We quantify the amount and distribution of information with respect to bio-

logically plausible downstream decoders for each of these tasks at both the single-site

and population levels, comparing between cortical areas as well as to psychophys-

ical measurements of human behavior. We find that for all tasks we investigated,

including those normally considered low-level (e.g., position), more information is

accessible in IT than in V4, which in turn has more accessible information than a

Vi-like model. We also find that the IT population performance pattern is more

consistent with human behavioral measurements that those from lower layers. More-

over, information for all these tasks in IT appears generally to be well-distributed,

as opposed to highly concentrated in task-specialist subpopulations. In addition to

these experimental findings, in Section 4.2.7, we also describe a computational model

of the ventral stream that explains the results from simple assumptions. Taken to-

gether, our results strongly favor a joint-encoding hypothesis in which the ventral

stream builds explicit representations both for categorical and non-categorical visual

object properties simultaneously.
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3.2 Results

3.2.1 Battery of visual tasks

We continued to use our main neural test stimulus set of Chapter 2, which consisted

of 5760 images of 64 distinct objects chosen from one of eight categories (animals,

boats, cars, chairs, faces, fruits, planes, tables), with eight specific exemplars of each

category (e.g., BMW, Z3, Ford, etc. within the car category). The set was designed

specifically to (1) include a range of everyday objects, (2) support both coarse, "basic-

level" category comparisons (e.g., "animals" vs. "cars") and finer subordinate level

distinctions (e.g., distinguish among specific cars) [Rosch et al., 1976], and (3) require

strong tolerance to object viewpoint variation, e.g., pose, position and size. The ob-

jects are shown at high levels of the position, scale and pose variation on cluttered

natural scene backgrounds that are randomly selected to ensure that background

content is uncorrelated with category identity (see Fig. 3.1a and 3.7a; also, see Sec-

tion 2.4.2 for additional details). The high levels of variation expose key dimensions

that make invariant object recognition challenging for artificial vision systems, but

to which humans are robustly tolerant [DiCarlo and Cox, 2007; Pinto et al., 2008a;

Yamins* et al., 2014].

The simultaneous variation of object properties in the image set allows a battery

of discrete-valued classification tasks and continuous-valued "identity-orthogonal" vi-

sual estimation tasks (Fig. 3. 1b). We first defined the following discrete-valued visual

tasks, as in Chapter 2:

* Basic-level object categorization. This is a discrete-valued eight-way ob-

ject categorization task of Chapter 2, in which the goal is to report the category

of the object in the image, from the set of choices: Animals, Boat, Car, Chair,
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Face, Fruit, Plane, Table.

* Subordinate-level object identification. These are discrete-valued eight-

way object identification task, in which the goal is to report the specific identify

of an object in each image from the list of eight exemplars of that object's

category. There are eight such tasks, one for each category in the dataset.

For example, in the case of the car category, the eight-way subordinate-level

object identification task is identify an image as containing one of: Beetle, Alfa

Romeo, Vauxhall Astra, BMW 325, Maserati Bora, Toyota Celica, Renault

Clio, or BMW z3. In Chapter 2, we studied car and face subordinate tasks.

Here, he considered subordinate tasks from all other categories (e.g., Tables,

Boats; but not cross pairs such as Table 1 vs. Boat 2).

In addition to the above, we also introduced the following set of non-categorical

visual tasks:

" Position Estimation. These are a set of related continuous-valued location

estimation task, in which the goal is to identify an object's center location.

Tasks are to identify the location in pixels from the object center, along the x-

axis ("X-Axis Position") and the y-axis ("Y-Axis Position"), and the distance in

linear pixels of the object center to any fixed point location ("Center Distance").

* Bounding-box location and size estimation. These are a set of related

continuous-valued bounding-box related tasks. The bounding box for an object

is defined to be the smallest axis-aligned rectangular subset of the image that

fully contains the pixels of the object. Location of each corner is measured, as

is the size in linear pixels along both axes ("X-Axis Size" and "Y-Axis Size",
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respectively). The area of the bounding box in square pixels is also measured

("Bounding Size").

* 2-D Retinal Area. This continuous-valued task measures the area in square

pixels that the object takes up in the image. Each image pixel is either covered

by the object, in which case the pixel is counted toward this metric, or it is

not covered by the object, in which case the pixel is not counted. For example,

pixels surrounded by an object but not actually covered by it (e.g., the hole of

a donut) do not count toward this measure.

* Perimeter. This continuous-valued task measures the area in linear pixels on

the boundary of the object. Pixels in the object not completely surrounded by

other pixels also in the object do count toward this measure; any other pixels

do not count.

* 3-D Object Scale. This continuous-valued task measures the 3-D scale pa-

rameter used to generate the image in the original rendering process, relative to

a fixed canonical size - namely, s = 1 in the object parameterization discussed

above. This relationship of this property to the 2-D retinal area depends in a

complex manner on the object's geometry.

" Major Axis Length, Aspect Ratio and Angle. The major axis of an

object is defined to be the longest line segment such that both ends of the line

segment are pixels within the object. The minor axis is the shortest perpendic-

ular line segment so that the rotated bounding box defined by the major and

minor axes covers the object. The continuous-valued measure axis length is

measured in linear pixels. The aspect ratio is the ratio of the lengths of minor

to the major axis. The major-axis angle is the 2-dimensional angle, in degrees,
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made by the major line with the horizontal (x = 0) line.

* 3-D Rotation. These three rotations are the angles, in degrees, used by the

renderer to orient the object in the original image creation process. The angles

are described via standard Euler rotations using the XYZ order. The (0, 0, 0)

rotation is defined separately for each of the 64 exemplar objects in the dataset.

However, the exemplar angles are fairly well-defined "semantically", meaning

that they are reasonably consistent across the eight exemplars each for the

eight basic object categories. Specifically, for each category the (0, 0, 0) angle

is the one in which:

- Animals: animal is facing forward, with its head upright.

- Boats: boat is oriented with bow facing forward and keel point downward.

- Cars: car grille is facing forward, while tires on the bottom.

- Chairs: chair legs are facing downward, with the seat facing forward.

- Faces: looking straight the viewer, with top of the head oriented upward.

- Fruits: stem attachment at the top. [Note that many of the fruits possess

a rough rotational symmetry around the vertical axis.]

- Planes: cockpit facing forward, with plane in upright position.

- Tables: table legs facing straight downward, with longest side along the

x-axis.

For the first two discrete-valued categorization tasks, performance is measured

using balanced accuracy. Balanced accuracy is defined for a prediction of binary task

with positive and negative classes as:

TF TN
AccBal= + -1

P N
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where TP is the number of correct positive predictions, P is the number of positives

examples in the data, TN is the number of correct negative predictions, and N

is the number of negative examples in the data. Balanced accuracy for a multi-

class prediction problem is the average of one-vs-all (OVA) prediction problems over

the classes. For continuous-valued estimation tasks, performance is measured as

the Pearson product-moment correlation between the predicted and actual values.

Specifically:

Corr = covariance(p', a)

N/variance(p) -variance(d)

where ' is the vector of predictions for a sequence of images and a is vector of

corresponding ground-truth values for that property. Both metrics range from -1

to 1, with 0 being chance-level prediction and 1 being perfect prediction.

3.2.2 Large-scale array electrophysiology in macaque higher

visual cortex on a high-variation stimulus set

In Chapter 2, we collected a large-scale data of macaque IT and V4 neural response

to the stimulus set of 5760 images described above. Here, we collected an additional

set of neural data by chronically implanting three more multi-electrode arrays. Com-

bined with the previous data, using nine chronically implanted electrode arrays in

total, we collected responses from 309 neural sites in cortical area IT and 211 neural

sites in cortical area V4 to each image in the set (see Fig. 3.1c and Methods). In

this chapter, we used most visually driven 266 IT and 126 V4 neural sites (see 2.4.5

for the definition of visual drivenness). The cut-off threshold was chosen to precisely

include all of Monkey 1 data in Chapter 2, which had higher visual drivenness than

Monkey 2 data. We then investigated the ability of these neural populations and
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simulated low-level visual area populations (Vi-like model and pixels, see Methods)

to support both the categorical and non-categorical tasks discussed above.

3.2.3 Comparing categorical and non-categorical task repre-

sentations across cortical areas

For many tasks, including object category, position, size and pose, we found individ-

ual sites in our IT sample whose responses contained reliable information for that

task, despite simultaneous variation in all these variables (Fig. 3.2a-c). For binary

categorical tasks, we defined single-site performance as the absolute value of the

site's discriminability for the task on a set of held-out test images (see Methods).

For continuous-valued estimation tasks, we defined single-site performance as the

absolute value of the Pearson correlation of that site's response with the actual value

for task, again on a set of held-out test images. For most tasks, the best sites from

our IT cortical sample contained significantly more information than those from our

V4 sample (Fig. 3.2d).

Because information about visual properties is likely to be spread over multiple

neural sites, we next investigated the extent to which our battery of tasks was en-

coded at the neural population level (Fig. 3.3a). For discrete-valued tasks, such as

basic categorization and subordinate identification tasks, we used linear classifiers

to identify thresholded weighted sums of the neural populations that best predicted

category membership on a set of training images, and evaluated prediction accu-

racy on held out test images [Hung et al., 2005b; Pedregosa et al., 2011]. For each

continuous-valued estimation task, we used linear regression to identify weighted

sums of the neural population that best estimated the continuous target values on a

set of training images, and then evaluated the Pearson correlation between predicted
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and actual property values (O=chance, 1=perfect), again on held-out test images

(see Methods and [Pedregosa et al., 2011]). Once trained, both classifiers and re-

gressors can be considered as a specific linking hypothesis that might explain how

the downstream brain area reads visual properties to solve visual task, as we dis-

cussed in Chapter 2. That is, they form LaWS of RAD (Learned Weighted Sums

of Randomly-selected Average neuronal responses spatially Distributed; see Section

2.2.2) linking hypotheses.

Population performance levels were higher than that from individual sites, as

would be expected. Moreover, as with the single-site data, the IT population (Fig.

3.3a, blue bars) significantly outperformed the V4 population (green bars) on all

tasks. To compare the results from these higher visual areas to lower-level visual

response properties, we also evaluated a Gabor-wavelet-based VI model [Pinto et al.,

2008b] on our stimulus set (gray bars, and see Methods). In all cases, the IT sample

population outperformed the Vl-like model, and in most cases, the V4 population

did as well. The trivial pixel control (black bars) performed least well in nearly

all cases. Results were evaluated for each task using an equivalent number of sites

(n = 126). We performed several controls to ensure that the differences between

IT and V4 were not due to differences in receptive field size, sampling sparsity, or

number of training examples used to train the classifier (see Methods and Fig. 3.8).

We also recorded V4 and IT neural responses on a simpler stimulus set consisting

of grating-like patches placed on gray backgrounds at varying positions and orienta-

tions (Fig. 3.3b and 3.7b). From this data, we then measured decoding performance

for x-position, y-position and orientation estimation tasks in the IT and V4 popu-

lations. We found that performances were typically higher than chance. However,

in contrast to the results shown in Fig. 3.3a for complex stimuli, for these simpler

stimuli the IT population was not better than the V4 population on position tasks,
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and both IT and V4 populations were significantly less good than the Vi-like model.

This comparison clarifies our main result in relation to existing data on low-level

task performance in early visual areas [Carandini et al., 2005a]: while the larger re-

ceptive fields in IT and, to a lesser extent V4, indeed do lose resolution for low-level

pixel-level judgements needed for the simplified stimuli, this type of information loss

does not strongly interfere with the abilities of neuronal populations to decode ap-

parently similarly-defined properties (e.g., position or orientation) in more complex

image domains.

3.2.4 Consistency of the IT neural encoding with human per-

formance patterns

We also collected human performance data on a variety of tasks in the task bat-

tery, including categorization, position, size, pose, and bounding-box estimation (see

Methods). We then sought to characterize, for each neural population and each task,

how many neural sites would be required to reach parity with human performance

levels. For the V4 and IT neural populations, as well as the VI model and the

pixel control, we subsampled sites to produce performance curves as a function of

population size, for each task (Fig. 3.4a). For the IT and V4 neural populations,

we produced curves out to the limit of the neural data (266 and 126 units, respec-

tively), while for the VI model (and pixel control) we sampled increasing numbers

of units until performance saturated. We then fit each task's neural performance

curve to a logarithmic functional form to extrapolate performance levels at sample

sizes beyond that in our data (see Methods for details). For the IT population, all

tasks had roughly similar logarithmic growth rates, with the predicted IT perfor-

mance curve intersecting the human performance level at less than 2000 multi-unit
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sites (Fig. 3.4b), with a mean across tasks of 704 sites. This result suggests that

each additional IT unit typically contributes approximately the same amount of ad-

ditional performance benefit for each task in our task battery. In contrast, the V4

representation performance curves were more variable and in many cases would re-

quire several orders of magnitude more sites to match human performance. The V1

representation typically requires at least several orders of magnitude more sites in

addition, in many cases unrealistically many more (i.e., greater than 1010 sites). The

pixel representation is not within realistic bounds for any task in our task battery.

To investigate the neural-behavior link at a more detailed level, we compared

the performance patterns between human subjects and neural populations using a

fixed decoding mechanism. That is, we sought to determine whether the relative

difficulty of tasks for humans across our range of tasks corresponded to the relative

difficulty predicted by the neural populations (Fig. 3.5a). We constructed a vector

of performances (with vector length being the number of tasks), for the human

subject pool as well as each neural population. We then computed the Spearman

rank correlation between the neural performance vectors and the human performance

vector (see Methods). We found that the pattern of IT population performances is

a significantly better predictor of the human performance pattern than that from

the other cortical areas (Fig. 3.5b). Together with the above result on parity-

size estimation, this result shows that IT is likely to be more directly responsible

for downstream behavior-generating neurons than lower cortical areas, across the

spectrum of non-categorical as well as categorical tasks.
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3.2.5 Distribution of information across IT sites

We next sought to characterize how the IT neural population simultaneously rep-

resents multiple visual properties. Are properties estimated by dedicated subpopu-

lations of neurons that separately solve individual estimation problems, or instead

tightly integrated in a joint population representation with the encodings for different

tasks highly overlapping with each other?

We first considered the distribution of information across sites for each task sep-

arately (Fig. 3.6a). For this analysis, we used the weights assigned to each site by

that task's linear estimator as a proxy for the amount of information contributed by

that site for that task. If the linear estimator for a given task assigns a given site a

high absolute value weight compared to the weights of other sites, that site is taken

to be more relevant for the task; high positive values correspond to strong correlation

between the site's output at the task, and high negative values correspond to strong

anticorrelation. (See Methods for discussion of alternative proxy metrics.) We char-

acterized each task's site-weight distribution using two statistical metrics: skewness

and kurtosis. Skewness is a measure of the balance of the site-weight distribution,

with high values indicating a bias towards sites that are anticorrelated with the task,

and low values indicating the opposite. Kurtosis is a measure of the sparseness of

the site-weight distribution, with high values indicating that only a very few sites

are highly informative for the task, and low values indicating little differentiation be-

tween sites. Across all tasks, we found a minimum skewness of -0.85 and a maximum

skewness of 1.04, with a median of 0.10 (Fig. 3.6b-c, top panels). These skewness

values indicate that the number of sites weighted at above average level is no less

than 70% and no more than 130% of the fraction of weights below the mean value.

For a majority of tasks (68 out of a total of N = 108 individual tasks), the skewness
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values were not statistically distinguishable from that of equally-sized samples from

a standard normal distribution. Across all tasks, we found a minimum kurtosis of

-0.26 for the face-detection task, and a maximum kurtosis of 4.73 for the x-axis po-

sition estimation task; the cross-task median was 0.45 (Fig. 3.6b-c, bottom panels).

These kurtosis values correspond to the fraction of highly-weighted sites making up

between 15% and 35% of all sites, with a mean of 26.3%; 47 of 108 tasks having

sparseness statistically indistinguishable from that of the standard normal distribu-

tion. Overall, these results suggest a picture in which the encoding of each task in

the IT population is comparatively well-distributed and not especially sparse.

We then quantified information overlap between pairs of tasks. We defined over-

lap as the correlation of the absolute values of the weight vectors for each task pair

(Fig. 3.6d; and see Methods for discussion of alternative overlap metrics). A high

positive overlap between weight patterns for a task pair (red color Fig. 3.6d) indi-

cates that downstream neurons could use overlapping sets of neurons in similar ways

when reading out the two tasks, whereas high negative correlation (blue color) would

indicate that downstream neurons would likely need to draw on non-overlapping sets

of neurons. Across all pairs of tasks in our dataset, the maximum observed over-

lap was 0.82, the minimum is -0.13, and the median is 0.07. 56.5% of pairs have

positive overlap, 16.6% have negative overlap, and 26.9% have overlap statistically

indistinguishable from 0. Unsurprisingly, high overlap tends to occur between groups

of highly semantically related tasks (e.g., the various size-related tasks). However,

even apparently unrelated tasks typically had more overlap than would be expected

from purely random distribution of units (see Methods and Fig. 3.10). An excep-

tion is case of the face-detection task, where the true overlap with other categorical

tasks is significantly less than random. Taken together, these results suggest that,

holding faces aside, the IT neural population jointly encodes both categorical and
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non-categorical visual tasks using an integrated representation in which many units

participate in tasks.

3.2.6 Computational modeling

Recent work has shown that neural responses in higher ventral cortical areas can

be modeled effectively by hierarchical convolutional neural networks that are op-

timized for performance on challenging high-variation categorization tasks [LeCun

and Bengio, 1995; Yamins* et al., 2014; Khaligh-Razavi and Kriegeskorte, 20141. To

determine how consistent these models were with our results on non-categorical prop-

erties, we implemented one such model containing six hierarchical layers in Chapter

4, specifically in Section 4.2.7. Here, we reproduced key results for the reader's

convenience:

* Each layer in the model is composed of extremely simple, biologically-plausible

operations include template-matching, non-linear activation thresholding, and

local pooling (see Section 4.2.7, Fig. 4.18; for methods, see [Yamins*, Hong*,

Cadieu, Solomon, Seibert, and DiCarlo, 2014]). The layers are stacked hi-

erarchically to produce increasingly complex transformations of input image

stimuli. The model is convolutional, meaning that it is applied identically at

every point in the image stimulus, but becomes less retinotopic at each layer

as the effective receptive field size of each unit becomes larger.

* We investigated the model's performance on the same tasks described above.

We found that test categorization performance increased throughout the course

of training (Fig. 4.19, grayed panels). More surprisingly, we found that per-

formance on all non-categorical tasks also increased during training, and that

100



performance on non-categorical tasks was highly correlated with categorization

performance across training timepoints (Fig. 4.6a-b, Fig. 4.19 white panels,

and 4.20).

9 We also investigated performance on each task for each layer within the model

hierarchy. We found that performance increased with each successive layer

of the network, both for categorization tasks as well as identity-orthogonal

tasks (Fig. 4.6c and 4.21). This result was in direct accord with the neural

results seen in Fig. 3.3a, and moreover, the performance pattern across tasks

of the fully-trained networks' top layer is highly consistent with the IT neural

performance pattern (Fig. 4.6d-e).

3.3 Discussion

Our results suggest that the same neural circuit mechanisms in the ventral stream

(and in particular, IT cortex) build explicit representations for both categorical and

non-categorical visual object properties. Though this may sound like a contradiction

in terms, it can be interpreted in light of existing theoretical and empirical results

that discuss the efficiencies of a joint representation of multiple image properties,

especially in relation to avoiding unnecessary binding problems [Edelman, 1999; Di-

Carlo and Cox, 2007; Sayres and Grill-Spector, 2008]. A key contribution of our

experimental results is a systematic, large-scale confirmation that these theories are

more consistent with the empirical data than existing alternatives [Mishkin et al.,

1983; Goodale and Milner, 1992; Ungerleider and Haxby, 1994]. An additional cru-

cial difference between our results and these existing ideas, however, is that our

data and modeling suggest that transformation "sensitivity" is not merely retained

101



by successive areas in the ventral stream hierarchy, but rather that is increased at

each layer in concert with transformation tolerance (see Section 4.2.7 for modeling

details).

This observation suggests that, at each stage of the ventral stream, mechanisms

that provide a partial solution to any one task (e.g., position estimation) help pro-

vide a basis on which to build a more complete solution to each other task (e.g.,

categorization) at the next layer - and vice-versa. Given the distribution of infor-

mation across units, however, there is no reason to suspect that the specific tasks we

identified here form a privileged basis, in that we likely could obtain a similar result

had we measured other similar but not identical tasks.

Additionally, our computational model provides an explanation for a neurally-

plausible mechanism that can achieve this type of simultaneous building of explicit

representation for both categorical and non-categorical properties, without the need

for feedback or attentional mechanisms [Deco and Rolls, 2004; Chikkerur et al., 2010].

However, a potentially deeper observation is that producing this joint tolerance does

not require directly optimizing for it as such. We find that optimizing just for robust

category selectivity brings along performance on all the other non-categorical tasks

"for free". This suggests a series of interesting follow-up studies investigating whether

the converse is true - is just solving for a non-categorical property (e.g., object posi-

tion estimation) enough to guarantee categorization performance, or is categorization

a much stronger constraint driving the development of IT neural responses?

It may be unintuitive that some properties (e.g., position estimation) that are

typically thought of as low-level visual features [Bosking et al., 2002] are actually

more effectively captured in higher-level cortical neural populations. Our results are

nonetheless consistent with the prior data that formed existing intuitions, because

while most studies examining putatively low-level properties do so with very simple
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stimulus sets (e.g., bars and gratings), our results focus on complex stimuli containing

realistic objects on cluttered backgrounds. Our results illustrate that visual concepts

present in complex naturalistic stimuli may not map cleanly to, and potentially

engage neural mechanisms quite distinct from, those exposed with simpler stimuli

(Fig. 3.3).

Existing literature suggests that the ventral stream representation achieves re-

duction in dimensionality of the original image stimulus by strategically throwing

out irrelevant information [Edelman, 1999]. A general hypothesis suggests that this

throwing-out is implemented via aggregative operations like the pooling stages of the

neural network models discussed above [LeCun and Bengio, 1995]. A more specific

version of this same hypothesis is that these pooling operations aggregate over object-

identity-preserving transformations at each scale, like higher-level analogs of simple-

cell/ complex-cell relationship observed in VI [Riesenhuber and Poggio, 1999b; Serre

et al., 2007b]. Our results do not contradict the more general hypothesis, but do show

that the more specific version cannot be true. Instead of thinking of ventral-stream

dimension reduction as averaging over (or otherwise discounting) the transforma-

tions to which the system must become tolerant, we hypothesize an alternative in

which what is thrown out is: precisely those lower-level details that do not somehow

contribute to behaviorally useful visual properties that humans can rapidly assess.

This hypothesis could directly by falsified by identifying a visual property defined in

complex naturalistic images that humans can report quickly and with high accuracy

in the parafoveal visual field, but is not supported by the IT population representa-

tion. Equally interesting would be a visual property such that, even if it is supported

by IT, does not appear to come along for free with categorization-performance op-

timization in computational models. Such questions would be especially interesting

in the domain of face recognition, where previous data indicates the existence of
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numerous face-specific processing patches in IT that are differentiated according to

their performance on tasks like face identification and orientation estimation [Tsao

and Livingstone, 2008].

One limitation of our work is that we make a number of implicit assumptions

about the way that IT neurons would be read out (e.g., decoded) by the downstream

units directly responsible for behavior. Our results largely involve multi-unit sites,

though as in previous work [Yamins* et al., 2014], we sorted single units from our

multi-unit recordings [Frey and Dueck, 2007a; Quiroga et al., 2004] and repeated

many of the analyses shown above, finding little difference from the multi-unit case.

We also do not make use of precise spike times, relying instead on a 100ms rate code

on which to build linear classifiers and regressors. These classifiers and regressors are

a technical tool for quantifying the amount of information populations have for given

tasks. However, because they consist only of linear weightings and at most a single

threshold value, they also express a mechanistically simple and plausible model for

putative rate-code-based downstream units [DiCarlo et al., 2012]. It would be of

interest to determine if more sophisticated codes (e.g., temporal decoding schemes)

are involved in the processing of the visual properties we investigate here.

Another limitation of our data is that all images were shown within a parafoveal

regime encompassing an 8' window around the animal's gaze fixation point. This

regime is large enough to present a wide range of object positions, with maximal

displacement greater than object diameter. However, it is not large enough to show,

nor do we mean even to suggest, that the ventral stream builds up an ability to

estimate properties of objects in the visual periphery normally associated with dor-

sal stream function [Brown et al., 2005; Sereno and Lehky, 2010]. Instead, given

our results as well as recent data showing shape and category selectivity in parietal

areas [Rishel et al., 2013; Janssen et al., 2008; Swaminathan and Freedman, 2012],
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we speculate that both the dorsal and ventral stream contain representations for

many types of visual properties, categorical and otherwise - but at different levels

of spatial resolution and scale, the ventral being fine-scale a parafoveally biased and

the dorsal being large-scale and with peripheral coverage. If borne out, this arrange-

ment would naturally support behavior in which dorsal machinery directed foveation

around an environmental saliency map, while the ventral machinery parsed details

of each salient foveal snapshot, information which then be integrated downstream to

produce an overall scene understanding.

3.4 Methods

3.4.1 Simple stimuli

In addition to our photorealistic image set, we also gathered neural data on a simpler

set of stimuli (see Fig. 3.7b), consisting of small grating patches placed on gray back-

grounds. The grating objects were shown at different positions in a 5-by-5 location

grid. At each location, gratings were shown at each of 4 orientations, including 0',

450, 90 , and 135', for a total of 100 images). The overall intensity of the images are

all identical.

3.4.2 Array electrophysiology

We used the same methodology used in Chapter 2 to collect and process neural data.

We reproduced key details here for the reader's convenience.

Neural data were collected in the visual cortex of two awake behaving rhesus

macaques (Macaca mulatta, 7 and 9 kg) using parallel multi-electrode array elec-

trophysiology recording systems (BlackRock Microsystems, Cerebus System). All
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procedures were done in accordance with NIH guidelines and approved by the MIT

Committee on Animal Care guidelines. None 96-electrode arrays (three arrays in

each hemisphere, with a total of three hemispheres, two left, one right, across two

monkeys) were surgically implanted in anatomically-determined V4, posterior IT,

central IT and anterior IT regions [Felleman and Van Essen, 1991]. Of these, 392

neural sites (266 in IT and 126 in V4) were selected as being visually driven with a

separate image set. Fixating animals were presented with testing images in pseudo-

random order with image duration comparable to those in natural primate fixations

[DiCarlo and Maunsell, 2000b]. Images were presented one at a time on an LCD

screen (Samsung SyncMaster 2233RZ at 120Hz) for 100ms, occupying a central 8'

visual angle radius on top of a gray background, followed by a 100ms gray "blank"

period with no image shown. Eye movements were monitored by video tracking

(SR Research, EyeLink II), and animals were given a juice reward each time fixa-

tion was maintained for 6 successive image presentations. Presentations in which

eye movement jitter exceeded 20 from screen center were discarded. In each ex-

perimental block, responses were recorded once for each image, resulting in 25 - 50

repeat recordings of the each testing image. For each image repetition and electrode,

scalar firing rates were obtained from spike trains by averaging spike counts in the

period 70-170ms post-stimulus presentation, a measure of neural response that has

recently been shown to match behavioral performance characteristics very closely

[Majaj et al., 2012].

In the same way we processed the neural data in Chapter 2, background firing

rate, defined as the mean within-block spike count for blank images, was subtracted

from the raw response. Additionally, the signal was normalized such that its per-

recording block variance is 1. Final neuron output responses were obtained for each

image and site by averaging over image repetitions. Recordings took place daily over
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a period of several weeks, during which time neuronal selectivity patterns at each

recording site were typically stable. Based on firing rates and spike-sorting analysis,

we estimate that each individual electrode multi-unit site in this study picks up

potentials from 1-3 single neural units.

To determine whether results would likely differ for direct single-unit recordings,

we sorted single units from the multi-unit IT data by using affinity propagation [Frey

and Dueck, 2007a] together with the method described in [Quiroga et al., 2004]. In

our IT sample, we obtained 154 well-isolated single units; in our V4 sample, we ob-

tained 191 well-isolated single units. Throughout, we repeated analyses both for our

raw multi-unit site data, as wcll as for these isolated single-unit populations. More-

over, we have supplemented with serially sampled, single-electrode recording [Hung

et al., 2005a; Rust and DiCarlo, 2010], and have found that neuronal populations from

arrays have very similar patterns of image encoding as assembled single-electrode unit

populations.

Receptive field analysis

Using the simple grating-like stimuli, we were able to compare receptive field loca-

tions and sizes in our V4 and IT populations. We found that for both populations,

receptive fields were concentrated near the center of gaze. In the case of V4 pop-

ulation, these fields covered the approximately central 4' relative to the center of

case; in our IT population, the fields covered roughly central 8'. To investigate the

effect of receptive field coverage on our results, we performed versions of each of our

analyses restricting to images in the central 4 degrees of the field of view, but did

not see substantial differences.
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3.4.3 Neural performance assessment

We assessed the performance of neural sites and populations on each of the tasks in

our task battery.

For discrete-valued tasks, performance was assessed by training linear classifiers

on neural output. Linear classifiers are a standard tool for analyzing the performance

capacity of a featural representation of stimulus data on discrete classification prob-

lems [Hung et al., 2005a; Pedregosa et al., 2011]. For neuronal sites, the output

features are defined as the vector of scalar firing rates for each unit, as is typical in

neural decoding studies [Hung et al., 2005a; Rust et al., 2006]. For any fixed popula-

tion of output features (from either a model or neural population), a linear classifier

determines a linear weighting of the units, followed by a discrete threshold, which

best predicts classification labels on a sample set of training images. Category or

identity predictions are then made for stimuli held out from the weight training set,

and accuracy is assessed on these held-out images. For continuous-valued estimation

tasks, performance was assessed by training linear regressors on neural output [Pe-

dregosa et al., 2011]. A linear regressor determines a linear weighting of the units

that best predicts the target property on a set of training images. Predictions for

that property are then made for a set of held-out images, and accuracy is assessed

using the Pearson correlation measure discussed above.

For both discrete classifiers and continuous regressors, to reduce the noise in

estimating accuracy values, results are averaged over a number of independent cross-

validation splittings of the data into training and testing portions. In the data

shown in figures 3.3-3.6, results show cross-validated test performance averaged over

50 splits in which each training split contained a randomly selected 80% of the data,

and the corresponding testing split contained the remaining 20% of the data. While
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absolute values of performances depend on the size of training split, the results

discussed in this paper do not. In all cases, classifiers and regressors were trained

using an 12 regularization penalty on the weights, and the penalty weight C was

chosen separately for each task via cross-validation sub-splits of the training data

[Pedregosa et al., 2011].

3.4.4 Human psychophysical experiments

Data on human object recognition judgement abilities shown in Figs. 3.4 and 3.5

were obtained using Amazon's Mechanical Turk crowdsourcing platform, an online

task marketplace where subjects can complete short work assignments for a small

payment.

We measured human performance for a subset of the tasks on which we decoded

neural performance (see below for detailed list). We recruited MTurk subject pools

separately for each task N = 80, though there ended up being a small amount of

overlap between the subject pools for the various tasks.

For each participant and each task, task sessions consisted of a training phase

containing 10 trials (except as indicated below) and a testing phase containing 100

trials. On each trial, a sample image was shown, following by a 500ms pause, and

then a response screen was shown. The nature of the response screen depended on

the task type (see below for details).

For each of the sessions, we measured 20 of the testing images 2 times, to en-

able calculation of within-subject reliability. For categorical variables, reliability was

calculated as 1 minus the average Hamming distance between two length-20 vec-

tors of distinct repeats, taken over 200 splittings of the repeats into two groups.

For continuous variables, reliability was calculated as the average correlation of the
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target variable between two length-vectors of distinct repeats, again taken over 200

splittings of the repeats into the two group.

During the training trials, sample images were shown for an extended period of

time and in which correct answers were indicated both via annotation on the original

sample image and in the response screen. Subject correctness in the training phase

provided us with an estimate of motor noise for each task. During the 100 testing

trials, sample images were shown for 100ms, followed by a 500ms pause, and then

a response screen was shown. The accuracy values reported in the figures and text

were generated from the testing trials only.

During trial sessions, each trial was assessed on-line for accuracy (that is, how

close the subject's answer was to the correct ground-truth answer). The accuracy

metric depended on the task type (see below). A small bonus was paid to subject

based on their average correctness at the end of the session, and subjects were told

at the beginning of each session that their bonus would depend on accuracy.

The tasks we measured included:

e Basic categorization tasks. This is an eight-way alternate forced choice (8-AFC)

task. The response screen for this task consistent of 8 response images, one

for each of the eight basic categories in our image set. Subjects were required

to click with their mouse on the image representing the category they thought

they saw in the sample image. The accuracy metric for this task was balanced

accuracy. During the training phase, correct answers were indicated by a blue

box highlighting the correct choice. Average within-subject reliability for this

task was 0.97.

e Subordinate identification tasks. This consisted of eight separate 8-AFC tasks,

one for each category. These tasks were not intermixed, e.g., sessions involv-
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ing subordinate car identification were not intermixed with subordinate boat

identification. The response screen for each the eight category tasks consisted

of 8 response images, one for each specific object identity within that category.

The accuracy metric was balanced accuracy. Average within-subject reliability

for this task was 0.92.

" Position estimation. Response screens consisted of a blank canvas the same size

as the sample image, and subjects were required to click at the location where

they estimated the centroid of the object in the sample image was located. x-

position and y-position estimates were computed from the indicated centroid.

In the training phase, the location of the centroid was shown with a blue dot,

both on the sample image while it was being presented, as well as on the blank

response canvas. Accuracy was assessed for each trial as the euclidean distance

of the subject's indicated estimate to the actual location. Average within-

subject reliability for the x-position estimate was 0.91 and for the y-position

estimate was 0.94.

" Axis-aligned bounding box estimation. Response screens consisted of a blank

canvas the same size as the sample image, and subjects were required to click

on the locations where they thought the top-left and bottom-right of the axis

aligned bounding box had been for the object in the sample image. x-axis

size, y-axis size, and bounding-box area were computed from the indicated

bounding box. During training phase, the correct locations of all four corners

of the bounding were indicated using blue dots, and the edges of the bounding

box were indicated using black outline, both on the original sample image

while it was being shown, as well as in the blank response canvas. Accuracy

was assessed for each trial using an area overlap criterion for the estimated
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versus true bounding box (intersection area divided by total area). Average

within-subject reliability of x-axis size was 0.96, for y-axis size was 0.92, and

for bounding-box size was 0.84.

* Rotated bounding box estimation. Response screens consisted of a blank can-

vas the same size as the sample image. Subjects were first required to click on

two points indicating one side of the rotated-area bounding box, and then on

a third point indicating the extent of the rotated bounding-box in the orthog-

onal direction. Major axis length, major axis angle, and aspect ratio where

computed from the subject's rotated bounding box estimate. Training-phase

answers and trial accuracy were as in the axis-aligned bounding box case. Av-

erage within-subject reliability for major axis length was 0.85, for major axis

angle was 0.79, and for aspect ratio was 0.91.

" Object 3-D scale. Response screens consisted of an image of the object in the

sample image, but shown from a single fixed canonical angle (chosen on a per-

category basis as described above). On each testing phase trial, the size of the

response image was randomized by uniformly drawing from the full size range in

the dataset. Subjects were given a slider and were required to resize the image

so that the object was at the same 3-dimensional size as they perceived it to be

in the sample image. Once subjects felt they had correctly resized the object

they pressed a "submit" button. During training phase trials, the correct size

was indicated via a marker along the slider, and subjects were required to move

the slider to the correct location to within 0.5% size tolerance. Accuracy was

assessed using absolute difference between correct and estimated size. Average

within-subject reliability for object scale estimate was 0.87.
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* Object 3-D rotation. Response screens consisted of a 3-D graphical "pointer"

indicating defined "top" and "front" orientations. Subjects were required to

rotate the pointer into alignment with the top and front orientations that they

perceived in the sample image. Once subjects felt that had corrected posed the

pointer, the clicked a "submit" button. During the training phase, the original

sample image was repeated on the response screen, and two copies of the pointer

were also shown simultaneously: one fixed at the correct 3-D orientation of the

object; the other was a movable pointer that subjects were required to rotate

into within 2 0-solid angle of the correct orientation before proceeding to the

next training trial. Training was provided on a per-category basis to teach

subjects our definition of the canonical (0, 0, 0) angle for each category, and 32

training examples were provided (containing training images for 4 exemplars

each for each of 8 categories). Accuracy was assessed using distance between

correct and indicated rotation in the quaternion representation [Shoemake,

1985]. Average within-subject reliability for z-axis rotation was 0.76; for x-axis

rotation was 0.69; and for y-axis rotation was 0.71.

3.4.5 Weight pattern analysis

Having determined that the IT population is able to sustain behaviorally plausible

linear coding for a variety of tasks, our next goal was to understand the distribution of

information for each of the tasks amongst the various sites. To formalize the concept

of "relevance of a task at a given site", we used the classifier/ regressor weights trained

in the population analyses described above (see below for a discussion of alternative
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metrics). In mathematical terms:

site i relevance for task T = WTi

where G5  = (WTi, WT2,..., WTn) is the vector of weights of a 12-regularized linear

estimator for task T on site i, and n is the number of neural sites. In the case of

the continuous regression tasks, the weights are simply the regression coefficients,

whereas in the case of the discrete categorization tasks, the weights are classifier

coefficients, prior to the final threshold value. The absolute value of the classifier

weight, IWTi1, is a proxy for the amount of information contributed by site i for task

T. If JWTij is large compared to the weights WTj for other sites j, site i is taken to be

more relevant for the task; WTi > 0 corresponds to strong correlation between the

site's output at the task, while WTi < 0 corresponds to strong anticorrelation.

Let DT by the distribution of weights for task T (Fig. 3.6a shows example

distributions for several selected tasks). In this work, we assume that the weights in

WT are IID samples from DT. We consider the distributions for 108 separate binary

tasks, including:

* The 8 1-vs-all basic-level categorization tasks (e.g., Animals vs all, Boats vs

all, &c).

* 8 1-vs-all subordinate categorization tasks for each of 8 categories, for a total

of 64 binary tasks.

* 12 size, position, bounding box, and pose estimation tasks, as described above.

* 24 subordinate 3-d pose estimation tasks, eight each for the three pose axes,

as described above.
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In several of the panels in Figure 3.6, we only show results for the non-subordinate

tasks, for visual clarity.

We had two basic analysis goals with these distributions: (a) what do the indi-

vidual task distributions of information look like for each task? and (b) how do they

overlap between tasks?

Individual task information distribution

In mathematical terms, our first goal was to characterize the shape of DT for each

task T. To do this, we used two statistical properties of the distributions: skewness

and kurtosis.

The -y1 skewness of the weight vector is a measure the balance or asymmetry of

the distribution of the weights about the mean weight. Positive skewness means that

the positive tail of the weight distribution is longer than the negative tail, e.g., the

majority of the weight distribution is below the mean. In the context of this work,

high skewness for the weight distribution associated with a given task would indicate

that the population was biased towards having sites that are anticorrelated with the

task, while high negative skewness would indicate the opposite. Formally, skewness

is a statistical third-moment measure defined as:

~y1CW I WT- [Iin 37

i1

where t = En WTi is the average weight and o = Z 1 (wTi - A)2 is the

standard deviation of the weights.

We measured the sparseness of weight distributions via excess kurtosis, 7Y2. Excess

kurtosis measures how spread out the weights are, relative to a normal distribution.
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Positive excess kurtosis means that the distribution is more peaked than a gaussian

distribution with the same mean and standard deviation. High kurtosis values indi-

cating that only a very few sites are highly informative for the task, and low values

indicating little differentiation between sites. Formally, excess kurtosis is defined as

' Zl (wTi -P)

'2(W) =-- - 3.

To ensure that we accurately took into account the effects of noise and sparse

sampling of image space, the skewness and sparseness shown are computed by aver-

aging the skewness and sparseness computed separately for the weights of 50 classi-

fiers/regressors, each trained on a different split containing 50% of the training data.

We also resampled sites with replacement, to ensure we were properly accounting

for uncertainty due to site sampling. Error bars shown in Fig. 3.6b are standard

deviations computed over both site samples and image splits.

To help interpret the meaning of these skewness and sparseness values, we com-

pared them to two types of controls:

1. Gaussian control. With a statistically large enough sample, gaussian distribu-

tions have 0 skew and 0 excess kurtosis. However, finite samples of a gaussian

distribution will not have 0 skewness or kurtosis. We matched the size of the

empirical distribution of IT sites (N = 266) and drew 1000 samples of size from

a standard gaussian, and computed the skewness and kurtosis for each sample.

The gray bars in Fig. 3.6b show the standard deviation spread of these values.

2. Three-point distribution control. The other end of the statistical spectrum

from the gaussian control are three-point distributions, distributions that have

support on three distinct points, x < xo < x+. For each task T, we ap-
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proximated the empirical distribution DT with a three-point distribution by

solving for x_, xo, x+ as well as probabilities 0 < p-,po,p+ = 1 - p - po,

such that x0 is the empirical mean of DT and the three-point distribution had

the same mean, standard deviation, skew and kurtosis as DT. Conceptually,

the interpretation of these approximations are to divide the population of sites

for each task T into three subpopulations: the x-sites that are the "highly-

anticorrelated" with the task T, the x+-sites that are highly correlated with

the task, and the xo-sites that are not highly relevant to the task. The ref-

erence values shown in the skewness histogram (Fig. 3.6b, top right) are, by

definition, (p+ + 0.5 - po)/(p_ + 0.5 -po), measuring the ratio of above-mean

to below-mean sites. The reference numbers shown in the sparsity histogram

(Fig. 3.6b, bottom right) are, by definition p + p+, measuring the proportion

of "high-relevance" sites.

As shown in Fig. 3.6b-c and discussed in the text, we found that the distributions

of weights are:

" On average, comparatively symmetric, in which most tasks are statistically

indistinguishable in their skewness from size-matched gaussian control, and

the proportion of above-mean to below-mean sites range from 0.7 to 1.3.

* On average, slightly more sparse than normally distributed, in which the pro-

portion of high-relevance sites (as defined above) ranges from 15% to 35%

of the total, with a median of 26.3%. The normal distribution has 32.5%

high-relevance sites, and a significant proportion of tasks are not statistically

distinguishable in their sparsity from that of the size-matched gaussian control.

Taken together, these results suggest a picture of information distribution across sites
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that is comparatively well distributed, as opposed to each task being supported by

a small number highly-dedicated sites.

Using the 12 metric (as shown in the main text), we also estimated the skewness

and kurtosis measures for the population of single units that we sorted from our raw

multi-unit site data. Though the specific skewness and kurtosis values were different,

the overall summary results were quite similar. Specifically, the kurtosis values cor-

responded to a fraction of highly-weighted sites between 5.2% and 4.6% of all sites,

with a mean of 32.1%, with 53 of 108 tasks having sparseness indistinguishable for

that of the standard normal distribution. The skewness values indicated that, for all

tasks, the number of sites weighted at above the mean is no less than 75% and no

more than 152% of the fraction of weights below the mean, with 73 out of 108 tasks

having skewness not statistically distinguishable from that of the standard normal

distribution.

Task-pair information overlap

Having characterized the per-task distributions, we sought to characterize the overlap

of weights for each task pair, seeking to understand how the sites that are likely to

be useful for any one task are related to those that are relevant for each other task.

We defined the overlap between tasks i and j as the pearson correlation between the

absolute values of the weight vectors for the two tasks (see below for discussion of

alternative metrics). Formally, the overlap matrix (see figure 3.6c) has i, j-th element

defined as

Mij = corr(IWT', )| Covw0LWT,11)Th)
3 /var(wT,| ) - var(I Th)

where T and T are the i-th and j-th tasks, respectively. This value ranges between

1 (perfectly correlated, meaning complete overlap) and -1 (perfectly anticorrelated,
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meaning totally non-overlapping). In practice, given that the number of tasks is

comparable to the number of sites in our sample, and that (as seen in the previous

section), each task utilizes between 15% and 35% of all sites, the minimum possible

average overlap will be significantly larger than -1.

In figure 3.6d, we show the average of the correlations of 1000 random draws of

weights of classifiers /regressors over a set of 50 splits containing 50% of the training

data. That is, each matrix element is the average of 1000 correlations corr(w , w )

where wk is the weight vector for the i-th task, trained on the k-th (of 50) splits,

and where Sk an s, where chosen randomly for each of the 1000 repeats.

We were particularly interested in quantifying the overlap between category-

detection tasks and non-categorical tasks. To provide reference points against which

to compare our results, we considered two controls:

1. Random overlap model. Weights are randomly assigned to each task subject to

the constraint of matching per-task and per-site marginal weight distributions,

but in which task pair overlap is unconstrained.

2. Minimum overlap model. Weight assignments are constrained as in the ran-

dom overlap model but additional constrained to result in as little overlap as

possible.

In both cases, we used gradient-based optimization methods to solve for weights

Wri, 0 < i < n for each task T, such that

* N= i TN=0 w for each unit i, where N is the number of tasks.

* mean(#T) mean(wWr) for all tasks T

" variance(1)T) = variance(wWr) for all tasks T
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* skewness('T) = skewness(wr7T) for all tasks T

* kurtosis(') = kurtosis(wrT) for all tasks T.

Using the 1-bfgs algorithm [Pedregosa et al., 2011], we minimized the square difference

objective function summed over the above 5 terms. In the case of the minimum

overlap model also simultaneously minimized ET.T corr(l r1, 1'J 1). For both the

random and minimum overlap models, we ran the optimization over 1000 random

initializations of the q values.

In summary, and shown in Figure 3.10 we found that:

* Overlap is generally positive.

" The average overlap of (non-face) categorical tasks with each other is higher

than would be predicted by the random overlap model, except for the case of

faces.

" The average overlap of the face-detection task with other categorical tasks is

lower than would be predicted by random overlap, but higher than would be

predicted by the minimal overlap model.

* The average overlap of (non-face) categorical tasks with non-categorical tasks

is lower but not statistically different from the prediction of the random model.

" The average overlap of face detection with non-categorical tasks is not statis-

tically distinguishable from that predicted by the minimal overlap model.

Taken together, these results suggest that, holding faces aside, the IT neural

population jointly encodes both categorical and non-categorical visual tasks using

an integrated representation in which many units participate in tasks. However, our
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this observations are consistent with well-established observations of segregated face-

specific sites [Kanwisher et al., 1997; Tsao and Livingstone, 2008], and provides a

positive control that the overlap-measurement methodology used here is able resolve

module-like structure when it exists.

Alternative measures of per-site relevance and overlap

To ensure that our results were not biased by the type of regularization we used, we

computed sparsity, skewness, and overlap for measures of site-relevance as defined

by two additional types of weight-generation procedures:

1. 11 estimator weights: The same as , but using a different classifier regulariza-

tion scheme in which 12 regularization is replaced with 11 sparse regularization.

2. Single-site performances: The weight-signed value of the single site's task

balanced accuracy or correlation value (depending on whether the task is cat-

egorical or continuous). That is,

site i relevance for task T = sign(w(i, T)) -AccBal(i, T) if T is categorical

Corr(i, T) if T is continuous

where w(i, T) is the single weight associated with the one-feature classifier for

site i with task T, and AccBal(i, T) (resp. Corr(i, T)) is the balanced accuracy

(resp. correlation) of site i for task T.

These metrics express different physiological hypotheses about the rules that

create weightings of downstream neurons that read off the IT population to actually

carry out specific tasks. Each metric is based on an algorithmic procedure for learning
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linear weight patterns that would be useful for reading off a given task. In the future,

we believe that experiments that could distinguish between these hypotheses would

be of significant utility, because they could shed light on the learning rules used in

cortical areas. For the purposes of this work, however, we ended up carrying out

analyses for all metrics to check that our results were robust to the choice of metric.

We mostly focus on the analysis for the case of the 12 estimator weight metric, but

it is largely identical in all cases.

We also considered several alternative measures of overlap, including:

1. Percentile matrix: Defining the overlap between task i and j as the aver-

age percentile in the distribution DT, of all sites at or above some percentile

threshold in D .

2. Knock-down analysis: Using the same classifiers /regressors trained in the

population analyses described above, we could knock down each site by setting

that site's input to baseline values for all stimuli, and then assess the change

in performance for each task. In this analysis, the amount of change in perfor-

mance with the site removed, relative to the expected performance drop from

the removal of a randomly chosen single site, would serve as the proxy for the

amount of information carried by that site for the task.

Again, results for these alternative overlap measures were not qualitatively different

than for the correlation metric we show in figures 3.6c-e.
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Figure 3.1: Large-scale electrophysiological measurement of neural re-
sponses in macaque IT and V4 cortex to visual object stimuli containing
high levels of object viewpoint variation. (a) We recorded neural responses to
5,760 high-variation naturalistic images consisting of eight exemplar objects each in
eight categories (Animals, Boats, Cars, Chairs, Faces, Fruits, Planes, Tables), placed
on natural scene backgrounds, at a wide range of positions, sizes, and poses. Stimuli
were presented to awake fixating animals for 100ms in a Rapid Serial Visual Pre-
sentation (RSVP) paradigm. Object centers varied within 8' of fixation center. (b)
Recordings were made using chronically-implanted electrode arrays, collecting a to-
tal of 392 neuronal sites in inferior temporal (IT, n = 266) and V4 (n = 126) visual
cortex. Each stimulus was repeated between 25 and 50 times. Spike counts were
binned in the time window 70ms-170ms post stimulus presentation and averaged
across repetitions, to produce a 5760 x 392 neural response pattern array. (c) We
then used linear readouts to decode a variety of types of image information from the
neural responses, including categorical data such as object category and exemplar
identity, as well as continuous data such as, for example, object position, retinal and
3-D object size, 2-D and 3-D pose angles, object perimeter and aspect ratio.
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Figure 3.2: Categorical and non-categorical object property information
encoded in single-site responses. (a) Category selectivity heatmaps of the sin-

gle sites in our IT sample that are best at decoding each of the eight categories

present in our stimulus set. Each colored bar represents the response of the indi-
cated site relative to that sites's baseline (blue=low, red=high). The colored bars

represent responses averaged over images of each of the eight object exemplars in

the indicated category (vertical axis), further broken down into three increasing lev-
els of image parameter variation (horizontal axis, see text). (b) Position selectivity
response heatmaps for best single sites for object position estimation. Each colored

squared position in each heat map represents the average of the indicate site's activ-

ity over all images where the objects center is located in that square's position. (W
Size selectivity response profiles for the best single units for object size estimation.
The x-axis represents the object diameter in degrees as seen by the animal. The

y-axis represents response relative to baseline of the indicated unit, averaged over

all images whose size falls in the indicated diameter bin. Error bars are standard

deviations due to image variation. (d) Performance of single best sites from IT (blue
bars) and V4 (green bars) on each task. Error bars are over subsets of units to chose
best single unit, and over images used to compute performance.
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Figure 3.3: Neural population decoding of a spectrum of categorical and
non-categorical properties. (a) For each task, we trained a linear decoder on
neural output. For discrete-valued categorization tasks, including object category
and exemplar subordinate identity, we used Support Vector Machine (SVM) classi-
fiers with L2-loss and L2-regularization. For continuous-valued estimation tasks, we
used linear regression with L2 (Ridge) regularization. We compared decoding perfor-
mance for our recorded IT population sample (blue bars) and V4 population sample
(green bars), as well as for a performance-optimized V1 gabor wavelet model (gray
bars) and the trivial pixel control (black bars). For categorical properties, bar height
represents balanced accuracy (0 = chance, 1 = perfect). For continuous properties,
bar height represents the Pearson correlation between the predicted value and the
actual ground-truth value. All values are shown on cross-validated testing images
held out during classifier and regressor training. Error bars represent standard devi-
ation over cross-validation image splits. All evaluations are performed with n = 126
units, and a fixed number of training/testing examples (see text and Methods for
details). (b) Population decoding results for position and orientation tasks defined
on a simpler stimulus set consisting of grating patches placed on gray backgrounds.
y-axis, bar colors, and error bars are as in panel (a).
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Figure 3.4: Comparison of neural population decoding performance to hu-
man psychophysical measurements. (a) Human-relative performance as a func-
tion of number of subsampled sites used to decode the property, for selected tasks.
The x-axis represents the base-10 logarithm of the number of sites. For each task,
the y-axis represents the performance of the decoder with the indicated number of
sites, as a fraction of median human performance for that task. A value of 1 would
mean that the neural decoder achieve 100% of human performance level. As in Fig.
3, balanced accuracy was used for both neural decoders and humans for the cate-
gorical properties, while estimate/actual correlation was used for continuous-valued
properties. Solid lines represent measured data; dotted lines represent log-linear ex-
trapolations based on the measured data. We evaluated our measured IT (blue lines)
and V4 (green lines) neural populations out to the data limited 266 and 126 sites
respectively, and evaluated VI model (gray lines) and pixels (black lines) out to 2000
units. Human performance for each indicated task was measured using large-scale
web-based psychophysics (see text and Methods). The variation in human perfor-
mance between individuals in our psychophysical studies is indicated by the dotted
horizontal lines flanking y = 1 (the median human performance level). (b) Estimated
number of neural sites that would be required to match median human performance.
Error bounds are due to variation in site subsamples. Value is shown as "-" when
more than 1010 sites would be required.
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Figure 3.5: Consistency of neural population decoding with human per-
formance pattern. (a) Scatters show human performance (x-axis) versus neural
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(n = 14) indicated in Fig. 4b. Small circles (n = 30) indicate values for further
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panel). Error bars are standard deviations due to be task and image variation (see
Methods for details).
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panel) and balance (bottom panel) of weight distributions for selected tasks. Sparse-
ness is measured via excess kurtosis (72, see Methods for details), while balance is
measured via skewness (yi). Error bars are standard deviations over image splits
on which weights were determined. Gray band represents 1 standard deviation of
distribution of values taken on size-matched samples from a gaussian distribution.
(c) Histograms of values of sparseness (top panel) and balance (bottom panel) over
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(d) Quantification of weight pattern overlap for pairs of tasks. Each colored square
in the heatmap is the Pearson correlation between the absolute value of the weight
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a Main Testing image set: 8 categories, 8 objects per category
Animals Boats Cars Chairs Faces Fruits Planes

Pose, position, scale, and background variation

b Simple Grating Stimuli: 4 orientations x 25 locations
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Figure 3.7: Image sets. (a) High-variation testing image set on which we collected
neural data and evaluated models contained 5760 images of 64 objects in 8 categories.
The image set contained three subsets, with low, medium and high levels of object
view variation. Images were placed on realistic background scenes, which were chosen
randomly to be uncorrelated with object category identity. As discussed in the Meth-
ods, this dataset supported a wide range of categorical and non-categorical tasks, on
which we evaluated population performance of V4 and IT neural populations, as well
as computational models. (b) Simple grating set stimuli used to estimate V4 and IT
receptive fields. This stimulus set supported three simple tasks, including x and y
position estimation of the center of grating object, as well as grating orientation.
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Figure 3.10: Comparison of task overlap to random and minimal control
models. (a) Comparison of weight overlap for categorical vs non-categorical tasks,
relative to Random overlap (top) and minimal overlap (bottom) models. (b) Average
overlap for (1) (non-face) categorical tasks, (2) faces-vs-non-face categorical tasks, (3)
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tasks. Shown are actual neural overlap (blue bars) in comparison to random overlap
(gray) and minimal overlap (orange) models. Errorbars for neural data overlap are
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overlaps are due to variation of model input data (per-task and per-unit weight
constrains) due to unit sampling and classifier training split, as well as random
initial conditions of model weights.
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Chapter 4

Performance-Optimized Hierarchical

Models Predict Neural Responses in

Higher Visual Cortex*

The ventral visual stream underlies key human visual object recognition abilities.

However, neural encoding in the higher areas of the ventral stream remains poorly

understood. Here, we describe a modeling approach that yields a quantitatively

accurate model of Inferior Temporal (IT) cortex, the highest ventral cortical area.

Using high-throughput computational techniques we discovered that, within a class of

biologically-plausible hierarchical neural network models, there is a strong correlation

between a model's categorization performance and its ability to predict individual IT

neural unit response data. To pursue this idea, we then identified a high-performing

neural network that matches human performance on a range of recognition tasks.

*This chapter is modified from a study published as [Yamins*, Hong*, Cadieu, Solomon, Seibert,
and DiCarlo, 2014]. This also includes unpublished preliminary results of a recent work with Dan

Yamins, Najib Majaj, and James DiCarlo.
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Critically, even though we did not constrain this model to match neural data, its top

output layer turns out to be highly predictive of IT spiking responses to complex

naturalistic images at both the single site and population levels. Moreover, the

model's intermediate layers are highly predictive of neural responses in V4 cortex, a

mid-level visual area that provides the dominant cortical input to IT. These results

show that performance optimization - applied in a biologically appropriate model

class - can be used to build quantitative predictive models of neural processing.

4.1 Introduction

Retinal images of real-world objects vary drastically due to changes in object pose,

size, position, lighting, non-rigid deformation, occlusion, and many other sources of

noise and variation. Humans effortlessly recognize objects rapidly and accurately in

spite of this enormous variation, an impressive computational feat [DiCarlo and Cox,

2007]. This ability is supported by a set of interconnected brain areas collectively

called the ventral visual stream [Grill-Spector et al., 2001; Malach et al., 2002j, with

homologous areas in non-human primates [Kriegeskorte et al., 2008b]. The ventral

stream is thought to function as a series of hierarchical processing stages [Tanaka,

1996; Logothetis and Sheinberg, 1996; Gross, 1994] that encode image content (e.g.

object identity and category) increasingly explicitly in successive cortical areas [Vo-

gels and Orban, 1994; DiCarlo and Cox, 2007; DiCarlo et al., 2012]. For example,

neurons in the lowest area, V1, are well-described by Gabor-like edge detectors that

extract rough object outlines [Carandini et al., 2005a], though the VI population

does not show robust tolerance to complex image transformations [DiCarlo et al.,

2012]. Conversely, rapidly-evoked population activity in top-level inferior temporal

(IT) cortex can directly support real-time, invariant object categorization over a

136



wide range of tasks [Hung et al., 2005a; Rust and DiCarlo, 2010]. Mid-level ventral

areas - such as V4, the dominant cortical input to IT - exhibit intermediate levels

of object selectivity and variation tolerance [Rust and DiCarlo, 2010; Freiwald and

Tsao, 2010; Connor et al., 2007].

Significant progress has been made in understanding lower ventral areas such as

V1, where conceptually compelling and quantitatively accurate models have been

discovered [Carandini et al., 2005a]. These models have the ability to predict the

response magnitudes of an individual neuronal unit to novel image stimuli based

on its responses to a fixed number of sample images. Higher ventral cortical areas,

especially V4 and IT, have been much more difficult to understand. While first-

principles-based models of higher ventral cortex have been proposed [Fukushima,

1980; Riesenhuber and Poggio, 2000; Serre et al., 2007a; Lecun et al., 2004; Bengio,

2009; Pinto et al., 2009], these models fail to match important features of the higher

ventral visual neural representation in both humans and macaques [Kriegeskorte

et al., 2008b; Kiani et al., 2007]. Moreover, attempts to directly fit V4 and IT neural

tuning curves on general image stimuli have shown only limited predictive success

[Rust et al., 2006; Gallant et al., 1996]. Explaining the neural encoding in these higher

ventral areas thus remains a fundamental open question in systems neuroscience.

As with models of V1, any effective model of higher ventral areas should be

neurally predictive. But because the higher ventral stream is also believed to underlie

sophisticated behavioral object recognition capacities, models must also match IT

on performance metrics: the ability to equal (or exceed) the decoding capacity of IT

neurons on object recognition tasks. A model with perfect neural predictivity in IT

will necessarily exhibit high levels of performance, because IT itself does. Here we

demonstrate that the converse is also true, within a biologically appropriate model

class. Combining high throughput computational and electrophysiology techniques,
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we explore a wide range of biologically plausible hierarchical neural network models

and then assess them against measured IT and V4 neural response data. We show

that there is a strong correlation between a model's performance on a challenging

high-variation object recognition task and its ability to predict individual IT neural

unit responses.

Extending this idea, we used optimization methods to identify a high-performing

hierarchical neural network model that matches human performance on a range of

recognition tasks. We then show that the top output model layer is highly predictive

of neural responses in IT cortex, providing a first quantitatively accurate model

of this highest ventral cortex area - even though the model was never explicitly

constrained to match neural data. Moreover, analysis of the intermediate layers of

the model show that they are highly predictive of V4 neural responses, confirming

the importance of performance as a biologically-meaningful cortical constraint.

4.2 Results

4.2.1 Invariant object recognition performance strongly cor-

relates with IT neural predictivity

We first measured IT neural responses on a benchmark testing image set that has

been shown to expose key performance characteristics of visual representations [Cadieu

et al., 2013]. This image set consists of 5760 images of photorealistic three-dimensional

objects drawn from eight natural categories (Animals, Boats, Cars, Chairs, Faces,

Fruits, Planes and Tables). The image set contains high levels of the object position,

scale and pose variation that make recognition difficult for artificial vision systems,

but to which humans are robustly tolerant [DiCarlo and Cox, 2007; Pinto et al.,

138



2008a]. The objects are placed on cluttered natural scene backgrounds that are

randomly selected to ensure that background content is uncorrelated with category

identity (Fig. 4.7a).

Using multiple electrode arrays, we collected responses from 168 IT neurons to

each image (see Methods). We then used high throughput computational methods

to evaluate thousands of candidate neural network models on these same images,

measuring object categorization performance as well as IT neural predictivity for

each model (see Fig. 4.1a; each point represents a distinct model). To measure

categorization performance, we trained standard Support Vector Machine (SVM)

linear classifiers on model output layer units [Hung et al., 2005a], and computed

cross-validated testing accuracy for these trained classifiers. To assess models' neural

predictivity, we used a standard linear regression methodology [Carandini et al.,

2005a; Cadieu et al., 2007; Sharpee et al., 2012]: for each target IT neural site,

we identified a "synthetic neuron" composed of a linear weighting of model outputs

that would best match that site on fixed sample images, and then tested response

predictions against actual neural site's output on novel images. See Methods for

additional details on performance and predictivity metrics.

In our initial high-throughput experiments, models were drawn from a large pa-

rameter space of Convolutional Neural Networks (CNNs) expressing an inclusive

version of the hierarchical processing concept [Lecun et al., 2004; Serre et al., 2007a;

Mutch and Lowe, 2008; Pinto et al., 2009]. CNNs approximate the general retino-

topic organization of the ventral stream via spatial convolution, with computations

in any one region of the visual field identical to those elsewhere. Each convolutional

layer is composed of simple and neuronally plausible basic operations, including lin-

ear filtering, thresholding, pooling and normalization (Fig. 4.8a). These layers are

stacked hierarchically to construct deep neural networks.
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Each model is specified by a set of 57 parameters controlling the number of layers

and parameters at each layer, (e.g.) fan-in and fan-out, activation thresholds, pooling

exponents, and local receptive field sizes at each level of the network. Network

depth ranged from one to three layers, and filter weights for each layer were chosen

randomly according to a bounded uniform distribution whose bounds were model

parameters (see Methods). These models are consistent with the Hierarchical Linear-

Nonlinear hypothesis that higher level neurons (e.g. IT) output a linear weighting of

inputs from intermediate-level (e.g. V4) neurons followed by some simple additional

nonlinearities [Connor et al., 2007; Brincat and Connor, 2004].

Models were then selected for evaluation by one of three procedures: (1) random

draws from the uniform distribution over model parameter space (Fig. 4.1a, n =

2016, green dots); (2) optimization for performance on the high-variation eight-way

categorization task (n = 2043, blue dots); and (3) optimization directly for IT neural

predictivity (n = 1876, orange dots). (See Methods and Fig. 4.9 for more details

on these optimizations.) In each of these experiments, we observed a large variation

in both performance and IT-predictivity across the range of selected parameters.

This result demonstrates that, while the HLN hypothesis is consistent with a broad

spectrum of particular neural network architectures, choices for these architectural

parameters have a large effect on a specific model's ability either to perform object

recognition effectively or match neural data.

Performance was significantly correlated with neural predictivity in all three se-

lection regimes. Models that performed better on the categorization task were also

more likely to produce outputs more closely aligned to IT neural responses. While

the class of HLN-consistent architectures contains many neurally inconsistent ar-

chitectures with low IT-predictivity, performance provides a meaningful way to a

priori rule out many of those inconsistent models. No individual model parame-
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ters correlated nearly as strongly with IT-predictivity as performance (Fig. 4.10),

indicating that the performance/ IT-predictivity correlation cannot be explained by

simpler mechanistic considerations (e.g. receptive field size of the top layer).

Critically, directed optimization for performance significantly increased the cor-

relation with IT-predictivity compared to the random selection regime (r = 0.78

vs r = 0.55), even though neural data were not used in the optimization. More-

over, when optimizing for performance, the best-performing models predicted neural

output as well as those models directly selected for neural predictivity, though the re-

verse is not true. Together, these results imply that, while the IT-predictivity metric

is a complex function of the model parameter landscape, performance optimization

is an efficient means to identify regions in parameter space containing IT-like models.

4.2.2 IT cortex as a neural performance target

Fig. 4.la suggests a next step toward improved encoding models of higher ven-

tral cortex: drive models further to the right along the x-axis - if the correlation

holds, the models will also climb on the y-axis. Ideally, this would involve identifying

hierarchical neural networks that perform at or near human object recognition per-

formance levels, and validating them using rigorous tests against neural data (Fig.

4.2a). However, the difficulty of meeting the performance challenge itself can be seen

in Fig. 4.2b. To obtain neural reference points on categorization performance, we

trained linear classifiers on the IT neural population (Fig. 4.2b, green bars) and

the V4 neural population (n = 128, hatched green bars). To expose a key axis of

recognition difficulty, we computed performance results at three levels of object view

variation, from low (fixed orientation, size and position) to high (180-deg rotations

on all axes, 2.5x dilation and full-frame translations; see Fig. 4.7a). As a behavioral
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reference point, we also measured human performance on these tasks using web-

based crowdsourcing methods (black bars). A crucial observation is that at all levels

of variation, the IT population tracks human performance levels, consistent with

known results about IT's high category decoding abilities [Hung et al., 2005a; Rust

and DiCarlo, 2010]. The V4 population matches IT and human performance at low

levels of variation but performance drops quickly at higher variation levels. (This

V4-to-IT performance gap remains nearly as large even for images with no object

translation variation, showing that the performance gap is not due just to IT's larger

receptive fields.)

As a computational reference, we used the same procedure to evaluate a variety of

published ventral stream models targeting several levels of the ventral hierarchy. To

control for low-level confounds, we tested the (trivial) pixel model, as well as SIFT,

a simple baseline computer vision model [Lowe, 2004]. We also evaluated a V1-

like Gabor-based model [Pinto et al., 2008a], a V2-like conjunction-of-Gabors model

[Freeman and Simoncelli, 2011], and HMAX [Serre et al., 2007a; Mutch and Lowe,

2008], a model targeted at explaining higher ventral cortex and that has receptive

field sizes similar to those observed in IT. The HMAX model can be trained in a

domain-specific fashion, and to give it the best chance of success, we performed this

training using the benchmark images themselves (see Methods for more information

on the comparison models). Like V4, the control models that we tested approach

IT and human performance levels in the low variation condition, but in the high-

variation condition all of them fail to match the performance of IT units by a large

margin. It is not surprising that VI and V2 models are not nearly as effective as IT,

but it is instructive to note that the task is sufficiently difficult that the HMAX model

performs less well than the V4 population sample, even when pre-trained directly on

the test dataset.
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4.2.3 Constructing a high-performing model

While simple three-layer hierarchical convolutional neural networks can be effective

at low-variation object recognition tasks, recent work has shown that they may be

limited in their performance capacity for higher-variation tasks [DiCarlo et al., 2012].

For this reason, we also allowed our model class to contain combinations (e.g., mix-

tures) of CNN networks (Fig. 4.8b), which correspond intuitively to architecturally

specialized subregions like those observed in the ventral visual stream [Downing

et al., 2006; Freiwald and Tsao, 2010]. To address the significant computational

challenge of finding especially high-performing architectures within this large space

of possible networks, we employed Hierarchical Modular Optimization (HMO). The

HMO procedure embodies a conceptually simple hypothesis for how high-performing

combinations of functionally specialized hierarchical architectures can be efficiently

discovered and hierarchically combined, without needing to prespecify the subtasks

ahead of time. Algorithmically, HMO is analogous to an adaptive boosting proce-

dure [Schapire, 1999] interleaved with hyperparameter optimization (see Methods

and Fig. 4.8c for more information on the HMO procedure).

We applied the HMO selection procedure on a challenging object recognition

screening task, analogous to the pre-training performed for the HMAX model (Fig.

4.7b). This screening set was designed so that its relationship to the benchmark

testing images is similar to that between any two typical samples of natural images:

having some high-level commonalities but otherwise quite different specific content.

Like the testing set, the screening set contained images of objects placed on randomly

selected backgrounds, but used entirely different objects in totally non-overlapping

semantic categories, with none of the same backgrounds and widely divergent lighting

conditions and noise levels. Applying the HMO procedure to this screening set
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identified a high-performing four-layer model with 1250 top-level outputs (Fig. 4.8B

and Fig. 4.11), which we will refer to as the "HMO model".1

Using the same classifier training protocol as with the neural data and control

models, we then tested the HMO model to determine whether its performance trans-

ferred from the screening to the testing image set. In fact, the HMO model matched

the object recognition performance of the IT neural sample (Fig. 4.2b, red bars),

even when faced with large amounts of variation - a hallmark of human object

recognition ability [DiCarlo and Cox, 2007]. These performance results are robust to

the number of training examples and number of sampled model "neurons", across a

variety of distinct recognition tasks (Figs. 4.12 and 4.13).

4.2.4 Predicting neural responses in individual IT neural sites

Given that the HMO model had plausible performance characteristics, we then mea-

sured its IT-predictivity, both for the top-level output, as well as for each of the

model's three intermediate layers (Fig. 4.3, red lines/bars). We found that each

successive layer predicted IT units increasingly well, demonstrating that the trend

identified in Fig. 4.1a continues to hold in higher performance regimes (see Fig.

4.1b). Qualitatively examining the specific predictions for individual images, the

model layers show that category selectivity and tolerance to more drastic image

transformations emerges gradually along the hierarchy (Fig. 4.3a, top four rows).

At lower layers, units predict IT responses to objects only at a limited range of poses

and positions. At higher layers, variation tolerance grows while category selectivity

develops, suggesting that as more explicit "untangled" object recognition features are

'We also performed a pre-training of the HMAX model using the screening set used to learn the
HMO model, and then re-extracted the learned HMAX on the testing set. We found that this only
further decreased final performance and neural fit results of the HMAX model, e.g. the learned
parameters did not effectively generalize from the screening to the testing set.
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generated at each processing stage, its representations become increasingly IT-like

[DiCarlo et al., 2012].

Critically, we found that the top layer of the high-performing HMO model achieves

high predictivity for individual IT neural sites, predicting 48.5 1.3% of the ex-

plainable IT neuronal variance (Fig. 4.3b and c). This represents a nearly 100%

improvement over the best comparison models and is comparable to the prediction

accuracy of state-of-the-art models of lower-level ventral areas such as V1 on complex

stimuli [Carandini et al., 2005a]. In comparison, while the HMAX model was better

at predicting IT responses than baseline V1 or SIFT, it was not significantly differ-

ent from the V2-like model. Though the high-performing HMO model is deeper and

more complex that then three-layer CNNs investigated earlier in Fig. 4.1a, the direct

relationship between model categorization performance and IT-predictivity for hier-

archical network models nonetheless extends across the entire range of performance

levels and model complexities (Fig. 4.1b).

To control for how much of the model's prediction capacity could be expected

to be reproduced by any algorithm with high categorization performance, we also

assessed semantic ideal observers [Geisler, 2003], including a hypothetical "model"

which has perfect access to all category labels and other image parameters. The

ideal observers do predict IT units above chance level (Fig. 4.3c, left two bars),

which is consistent with the hypothesis that IT neurons are partially categorical in

their responses. However, the ideal observers are significantly less predictive than

the HMO model, showing that high IT-predictivity does not automatically follow

from category selectivity, and that there is significant non-categorical structure in IT

responses that is attributable to intrinsic aspects of the hierarchical network structure

(see, e.g., Fig. 4.3a, last row). In sum, our results suggest that high categorization

performance and the hierarchical model architecture class work in concert to produce
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IT-like populations, and neither one of these constraints is sufficient on its own to

do so.

4.2.5 Population representation similarity

Characterizing the IT neural representation at the population level may be equally

important for understanding object visual representation as individual IT neural

sites. The Representation Dissimilarity Matrix (RDM) is a convenient tool com-

paring two representations on a common stimulus set in a task-independent manner

[Kriegeskorte et al., 2008b; Pasupathy and Connor, 2002]. Each entry in the RDM

corresponds to one stimulus pair, with high/low values indicating that the popula-

tion as a whole treats the pair stimuli as very different /similar. Taken over the whole

stimulus set, the RDM characterizes the layout of the images in the high-dimensional

neural population space. When images are ordered by category, the RDM for the

measured IT neural population (Fig. 4.4a) exhibits clear block-diagonal structure -

associated with IT's exceptionally high categorization performance - as well as off-

diagonal structure that characterizes the IT neural representation more finely than

any single performance metric (Fig. 4.4a and Fig. 4.14). We found that the neural

population predicted by the output layer of the HMO model had very high similarity

to the actual IT population structure, close to the split-half noise ceiling of the IT

population (Fig. 4.4b). This implies that much of the residual variance unexplained

at the single-site level may not be relevant in the IT population level code. Just

as with individual unit neural predictivity, the HMAX model is approximately as

effective as a V2-like model.

We also performed two stronger tests of generalization: (1) object-level gener-

alization, in which the regressor training set contained images of only 32 object
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exemplars (4 in each of 8 categories), with RDMs assessed only on the remaining

32 objects, averaging results across many such object splits, and (2) category-level

generalization, in which the regressor sample set contained images of only half the

categories (8 objects in each of (e.g.) animal, boat, car, and chair categories), but as-

sessed only on images of the other categories (8 objects in face, fruit, plant and table

categories), averaged across many such category splits (see Fig. 4.15 and 4.14). We

found that the prediction generalizes robustly, capturing the IT population's layout

for images of completely novel objects and categories (Fig. 4.4b-c and Fig. 4.14).

4.2.6 Predicting responses in V4 from intermediate model

layers

Cortical area V4 is the dominant cortical input to IT, and the neural representation

in V4 is known to be significantly less categorical than that of IT [Rust and DiCarlo,

2010]. Comparing a performance-optimized model to these data would provide a

strong test both of its ability to predict the "internal" structure of the ventral stream

as well as to go beyond the direct consequences of category selectivity. We thus

measured the HMO model's neural predictivity for the V4 neural population (Fig.

4.5). We found that the HMO model's penultimate layer is highly predictive of

V4 neural responses (51.7 2.3% explained V4 variance), providing a significantly

better match to V4 than either the model's top or bottom layers. These results are

strong evidence for the hypothesis that V4 corresponds to an intermediate layer in a

hierarchical model whose top layer is an effective model of IT. Of the control models

that we tested, the V2-like model predicts the most V4 variation (34.1 2.4%).

Unlike the case of IT, ideal observer semantic models explain effectively no response

variance in V4, consistent with V4's lack of category selectivity. Together these
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results suggest that performance optimization not only drives top-level output model

layers to resemble IT, it also imposes strong biologically consistent constraints on the

intermediate feature representations that can support performance at higher levels.

4.2.7 Emergence of non-categorical visual properties

Visual perception involves estimating a variety of other properties besides an object's

category or identity [Edelman, 1999; Koenderink and van Doorn, 1979]. Here, we

tested whether categorization performance optimized networks can also solve non-

categorical visual tasks in Chapter 3. In order to answer the question, we further

optimized a model for category recognition performance on a very large database of

natural images containing approximately 1 million images in 1000 every-day object

categories [Deng et al., 2009] with filter value tuning [LeCun and Bengio, 1995;

Krizhevsky et al., 2012], stopping the optimization when recognition performance

reached saturation. To ensure a sufficiently strong test of generalization could be

performed, from the beginning of model training we removed categories from the

training set that overlapped with those that appeared in the testing image set used

in the neural and behavioral experiments discussed above. For an evenly-spaced

series of timepoints during model training, we then extracted model unit responses

from each layer on the test image set. This procedure for training and testing is

somewhat analogous to performing a time-course of neural samples on a developing

animal, in the context of our simplified in silico visual model. For more details, see

Section 4.4.4.

Consistent with results from previous sections, even though no neural data were

used to learn the model parameters, and even though the semantic content of the

training images was quite different from that of the testing images, the final "adult"
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model state was nonetheless highly predictive of neural responses in the test images

on an image-by-image basis. Specifically, the models' top layer was predictive of

detailed neural response patterns in IT cortex, its intermediate layers were predictive

of neural response patterns in V4 cortex, and its lowest layers evidence Vi-like Gabor

edge tuning (Fig. 4.18b; Section 4.4.4).

We then investigated the model's performance on the tasks in Chapter 3 on which

we had measured neural population performance. We found that test categorization

performance increased throughout the course of training (Fig. 4.19, grayed pan-

els), indicating effective generalization, since because the model was trained on a

completely different image set containing non-overlapping categories of objects. Un-

expectedly, however, we also found that performance on all non-categorical tasks also

increased during training, and that performance on non-categorical tasks was highly

correlated with categorization performance across training timepoints (Fig. 4.6a-b,

Fig. 4.19 white panels, and 4.20). This may be somewhat surprising, because not

only was the model not supervised explicitly for these category-orthogonal estima-

tion tasks, the categorization task for which it was supervised explicitly sought to

become invariant to these very same tasks.

We also investigated performance on each task for each layer within the model

hierarchy. We found that performance increased with each successive layer of the

network, both for categorization tasks as well as identity-orthogonal tasks (Fig. 4.6c

and 4.21). This observation may also be somewhat unexpected, both since the higher

layers of the model were more directly exposed to the nuisance-variable invariance

training criterion, and since the lower model layers are significantly more retinotopic

that higher layers. Nonetheless, this result was in direct accord with the neural

results seen in Fig. 3.3a. Moreover, the performance pattern across tasks of the

fully-trained networks' top layer is highly consistent with the IT neural performance
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pattern (Fig. 4.6d-e).

Together, these results indicate that this computational model is a plausible de-

scription of a hierarchical computational mechanism by which the ventral stream

could simultaneously represent both categorical and non-categorical image proper-

ties. Moreover, the fact that non-categorical information for a wide spectrum of tasks

emerged in the model without being explicitly built in suggest that our observations

of the same properties in the neural data (described mainly in Chapter 3) is likely

to be a non-accidental feature of how the ventral stream builds high-level object

representations.

4.3 Discussion

In this work, we demonstrate a principled method for achieving greatly improved pre-

dictive models of neural responses in higher ventral cortex. Our approach embodies a

working hypothesis for two concrete biological constraints that shaped visual cortex:

(1) the functional constraint of recognition performance, and (2) the architectural

constraints imposed by the convolutional neural network hierarchy.

4.3.1 A generative basis for higher visual cortical areas

Our modeling approach has common ground with existing work on neural response

prediction [Sharpee et al., 2012], e.g. the Hierarchical Linear-Nonlinear hypothesis.

But in a departure from that line of work, we do not tune model parameters (the

non-linearities or the model filters) separately for each neural unit to be predicted.

In fact, with the exception of the final linear weighting, we do not tune parameters

using neural data at all. Instead, the parameters of our model were independently
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selected to optimize functional performance at the top level, and these choices create

fixed bases from which any individual IT or V4 unit can be composed. This yields

a generative model that allows the sampling of an arbitrary number of neurally

consistent units. As a result, the size of the model does not scale with the number

of neural sites to be predicted - and since the prediction results were assessed for a

random sample of IT and V4 units, they are likely to generalize with similar levels

of predictivity to any new sites that are measured.

4.3.2 What features do good models share?

What characteristics contribute to making certain neural networks (e.g. the HMO-

trained model) so much better than others at object recognition performance or

predicting neural data? While highly IT-predictive models often had certain char-

acteristics in common (e.g. more hierarchical layers), many poor models also shared

these same characteristics, so no one architectural parameter strongly correlated with

neural predictivity (see Fig. 4.10). To gain further insight, we performed an initial

exploratory analysis of the parameters of the learned HMO model, evaluating each

parameter both for how sensitively it was tuned and how diversely it was tuned

between model mixture components. We found two classes of model parameters

that were both especially sensitive and diverse (Methods and Figs. 4.16, 4.17): (1)

filter statistics, including filter mean and spread, and (2) the exponent trading off

between max-pooling and average-pooling [Riesenhuber and Poggio, 2000]. These

observations hint at a computationally rigorous explanation for what underlies het-

erogeneity that is observed in the receptive fields of ventral stream neurons both

at the unit and sub-area levels [Martin and Schroder, 2013; Downing et al., 2006;

Freiwald and Tsao, 2010], but much work remains to be done to confirm such a
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hypothesis.

4.3.3 A "top-down" approach to understanding cortical cir-

cuits

A common assumption in visual neuroscience is that understanding the qualitative

structure of tuning curves in lower cortical areas will be a necessary precursor to ex-

plaining higher visual cortex. For example, significant work has gone into assessing

the extent to which V4 neurons can be understood as a curvature-selective shape

representation [Sharpee et al., 2012]. Our results indicate that it is useful to comple-

ment this bottom-up approach with a top-down perspective in which behavioral (e.g.

performance) metrics are a sharp and computationally tractable constraint shaping

individual neural response functions in both higher and intermediate cortical areas.

In other words, our "explanation for IT" is that it was selected by an evolutionary

and/or developmental process precisely so that it had useful performance character-

istics for tasks like those used in our optimization. Similarly, our "explanation of V4"

is that it was selected precisely so that it could serve as an effective input for the

downstream computation in IT. This type of explanation is qualitatively different

from more traditional approaches that seek explicit descriptions of neural responses

and brain regions in terms of (e.g.) particular geometrical primitives. However,

our results show functionally-relevant constraints can be used to obtain quantita-

tively predictive models even when such explicit bottom-up primitives have not been

identified.

Going forward, we will work to bridge the gap between these bottom-up and

top-down explanations, by analyzing model features to build more intuitively inter-

pretative links to lower and intermediate visual cortex, especially in VI and V2. The
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results here also suggest that it will be important to explore recent high-performing

computer vision systems with architectures inspired by the ventral stream, e.g.

[Krizhevsky et al., 2012], to determine whether these specific learning algorithms

provide further insight into ventral stream mechanisms. Our results show that

behaviorally-driven computational approaches have an important role in understand-

ing the details of cortical processing [Marr et al., 2010]. We anticipate that further

work along these lines will uncover more detailed predictions about the underlying

constraints that shaped the ventral stream, and speculate that the overall approach

may be applicable to other cortical areas and task domains.

4.4 Methods

4.4.1 Experimental data collection

We used the same experimental data collected in Chapter 2. Here, we reproduced

the details that have been employed for the reader's convenience.

Array electrophysiology

Neural data were collected in the visual cortex of two awake behaving rhesus macaques

(Macaca mulatta, 7 and 9 kg) using parallel multi-electrode array electrophysiology

recording systems (BlackRock Microsystems, Cerebus System). All procedures were

done in accordance with National Institute of Health guidelines and approved by the

Massachusetts Institute of Technology Committee on Animal Care guidelines. Six

96-electrode arrays (three arrays each in two monkeys) were surgically implanted in

anatomically-determined V4, posterior IT, central IT and anterior IT regions [Felle-

man and Van Essen, 1991]. Of these, 296 neural sites (168 in IT and 128 in V4) were
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selected as being visually driven with a separate imageset. Fixating animals were

presented with testing images in pseudo-random order with image duration compara-

ble to those in natural primate fixations [DiCarlo and Maunsell, 2000b]. Images were

presented one at a time on an LCD screen (Samsung, SyncMaster 2233RZ at 120Hz)

for 100ms, occupying a central 8' visual angle radius on top of a gray background,

followed by a 100ms gray "blank" period with no image shown. Eye movements were

monitored by a video tracking system (SR Research, EyeLink II), and animals were

given a juice reward each time central fixation was maintained for 6 successive image

presentations. Eye movement jitter within 2' from a 0.250 red dot at the center of

screen was deemed acceptable, while presentations with large eye movements were

discarded. In each experimental block, responses were recorded once for each image,

resulting in 25 - 50 repeat recordings of the each testing image.

For each image repetition and electrode, scalar firing rates were obtained from

spike trains by averaging spike counts in the period 70 - 170ms post-stimulus presen-

tation, a measure of neural response that has recently been shown to match behav-

ioral performance characteristics very closely [Majaj et al., 2012]. Background firing

rate, defined as the mean within-block spike count for blank images, was subtracted

from the raw response. Additionally, the signal was normalized such that its per-

block variance is 1. Final neuron output responses were obtained for each image and

site by averaging over image repetitions. Recordings took place daily over a period of

several weeks, during which time neuronal selectivity patterns at each recording site

were typically stable. Based on firing rates and spike-sorting analysis, we estimate

that each individual electrode multi-unit site in this study picks up potentials from

1-3 single neural units. To determine whether results would likely differ for direct

single-unit recordings, we sorted single units from the multi-unit IT data by using

affinity propagation [Frey and Dueck, 2007a] together with the method described
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in [Quiroga et al., 2004]. Of these units, 21 had internal trial-to-trial consistency

with an r-value of 0.3. We assessed the HMO model's prediction ability for these

single units, obtaining a median of 50.4 2.2% explained variance, very close to

that obtained directly from the multi-unit data. Moreover, we have supplemented

with serially sampled, single-electrode recording [Hung et al., 2005a; Rust and Di-

Carlo, 2010], and have found that neuronal populations from arrays have very similar

patterns of image encoding as assembled single-electrode unit populations.

Test stimulus set

The test stimulus set (Fig. 4.7, a) consisted of 5760 images of 64 distinct objects

chosen from one of eight categories (animals, boats, cars, chairs, faces, fruits, planes,

tables), with eight specific exemplars of each category (e.g., BMW, Z3, Ford, etc.

within the car category). The set was designed specifically to (1) include a range of

everyday objects, (2) support both coarse, "basic-level" category comparisons (e.g.

"animals" vs. "cars") and finer subordinate level distinctions (e.g. distinguish among

specific cars) [Rosch et al., 1976], and (3) require strong tolerance to object viewpoint

variation, e.g. pose, position and size. Objects were placed on realistic background

images which were chosen randomly so as to prevent correlation between background

content and object class identity.

Object view parameters were chosen randomly from uniform ranges at three

levels of variation (low, medium, and high), and images were rendered using the

photorealistic Povray package [Plachetka, 1998]. The parameter ranges for the three

variation levels were:

* Low variation: All objects placed at image center (x = 0, y = 0), with a

constant scale factor (s = 1) translating to objects occluding 40% of image on
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longest axis, and held at a fixed reference pose (rxy = rxz = ryz = 0).

" Medium variation: Object position varies within one-half multiple of total

object size ( xl, lyj < 0.3), varying in scale between s = 1/1.3 - .77 and s = 1.3,

and between -45 and 45 degrees of in-plane and out-of-plane rotation (< 450).

* High variation: Object position varies within one whole multiple of object

size (Izx, Jyj < 0.6), varying in scale between s = 1/1.6 - .625 and s = 1.6, and

between -90 and 90 degrees of in-plane and out-of-plane rotation (< 900).

Crowd-sourced human psychophysics

Data on human object recognition judgement abilities shown in Figs. 4.2b and 4.12

were obtained using Amazon Mechanical Turk crowd-sourcing platform, an online

task marketplace where subjects can complete short work assignments for a small

payment. A total of 104 observers participated in one of three visual task sets: an

8-way classification of images of eight different cars, an 8-way classification of images

of eight different faces, or an 8-way categorization of images of objects from eight

different "basic-level" categories. Observers completed these 30 to 45 minute tasks

through Amazon Mechanical Turk. All the results were confirmed in the lab setting

with controlled viewing conditions, and virtually identical results were obtained in

the lab and web populations (Pearson correlation = 0.94 + 0.01). For the 8-way

basic-level categorization task set, each human observer (n = 29) judged a subset

of 400 randomly sampled images with blocks for each of the three variation levels

(400 out of 640 for low variation and 400 out of 2560 for medium and high variation

levels). For the 8-way car (n = 39) and 8-way face (n = 40) identification task sets,

each observer saw all 80 images at the low variation level and all 320 images at both

medium and high variation levels. The presentation of images were randomized and
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counterbalanced so that the number of presentations of each class was the same in

the given variation level. Each trial started with a central fixation point that lasted

for 500 ms after which an image appeared at the center of the screen for 100 ms,

following a 300 ms delay, the observer was prompted to click one of 8 response images

that matched the identity or category of the stimulus image. Response images were

shown from a fixed frontal viewpoint and remained constant throughout a trial block.

All human studies were done in accordance with the MIT Committee on the Use of

Humans as Experimental Subjects.

Performance was determined by computing accuracies for each task. For a given

8-way task set and variation level (e.g., high-variation basic-level categorization,

medium-variation car subordinate identification, etc.), we constructed the raw 8 x 8

confusion matrix for each individual observer, and computed the population confu-

sion matrix summing raw confusion matrices across individuals. From the population

confusion matrix, we computed accuracy values for each task of recognizing one tar-

get class against seven distractor classes (a.k.a. "binary" task). We obtained 72

binary task accuracies by performing this procedure over all combinations of three

task sets and three variation levels (3 task sets x 8 targets per task set x 3 lev-

els of variation). We used standard signal detection theory to compute population

accuracy from the population confusion matrix definition. The pooled performance

scores were highly consistent, with a median (taken over the 72 tasks) Spearman-

Brown corrected split-half Pearson-coefficient self-consistency of 0.99. To estimate

the subject to subject variability we selected one subject from each task set and com-

bined the task performance of the three task sets to produce 72 "individual" human

accuracies.
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4.4.2 Neural predictivity and performance metrics

For each IT neural site, we used linear regression to identify a linear weighting of

model output units (from the top or intermediate layers) that is most predictive of

that neural site's actual output on a fixed set of sample images. Using this "synthetic

neuron", we then produced per-image response predictions on novel images not used

in the regression training and compared them to the actual neural site's output for

those images (Figs. 4.3a and 4.5a). Aggregating over images, we computed the

goodness-of-fit r2 value, normalized by the neural site's trial-by-trial variability to

obtain the percentage of explained variance for that site. This was done separately

for each measured neural site to obtain an explained variance distribution (Fig. 4.3b

and Fig. 4.5b. The overall IT predictivity of a model was defined as the median of

this distribution over all measured IT sites (Fig. 4.3c and Fig. 4.5c; see Methods). To

measure performance, we trained Support Vector Machine [Pedregosa et al., 2011]

classifiers with 12 regularization for three types of tasks supported by the testing

image set, including 8-way basic category classification (ie. Animals vs Boats vs

Cars, etc.), 8-way car identification (Astra vs Beetle vs Clio, etc.), and 8-way face

identification, separately for each of the three levels of variation in the testing image

set. 8-way task choices were computed as a maximum over margins from 8 binary

One-Vs-All (OVA) classifiers [Pedregosa et al., 2011]. Fig. 4.2b shows cross-validated

performance accuracies (defined as the fraction of correct predictions averaged over

test splits) for the 8-way basic categorization task at the three variation levels. Fig.

4.12 shows accuracies for subordinate identification tasks as well Methods for details.)
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Individual neural site predictions

As described in the main text, we used a standard methodology for assessing a

model's ability to predict individual sites [Carandini et al., 2005a; Cadieu et al.,

2007], in which each site is modeled as a linear combination of model outputs. In

this procedure, linear regression was used to determine weightings of top-level model

outputs which best fit a given neurons' output on a randomly chosen subset of the

testing images. The remaining images were used to measure the accuracy of the

prediction. Results from multiple random subsets were assessed independently and

averaged to ensure statistical validity. Linear regressor results are reported for 10

splits of cross-validation, using 50%/50% train/test splits. Regression weights were

obtained using a simple Partial Least Squares (PLS) regression procedure, using 25

retained components [Helland, 2006; Pedregosa et al., 2011]. For each measured site,

separate neural response predictions and cross validated goodness-of-fit r 2 values were

obtained. The percentage of explained variance was then computed on a per-site basis

by normalizing the r2 prediction value for that site by the site's Spearman-Brown

corrected split-half self-consistency over image presentation repetitions.

To help interpret the meaning of this linear regression technique, consider a hy-

pothetical case in which the responses for all IT neurons in one "source" animal are

known on a set of image stimuli, and the goal is to use this data to predict the

response of a random sample of IT neurons from a second "target" animal. This is

a problem of neuron identification, e.g for each target neuron in the target animal,

determining which neuron(s) in the source animal correspond to that target neuron.

While it is known that at the population code level the IT responses of several dif-

ferent animals (and even different primate species) are similar [Kriegeskorte, 2009],

it is not known to what extent there is a 1-to-1 matching of responses between in-
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dividual neural sites. There is likely to be significant individual variability between

the specific tuning curves of units present in different animals, and it is not clear

whether the IT units in all animals can be thought of as independent samples from

a single master distribution of IT-like neurons. Hence, to explain a given IT unit in

the target animal's IT might require linear combinations of multiple source animal

IT units, even if a complete sample of neurons from the source animal was avail-

able. In more mathematical terms, it is plausible that the best linear fit from one

animal's IT to another's would not be particularly sparse. Because it is currently

not yet known how sparse the between-animal mapping actually is, in the present

work each model's output units is treated a basis from which any observed IT must

be constructed, with no prior on the expected sparsity of the weighted sums. While

in our experiments we did collect responses from units in two animals, we do not

have enough units from either animal separately to draw a meaningful conclusion as

to what the empirical sparsity distribution is, since accurate estimation would likely

require on the order of ~ 103 units from a single animal. If recordings in multiple

animals with enough units and images to assess cross-animal fitting sparsity becomes

available, such data will be useful to falsify our - or any - model or IT, because

the distributions of sparsenesses of the linear mappings from the model to any one

population should match the typical animal-to-animal sparseness distribution.

This observation helps clarify the relationship between our work and some existing

work on neural fitting (e.g. [Connor et al., 2007; Brincat and Connor, 2004; Sharpee

et al., 2012]). In that line of work, which has provided very useful insight into the

units up to the V4 area, a different non-linear model -- roughly equivalent to a single

CNN network in our model, described below - is fitted separately for each observed

visual neuron. Unlike that work, the present results yield a generative model of a

neural population as a whole, one that can fit not just the tuning curves of observed
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neurons but also predicts what types of neurons a typical sample population should

a priori contain.

We also implemented two stronger tests of generalization: (1) object-level gen-

eralization, in which the regressor sample set contained images of only 32 object

exemplars (4 in each of 8 categories), with results assessed only on the remaining

32 objects, averaging results across many such object splits, and (2) category-level

generalization, in which the regressor sample set contained images of only half the

categories (8 objects in each of (e.g.) animal, boat, car, and chair categories), with

results assessed only on images of the other categories (8 objects in face, fruit, plant

and table categories), averaged across many such category splits. Fig. 4.15 shows

neural fitting results for object and category generalizations.

Prediction accuracy remains high for the object-level generalization, suggesting

that the HMO model is effective at the generalizing neural predictions across a wide

range of natural image variability. Neuron-level predictions of all models fall off

somewhat in the category generalization case, though relative magnitude and order-

ing between models are preserved. To interpret this, it is again useful to consider the

hypothetical animal-to-animal neural identification task described above. Even with

completely comprehensive source animal response data (e.g, all the units in IT -

the perfect "model"), the neuron identification task involves some uncertainty. If the

training image stimulus set is not comprehensive enough to completely identify the

target neuron, predictions from source to target will break down on images outside

that image set. When the data used to identify the target neuron is narrowed to a

very limited semantic slice of image space (e.g. a fraction of the object categories),

it is expected that it will become difficult to identify that specific neuron from re-

sponses to just those images. For example, if all the images in the training set were

only of simple shapes of a uniform size and geometry, it would be impossible to ef-
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fectively carry out the neuron identification procedure (via linear regression or any

other technique). It is instructive to compare this to the results for the population

level coding (see section on Representational Dissimilarity Matrices below), where

even in the category generalization case, predictions remain accurate.

Linear classifier analysis

Object recognition performance was assessed by training linear classifiers on model

and neural output. Linear classifiers are a standard tool for analyzing the perfor-

mance capacity of a featural representation of stimulus data on discrete classification

problems [Hung et al., 2005a; Rust et al., 2006]. For any fixed population of output

features (from either a model or neural population), a linear classifier determines a

linear weighting of the units which best predicts classification labels on a sample set

of training images. Category predictions are then made for stimuli held out from the

weight training set, and accuracy is assessed on these held-out images. To reduce

the noise in estimating accuracy values, results are averaged over a number of inde-

pendent splittings of the data into training and testing portions. In our case, the

output features of a model on each stimulus are (by definition) the set of scalar values

for each top-level model unit when evaluated on that stimulus, a typical procedure

from computer vision studies [Mutch and Lowe, 2008; LeCun and Bengio, 1995]. For

neuronal sites, the output features are defined as the vector of scalar firing rates for

each unit, as is typical in neural decoding studies [Hung et al., 2005a; Rust et al.,

2006].

The values shown in Figs. 4.2b and 4.12 are for classifiers trained with 75% train

25% test splits, averaged over 20 random category-balanced splits. However, the ab-

solute values of performance for a linear classifier depend on the choice of the number
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of training examples used. To ensure that our conclusions were not dependent this

choice, we computed performance curves for varying numbers of training examples.

While absolute performances did vary as a function of training examples, we found

that the relative ordering of performances did not (see Fig. 4.13a). Moreover, repre-

sentations that were effective at high variation level (e.g. the IT neuronal population

and the HMO model units) achieved most of their performance with comparatively

small numbers of training examples.

Absolute performance also varies with the number of features used - the number

of neuronal sites sampled in the case of neural data, or the number of top-end units in

the case of models. As with the number of training examples, we would like to be sure

that our results do not depend strongly on the number of sampled units. However,

the analysis of dependence on number of units is somewhat less straightforward than

analysis of training set size dependence, because it is not immediately clear how to

fairly equate one neural unit with a fixed number of sample model units. Ideally, we

would have extremely large numbers of both kinds of units and then simply make

comparisons on complete population samples. Given the limitations of neural data

collection, the limiting factor in this work is the number of neural sites sampled.

We believe, however, that for the three key comparisons that we make, sample sizes

issues do not strongly impact our results:

1. IT neural sample vs V4 neural sample: At approximately the same number of

neural samples (168 to 128), the performance values at high variation image set

are extremely widely separated. While it is unlikely that this difference is due

to neural sample size, to ensure that this is true, we computed performance

curves for subsamples of the population of different sizes (Fig. 4.13b), averag-

ing over many subsamples of each fixed size. At all sizes, the IT population
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strongly outperformances the V4 population. Because these subsample curves

appear to have a predictably logarithmic shape, we also fit the data to a log-

arithmic functional form to extrapolate approximately how many units would

be required to achieve the performance measured from the human behavioral

experiments. Our estimate suggests that approximately 1050 300 IT units

would be consistent with human performance, whereas ~ 107 V4 units would

be required. Such estimates are necessarily very rough, but they illustrate the

magnitude of the differences between these neural populations.

2. IT neural sample vs existing comparison models: In all cases the models sam-

pled produced more output features than we had neural sites (4096 in the case

of HMAX, and 24316 for the V2-like model, and 86400 for the Vi-like model;

see below for more information on the these models). The results in Fig. 4.2b

show performances computed with the total number of model features in each

case. The implication of this is that, even with thousands or tens of thousands

of features, these models are not able to equal the performance level of even

168 randomly chosen IT units. Equating the number of features, either by

increasing the number IT samples or decreasing the number of model features,

would only make the magnitude of the gap larger.

3. IT neural sample vs the HMO model outputs. Our claim is that the HMO

model is plausibly correct, i.e. it achieves roughly the right performance for

a reasonable number of samples. The HMO model performs at approximately

human levels with 1250 top-end outputs, within the sampling error of the

number of IT units suggested by extrapolation to achieve human performance.

We also subsampled the HMO model to have as many features as our IT sample

(168), and found that while the performance degraded somewhat, it did not
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drop below measured IT performance levels. However, it is certainly possible

that investigating the detailed dependence of model and IT performance on

number of samples would allow us to falsify the HMO model. This falsification

would be of interest for spurring future work, but for the reasons described

above, it would be unlikely to invalidate the claims made in the present work.

Population code representational dissimilarity matrices

Given stimuli S = s1, ... , sk and vectors of neural population responses R = r1, . . . , rk

in which rij is the response of the j-th neuron to the i-th stimulus, we following

[Kriegeskorte, 2009] by defining the Representational Dissimilarity Matrix as

RDM(R)ij = 1 - cov(,i j)
var(r'i) -var(r'j)

RDM structure is indicative of a range of behavior that a given neural population

can support [Kriegeskorte et al., 2008b], and two populations can have similar RDMs

on a given stimulus set (and similar population-level classification performance) even

if the low-level details of the neural responses are somewhat different. Because they

involve correlations over the feature dimension, Representational Dissimilarity Ma-

trices (RDMs) alleviate some of the ambiguities just discussed in analyzing individual

units. We produced RDMs for the IT and V4 neural populations, as well as for each

of the model-based synthetic IT and V4 neural populations using weights obtained

from the regressions for the individual site fits (Fig. 4.3d-e and Fig. 4.14). Following

Kriegeskorte [Kriegeskorte et al., 2008b], we measured similarity between population

representations by assessing the Spearman rank correlations between the RDMs for

the two populations. In addition to the standard image-level RDM, in which each

pair of test images gives rise to an element of the RDM, we also computed object-level
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RDMs by averaging population responses for each object before computing correla-

tions (so that each pair of objects gives rise to an element of the 64x64 object-level

RDM). Similarity of the HMO model object-level RDMs with the IT object-level

RDMs are what shown and quantified in Fig. 4.3d-e.

The RDM for the IT neural population we measured has clear block-diagonal

structure - associated with IT's exceptionally high categorization performance -

as well as off-diagonal structure that characterizes the IT neural representation more

finely than any single performance metric. In contrast, the RDM for the V4 popu-

lation shows how high levels of variation blur out explicit categorical structure for

intermediate visual areas, providing a clear visualization of the contrasting popula-

tion responses underlying the high-variation V4-IT performance gap shown in Fig.

4.2b.

We also computed RDMs for object- and category-level generalizations, using

the weightings from the regressions produced as described above in the section on

individual neural site predictions. It is instructive to notice that the HMO model

maintains high levels of IT similarity even at category-level generalizations (Fig.

4.3d-e), suggesting that while individual IT units may be hard to predict from a

semantically narrow slice of image space (e.g. half the categories only), the overall

population code structure remains well predicted.

4.4.3 Computational model class

In the initial high-throughput experiments in this paper, the models used are single

Convolutional Neural Networks (CNNs). Each individual layer is composed of opera-

tions including local pooling, normalization, thresholding and filterbank convolution,

which are combined by the following serial composition, where X is a 2-dimensional
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image and subscripts 8 = (Op, N, OT, OF) denote specific parameter choices for the

constituent operations:

NE0 (X) = NormalizeoN (Poolo, (ThresholdT (FilteroF (X))))

To produce deep CNNs, layers of the form NE are stacked hierarchically by serial

composition, taking output of the i-th layer as the input to the i + 1st layer. In the

HMO optimization procedure, we extend the class of convolutional neural networks

so that at any stage, networks can consist of mixtures of CNNs where each component

has a potentially distinct set of parameters (e.g. pooling size, number of filters, etc),

representing different types of units with different response properties [Martin and

Schroder, 2013].

Comparison models

We compared results for performance, single site neural fitting, and population-level

similarity for a variety of computational models, including:

" The trivial Pixel control, in which 256x256 square images were flattened into

a 65536-dimensional "feature" representation. The pixel features provided a

control against the most basic types of low-level image confounds.

" The baseline SIFT computer vision model [Lowe, 2004]. This model provided

another control against low-level image confounds.

* An optimized Vi-like model [Pinto et al., 2008a], built on grid of Gabor edges

at a variety of frequencies, phases, and orientations. This model provided

an approximation of a comparison point to lower levels in the ventral visual

stream.
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" A recent V2-like model [Freeman and Simoncelli, 2011], composed of conjunc-

tions of Gabors. This model provides an approximation of the second level of

the ventral stream.

" HMAX [Serre et al., 2007a; Mutch and Lowe, 2008], a multi-layer convolu-

tional neural network model targeted at modeling higher ventral cortex. Be-

cause it is a deep network, HMAX has large IT-like receptive fields. HMAX

is one of main existing "first-principles"-based models that attempts to build

up invariance through hierarchical alternation of simple and complex cell-like

layers.

" PLOS09, a recent three-layer convolutional neural network [Pinto et al., 2009],

which also has large IT-like receptive fields and which was discovered via a high-

throughput screening procedure that was a predecessor to the HMO procedure.

Ideal observer semantic "models"

As shown in Figs. 4.3 and 4.5 we also computed the IT- and V4-predictivity for

ideal-observer semantic "models" [Geisler, 2003]. Though these ideal observers are

not image computable models, given our perfect knowledge of image metadata, we

were able to compute explained variance percentages using the same linear regression

protocol applied to the image-computable models. We evaluated two ideal observers

including:

* A category ideal observer. This "model" has eight features, one for each of

the 8 categories present in the test image set. For each image, the i-th feature

is 1 if the image contains an object of category i, otherwise it is 0. For each

IT unit, the 8 linear regression weights for this feature set effectively describe

how much each category contributes to that unit's response.
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* A all-variable ideal observer. This "model" is given oracular access to all

metadata parameter variables for the images, with one feature for each of 64

object identities (similar to the category ideal observer features above), in ad-

ditional to features reporting object position, size, scale and image background.

If the IT or V4 explained variance for these (or any) ideal observers were close

to 100%, then they would provide a conceptually interpretable explanation of neural

variation, a very scientifically desirable result. In fact, the explained variance per-

centages are significantly less than 100% for the ideal observers we tested (though

of course other better ones might be found, e.g. by taking into account 3-d object

curvature). These ideal observers therefore serve as useful controls to which other

computational models can be compared. For example, the ideal category model

serves to control for the minimum amount of IT explained variance that should be

expected from any model that has high categorization performance. Insofar as a

model with high categorization performance explains more explained variance than

the ideal category model, that additional predictivity can be attributed to the con-

straints of the model class.

Convolutional neural network model class

Here, we mathematically specify the basic class of Convolutional Neural Network

(CNN) models used in this paper. These principles are consistent with a large pa-

rameter space of possible networks. The specific parameterized space of networks we

use is close to that described in [Pinto et al., 2009], with one, two, or three convolu-

tional layers. Each layer is characterized by a fixed set of parameters, but parameter

values can differ between layers. This parameter space expresses an inclusive version

of the hierarchical feedforward network concept, and contains models similar to that
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used in many previous studies - for different parameter values [Pinto et al., 2008a;

Freeman and Simoncelli, 2011; Serre et al., 2007a; Mutch and Lowe, 2008].

More specifically, each individual layer is composed of operations including local

pooling, normalization, thresholding and filterbank convolution, which are combined

as follows:

NE (X) = NormalizeN (Poolo, (Thresholdo, (FilteroF (X)))) (4.1)

where X is a 2-dimensional input image. The subscripts E = (O,, ON, OT, OF) denote

the specific parameter choices for the constituent operations, setting radii, exponents

and thresholds, as in [Pinto et al., 2009]. Similar to previous studies, we also use

randomly chosen filterbank templates in all models, but additionally allow the mean

and variance of the filterbank to vary as parameters. Functions of the form NE are

the simplest computational units that we operate on, and are thought to be plausible

representations of what happens in a single cortical layer [DiCarlo et al., 2012]. To

produce deep CNNs, layers of the form Ne are stacked hierarchically:

p-I Filter Ft Threshold ool N Normalize (
. op~e-1 - 0F,t OT, ) op'f IPON,,e(42

where f is layer number and the initial input at the 0-th layer is the image pixel

array X. We denote such a stacking operation as 0, so that the stacked hierarchical

model can be written as

N -- ®>1Ne.

Let .N7 denote the space of all stacked networks (N) of depth k or less. In this study,

our CNNs are networks of depth k = 3 or less.
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Mixture networks

We extend the class of convolutional neural networks by a fourth principle, namely

that at any stage, networks can consist of mixtures of CNNs where each component

has a potentially distinct set of parameters (e.g. pooling size, number of filters,

etc), representing different types of units with different response properties [Martin

and Schroder, 2013]. Such mixture networks may combine components of differing

complexity, which correspond to anatomical bypass connections within the ventral

stream [Nakamura et al., 2011]. See Fig. 4.8b.

For a mathematical formulation of this idea, note that because the networks in .A/

are convolutional, they can be combined in a standard fashion. Specifically, given

a sequence of individual modules N(O2 , 0 12 , . . . , Oin) for i - [1,. .. , J], possibly of

different depths, the mixtur network is defined by aligning the module output layers

along the spatial convolutional dimension. Since the outputs of each of the modules

is a 3-dimensional tensor, this alignment is well-defined up to a rescaling factor in

the spatial dimension. We denote this alignment operation by the symbol e, so that

a combined mixture network can be written as:

N ef_ 1N(e 1 , 8 12 , ... , in).

The total output of networks of this form are also a 3-dimensional tensors, so

they too can be stacked with the 0 operation to form more complicated, deeper

hierarchies. By definition, the full class N consists of all the networks formed by

iteratively composed the stacking (®) operation and the combination (e) operation.

Conceptually, members of N are nonlinear mixtures of modules chosen from a "base

class" of simpler "homogenous" neural networks (e.g. the elements of K. Schemati-

cally, 0 is a "vertical" composition relationship, increasing the depth complexity of
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the network. Biologically, it is plausible to think of & as corresponding to producing

complex nonlinear representations by feedforward layering. Conversely, G is a "hori-

zontal" composition relationship, increasing the breadth complexity of the network.

Biologically, this may correspond to the idea of mixing heterogeneous populations of

different types of units in a given area.

Hierarchical modular optimization

The Hierarchical Modular Optimization (HMO) procedure [Yamins*, Hong*, Cadieu,

and Dicarlo, 2013] is a computational optimization procedure designed to identify

high-performing network architectures from the space N. Intuitively, it is a version of

adaptive boosting in which rounds of optimization are interleaved with boosting and

hierarchical stacking [Schapire, 19991. The process first analyses error patterns in the

recognition predictions of candidate networks, picking complementary components,

e.g. those with optimally non-overlapping errors. Subsequent rounds of optimization

attempt to optimize a criteria weighted toward those stimuli that are misclassified

by the first-round results. As a result, complementary components emerge with-

out having to pre-specify the corresponding sub-tasks semantically (or in any other

way), mapping the complex structure of high-variation recognition problems onto

the parameter space of neurally-plausible computations. These components are then

aligned along their convolutional dimensions and used as inputs to repeat the same

procedure hierarchically to build more complex nonlinearities. While other possible

optimization procedures could potentially be used to create high-performing neural

networks [Krizhevsky et al., 2012], the HMO process may be particularly efficient

because it explicitly takes advantage of the complementary strengths of different

components within the large space of network architectures.
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This section describes details of the Hierarchical Modular Optimization (HMO)

procedure. Suppose that N E A and S is a screening stimulus set. Let E be the

binary-valued classification correctness indicator, assigning to each stimulus image s

1 or 0 according to whether the screening task prediction was right or wrong, where

the prediction for each s was made by employing Maximum Correlation Classifiers

(MCCs, see e.g. [Buciu and Pitas, 2003]) on the output features of N with 3-fold

cross-validation (see Methods section of main paper describing screening set metric).

Let

performance(N, S) = E(N(s)).
seS

To efficiently find N that maximizes performance(N, S), the HMO procedure follows

these steps:

1. Optimization: Optimize the performance function within the class of single-

stack networks of some fixed depth di, obtaining an optimization trajectory of net-

works in AQ1. (See Figs. 4.8c and 4.11a, left.) The optimization procedure that

we use is Hyperparameter Tree Parzen Estimator, as described in [Bergstra et al.,

2012]. This procedure is effective in large parameter spaces that include discrete and

continuous parameters.

2. Boosting: Consider the set of networks explored during step 1 as a set of

weak learners, and apply a standard boosting algorithm (Adaboost) to identify some

number of networks N 1, ... , N11, whose error patterns are complementary (Fig. 4.8c,

right panel).

3. Combination: Form the heterogeneous network N1 = E 1 Ni and evaluate

E(Ni(s)) for all s E S.

4. Error-based Reweighting: Repeat step 1, but reweight the scoring to give

the j-th stimulus sj weight 0 if N is correct in sj, and 1 otherwise. That is, the
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performance function to be optimized for N is now

Z E(N(s)) -E(N(s)).
sCS

Repeat the step 2 on the results of the optimization trajectory obtained to get models

N2 1, ... N2k 2 , and repeat step 3 (see e.g. Fig. 4.8c and 4.11 A, right). Steps 1, 2, 3

are repeated K times.

After K repetitions of this process, we will have obtained a mixture network

N = e iKJskiNij. The process can then simply be terminated, or repeated with the

output of N as the input to another stacked network. In the latter case, the next

layer is chosen using the model class Ad2 to draw from, for some fixed depth d2, and

using the same adaptive hyperparameter boosting procedure. The meta-parameters

of the HMO procedure include the numbers of components 11, 12, ... to be selected

at each boosting round, the number of times K that the interleaved boosting and

optimization is repeated and the number of times M this procedure is stacked. For

the purposes of this work, we fixed the metaparameters K = 3, 1i = 12 = 13 = 10,

and M = 2 (with d, = 3, d2 = 1).

Model screening procedure

To construct a specific model network, we applied HMO to a screening task (Figs.

4.7b and 4.11). Like the testing set, the screening set was designed to be very chal-

lenging - having high levels of object pose, position and scale variation [DiCarlo and

Cox, 2007]. However, to ensure that a fair test could be made, in all other regards the

screening images were distinct from the testing image set, containing objects in to-

tally non-overlapping semantic categories, using none of the same background scenes,

lighting, or noise conditions. The image set used for the HMO screening procedure
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consisted of 4500 images of 36 distinct objects, chosen from one of nine categories,

including bodies, building, flowers, guns, musical instruments, jewelry, shoes, tools,

and trees. As in the testing set, high-variation subset, objects were shown in varying

positions, sizes, and poses, placed in a variety of uncorrelated natural backgrounds

scenes. Lighting was provided by ambient environment reflection, and speckle noise

was added to simulate natural image distortions. Images were rendered with the

Panda3d package [Goslin and Mine, 2004].

The relationship between the screening set and testing set is intended to be similar

to that between any two typical samples of natural images: having some high-level

natural statistical commonalities, but otherwise quite different specific content. For

this reason, any performance increases that could be demonstrated to transfer from

the screening to the testing set are likely to also transfer, at least to some extent, to

other high-variation image sets.

The screening objective sought to minimize classification performance error on

the 36-way object classification task (no categorical semantic information was used),

as assessed by training unregularized MCC classifiers with 3-fold cross-validated

50%/50% train/test splits. Using the HMO procedure on this screening set, we

generated a network HMOO, which produces 1250-dimensional feature vectors for

any input stimulus. HMOo is the model which we refer to throughout the paper as

the "HMO Model", and which we used for all testing evaluation.

In the optimization, candidate networks were first evaluated on overall perfor-

mance metric, and performance gradients in parameter space were identified as seen

in the trend toward decreasing screening loss (Step 1 - see Fig. 4.11A, left panel,

blue dots). 10 components were identified by Boosting (Step 2) and combined. In

subsequent rounds (e.g. Fig. 4.11A, right panel, red dots) the optimization criterion

was biased toward weighting more heavily errors of the architectures from earlier
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rounds (Step 4). Decreasing loss in these later rounds indicates that models are

improving at the subset of images that confused the components identified in Round

1. The complementary model components identified in the two different optimiza-

tion rounds were associated with different directions in the overall large parameter

space of possible neural-like computations that effectively solve different subtasks

of the overall recognition task (see Fig. 4.11B). As expected, training performance

increases as components are combined (see Fig. 4.11C).

Assessment

As described in the main text, we then assessed the HMOO model against the testing

dataset (Fig. 4.7a). The HMOo model showed high performance on testing set, as

described in the main text, Fig. 4.2b, and Fig. 4.12. Comparisons to neural data

showed that the HMOO model also had significantly power to explain neural data,

both at the individual site level (Figs. 4.3a-c and 4.5) and the population level (Figs.

4.3d-e and 4.14). The HMO model is a significantly closer match to IT population

representations at all variation levels, but the difference is especially evident at the

high variation level that most clearly exposes how the high-level IT representation

differs from the lower-level V4 representation (Fig. 4.14, black bars).

Subsequently, we determined the stability of the HMO procedure by running it on

a variety of alternative screening sets with different choices of objects and categories,

varying the numbers of within-category exemplars and varying amounts of semantic

similarity to the testing set. Performance and neural fitting ability were largely stable

to these changes. Though some of these later models exhibited higher performance

and neural explanatory power than the initial HMOO model, to prevent domain

overfitting we report only the results of the initial model HMOO constructed before
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any testing set results were obtained.

It is important to note that how our screening process connects to the evaluation

of other models. In the cases of the SIFT, Vilike and V2-like models, we did not

pre-train those models using the screening set: this is because those models do not

accept pre-training data at all. In the case of HMAX, which does accept pre-training

data, we used the testing data itself for pre-training, to give that model that highest

chance of performance success. Separately, we also performed a pre-training of the

HMAX model using the screening set and then re-extracted it on the testing set,

but found that this only further decreased final performance and neural fit results

of the HMAX model (e.g. learned parameters did not effectively transfer from the

screening to the testing set).

Another issue relevant to comparison of models is the question of numbers of

total internal units. In the mixture models that we used to create the HMO model,

the numbers of filters at each layer were kept very small (< 24) to ensure that a total

combined model composed of several such components would not be unmanageably

large. In the HMOO model, the total number of units is approximately the same

as that in the HMAX model, and the total number of output features is somewhat

smaller (1250 vs. 4096).

Correlation experiments

Performance and neural predictivity results suggest that as performance on high-

variation tasks increases, metrics of neural similarity also increase (Fig. 4.1b). To

determine whether this correlation is a general feature of the deep feedforward archi-

tectures defined here, we ran several additional high-throughput experiments, evalu-

ating a large number of candidate model architectures and measuring categorization
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performance and IT neural predictivity for each model (Fig. 4.1a and Fig. 4.9).

Specifically, we performed three high-throughput searches of the parameter spaceM3

described in the above:

1. Random selection. We drew several thousand randomly sampled models

from the parameter space A's. For each one, we computed linear classifiers for

performance and linear regressors for IT predictivity, as described above. Each

green point in Fig. 4.1a corresponds to one such model. In this condition, there

is a significant correlation between performance and IT predictivity (r = 0.55,

n = 2016). Negative values on the y-axis correspond to models having negative

goodness-of-fit (the r 2 coefficient of determination statistic), due overfitting on

the training images. Fig. 4.9, left, shows model performance for as a function

of time during the procedure; the lack of any trend corresponds to random

sampling of models.

2. Performance optimization. Using the recently developed Hyperopt meta-

parameter optimization algorithm [Bergstra et al., 2012], we performed a di-

rected search for network parameters that maximized performance on the high-

variation 8-way categorization task (Fig. 4.1a, blue points). This optimization

was carried out using the recently developed hyperparameter optimization algo-

rithm Hyperopt [Bergstra et al., 2012]. Via this optimization, absolute perfor-

mance and fitting values were significantly improved compared to the random

condition. Moreover, though the optimization was done without reference to

any neural data, the correlation between performance and IT predictivity actu-

ally increased significantly (r = 0.78, n = 2043). Fig. 4.9, center panel shows

the optimization criterion as a function of timestep during the optimization

procedure; the upward trend is due to the optimization process. While the
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optimization gains toward the end of the optimization process are slow and

appear to be plateau, small improvements are still observed.

3. IT Predictivity optimization. In the third experiment, we directly opti-

mized model architecture for IT predictivity, this time without reference to

performance (Fig. 4.1a, orange dots). The correlation is comparable to the

performance-optimized condition (r = 0.80, n = 1876), but the optimization

plateau occurs significantly earlier (see Fig. 4.9, right panel; we repeated the

optimization multiple times, and obtained the same result each time. This

suggests that continued optimization would not be effective.) Moreover, the

best-performing models from the performance-optimization experiment predict

IT neural output as well as the models explicitly optimized for the predictivity

objective, while the reverse does not hold.

The results of these experiments support three inferences. First, model perfor-

mance is modestly correlated with neural predictivity in a random selection regime.

Second, optimization pressure for either metric produces markedly better cross-

validated accuracy on the optimized axis, and in doing so significantly strengthens

the correlations with the other non-optimized metric. Third, when optimizing for

performance, the best-performing models predict neural output approximately as

well as the most predictive models selected explicitly for neural predictivity, but not

vice-versa. The feedforward model architecture class itself imposes a relationship

between high-level behavior (performance) and more detailed neural mechanisms,

but directed optimization focuses on a region within network parameter space where

this constraint is much stronger.

The inclusion of the category ideal observer (purple square in Fig. 4.3d) shows an

effective negative control on the performance-predictivity relationship: it lies signif-
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icantly off the main trend, making it visually clear how the correlation arises from a

combination of architectural and performance constraints working in concert.2 How-

ever, this ideal observer is not an image computable model, It would be especially

instructive to identify a image-computable algorithm that achieved invariant object

recognition high performance but low neural IT neural consistency. If such an algo-

rithm existed, its architecture might illustrate a very non-neural solution to object

recognition tasks as a purely computer vision problem. With current understanding,

we cannot rule out the possibility that such an algorithm does not exist - e.g. recent

high-performing computer vision systems are deep convolutional neural networks e.g

[Krizhevsky et al., 2012].

Fig. 4.1a also implies that even with intensive optimization, individual models

in the .N3 are limited in performance and neural prediction ability, underscoring the

need for an enlarged model class. However, further analysis of the results of these op-

timization experiments provides insight into how to construct a more effective model

class. In Fig. 4.16, we show scatter plots of model performance on pairs of binary

subtasks, e.g. performance on the 2-way cars-vs-planes task as compared to perfor-

mance on the 2-way boats-vs-chairs task. These plots show that, as the optimization

algorithm explores parameter space, it identifies mutually-exclusive subspaces that

are effective for some of the natural subtasks defined in the overall task space. The

highest performing architectures for one subtask are often significantly suboptimal

for other subtasks, leading to "v-shaped" subtask-vs-subtask scatter plots. In choos-

ing a single architecture that is best for overall performance, the optimization is

forced to trade off performance on some of these subtasks.

2 Note that a converse control, in which a model has very high neural consistency for a population
of IT units but low performance, cannot exist. IT units are already known to have high performance,
so any model that matches IT units sufficiently well must also have high performance.
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The effectiveness of optimized mixture models (such as HMO) may be under-

stood in the context of Fig. 4.16, which suggests that models composed of mixtures

from the A class might be significantly more effective than any single model alone.

Such mixtures are also suggested by the observation from neurophysiology studies

that patches within IT are selectively responsive for distinct object classes [Downing

et al., 2006; Kanwisher et al., 1997; Freiwald and Tsao, 2010]. Intuitively, such sub-

regions might correspond to architecturally specialized structures within the larger

feedforward class. Mixture models avoid the tradeoffs inherent in individual feed-

forward structures by combining several pareto-optimal network architectures. By

identifying particularly effective mixture combinations, the HMO procedure over-

comes these limitations efficiently. In addition, however, a key ingredient for the

HMO model's success is that the components constituting the model, which were

(by construction) complementary on the original screening set, were still comple-

mentary on the testing set. This holds even though the testing set had entirely

distinct object categories, so the basis on which the complementarity of the com-

ponents was originally discovered - non-overlapping error patterns in screening-set

object identity judgements - is no longer even applicable. This strongly rules out

image domain-specific overfitting and suggests that mixture components discovered

by performance optimization may form a generically useful visual representational

basis that can be recombined to solve new object recognition problems. In fact,

achieving high performance and neural fitting capability appears to require diversity

in many of the parameters of the constituent components (Fig. 4.17).
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Model parameter diversity analysis

We characterized model parameters in terms of per-component tuning specificity

versus inter-component diversity. Tuning specificity is a measure of how specifically

each parameter needed to be tuned to produce optimal performance. To compute

this, we analyzed the distribution of each parameter's values along the optimization

trajectory near the optimal point using the concept of entropy. By definition, the

entropy of (N samples from) a distribution P is:

E(P) = log(N) - 1 ni log(ni)

where N is the number of samples from the distribution, the sum is taken over

possible values i of the distribution, and ni is the number of samples with value i.

Suppose an optimal module component e* occurs at timepoint t* in the trajectory

of one optimization run in the HMO process. Then, let PP,k(e*) be the distribution of

values of parameter p in the k-neighborhood around t* in the optimization trajectory,

e.g.

P,,k(*) {value of parameter p at timepoints t E [t* - k,... , t, ... , t* + k]}.

The specificity of parameter p around optimal point E* as, by definition,

- E(Pp, k(() ).

Intuitively, this is because, if the distribution PP,k(E*) had high entropy, this indi-

cated that the value of the parameter near the optimal point did not matter very

much, and therefore was not tuned very specifically. If, on the other hand, the distri-
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bution had low entropy, it was tightly clustered around one or a few optimal values

that the optimization had identified as being important, suggesting it was highly

tuned. For the purposes, we took k = 25 timesteps, but values were not strongly

sensitive to k with the range 10-100. For each parameter p, we report the median

tuning specificity of that parameter, taken over all component modules.

Inter-component diversity is a measure of how variable a parameter is between

the component modules. This was measured by computing, for each pair of com-

ponents, how well separated the distributions of the parameter's values around each

component were from each other. More formally, the d-prime discriminability index,

d' for two distributions P and P2 is defined by

d'(PI P2) I(P1) - (P2)|
0.5(var(P1) + var(P2))

(The sample d-prime uses the sample versions of the mean and variances.) Suppose

0* and 62* are two optimal components chosen by the HMO procedure. Then we

measure separability for these two components as

d'( Pp,k (E)* , Pp,k (E)2).

For each parameter p, we define inter-component diversity as the median of this

separation value taken over all pairs of components 01 and e 2. The higher the

diversity, the more different the components were from each other, and vice versa.

Parameters that have both high tuning specificity and high inter-component di-

versity are both critical for performance, and required to be heterogeneous. Our

results highlight certain types of parameters as being simultaneously highly tuned

and diverse. This is particularly true for two broad classes of parameters, as can be
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seen Fig. 4.17, upper right: 1) local filter statistics, including filter mean and spread,

and 2) the pooling exponents trading off between max-pooling and average-pooling

[Riesenhuber and Poggio, 2000]. Other types of parameters are highly tuned but less

diverse (nonlinear activation thresholds, in the lower right), while some appear less

important overall (higher-level pooling and normalization kernel sizes, in the lower

left). Interestingly, we observe that the parameter controlling the number of network

layers ("depth") is both comparatively highly tuned and diverse suggests that allow-

ing network modules of different levels of complexity in the heterogeneous models is

important for achieving high model performance. As a result, the final model has a

significant proportion of lower-complexity units projecting directly to the final layer,

suggesting that bypass connections (e.g. projects from VI to V4 or V2 to IT) may

be a key functional feature of the ventral stream [Nakamura et al., 2011].

Taken together, these results point to a computationally rigorous explanation for

why heterogeneity is observed in the receptive fields of ventral stream neurons both

at the unit and sub-area levels [Martin and Schroder, 2013; Chelaru and Dragoi,

2008; Downing et al., 2006; Freiwald and Tsao, 2010].

4.4.4 Modeling with further optimization

Computational modeling done so far in this chapter was "simpler" than typical convo-

lutional neural networks in that it did not involve fine tuning of filter values. While it

achieved the human level performance in our visual tasks and well predicted monkey

high-level visual neural activity, we also decided to explore filter-value optimiza-

tion with back-propagation, a popular technique following [LeCun and Bengio, 1995;

Krizhevsky et al., 2012]. This further optimization increased the neural predictivity

slightly (Fig. 4.6b).
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Basic definitions

Formally, an image-like array is a 3-dimensional dimensional floating-point array

whose shape is (s, s, nc), where s is the image size and nc is the number of channels

in the image. Let's begin by defining three basic operations on image-like arrays:

e Filter: this is a convolutional filterbank operation [LeCun and Bengio, 1995],

which applies the same filter block equally to every point in an image-like array.

It's parameters include:

- The number of filters nf. This is a positive integer.

- The size of the filter kernel fs, in pixels. This is an odd integer.

- The stride of the convolution, sf. This is a positive integer.

- The specific filter values, denoted F, a floating-point matrix of shape

(nc, fs, fs, nf), where nc is the number of channels in the input.

- A bias vector b, of length nf.

For any image-like array X of shape (s, s, nc) the output of FilterF on X is

the image-like array Y of shape (s/sf, s/sf, nf) where

Y(i,j, k) = b[k] + f 2  F[::,7:, k] 0 Nf(X, sf - i, sf j)

where 0 is pointwise array multiplication, ij C [1, . .. ,s/sf], k E [1, ... , nf,

and Nf,(X, i, j) denotes the square neighborhood of diameter fs at location

i, j in X. The convolution is done with "same" mode, meaning that at the

edges the image is padding with Os to produce an output of the same shape as

the input
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* Thres is a rectified linear clipping operation. Its parameters are:

- The value of the upper clipping threshold, t'ax, which can be any floating

value.

- The value of the lower clipping threshold, t"', which can be any floating

value less than t!".

By definition,

Thres(X) = max(min(X, tmax), t"m").

* Pool is a local pooling operation that aggregates values of the input, within

each channel. Its parameters

- The size of the pooling kernel, ps. This is an odd integer.

- The pooling order po. This is 1, an even integer, or oc.

- The pooling stride sp. This is a positive integer.

By definition, for any image-like array X of shape (s, s, nc), the output of Pool

on X is the image-like array Y of shape (s/sp, s/sp, nc) where

Y(i, j, k) =
(1

(ZNps(XPO, s-i, s p.j) [:,:, k]))

where ij E [1, .. ., s/sf], k E [1, ... ,nc], and Np,(X, i, j) is the square neigh-

borhood of diameter ps in X at location i, j. Notice that when po = 1, this is

simple local averaging, and when po = so, this is max-pooling.
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A convolutional layer is a composition of these three basic operations; that is, a

function of the form

F(OP,,OF) = Poolo, o ThresoT o FilterF

where (OP, Or, OF) are choice of parameters for the three basic operations. A hierar-

chical convolutional neural network (HCNN) is a composition of convolutional layers,

e.g.,

T = FL o FL-1 o ... o Fl.

The only two restriction that are required for composition to make sense are: (1)

that the number of channels in layer i is equal to the number of filters in layer i - 1,

that is nci = nfi_ 1 and (2) that the spatial size si of the image-like arrays is 1 or

greater at every stage. If the spatial size every hits 1, then only thresholding or

filtering operations with filter size 1 can be applied from then onwards. When this

occurs, we say that the network is "fully connected" at that layer (and from then on).

In our case, the input image-like arrays are RGB images, so that the number

of channels in in the first layer is 3, one for each color channel. (When applied to

grayscale images we simply copy the grayscale values into the three channels).

Network selection

We divide the parameters that specify the layers of an HCNN into two classes,

selected in two phases:

1. Screening: In which all the parameters except the filterblock and bias values

where chosen. These parameters, which we refer to as the "architectural pa-

rameters", include the number of network layers, and at each layer, the number
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of tilers, the sizes of the filter and pooling kernels, and the pooling order.

2. Training: In which, once the non-filter parameters are fixed, the filter-values

and bias vectors for each layer are determined via error backpropagation.

Details of Error Backpropagation: For any given setting of architectural pa-

rameters, we used a standard neural network backpropagation algorithm [Krizhevsky

et al., 2012] to set filter filters for the parameters. The training set that we used was

the 2013 ImageNet Challenge set [Deng et al., 2009], which contains approximately

1.3 million images in 1000 natural categories. We filtered out any categories that

were animals, boats, cars, chairs, fruits, planes or tables from this set (some of these

categories do not appear anywhere in the ImageNet challenge set to begin with),

retaining 799 categories containing a total of approximately 1 million images.

Details of Screening: As we have done in this chapter, we used high-throughput

screening techniques [Bergstra et al., 2013] to select the architectural parameters. In

this process, we randomly selected 50 draws of the number of layers and within-layer

architecture parameters from a parameter space (see below), ran error backpropa-

gation on the network with those parameters for 5 epochs of ImageNet, and then

recorded the final training error. We then used Tree Parzen Estimation in the Hy-

peropt parameter optimization framework [Bergstra et al., 2013] to further select

150 additional architectural parameters, and again, ran backpropagation on these

networks. After having run 200 networks, we selected the best such network and

subjected it to further error backpropagation for 40 epochs. This optimal model had

6 layers. At every epoch of ImageNet training, we saved out checkpoints containing

the filter and bias parameters.

The parameter space that we tested was defined by the following bounds:
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* Number of layers ranged in [4, 5, 6].

" Filter sizes ranged in [3, 5, 7, 9].

" Pooling kernel sizes ranged in [3, 5, 7, 9].

" Pooling order ranged in [1, 2, 3, 4, 5, oc].

" Upper clipping thresholds ranged in [1, oc] and lower clipping thresholds ranged

in [1, -00].

The remainder of the parameters were set to the following fixed values: number

of filters at layer 1 was 96, at layer 2 was 256, at layer 3 was 512, and then at 256

for subsequent layers; strides at layer 1 was 1, at layer 2 was 2, at layer 3 was 2, and

at 1 in subsequent layers.

Evaluation on the testing set

The model that achieved the best performance on the training set was selected for

evaluation on the testing image set discussed earlier in Section 3.2.1 - i.e., the

images on which we measured neural data and human performance. For each of

the 40 checkpoints saved during model training (see above), and each layer of the

network, we extracted features for all the testing images. This lead to six time series

of length 40, each point of which is a (5760, nfi) matrix, where nf is the number of

features at layer i. We then computed performance on each tasks on which we had

earlier computed neural performance, for each layer and timepoint. For each model

layer and each timepoint, we also computer the layer's ability to fit V4 and IT neural

data, using procedures identical to the one in Section 4.4.2.
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Figure 4.1: Performance/IT-Predictivity Correlation. (a) Object categoriza-
tion performance vs IT neural explained variance percentage ("IT-Predictivity") for
Convolutional Neural Network (CNN) models in three independent high throughput
computational experiments (each point is a distinct neural network architecture).
The x-axis shows performance (balanced accuracy, chance is 0.5) of the model out-
put features on a high-variation categorization task; the y-axis shows the median
single site IT explained variance percentage (n = 168 sites) of that model. Each
dot corresponds to a distinct model selected from a large family of convolutional
neural network architectures (see text). Models were selected by random draws from
parameter space (green dots), object categorization performance-optimization (blue
dots) or explicit IT predictivity-optimization (orange dots). (b) Pursuing the corre-
lation identified in panel (a), a high-performing neural network was identified that
matches human performance on a range of recognition tasks, the HMO model (see
text). The object categorization performance vs IT neural predictivity correlation
extends across a variety of models exhibiting a wide range of performance levels.
Black circles include controls and published models; red squares are models pro-
duced during the HMO optimization procedure. The category ideal-observer (purple
square) lies significantly off the main trend, but is not an actual image-computable
model. The r-value is computed over red and black points. For reference, light blue
circles indicate performance optimized models (blue dots) from panel (a).
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Figure 4.2 (preceding page): Neural-like Models Via Performance Optimiza-
tion. (a) We (1) used high-throughput computational methods to optimize the pa-

rameters of a hierarchical convolutional neural network (CNN) with Linear-Nonlinear

(LN) layers for performance on a challenging invariant object recognition task. Using

new test images distinct from those used to optimize the model, we then (2) com-

pared output of each of the model's layers to IT neural responses, and the output
of intermediate layers to V4 neural responses. To obtain neural data for compari-

son, we used chronically implanted multi-electrode arrays to record the responses of

multi-unit sites in IT and V4, obtaining for each neural site the mean visually-evoked

response to each of -6000 complex images. (b) Object categorization performance

results on the test images for eight-way object categorization at three increasing

levels of object view variation (y-axis units are 8-way categorization percent-correct,
chance is 12.5%). IT (green bars) and V4 (hatched green bars) neural responses, and

computational models (gray and red bars) were collected on the same image set and

used to train support vector machine (SVM) linear classifiers from which population

performance accuracy was evaluated. Error bars are computed over train/test image

splits. Human subject responses on the same tasks were collected via psychophysics

experiments (black bars); error bars are computed over individual subjects.
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Figure 4.3 (preceding page): IT Neural Predictions. (a) Actual neural response
(black trace) vs. model predictions (colored trace) for three individual IT neural sites.
The x-axis in each plot shows 1600 test images sorted first by category identity and

then by variation amount, with more drastic image transformations toward the right
within each category block. The y-axis represents the prediction/response magnitude
of the neural site for each test image (those not used to fit the model). Two of the

units show selectivity for specific classes of objects, namely chairs (left) and faces

(middle), while the third (right) exhibits a wider variety of image preferences. The

four top rows show neural predictions using the visual feature set (i.e. units sampled)
from each of the four layers of the HMO model, while the lower rows show the

those of control models. (b) Distributions of model explained variance percentage,
over the population of all measured IT sites (n=::168). Yellow dotted line indicates
distribution median. (c) Comparison of IT neural explained variance percentage for

various models. Bar height shows median explained variance, taken over all predicted

IT units. Error bars are computed over image splits. Colored bars are those shown
in (a) and (b), while gray bars are additional comparisons (see text).
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C

Figure 4.4: Population-Level Similarity. (a) Object-level Representation Dis-
similarity Matrices (RDMs) visualized via rank-normalized color plots (blue=Oth
distance percentile, red=100th percentile). (b) IT population and the HMO-based
IT model population, for image, object and category generalizations (see Methods).
(c) Quantification of model population representation similarity to IT. Bar height
indicates the spearman correlation value of a given model's RDM to the RDM for the
IT neural population. The IT bar represents the Spearman-Brown corrected consis-
tency of the IT RDM for split-halves over the IT units, establishing a noise-limited
upper bound. Error bars are taken over cross-validated regression splits in the case
of models and over image and unit splits in the case of neural data.
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Figure 4.5: V4 Neural Predictions. (a) Actual vs. predicted response magnitudes
for a typical V4 site. V4 sites are highly visually driven, but unlike IT sites show
very little categorical preference, manifesting in more abrupt changes in the image-
by-image plots shown here. Red highlight indicates the best-matching model (viz.,
HMO layer 3). (b) Distributions of explained variances percentage for each model,
over the population of all measured V4 sites (n = 128). (c) Comparison of V4 neural
explained variance percentage for various models. Conventions follow those used in
Fig. 4.3.
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Figure 4.6: Emergence of Non-Categorical Properties (The neural network in
this figure was further optimized with filter value fine tuning. See Section 4.2.7 and
Figure 4.18 for details.) (a) Scatter plots of performance on categorization perfor-
mance vs estimation accuracy for selected non-categorical tasks. Each dot represents
a state of the model during training. (b) Quantification of relationship in panel a.,
taken over all tested tasks. Bar height represents Pearson correlation of accuracy on
indicated task with test-set categorization performance, taken across training time
steps. Error bars are taken across both time-steps as well as performance-assessment
splits. (c) Performance of fully-trained model at multiple layers. y-axis is as in panel
a. (d) Scatter plot of performance for top layer of fully-trained model on task battery
vs neural performance on the tasks (see Fig. 3.5a). (e) Consistency of fully-trained
model with neural performance pattern across layers, using the same metric as in
3.5b, bottom panel. y-axis and error bars are as in 3.5b.
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a Testing image set: 8 categories, 8 objects per category
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Figure 4.7: (a) The Neural Representation Benchmark [Cadieu et al., 2013] testing
image set on which we collected neural data and evaluated models contained 5760
images of 64 objects in 8 categories. The image set contained three subsets, with
low, medium and high levels of object view variation. Images were placed on realistic
background scenes, which were chosen randomly to be uncorrelated with object cate-
gory identity. (b) The screening image set used to discover the HMO model contained
4500 images of 36 objects in 9 categories. As with any two uncorrelated samples of
images from the world - such as those images seen during development vs. those
seen in adult life - the overall natural statistics of the screening set images were
intended to be roughly similar to those of the testing set, but the specific content
was quite different. Thus, the objects, semantic categories and background scenes
used in screening were totally non-overlapping with those used in the testing set.
Moreover, different camera, lighting and noise conditions, and a different rendering
software package, were used.
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Figure 4.8 (preceding page): In this work, we use Convolutional Neural Networks
(CNNs) models. CNNs consist of a series of hierarchical layers, with bottom layers
accepting inputs directly from image pixels, with units form the top and interme-
diate layers used to support training linear classifiers for performance evaluation
and linear regressors for predicting neural tuning curves. (a) Following a line of
existing work, we limited the constituent operations in each layer of the hierarchy
to Linear-Nonlinear (LN) compositions including: (1) a filtering operation, imple-
menting AND-like template matching; (2) a simple nonlinearity, e.g a threshold;
(3) a local pooling/aggregation operation, such as softmax; and (4) a local com-
petitive normalization. These layers are combined to produce low complexity (Li),
intermediate complexity (L2) and high-complexity (L3) networks. All operations
are repeated convolutionally at each spatial position, corresponding to the general
retinotopic organization in the ventral stream. (b) In creating the HMO model, we
allow mixture of several of these elements to model heterogenous neural populations,
each acting convolutionally on the input image. The networks are structured in a
manner consistent with known features of the ventral stream, as a series of areas
of roughly equal complexity, but which permit bypass projections. (c) Hierarchi-
cal Modular Optimization (HMO) is a procedure for searching the space of CNN
mixtures to maximize object recognition performance. With several rounds of opti-
mization, HMO creates mixtures of component modules that specialize in subtasks,
without needing to prespecify what these subtasks should be. Errors from earlier
rounds of optimization are analyzed, and used to reweight subsequent optimization
toward unsolved portions of the problem. The complementary component modules
that emerge via this process are then combined and used as input to repeat the
procedure hierarchically (see Methods).
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Figure 4.9: Optimization time traces for the high-throughput experiments shown in
Fig. 4. 1. In the performance and fitting-optimized the y-axis shows the optimization
criterion -in the random selection case (left panel), no optimization was done, and
the performance data was ignored.
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Figure 4.10 (preceding page): Correlation of model parameters with IT predictiv-
ity for the three high-throughput experiments shown in figure 4.1. Parameters for
which the correlation is significantly different from 0 are shown. Also included are
several additional metrics that are not direct model parameters but that represent
measurable quantities of interest for each model, e.g. model object recognition perfor-
mance. x-axis is spearman-r correlation of the given parameter with IT-predictivity
for the indicated model selection procedure, including random (left, green bars),
performance-optimized (middle, blue bars), and IT-predictivity optimized (right, red
bars). Parameters are ordered by correlation value for the random condition. Perfor-
mance strongly correlates with IT predictivity in all selection regimes. while Number
of layers (model depth) consistently correlates as well, but much more weakly. In-
terestingly, one "obvious" metric - receptive field size at the top model layer - is
only very weakly associated with predictivity, because while the best models tended
to have larger receptive field sizes, a large number of poor models also shared this
characteristic.
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Figure 4.11: A) Optimization loss traces during the HMO procedure showing de-
creased loss as optimization proceeded. B) Parameter-space trajectories during two
optimization rounds shown in panel A (Round 1 are blue dots, Round 2 are red dots).
This 3-d plot shows parameter values for two chosen parameters (LI filter mean and
L2 pooling exponent) out of many, but it is evident that subsequent rounds of opti-
mization (e.g. red) gravitate toward different parameter combinations (i.e. different
network architectures) than earlier rounds of optimization (e.g. blue). C) Training
performance as a function of model complexity, showing dramatic increases as com-
ponents from Round 1 (blue bars) and Round 2 (red bars) were added. The final
model (black bar) consists of 30 components identified with three complementary
rounds of optimization, plus one Li layer that, anatomically, stacks on top of those
30 components and, functionally, produces non-linear combinations of their outputs.
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Figure 4.12: Classification results for tasks including basic 8-way basic categorization
(top row) 8-way subordinate car identification (middle row), and 8-way subordinate
face identification (bottom row). Each task was assessed at low, medium, and high
levels of image variation (see Methods). Comparison was made between neural data,
human data, existing models from the literature, and the Hierarchical Modular Opti-
mization model outputs. The tasks span a wide range of difficulty, from low-variation
basic 8-way categorization where humans perform at greater than 95% accuracy, to
high-variation subordinate face identification, where human performance is indistin-
guishable from chance.
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Figure 4.13: a) Dependence of performance on number of training examples for
models and neural populations. HMO model is shown in red; IT population in solid
green; V4 in dotted green; all other control models are shown in black. b) Direct
comparison of dependence of performance on number of neural sites, for the IT (solid
green) and V4 (dotted green) neural populations.
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Figure 4.14: Additional RDM comparisons to IT population structure. As in Figure
4.3d-e, each bar shows the Spearman correlation of an RDM for a model (or V4 pop-
ulation) with the RDM for the IT neural population on the same stimulus set. We
show comparisons for three subsets of the test image set separated by variation level
("Low", "Medium" and "High"), as well as for the whole stimulus set ("All"). Panel a)
shows comparisons of RDMs at the object level, in which population representation
vectors are averaged on a per-object basis before taking the pairwise correlations to
make the RDM matrices. Panel b) shows more detailed image-level RDMs compar-
isons, with each stimulus represented separately. c) Object-level RDMs for a variety
of models and the V4 and IT neural populations.
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Figure 4.15: IT explained variance for each model, fit with training/test image splits
generated by (1) image generalization, a random selection process in which train
and test splits contain images of the same 64 objects, but on different backgrounds
and at widely different poses, positions, and sizes; (2) object generalization, in
which train and test images are split so that they contain no overlapping objects,
so that predictions are tested for generalization across object identity as well as
position, pose, size and background variation; and (3) category generalization, in
which train an test images are split so that they contain no overlapping categories,
so that predictions are tested across category boundaries as well. Figure 4.3e shows
the corresponding results at the population RDM level.
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Figure 4.16: Tradeoffs between subtask-optimal architectures. Each panel
shows pairwise relative performance of the models from the high-throughput exper-
iments in Fig. 4.9a on a variety of binary subtasks. As in that figure, random
selections are shown in green and performance-optimized selections are shown in
blue. Sometimes performance on one binary subtask -e.g. Boats-vs-Fruits and
Fruits-vs-Tables (lower-right-hand corner panel) -directly correlates with perfor-
mance on another. More commonly, there is a tradeoff between subtask performance
in the models explored during optimization, leading to the "V" pattern observed
in subtask pairs. Because the procedure was maximizing overall performance (as
opposed to performance on any one subt ask), one "arm" of the V is heavier than
the other, corresponding to the optimization process being forced to make a single
"choice" in each of these tradeoffs.
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Figure 4.17: Characterization of selected model parameters in terms of per-
component tuning specificity versus inter-component diversity. Each point in this
plot represents an architectural parameter in the HMO model. Parameters in the
upper right corner are highly tuned but also highly diverse in their tunings between
model components. See text for the definition of diversity and tuning specificity.
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Figure 4.18: Results of models with fine tuning. (a) Similar to our "standard"
convolutional neural networks (termed as HMO models, which stand for Hierarchical
Modular Optimization models), the top layer of the filter value tuned, performance-

optimized model generalizes from the real photograph training set (red bar), and
significantly outperforms control models (gray bars) and the V4 neural population
on the 8-way object categorization task (Animals vs Boats vs Cars vs Chairs vs Faces
vs Fruits vs Planes vs Tables) in the images shown in Fig. 3.7a. Model performance
is comparable to IT neural population (blue bar) and human performance measured

via psychophysical experiments (black bar). (b) The performance-optimized model
is then used predict neural response in IT cortex (top panel) and V4 cortex (bottom
bars). Ability to predict IT neural patterns is better with each subsequent model

layer, peaking at the top layer (red bars), whereas ability to predict V4 neurons
peaks in the middle layers. For both V4 and IT, the performance-optimized model's

most predictive layer is significantly better than other control models, including
ideal observers that perform perfectly on categorization tasks (purple bars) as well
as control models that are also in the general class of neural networks (gray bars).
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Figure 4.19: Test set performance timecourses: fine tuned model. y-axis rep-
resents performance of linear regressors and classifiers trained on the top level of the
model, on each task defined on the testing set (see Fig 3.7a). x-axis represents time-
points taken during training for categorization on the ImageNet dataset (as described
in Methods). Performance was estimated by building top-level regularized classifiers
and regressors (as described in the methods text) separately at each time step. Note
that the x-axis is the same for all panels, representing the same training trajectory;
the various y-axis panels are all based on the single feature set produced by the
categorization training. The first two panels, with gray backgrounds, indicate cate-
gorical tasks (8-way basic categorization and subordinate category identifications);
the remaining white-background panels indicate non-categorical tasks.
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Chapter 5

Conclusions

As a whole, this thesis provides quantitative insights into how the brain, in partic-

ular the ventral visual stream, might perform the challenging tasks of core visual

perception of objects1 .

In Chapters 2 and 3, we demonstrate that simple, learned weighted sums of

randomly-selected average responses of distributed IT neurons robustly predict the

human pattern of behavioral performance across a wide range of visual tasks, not only

categorization and identification tasks, but also other non-categorical tasks, such as

position, size, and viewpoint estimation tasks. This suggests that the ventral visual

stream (and in particular, IT cortex), which builds tolerance to identity-preserving

transforms, also builds an explicit representation that is sensitive to exactly those

properties to which the system is also tolerant. More precisely, the data argue that a

simple rate code (integrated between 70 to 170ms post stimulus onset), read out on

single-trials, learned from a distributed population of -60 thousand single IT units,

'Defined as the ability to rapidly (<200ms viewing duration) estimating key visual parameters -
including object category, identity, size, pose, perimeter, and aspect ratio - of the object presented
parafoveally (central ~ 100 of the visual field). See Section 1.3 for details.
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reliably explains both the pattern and the magnitude of human performance over a

large battery of core object perception tasks.

A fundamental contribution made here is our quantitative framework for compar-

ing neural responses to behavior by utilizing a battery of visual tasks that measure

the range of human subjects' capabilities in the domain of core object perception.

This operational definition of object perception provides a strong consistency test

by which we could quantitatively evaluate and falsify different neuronal linking hy-

potheses that might explain behavior. One important advantage of this quantita-

tive framework is that we can iteratively refine our choices of images, tasks, neural

recording, and linking hypotheses to continue to deepen our understanding of the

link between neurons and high level object perception. A natural extension to our

approach would be to study the effects of crowding, clutter, occlusion, and corre-

lated backgrounds. In addition, studying at a more detailed level (e.g., per-image

behavioral pattern) would uncover important details in visual object perception.

In Chapters 2 and 3, combined with the modeling results in Chapter 4, we show

that, along the hierarchy of the ventral visual stream, the representation explicit-

ness to non-categorical, identity-preserving transformation is not merely retained

but rather increased in concert with the transformation tolerance, for common ob-

jects presented in a visually rich environment with cluttered background. In other

words, for photo-realistic images of objects presented parafoveally, IT encodes both

the categorical and non-categorical parameters of the object more robustly than other

lower level visual areas do in a way that the IT encoding is readily parsed with sim-

ple weighted linear sums. It may be unintuitive that some properties (in particular,

position and size estimation) that are typically thought of as low-level visual fea-

tures are actually more effectively captured in IT neural populations. Our results

are nonetheless consistent with the prior studies that formed existing intuitions, in
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which simple stimuli (e.g., bars and gratings on a gray screen) were mostly employed,

whereas our results focus on complex stimuli containing realistic objects on cluttered

backgrounds. It should be noted that the stimulus set used in this study is not large

enough to show, nor do we mean even to suggest, that the ventral stream builds up

an ability to estimate properties of objects presented in the periphery, a function nor-

mally associated with the dorsal stream. Instead, we speculate that both the dorsal

and ventral stream contain representations for categorical and non-categorical visual

properties, but at different levels of spatial resolution and scale, the ventral being

parafoveally localized fine-scale and the dorsal being large-scale with peripheral cov-

erage. This idea is attractive as it would naturally support behavior in which the

dorsal machinery directs foveation based on, for example, an environmental saliency

map, while the ventral machinery parses details in each foveation snapshot, to pro-

duce an overall scene understanding. Experimental testing of this idea, especially

with complex naturalistic stimulus set, would be a rewarding avenue of research.

In Chapter 4, we build a quantitatively accurate computational model of the

ventral visual stream by optimizing the classification performance of bio-inspired hi-

erarchical neural networks. Surprisingly, while the model has never been given any

neural data to match directly, its top layer shows a remarkable ability to predict

IT neural responses to realistic images at both the single site and population levels.

Moreover, the model's second top layer turns out to be highly predictive of neural

responses in V4, the main cortical input to IT. These results suggest that imposing

performance optimization, a behaviorally relevant goal, combined with a sufficiently

large set of biologically plausible models, effectively yields quantitatively predictive

models of neural processing in the visual system. In addition, as in our experimen-

tal observations, the optimized model also shows emerging explicit representation

for both categorical and non-categorical properties along its hierarchical layers, even
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though it has not been directly optimized for it as such. Instead, we find that simple-

minded optimization for robust categorization performance brings along performance

on all the other non-categorical tasks, in addition to the neural response prediction

tasks, "for free." This suggests a series of interesting follow-up studies investigating

whether the converse is true - is solving for a non-categorical property (e.g., object

position estimation) enough to guarantee categorization performance, or is catego-

rization a much stronger constraint driving the "development" of IT neural responses?

In addition, the scale of the space to be search is enormous, even before adding in

more sophisticated mechanisms, such as attention and inter-area feedback that are

known to exist in nature. In this scenario, it often becomes unclear which models

are promising leads that should be followed up more carefully and which are high-

performing, but biologically-implausible "dead-ends". While we have not specifically

utilized, we argue that biological data could be leveraged to guide and accelerate our

search, operating under the hypothesis that models that more closely approximate

biological systems are more likely to be on the "right" path, both in terms of machine

perception performance, and utility for neuroscience understanding.

Mechanistic modeling of the ventral stream's algorithms is a genuinely challeng-

ing problem, and we do not claim that we single-handedly have solved it in this

work. Instead, we view this as a demonstration of a robust research approach that

can be refined to deepen our knowledge. This work provides comprehensive human

benchmarks, makes quantitative perceptual predictions, and establishes a foundation

of mechanistic models of human object perception.

In conclusion, this thesis is focused on two related questions in visual neuroscience

and machine perception: understanding how different patterns of neural activity give

rise to specific human object perception behaviors (the brain-to-behavior link); and

developing high-performing computer vision models that in turn predict this neural
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activity from input images (the image-to-brain link). This work provides answers to

these two questions, which is an end-to-end understanding of object perception in the

human visual system as a full pipeline from images to behavior. By understanding

vision in the brain better, I believe we will be able to discover more effective computer

vision and machine perception algorithms, and conversely, such improved algorithms

will allow us to gain further insight into how the brain works.
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