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Optical Transient Grating Measurements of Micro/Nanoscale Thermal
Transport and Mechanical Properties

by

Jeffrey K. Eliason

Submitted to the Department of Chemistry on May 12th, 2015, in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

Abstract

The laser-based transient grating technique was used to study phonon mediated thermal
transport in bulk and nanostructured semiconductors and surface wave propagation in a
monolayer of micron sized spheres. In the transient grating technique two picosecond pulses are
crossed to generate a spatially periodic intensity profile. The spatially periodic profile generates a
material excitation with a well-defined wavevector. The time dependence of the spatially periodic
material response is measured by monitoring the diffracted signal of an incident probe beam.

Non-diffusive thermal transport was observed in thin Si membranes as well as bulk GaAs at
relatively short (micron) transient grating periods. First-principles calculations of the phonon mean
free paths in Si and GaAs were compared with experimental results and showed good agreement.
Preliminary measurements on promising thermoelectric materials such as PbTe and Bi2Te 3 are
presented showing evidence of non-diffusive transport at short length scales.

The transient grating technique was used to measure the thermal conductivity of Si
membranes with thickness ranging from 15 nm to 1518 nm. Using the Fuchs-Sondheimer
suppression function along with first-principles results, the thermal conductivity as a function of
membrane thickness was calculated. The calculations showed excellent agreement with
experimental measurements. A convex optimization algorithm was employed to reconstruct the
phonon mean free path distribution from experimental measurements. This marks the first
experimental determination of the mean free path distribution for a bulk material. Thermal
conductivity measurements at low temperatures in a 200 nm Si membrane indicate the breakdown
of the diffuse boundary scattering approximation.

The transient grating technique was used to generate surface acoustic waves and measure
their dispersion in a monolayer of 0.5 - 1 [m diameter silica spheres. The measured dispersion
curves show "avoided crossing" behavior due to the interaction between an axial contact resonance
of the microspheres and the surface acoustic wave at a frequency of -200MHz for the 1 [tm spheres
and -700 MHz for the 0.5 [m spheres. The experimental measurements were fit with an analytical
model in which the contact stiffness was the only fitting parameter. Preliminary results of surface
acoustic wave propagation in microsphere waveguides, transmission through a microsphere strip,
and evidence of a nonlinear response in a 2D array of microspheres are presented.

Thesis Supervisor: Keith A. Nelson
Title: Professor of Chemistry
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Chapter 1

Overview
The study of light-matter interactions, or spectroscopy, dates back to the first

experiments performed by Newton. Over the years, spectroscopy has been used as a

powerful tool for experimentalists to explore the natural world. Its discoveries have

shaped theories that form the basis for modern physical science. Modern

spectroscopists have access to coherent laser sources with short pulses enabling the

study of a host of interesting phenomena on short time scales. Typical optical

experiments use single laser spots with a pump pulse that generates the material

excitation and a probe pulse that measures the response. This technique, called

pump-probe spectroscopy is ubiquitous in modern spectroscopy. A natural

extension is to generate spatially dependent material responses by using

constructive and destructive interference to shape the spatial profile of the light's

electric field. This is the basis for the fields of holography and four-wave-mixing

[Collier, Eichler].

This thesis presents measurements conducted using a four-wave-mixing technique

commonly known as transient grating, or impulsive stimulated scattering (ISS). In

the transient grating technique, two short optical pulses overlap spatially and

temporally to generate a sinusoidal interference pattern. The spatially periodic

profile generates a periodic excitation in a material. Diffraction of an incident probe

beam monitors the time dependence of the material response. Depending on the

material an electronic, thermal, and/or strain profile is generated with a well-

defined wavevector. The sinusoidal profile of the material response allows for

relatively straightforward analysis of the generated signal.

In this thesis I present a selection of the work I have done at MIT using the transient

grating technique to study thermal and mechanical properties of materials. In

recognition of all the collaborators who have aided in this work I will use 'we' for

the remainder of the thesis.
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Chapter 2 introduces the transient grating technique. The description of the

technique includes the generation and detection of a periodic thermal profile and

surface acoustic waves. Then, the experimental setup is described and a novel

modification to the technique is presented. The remainder of the thesis covers two

major projects. Chapters 3 and 4 cover studies of the fundamental nature of thermal

transport in semiconductors. Chapters 5 and 6 describe interesting mechanical

behavior in granular materials.

Chapter 3 begins with an introduction to thermal transport in non-metallic crystals,

including the important parameters in determining the thermal conductivity of

materials. We describe the analysis of 1D and 2D thermal profiles from crossed

beams in a semi-transparent material or at the surface of an opaque material. Then,

we present observations of deviations from diffusive thermal transport in bulk and

nanostructured semiconductors showing the broad distribution of the mean free

paths of heat carriers. In an attempt to observe non-diffusive effects in promising

thermoelectric materials we present thermal conductivity measurements in PbTe

and Bi2Te 3. In chapter 4 we present the experimental determination of the mean

free path distribution in Si using experimental measurements of thermal

conductivity. We describe phonon boundary scattering in thin films and present the

Fuchs-Sondheimer suppression function, which describes the reduction of thermal

conductivity in a thin film. Low temperature measurements in a Si membrane are

presented to study the temperature dependences of thermal conductivity and

phonon boundary scattering. We compare all our results to first-principles

calculations and in most cases, demonstrate good agreement between experiment

and theory.

In chapters 5 and 6 we discuss surface acoustic wave behavior in a granular media.

In particular, we study a monolayer of micron-sized spheres. Chapter 5 introduces

contact mechanics and adhesion in the context of a sphere in contact with an elastic

14



substrate. Then we discuss transient grating measurements of the surface acoustic

wave dispersion, which demonstrates an interaction between the axial contact of

the spheres and the surface wave. We compare our measured dispersion to an

analytical result based on contact models. Chapter 6 details experiments aimed at

learning more about the adhesive interaction between sphere and substrate. We

present dispersion measurements as a function of humidity, substrate surface

conditions, and sphere diameter. We conclude with a demonstration of surface

acoustic wave filtering and evidence of nonlinearity in the microsphere contact.
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Chapter 2

Transient Grating Technique

The transient grating technique, also called impulsive stimulated scattering (ISS),

uses a four-wave mixing process to generate and detect coherent material

excitations. ISS takes advantage of the periodic intensity profile generated from

crossing two spatially and temporally coincident laser pulses to set the wavevector

of the excitation. This technique, hereafter referred to as transient grating (TG), is

well developed in the literature and has been use for studying a wide variety of

systems [Eichler]. Here we will cover relevant information related to generation and

detection of mechanical and thermal responses. A schematic illustration of a typical

TG setup is shown in Fig 2.1. The description of the TG experiment will begin with

the crossed laser beams for excitation, followed by the probing of the material

response, and conclude with a novel advancement to the technique.

Pump 515 nm Ref 532 nm
ND Probe 532 nm Ref + Sig 532 nm ammm

PM Sample

Li PS L2 L2

Fig 2.1. Schematic illustration of the TG setup used for many experiments described in this thesis. PM

is a binary optical diffraction grating called a phase mask. ND is the neutral density filter used to

attenuate one arm of the probe beam creating the reference beam. PS is a highly parallel glass plate

used to control the relative phase between the probe and the reference fields. Li and L2 are

achromatic doublet lenses where Li has twice the focal length of L2 for 2:1 imaging. D is a fast

(>1GHz bandwidth) photodetector and is connected with an oscilloscope for real-time data

collection.

2.1 Crossing Beams

When two plane waves with identical wavelength and polarization cross, the

resulting constructive and destructive interference creates a sinusoidal intensity
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profile. Crossing two beams on a surface and observing the profile with a CCD

camera provides an image of the periodic interference pattern as seen in Fig 2.2

L

Fig 2.2 (Left) Schematic illustration of crossed beams with angle 0 and interference pattern period L.
(Right) CD Image of crossed beams on a 100 nm aluminum layer on a glass substrate. The resulting
period is 13.5 urm.

The period L of the interference pattern is given by the following equation,

L = - = 2s(2.1)
q 2 sin()

Here q is the magnitude of the grating wavevector, k is the wavelength of the light,

and 6 is the angle at which the beams are crossed. If the medium is transparent and

both beams enter through the same surface, the period of the interference pattern is

unchanged compared to the period for beams crossed in air. The period remains

unchanged because the change in angle due to refraction from entering medium

with a higher refractive index counteracts the change in wavelength of the light. It is

worth noting that if two beams are crossed with perpendicular polarizations, e.g.

vertical and horizontal, the generated interference pattern has a periodic

polarization profile rather than a periodic intensity profile.

2.2 Material Excitation

Typically we use short laser pulses to generate a material excitation, which we call

the pump process. If the sample of interest absorbs the laser light, sudden heating

and subsequent thermal expansion cause a fast, step-like stress response, which

launches counter-propagating acoustic waves. The period of the resulting thermal

profile and the wavelength of the acoustic wave match the period of the interference

intensity profile given by L, shown in Eq (2.1). The temperature rise in the material,

18



6T, is determined by the absorbed energy, which is proportional to the intensity of

the light as,

ST(x) oc I(x) = Iabs cos 2 (x) = /2abs(1 -+ cos(qx)). (2.2)

Here I(x) is the spatially periodic intensity profile, Iabs is the absorbed intensity and q

is the grating wavevector. The stress from thermal expansion, 0, can be calculated

as[Nye, Landau, JohnsonPhD]:

aij(x) = CiIklacklT (x) OC Cijkiakl cos(qx) (2.3)

The subscripts refer to summations over the index according to Einstein notation.

Here CijkJ is the elastic stiffness tensor and ak, is the thermal expansion tensor. In the

case of an isotropic material Cijkl is the bulk modulus and aki becomes the linear

thermal expansion coefficient. If the material is thick and partially absorbing, heat is

deposited throughout the depth of the material and thermal expansion generates a

bulk longitudinal wave. A standing wave occurs in the region where the two

counter-propagating waves overlap, but the waves will continue to propagate until

material damping dissipates the energy. At the same time, the sinusoidal

temperature profile decays due to thermal diffusion that moves energy from peaks

to nulls of the pattern. The thermal and acoustic responses are probed by diffraction

of an incident laser beam due to coupling between the refractive index and the

material response. The probing process will be covered in more detail in the next

section. The diffraction of the probe beam by thermal and acoustic responses caused

by an impulsive temperature rise in an absorbing material is often termed impulsive

stimulated thermal scattering (ISTS) [Rogers94, Yang].

In the case where the material is strongly absorbing the pump beams are absorbed

close to the surface and thermal expansion generates surface acoustic waves

(SAWs) [RogersOO]. The thermal profile is also created near the surface of the

material and now heat flows into the depth of the material in addition to heat

transport from peak to null [Kdding]. Surface heating and SAWs will be discussed

more thoroughly later in the thesis.
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In the case where the sample does not absorb the pump light, non-resonant

excitation can occur through a process called electrostriction. In electrostriction, the

electric field of the light perturbs the electron density of the molecules in the

sample. The fast change in electron density causes the nuclei to respond and results

in an applied stress. Much like ISTS, if the intensity profile occurs in a bulk medium,

the electrostrictive driving force generates counter-propagating bulk longitudinal

waves, but in this case there is no heating. Since the stress only lasts as long as the

short pump pulse (sub-nanosecond). The diffraction of the probe beam by acoustic

responses generated via electrostriction is called impulsive stimulated Brillouin

scattering (ISBS)[Yan, JohnsonPhD, TorchinskyPhD]. In general, semi-transparent

samples yield acoustic responses due to a combination of ISTS and ISBS driving

forces. It should be noted that in ISTS the driving force is step-like (following the

temperature rise) while in ISBS it is delta-like (following the laser intensity profile),

which results in a phase difference between the ISTS and ISBS signals [JohnsonPhD].

Representative signals from samples demonstrating ISTS and ISBS are shown in fig

2.3.

0.
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Fig 2.3 (Left) TG data from PDMS showing a combination of ISTS and ISBS responses. The oscillations
from counter-propagating acoustic waves are offset from zero indicating a long-lived thermal grating.
(Right) TG data from PMMA demonstrating a pure ISBS signal.

The ISBS driving force is also capable of generating bulk shear waves. Rather than

using the same polarization for both pump beams, crossed polarizations generate a

periodic polarization profile. Since this has no intensity profile there will be no

periodic absorption and no ISTS signal allowing for isolation of shear waves
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[JohnsonPhD]. Since the samples we have investigated in this thesis show no ISBS

component, in the following "transient grating" will exclusively mean ISTS.

2.3 Heterodyne detection and phasemask

In order to measure the material response generated by the pump beams, we direct

another laser beam, the probe, onto the crossing region. The probe diffracts off of

the periodic refractive index modulation due to the coupling between the optical

properties and material excitation, such as temperature and strain [Berne]. The

diffracted signal is overlapped with another beam, the local oscillator or reference

beam, in a process called heterodyning. The diffracted signal can be generated with

a variably delayed pulse or with a continuous wave (cw) laser. For all of the

experiments presented here a cw laser is used and the diffracted signal is sent to a

fast photodetector connected to an oscilloscope. This real-time detection scheme is

preferable for responses on the nanosecond to microsecond time scales, as it

reduces data collection time. In real-time detection, the fastest measurable time

dynamics are limited by the bandwidth of the detection electronics (photodiode and

oscilloscope). If we wanted to resolve dynamics on the picosecond to femotosecond

time scales, we would need femtosecond pulses and a scanning delay line.

The time dependence of the material response, in this case the temperature profile

and acoustic waves, is carried in the intensity of the diffracted signal. The diffracted

signal and reference beam are overlapped and interfere to give the following

intensity [Maznev98],

is+r = Is + I, + 2V/UIcos< (2.4)

Here Is is the intensity of the diffracted signal, Ir is the intensity of the reference and

<p is the phase difference between the two beams. In the case where Ir >>Is, the

measured signal, Isr is linearly dependent on VIr, because Is is negligible and Ir has

no time dependence. Since the pump-induced perturbations of the sample are

proportional to the diffracted electric field, the heterodyne signal is linearly

proportional to the material response. In addition, the linear dependence of the
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signal on Ir is beneficial for reducing noise from the detection electronics and

scattered light [Maznev98]. Data can be collected at q? = 0 and p = n, and by

subtracting the two traces, any signals not dependent on the heterodyne phase, such

as signals from low-frequency EM sources or scattered pump light, are eliminated.

Finally, it allows for information dependent on the phase to be recovered, which will

be covered in more depth in the following section. Representative traces taken at q

= 0 and p = n are shown in figure 2.4.

0.025

0.02

0.015

0.01

0.005

0 0
E

-0.005

-0.01

-0.015

0 20 40 60 80 100 120 140 160 180 200

Time (ns)

Figure 2.4: Time traces taken at q= 0 (blue) and <p= n (red) for surface excitation of a 200 nm
aluminum film on a glass substrate.

With common reflective optics, achieving heterodyne detection is complicated

because it is difficult to overlap two beams and maintain a stable phase between

them [Nelson82]. In practice, using an optical phase mask solves this issue

[Maznev98]. An optical phase mask is a binary diffraction grating, basically a piece

of glass with a periodic square relief pattern. The square-wave pattern diffracts an

incident beam into all the Fourier components of the square wave. The height of the

square pattern is set to optimize the 1 diffraction orders for a certain wavelength

of light. The TG condition of two crossed beams is achieved by using a two-lens

imaging system, where the first lens brings the beams parallel and the second lens
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crosses them at the sample. The setup including phase mask, and two lenses can be

seen in figure 2.1. Use of the phase mask makes alignment of the TG experiment

simple. If the pump and probe beams are incident on the same location on the phase

mask, all four beams, i.e., the 1 diffraction orders from pump and probe, will be

recombined at the same location on the sample. This also ensures that the diffracted

signal will be overlapped with the reference beam, created by attenuating one arm

of the probe. We can also describe this setup as imaging of the phase mask but with

a Fourier filter (blocking all higher order beams), which results in a sinusoidal

intensity profile with half the period of the phase mask. Now that we have

established the framework of the TG setup it is instructive to look at the origin of the

diffracted signal from a periodic material excitation.

2.4 Phase and amplitude grating

2.4.1 Transmission geometry

In general, we can determine the transmission of a probe beam through a thin

sample with no reflection at the interfaces by multiplying the input electric field by a

complex transmission function given by [Collier, JohnsonPhD],

to = exp (i(t (r) + iti'(r))) (2.5)

where, to'is the real part of the transmission function, to" is the imaginary part of the

transmission function, and - is time. Excitation of the material results in a spatial

and temporal modulation of the complex transfer function with the following result,

t(x, r) = toexp (i(t'(r) + it"(r))cos(qx)) (2.6)

where q is the TG wavevector, t'(t) is the change in the real part of the transmission

function, and t"(t) is the change in the imaginary part of the transmission function.

We assume that the excitation results in a small perturbation to the optical

properties of the sample giving,

t(x,Tr) = to(1 + cos(qx)[it'(T) - t"(r)]) (2.7)

We can see from the transmission function that t'will result in a change in the phase

of the incident electric field and t" will change the amplitude and so we call these the
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phase and amplitude grating respectively. We approximate the electric field of the

probe and reference as plane waves giving,

Ep = Eopexp (i (k - z - i2 X - ip + iqp) (2.8)

and,

Er = arEopexp i (k2 - 2 Z + i qX - i(Opr + i(pr (2.9)

Here Eop is the amplitude of the incident probe beam, kp is optical wavevector

magnitude of the probe, q is the wavevector of the transient grating, (Op is the

frequency of the optical light, pp and pr are the phases of probe and reference

respectively, and ar is the attenuation coefficient of the reference beam.

To obtain the diffracted fields we multiply the probe field, Ep, and the transmission

function [Collier, JohnsonPhD]. First order diffraction of the probe beam gives the

following result,

Ep (+1) = Es = Eopto Pt'(r) - t"k - 4 z + i 2 x - ii-r + ipp (2.10)

Heterodyne detection requires that the first order diffraction from the probe

overlaps with one order of the reference beam. We see that this condition is met by

the zero order diffraction, or the transmission, of the reference given by,

Er(o) = arEoptoexp i (k 2 z + i qx - ia r + ivpr (2.11)

The probe and reference fields are collinear, and the resulting interfere intensity is,

Is+r(O) = iopto2 (2 + t' 2() + t112 (r) - 2ar[t"(x) cos p - t'(-r) sin p]) (2.12)

where q? = g, - 9r, is the heterodyne phase. If the reference beam were absent the

diffracted signal would be,

Is(non-het) = Iopto2(t'2(T) + t''2 (T)) (2.13)

Therefore, without heterodyning the signal is comprised of a mix of phase and

amplitude grating contributions, making it difficult to analyze this signal. With
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heterodyning, if the reference intensity is much larger than that of the diffracted

probe, the heterodyne signal dominates,

Is(het) = 2Ioto2 ar [t" (r) cos O - t'(r) sin p] (2.14)

Here we can see that the heterodyne signal has a linear dependence on the probe

intensity, Iop, and on the attenuation factor of the reference, ar. We can also see that

the by selecting the appropriate heterodyne phase we can isolate the phase or

amplitude grating contribution to the signal. By setting q' = 0 or n, the heterodyne

signal will come from the phase grating and at q = n/2 and 3n/2 the heterodyne

signal will come from the amplitude grating. The ability to select between the phase

and amplitude grating components is essential for unambiguous determination of

TG signals. In addition subtracting signals with n phase difference eliminates any

non-heterodyne terms.

To build physical intuition for the pump-probe response it is instructive to look at

how the material response couples to the complex refractive index, n* = n + ik. For a

weak, thin grating, the real and imaginary parts of the transmission function map

directly to changes in the real and imaginary parts of the complex refractive index.

In this specific scenario the heterodyne signal is as follows,

Is(het) = 2op to2 arkpz[Sk (r) cos p - Sn(r) sin p], (2.15)

where 6n is the change in the real part of the complex refractive index, Sk is the

change in the imaginary part of the complex refractive index and z is the thickness

of the sample. Temperature and strain cause changes in the real and imaginary parts

of the complex index of refraction [Eichler],

On an
6n = -dE + -dT

(2.16)
Ok ak

Sk = -de +--dT

Here E is the strain response coming from the applied stress, and T is the

temperature rise from heating after absorption in the medium. Heterodyne

detection can separate the contributions from the phase and amplitude grating,

changes in 6n and 6k respectively. In general the real and imaginary components of
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the transmission are related to the changes in the complex refractive index but it is

not as simple as the above case. For example, when there are multiple reflections in

the sample, i.e. Fabry-Perot effects, it is not trivial to determine how transmission is

affected by changes in refractive index [Brekhovskikh].

2.4.2 Reflection geometry

For strongly absorbing materials the laser light is absorbed near the surface, and in

addition to changes in the complex reflectivity, there is a net surface displacement

from thermal expansion. It is straightforward to account for this by incorporating an

addition phase term in the transmission function above, to obtain the complex

reflection function,

r(x, r) = ro exp (i(r'(r) + ir"(r))cos(qx)) exp(-i2kpu(r) cos(qx) cos(flp)) (2.17)

where ro is the baseline reflectivity of the sample, r'is the change in the amplitude of

the reflectivity, r" is the change in the phase of the reflectivity, u(-r) is the amplitude

of surface displacement, and 3p is the angle of incidence of the probe beam.

Following the same procedure as above the heterodyne signal is given by,

Is(het) = 2Iopro2 ar[r'(r) cos v0 - (r"(r) - 2kpu(r) cos(flp)) sin p] (2.18)

By adjusting the heterodyne phase, we can again isolate the amplitude grating or

the phase grating contribution to the signal. The amplitude grating is given by the

real part of the reflectivity, r'(T), but now the phase grating, r"(-r)-kpu(-r)cos(pp), has a

combination of the change in reflectivity and diffraction from the surface

displacement. The kinetics of the reflectivity change and surface displacement are

not the same [Kading, Johnson12], which makes analysis of the phase grating

complicated. For thermal measurements of highly absorbing samples the amplitude

grating provides a straightforward way to measure the kinetics of the thermal

grating decay[johnsonl2].
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2.5 Experimental setup

All the experiments in this thesis use a short excitation pulse from a HighQ

femtoREGEN system. The HighQ femtoREGEN is a Yb:KGW laser system with self

contained oscillator and regenerative amplifier. The system has a variable repetition

rate, but we run it at 1kHz, which is down counted from the oscillator rep-rate of 78

MHz. Under normal operation, the laser outputs 300 fs pulses at 1035 nm. To avoid

sample damage from high peak powers we bypass the compressor to obtain -200

ps pulses. A detailed guide for operation and troubleshooting can be found in

Appendix A of [TorchinskyPhD]. To accommodate the samples studied, we use a

shorter wavelength obtained by frequency doubling the fundamental output to

-515 nm using a temperature controlled BBO (beta-barium borate) crystal. The

BBO crystal was made for 1064 nm, but by heating the crystal to 240 *C we achieve

a reasonable second harmonic generation efficiency at 1035 nm. The probe laser is a

532 nm Coherent Verdi V5 single-longitudinal mode laser. The Verdi was chosen for

its highly stable output, long coherence length (-60 m), and because the wavelength

is well matched to the 515 nm pump light. Matching the pump and probe

wavelengths improves the imaging of the phase mask by reducing chromatic

aberrations. We modulated the probe output with an electro-optic modulator (EOM

- ConOptics 350-50 with 302 RM high voltage source) in conjunction with a delay

generator to obtain a 64 [ts probe window (-95-5 duty cycle). We used a short

probe duration with the goal of reducing the heating of the sample, although in most

cases we observed a much larger impact from the peak power of the probe than

from the duty cycle of the probe [Notel]. As mentioned above, we used a custom

phase mask optimized for 532 nm light (80% of the power in 1 diffraction orders).

We created a 2:1 imaging system using Thorlabs achromatic doublets, where the

first lens had a focal length of f = 15 cm and the second lens had f = 7.5 cm. For

most experiments the pump and probe beams were overlapped on the phase mask,

with the pump beam at normal incidence and the probe beam at a slight angle below

normal allowing for separation of pump and probe beams in the vertical plane.
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After the sample, we directed the collinear reference and signal beams to a 1 GHz

bandwidth Si avalanche photodiode from Hamamatsu (C5658). A laser line filter set

to block the excitation wavelength of 515 nm was used to reduce scattered pump

light. The APD module was connected with an SMA cable to a 4 GHz bandwidth

Tektronix TDS 7404 oscilloscope. Thorlabs ND 3 filters were used to attenuate the

reference beam. It was found that ND 3 was the appropriate level of attenuation to

avoid saturating the Hamamatsu detector, although for a different detector a

different ND filter would likely be optimal. For phase control of the probe and

reference beams, we used a highly parallel CVI SQW1-1512-UV fused silica plate.

The angle of the window was adjusted by a Thorlabs Z612 motorized actuator with

TDC001 Servo controller. In general, to avoid issues from probe lasers with short

correlation length, the thickness of the glass slide and ND filter should be well

matched. For temperature dependent measurements we used a Janis ST-100H

cryostat connected to a Lakeshore 331 temperature controller. Data acquisition was

performed with Labview on a computer. A diagram of the laser table can be seen in

[johnsonPhD].

2.6 Continuously variable grating period

The custom phase mask is designed to have many small areas with different

periodicities of the square pattern. The periods available on a given pattern

determine the TG periods that can be used in the experiment without changing the

magnification of the imaging system. In theory the smallest TG period occurs when

the crossing angle is 1800 giving a period of L = X/2. In reality, this is difficult to

achieve with a phase mask, as it would not be possible to image the grating and gain

all the benefits discussed above. For imaging, the grating period is determined by

the numerical aperture of the imaging system. The higher the numerical aperture,

the smaller the grating spacing that can be achieved. The largest grating spacing is

limited by the size of the spot since diffraction only occurs if there are a few periods

within the size of the spot.

28



For our experiments we use a two-inch diameter lens with a focal length of 7.5 cm,

which results in a 0.32 numerical aperture [JohnsonPhD]. With our 515 nm/532 nm

pump/probe wavelengths and our phase mask pattern, the grating period range is L

= 1-50 um. The phase mask is divided into 28 different discrete segments with

different periods. Having discrete sections makes switching between grating periods

relatively easy. The phase mask is mounted on a rail to facilitate passing the pump

and probe beams through selected segments of different periods. In many cases, it

would be useful to have finer control over the TG period. A few techniques for

generating continuously variable grating periods have been covered in the literature

[Dadusc, Goodno, Terazima].

We have developed a novel method for easily generating a continuous range of TG

periods. The range is still limited by the numerical aperture (short period) of the

imaging system and the spot size (long period), but our method offers the ability to

tune the grating period between any two adjacent patterns on the phase mask. To

achieve this, we rotate the phase mask so that it is no longer perpendicular to the

beam propagation axis. The exact crossing angles can be calculated using the

standard grating equation, but in the limit of long phase mask period and small

rotation angle the new grating period for a finite angle Ois well approximated by,

L' = L cos D (2.19)

where L' is the new TG period and L is the TG period for that phase mask pattern.

We can visualize this relationship by determining the projection of the phase mask

onto the image plane. As the grating is rotated the projection of the peaks of the

phase mask get closer together in the imaging plane. The only modification needed

is placing the phase mask on a rotation stage, where the pump and probe spots are

centered on the rotation axis. A demonstration of this technique is presented in

figure 2.5. There are a few issues that arise when the grating rotation angle is large.

In addition to reduced first-order diffraction due to a larger zero order, the first

order beams will no longer be equal in intensity. If the two first order beams are not

the same intensity the resulting intensity profile will have a non-zero null, or a
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decreased extinction ratio. Another issue that could arise at large rotation angles is

that the edges of the phase mask would no longer be in the image plane of the two-

lens system causing a slight shift in the period of the intensity profile at the edges of

the spot. This would only be a significant issue for angles greater than 450 or if the

imaging system had a short depth of focus. We will demonstrate a useful application

of this technique in section 6.6.
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Fig 2.5. FFT amplitude for surface acoustic waves on a 100 nm Al film on a glass substrate. The
dashed lines are taken with a base grating period of 13.5 i~m but at a~ = 150, 200 and 25' for green,
blue and red traces respectively. By tuning from a a = 0 to n3e5t we can continuously generate SAWs
with wavelength ranging from 13.5 tm to 11.5 [tm.

2.7 Summary

This chapter focused on introducing the TG experiment by discussing the generation

and detection of a material response to crossed-beam excitation. We discussed the

heterodyne detection scheme, the phase and amplitude grating components of the

signal and a novel approach to generating a continuously variable TG period. The

remainder of the thesis is focused on applying the TG technique to studying

micro/nanoscale thermal transport in semiconductors and surface acoustic wave

(SAW) propagation in granular materials.
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Chapter 3

Thermal Transport in Non-Metallic Crystals

3.1 Introduction
In recent years a great deal of work has been focused on understanding thermal

transport short distances [Cahill03, Cahill14, Koh, Highland, Siemens]. In non-

metallic crystals, phonons are the predominant heat carriers, and the phonon mean

free path (MFP) governs how far heat moves in the material [Ziman, Ashcroft,

Chen05]. Understanding how phonons with a certain MFP contribute to thermal

transport is essential for controlling thermal transport in a material. For example,

designing materials with low thermal conductivity is a key component to increasing

the efficiency of thermoelectric devices. The highest thermoelectric efficiency has

been demonstrated for highly nanostructured materials [Poudel, Snyder,

Dresselhaus, Chen03]. On the other hand, closely packed heat sources in

microelectronic devices pose significant challenges for thermal management [Pop].

In this case, high thermal conductivity is desired to avoid overheating. The following

chapter will introduce thermal conductivity and present experiments that shed light

on the nature of thermal transport at short length scales and the MFP of phonons

that contribute to thermal transport.

3.2 Thermal conductivity

3.2.1 Introduction to thermal conductivity

In the early 1800's Joseph Fourier performed pioneering work on thermal

conduction [Fourier]. He concluded that over macroscopic distances, heat flux was

proportional to the temperature gradient according to the following equation,

4 = -kVT (3.1)

where q is the heat flux, VT is the temperature gradient and k is the thermal

conductivity. In Fourier's theory he assumed that heat carriers move according to

diffusion theory with the heat equation is given by,
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OT
= aV 2 T (3.2)

at
The diffusion equation relates the time dependence of the temperature profile to the

second derivative in space of the temperature profile. The proportionality constant,

a, is the thermal diffusivity related to the thermal conductivity as a = k/pc, where p

is the density of the medium and c is the specific heat at constant pressure. In

diffusion the mean free path, or the average distance the heat carrier travels before

it scatters, is much shorter than the length of the thermal profile.

In the mid 1800's kinetic theory was used to described heat transfer as molecular

motion. Kinetic theory accurately determined the thermal conductivity of gasses as

k = CvA, where Cis the volumetric heat capacity (pc), v is the average speed of the

gas molecules, and A is the mean free path. This provides an intuitive picture for

thermal conductivity, where C describes how much heat is carried, v describes how

fast heat is carried, and A describes how far heat is carried. For gasses at high

temperature and/or pressure, the transport is diffusive, where the mean free path is

shorter than the temperature gradient. While this is useful for gasses, in solids heat

is not carried by molecular translation since the atoms are locked in a lattice.

In the 1920's Peter Debye and Rudolf Peierls developed the theory of thermal

transport in non-metallic crystals [Debye, Peierls]. In non-metallic solids, lattice

vibrations, called phonons, carry the majority of heat. Phonons have a wide range of

frequencies, and in a simple picture the thermal conductivity can be determined by

summing up the contributions of all the phonons according to the following

equation,

Wmax

k = - C(w)v(w)A(w)dw (3.3)
3

0
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Here, C(w) is the frequency-dependent heat capacity, v(O) is the frequency

dependent group velocity and A(o) is the frequency dependent mean free path. The

integration is performed over all phonon frequencies and a sum over polarizations

is implied with the 1/3 factor accounting for three propagation directions. The

modern day understanding of thermal conductivity is still largely based on the

Debye-Peierls picture of thermal conductivity.

It is worth mentioning that the kinetic theory thermal conductivity expression can

be derived from the semi-classical Boltzmann transport equation, shown in

equation 3.4 for one dimension under the relaxation time approximation(RTA)

[Majumdar93].

Of Of _ f 0f (3.4)
at ax -r

Here,f is the phonon distribution function,fo is the equilibrium phonon distribution,

v is the phonon group velocity and r is the single mode phonon relaxation time. The

RTA has been the subject of much criticism, but more recently has been shown to

work well for temperatures above 100K [Ward].

The heat capacity and group velocity can be calculated in a straightforward way as

well as determined experimentally. The MFP, on the other hand, is not so simple to

calculate as it depends on the interaction between a given phonon and all other

phonons. It is also arguably the most important parameter when trying to

understand the length dependent nature of thermal conductivity since it is directly

related to how far a carrier of heat travels. The next section will briefly cover heat

capacity and group velocity and then discuss attempts at calculating phonon MFPs.

3.2.2 Phonon dispersion

The collective lattice vibrations of a periodic crystal can be decomposed into normal

modes called phonons. This is analogous to normal mode analysis of molecular
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vibrations. Phonon modes are described by their polarization (longitudinal or

transverse), frequency, o, and wavevector, q. Phonons are quasi-particles that

exhibit wave and particle like behavior, but are well described for our purposes by

the classical wave equation. Using a primitive mass on a spring model the equations

of motion provide a good approximation of the relationship between 0 and q of each

phonon mode, which is called the dispersion relation. The group velocity for each

mode is the slope of the dispersion curve or do/dq, which for a linear dispersion is

o/q. More advanced calculations can also be done to obtain the dispersion relation

with high accuracy. One such technique uses density-function perturbation theory

(DFT) to determine the harmonic and anharmonic force constants and then

determines o and q from ab initio calculations [Deinzer03]. The dispersion for Si is

presented in fig 3.1 adapted from [Ward].
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Fig 3.1 Dispersion relation for Si along the high symmetry directions adapted from [Ward]. The

acoustic phonons are highlighted in blue and optical phonons highlighted in green. Open squares are

data from [Nilsson]

Starting at the F point and moving toward X at low frequencies, we see two

branches corresponding to the longitudinal acoustic (higher frequency) and two
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transverse acoustic phonon branches (lower frequency, but degenerate in this

direction). The transverse acoustic branch splits at the X point revealing the two

transverse modes. At much higher frequency there are addition modes

corresponding to optical phonon modes (one longitudinal and two transverse).

Phonon dispersion relations can be measured experimentally with neutron

scattering [Nilsson].

3.2.3 Heat capacity

The heat capacity describes how much the temperature of a material will when a

specified amount of energy is put into the material. Alternatively it is a measure of

the relative energy contribution of phonons of a given frequency. Phonons are

bosons, and their occupation number at a given temperature is described by the

Bose-Einstein distribution. The heat capacity will also be dependent on the number

of phonon modes available in the system or the density of states. For a 3D solid the

density of states is given by q(W) 2/(2I2v(W)), where q is the phonon wavevector and

v is the phonon group velocity. The mode dependent heat capacity is then given by

[Ashcroft],

= hog(ao) an(w,T) (3.5)
aT

Where g(w) is the density of states, and n is the phonon occupation number.

3.2.4 Phonon mean free path

Phonons interact with other phonons, electrons, and inhomogeneities in the crystal

lattice such as isotopes, defects, grain boundaries or physical boundaries [Callaway,

Holland63, Holland64]. When the phonon interacts with one of these objects it may

be scattered and may create a new phonon with a new energy and/or wavevector.

Phonon scattering by defects and grain boundaries in general behaves similarly to

Rayleigh scattering and scales as 04. We consider a perfect crystal, and as a result

defect scattering contributions will be neglected. The characterization of electron-

phonon interactions is a large field in its own right [Ziman]. Typically for
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intrinsically doped semiconductors, electron-phonon scattering results in a small

change in the intrinsic scattering rates [Ziman]. This leaves phonon-phonon

interactions as the major factor that determines the mean free path.

For temperatures on the order of the Debye temperature the most common phonon-

phonon interactions are three phonon interactions in which either two phonons of

lower frequency combine to form one of a higher frequency or one of higher

frequency decomposes into two lower frequency ones. Phonon scattering processes

must follow momentum and energy conservation, q + q= q" and w + w' = W", but it

is important to note that the phonon momentum is not a true momentum, rather it

is a crystal momentum given by hq. The crystal momentum is periodic in the

reciprocal lattice vector G and so a phonon with a crystal momentum hq is

indistinguishable from one with momentum hq + G. In practice when examining

phonon scattering events there are two possible situations, one where the sum of

crystal momentum is less than the reciprocal lattice vector, q" < G and one where q"

> G, typically called normal(N) and umklapp(U) scattering processes respectively. It

is commonly thought that umklapp processes provide the only source of thermal

resistance for lattice thermal conduction [Callaway, Holland]. This is only true for

specific conditions but in general both N and U processes contribute to thermal

resistance [Maznevl4]. The misconception arises due to the typical choice of the

primitive unit cell. If the Brillouin zone is chosen to center around q = 0 then the

combination of two large q acoustic phonons would exceed G and the resulting

wavevector would point in the opposite direction resulting in a thermal resistance.

In reality the choice of the Brillouin zone is arbitrary and while the interaction of

such phonons would be a U process with that choice of the Brillouin zone it could be

N in another. The fact that N and U processes both contribute to thermal resistance

is seen in [Ward] where the phonon lifetime is given by the following expression 1/T

= 1/TN+1/TU indicating that N and U processes are indistinguishable.
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Using the kinetic theory approach to thermal conductivity, k = CvA, the phonon

MFP A can be calculated. The textbook value of the average MFP for many

semiconductors is in the range of 10 nm to 100 nm [Blakemore, Burns]. This

suggests that thermal transport will be diffusive for all but the very shortest thermal

transport length scales. But the average value of mean free path doesn't give an

accurate picture of the wide range of MFPs present in the phonon distribution, and

how the phonons in the distribution contribute to thermal transport. Early

experimental and theoretical work studying the phonon MFP at room temperature

showed that phonons which contribute to thermal transport can be much larger

than the average MFP [Ju,Chen96]. More recently molecular dynamics [Henry] as

well as first-principles calculations have had a great deal of success in calculating

phonon MFPs [Broido, Ward, Esfarjanil0]. Calculations for Si are shown in fig 3.2

adapted from [Esfarjanil0]
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Fig 3.2 Taken from [Esfarjanil0]. Differential (blue) and Cumulative (red) thermal conductivity for

silicon at 277 K. The units on the y axis apply to the cumulative distribution and the differential is

shown for comparison.
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There are two instructive ways to visualize the contribution of phonons with a given

MFP. The differential thermal conductivity, plotted in blue in fig 3.2, describes the

contribution of phonons within any small range of MFPs, A to A + dA. By looking at

the differential distribution it seems reasonable that the average MFP would be

under 100 nm just like the textbook value. Integrating the differential thermal

conductivity up to a cutoff MFP, Ac results in the cumulative thermal conductivity.

The cumulative thermal conductivity, plotted in red in fig 3.2, describes how much

phonons up to Ac contribute to the thermal conductivity. This provides a very

different picture than the average mean free path in which around 50 percent of

thermal conductivity can be attributed to phonons with mean free path greater than

1 tm at room temperature.

3.3 Experimental observations of non-diffusive thermal transport

Departure from diffusive thermal transport has been observed as ballistic heat

propagation at cryogenic temperatures [Wolfe]. More recently a number of

experiments have been aimed at observing non-diffusive thermal transport in non-

metallic crystals near room temperature [Minnichl1, Johnson13, Regner13]. In

order to reach the non-diffusive thermal transport regime the thermal gradient

imposed by the experiment should approach the MFP of the phonons contributing

to thermal transport. In each of the three papers listed above this is achieved in

three different ways. In [Minnich 11] they used a time-domain thermoreflectance

technique (TDTR). TDTR is pump-probe measurement technique that uses fs laser

pulses for both pump and probe with a scanning delay line to measure the time

dependent changes in reflectivity due to heating from the pump pulse. To change

the thermal transport length scale they reduced the spot size of the laser and

observed a reduction in the thermal conductivity they extracted, although only

significant deviations were observed only at temperatures below 100K. In

[Regner13] they used frequency-domain thermoreflectance (FDTR). FDTR is a very

similar experiment to TDTR as they are both measuring changes in reflectivity as a

function of temperature, but in FDTR a cw laser is modulated sinusoidally at high
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frequencies upwards of 200 MHz. In the diffusion model a temporally periodic

heating of the surface results in a spatially decaying thermal profile into the depth of

the material. They measured the phase and amplitude of the thermoreflectane

response at the surface and related that to the thermal conductivity of the material.

The length of the thermal profile, termed the thermal penetration depth, is inversely

proportional to the modulation frequency. As the frequency increases the thermal

penetration depth decreases leading to a short thermal transport length scale.

Regner et. al. observed that as the modulation frequency increased, the thermal

conductivity decreased indicating non-diffusive transport due to the thermal length

scale being shorter than some of the phonon MFPs.

In both [Regner13] and [Minnich1l], thin metal films are used as transducers to

avoid unwanted electron responses. This is accounted for in their modeling but it

has become clear that significant non-equilibrium effects are present in these

systems and the results are not entirely unambiguous [Choi, Vermeersch]. In

addition thermal boundary resistance occurs when heat flows from one material to

another and is still a significant hurdle in nanoscale thermal transport

measurements [Kapitza, Capinsky, Cahill03].

3.3.1 Measurement of thermal transport with the TG technique

When two short pump pulses are crossed in a bulk sample, as in the TG technique,

the resulting sinusoidal thermal profile resembles planes of heat with period equal

to the transient grating period q. If the crossing depth is much larger than the

grating period then 1D thermal transport will occur from the grating peaks to nulls.

When the grating period is longer than the MFP of the heat carriers the transport

follows the diffusion equation [Carslaw]. To analyze the kinetics of the thermal

transport we can solve the 1D heat diffusion equation with spatially periodic

excitation given as,

OATXt _ a1TX, Q
=a 2'+ cos(qx)d(t) (3.6)at 8xpcP
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where AT,,t is the pump-induced deviation in the equilibrium temperature, and a is

the thermal diffusivity. The first two terms are the 1D heat diffusion equation and

the third term is the TG heat source. Q is the energy deposited by the laser, p is the

density and cp is the specific heat. To solve the equation we assume that ATxt is

spatially periodic following the heat source and Fourier transform in both space and

time to obtain the following result,

-Q 1
A T1 (3.7)

-' pc,(iw>+ aq2 )

Then, we can inverse Fourier transform to obtain the time dependent solution

ATq,t = exp(-aq2 t) = P2p exp(-yt) (3.8)
pcp c

The decay rate y of the periodic thermal profile is determined by the thermal

diffusivity of the material and the grating wavevector squared. In a typical TG

experiment we measure the time dependent diffraction for a set grating wavevector

and by fitting the experimental time trace to a single exponential, we can determine

the thermal diffusivity as a = y/q 2.This simple approach to determining the thermal

diffusivity for a bulk material was demonstrated in [Schmidt08] for a nanofluid of

alumina nanoparticles suspended in decane. The diffusion model works well for a

liquid where the heat carriers have very short MFP. In a non-metallic crystal as we

discussed above the MFP is much longer, and in this case the transport may no

longer be diffusive on micron length scales. The rest of this chapter will focus on

observations of non-diffusive thermal transport using the TG technique.

3.3.2 Non-diffusive transport in a 400 nm Si membrane

For common semiconductors such as silicon and gallium arsenide the penetration

depth for optical light at 532 nm is 1.7 tm and 125 nm respectively. It is clear that

with such short penetration depths, that realizing a 1D transport regime with green

light is not possible in a thick sample. To reach the 1D transport regime it is

necessary to get samples with thicknesses on the order of the penetration depth of

the light. Such samples exist in the form of freestanding silicon membranes, which
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were fabricated for us by collaborators at the Catalan Institute of Nanotechnology.

The details of the fabrication procedure are contained in [Johnson13]. A 400 nm

silicon membrane is thin enough to allow the light to pass through and set up the 1D

thermal transport regime. Transmission TG experiments were carried out on the

membrane as described in Chapter 2 and the resulting time traces for grating

periods of 3.2 tm - 18 tm are shown in Fig 3.3, adapted from [Johnson13].
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fig 3.3 Taken from [Johnson13]. Time traces of the thermal decay in a 400 nm membrane with

grating period ranging from 18 sm (dark green, longest decay) 3.2 [tm (black, shortest decay). A full

trace for 7.5 tm is shown in the inset.

As the transient grating period gets shorter, the decay time decreases. The figure

only depicts the thermal portion of the decay but the full diffracted signal is shown

in the inset to fig 3.3. The optical excitation in the membrane promotes carriers

from the valence band high into the conduction band. The hot carriers quickly relax

to the bottom of the conduction band through electron-electron scattering and

electron-phonon scattering. Although this process is on the order of a few

picoseconds, the carriers at the bottom of the conduction band can have [s life times

[Orthonos]. The periodic electron distribution also modulates the complex

transmission function and contributes to the diffracted signal seen as the sharp

negative spike in the inset of fig 3.3. The periodic electron density distribution also
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relaxes through diffusion. Since the ambipolar diffusion constant is an order of

magnitude faster than the thermal decay, the electronic component can be

separated in time from the thermal decay [Li]. In practice we fit the time traces to

bi-exponential function to account for the electron diffusion contribution and

extract the decay rate of the thermal profile.

For thermal diffusion we expect that the decay rate is proportional to the TG

wavevector squared. The extracted decay rate as a function of grating wavevector is

plotted in fig 3.4
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fig 3.4 Decay rate as a function of TG wavevector (TG periods 2.5 -24 [m)

7 8

For long grating spacing we can see that the decay rate follows the expected q2

dependence. As the grating spacing decreases below 15 [tm the decay rate deviates

from the diffusion model indicating the onset of non-diffusive transport. At the

onset of non-diffusive transport a portion of the phonons have mean free path

longer than the transient grating period.
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3.3.3 Modeling non-diffusive transport in the TG geometry

One great benefit of the TG technique is that the simple sinusoidal spatial profile of

the temperature makes analytical theoretical analysis possible. In fact it is even

possible to solve the notoriously difficult Boltzmann transport equation for this

geometry [Maznev13,Collins14]. To make headway on analyzing non-diffusive

transport a link between the experimental length scale and the phonon MFP needs

to determined. Maznev et aL derived an analytical expression for this relationship

hereafter called the suppression function shown in equation 3.9.

3 1 arctan(qA)
A (qA) = 1T- - A (3.9)

A is termed the heat flux suppression function, q is the TG wavevector, and A is the

phonon MFP path. The heat flux suppression function describs how much a phonon

with a given MFP contributes to the decay of the transient thermal grating.

1.0

0.8 -

0.6

0.4 -

0.2

0.0
1E-4 1E-3 0.01 0.1 1 10 100 100010000

qA

fig 3.5 Plot of the heat flux suppression function for the transient grating geometry (A from equation
3.9). The graph shows how much a phonon with a certain MFP contributes to the heat flux at a
grating wavevector q.

For qA << 1 the phonon MFP is much shorter than the TG period giving a value of A

= 1 meaning the heat flux remains the same as predicted by the diffusion model. For

qA >> 1 the phonon MFP is much longer than the TG period and A = 0 meaning the
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heat flux is reduced compared to the prediction of Fourier's law. Although it appears

that phonons with long MFP don't contribute to the grating decay, it really means

that in order to recover an accurate heat flux for the non-diffusive regime the

contribution of ballistic phonons should be set to zero.

To apply this to our measurements we can calculate the thermal conductivity for a

given grating spacing by multiplying the heat flux suppression function and the

Ogroup velocity, density of states and mean free path for all phonon modes. Recent

first-principles calculation results have calculated these quantities [Ward,

Esfarjanil0]. The thermal conductivity calculated for each grating spacing is given

by
Wmax

(1
k(q) = -A(qA)C,,vAdo. (3.10)

J 3
0

Using the experimental TG decay rates we determine the experimental thermal

conductivity as k(q) = y/(pcpq 2). The experimental data along with the calculated

thermal conductivity using MFPs determined from molecular dynamics simulations

from [Henry] are plotted together in fig 3.6.

We see good agreement between the theory and experiment showing a reduced

effective conductivity at short grating periods. It is important to note that although

we see a reduced conductivity, the decay rate of the thermal profile is always

increasing with decreasing grating spacing. But unlike diffusion, the decay rate

doesn't scale like q2 resulting in a reduced effective conductivity.

The data presented in fig 3.6 are divided by the bulk value of thermal conductivity

for Si, and the ratio doesn't reach unity. The reason it doesn't reach unity is due to

phonon scattering at the top and bottom surfaces of the membrane. Such size effects

are well documented in the literature [Marconnetl3]. Phonon boundary scattering

in a membrane will be covered in more detail in the next chapter.
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fig 3.6 Experimental thermal conductivity from two -400 nm Si membranes in green and blue points.

Black dotted line is the theoretical prediction using MFP information from [Henry] analytical

suppression function from [Maznev] and following equation 3.10.

3.4 Thermal conductivity measurements in bulk materials

In the previous section we described a method for measuring the thermal

conductivity of semiconductors by reducing the thickness of the sample to allow the

excitation light to pass all the way through. This technique works well for Si which

has a relatively long penetration depth of 1.7 tm at 532 nm. But for other

semiconductors such as GaAs, which has a penetration depth of 125 [tm at 532 nm,

preparing a sample with thickness much smaller than the penetration depth is not

practical. In addition phonon boundary scattering in thin films will cause significant

deviations from the bulk thermal conductivity. In order to study bulk materials we

need to create a temperature profile at the surface of the sample. In this case heat

flows between the peaks and nulls of the grating and into the depth of the material.

Although the 2D thermal transport regime is more complicated we can still use the

TG technique to measure thermal conductivity of bulk materials.
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3.4.1 TG measurements in reflection

Only a small modification of the setup is necessary for measurements in opaque

samples. The modified setup is shown in fig 3.7.

Pump 515 nm Ref 532 nm
Probe 532 nm Ref + Sig 532 nm

- Ref Probe

*Pump*

Ref+Sig @

Li PS L2
fig 3.7 Schematic illustration of the beam geometry for reflection mode. PM is optical phase mask, PS
is phase control for heterodyne detection, ND is a neutral density filter to set the attenuation of the
reference beam, D is the APD photodetector. Li and L2 are the imaging lenses for the TG geometry.
The circle on the right depicts a face on view of L2 showing that the probe and ref beam enter the
lens above the pumps and with the sample at normal incidence. The ref plus signal returns
underneath the pump, hits a pickoff mirror and is sent to the detector.

The reflection geometry is almost identical to the transmission geometry shown in

fig 2.1. The major difference is that the diffracted signal combined with the

reference beam is reflected back through the second imaging lens L2. A pickoff

mirror is placed to direct the ref + sig to the detector.

The major difference comes when analyzing the TG signal, which requires solving

the 2D heat equation with a periodic heat source presented in eq 3.11.

SATx _ O 2 ATxzt a 2 ATxZt Q
Xzt ax + az + cos(qx)exp(-(z)6(t) (3.11)at x az a2 PCP

Here x is the grating dimension, z is the direction into the depth of the sample, AT is

the temperature rise induced by the pump, p is the density, cp is the specific heat, Q

is the energy absorbed by the sample, q is the grating wavevector magnitude and

the finite penetration depth of the laser light is 1/;. The thermal diffusivity in the

grating dimension and into the depth of the material is a, and a respectively.

Solving this equation takes a similar approach to what was done in section 3.2.1 and

is detailed in [JohnsonPhD, Johnson12]. We start with a Fourier transform in x and t
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and solve the second order differential equation in z giving the analytical frequency

domain solution,

Q
ATq,z,> = 2 - 2 [exp(-(z) - -exp(-pz), (3.12)

1
where (p = (. + aq2)*

A numerical inverse Fourier transform recovers the time domain solution,

ATq,z,t = ,t[cos(qx) exp(-axq2 t)], (3.13)

where A is the amplitude andfz,t is the decay into the depth of the material given in

[Johnson12]. In the diffusion model the in-plane and cross- plane contributions to

the decay are decoupled and in equation 3.13 we see the 1D solution in x multiplied

by the cross plane component. If we neglect the finite penetration depth of the

probe we can recover the surface temperature solution,

ATq,z=o,t = Aexp(az f 2 t)erfc(( t][cos(qx) exp (-axq2 t)] (3.14)

where erfc is the complementary error function. In the limit of surface heating, (1/;

->0) the surface temperature has the following result,

ATq,z=o,t = A(azt)-2[cos(qx) exp(-azq 2 t)] (3.15)

Eq. 3.15 provides a useful form for interpretation of the TG signal. In general it is

difficult to exactly determine the amplitude factor A, since it depends on the

absorbed laser power, which is not known exactly, and is difficult to measure. As a

result, the cross plane factor (azt)-M can't be fit accurately, and we rely on the in-

plane exponential decay to recover the thermal diffusivity in the x direction. The

form of the surface heating solution makes it difficult to accurately determine the

thermal properties of low diffusivity materials or to use long grating periods,

because at long times, the signal is dominated by the slow t-h decay.

3.4.2 Phase and amplitude grating in reflection

In Chapter 2 we discussed the various components of the TG signal, namely phase

and amplitude grating contributions to diffraction. As a reminder, the diffracted

signal has contributions from both phase and amplitude gratings. For reflection, the

phase grating is a combination of changes in the imaginary part of the reflectivity
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and surface displacement, while the amplitude grating is the real part of the

complex reflectivity. It is assumed that both the real and imaginary parts of the

complex reflectivity have the same time dependence which directly follow the

surface temperature, but the surface displacement has a different time dependence.

For an isotropic material the surface displacement in the z direction is given by

[Kading] as,

u = Berfc(qV/at) (3.16)

where B is the amplitude of the surface displacement, q is TG wavevector, and a is

the thermal diffusivity of the material. In principle is it possible to account for both

the surface displacement and surface temperature response, but it would be easier

to isolate the temperature response. This can be achieved though heterodyne

detection as described in Chapter 2. Heterodyne phases of 0, n and n/2, -n/2 will

isolate the phase and amplitude grating respectively. Representative phase and

amplitude grating signals for a PbTe thin film are shown in fig 3.8 adapted from

[Johnson12].

I I ... D .0 1.00

./2 Phase (P1)

0OAmplitude (Al) C6i 0.75
*0.5I

-71/2 Phase (P2) -3
0.50

-R Amplitude (A2) E

M 0.25
Phase (P1-P2) C

mpliude((A2Al) 0.00
Apiu 0 25 50 75 100 125 150

time (ns) time (ns)

fig 3.8 Adapted from [Johnson12] (left) Reflection mode TG signals for a PbTe thin film showing the
phase grating n/2 and -n/2 and from the amplitude grating, 0 and n, as well as the subtracted traces.
(right) The subtraced traces are presented with the Fourier transforms shown in the inset. The
oscillations in the phase grating are indicative of the surface displacement response from the
generated surface acoustic wave.
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The thermal diffusivity of the material can be unambiguously determined by

isolating the amplitude grating signal with heterodyne detection and fitting using

the form of the surface temperature in eq 3.15. The next two sections detail

experiments aimed at observing non-diffusive transport in bulk materials.

3.4.3 Non-diffusive thermal transport in bulk GaAs

Transient grating experiments on bulk GaAs were carried out from 2.05 Rm to 10

[tm grating periods. The time traces are presented in fig 3.9. The amplitude grating

data were fit with the surface temperature solution (eq 3.15) which matches the full

solution after t = (4caz; 2)4. Using a bulk literature value for GaAs of xz = 22 mm2/s

[Adachi] and 1/ = 125 nm (the optical penetration depth), t is found to be -17 ns.

We start the fit after 10 ns to account for finite penetration depth of the pump and to

reduce the effects of carrier contributions to the signal. Time traces from the TG

technique are shown in fig 3.9. The extracted decay rates plotted as a function of TG

wavevector are shown in fig 3.10

(a)' 1 3.20 pm m rakn -2.05 pm

0,9- 08 re ratin - 3.20 p m"
- 4.90 p m

08 - 0 10.0 P m

~07

06
0-7 04
05

.N 0 10 20 30 40

04. time (Ins)

C 03

0-2-

01-

-10 0 10 20 30 40 50 60 70 8(
time (ns)

Fig 3.9 TG time traces for bulk GaAs collected in the reflection geometry for a variety of grating
periods. The dotted lines indicate the fits to the surface temperature solution (eq 3.15). The inset

presents the phase and amplitude grating signals for a TG period of 3.20 tm.
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fig 3.10 TG decay rates plotted as a function of TG wavevector squared. The dashed line shows the

expected decay rate in the diffusion model for bulk diffusivity from [Adachi]. The inset shows the fit
with an adjusted decay rate and one that matches the diffusion model.

As in the 400 nm Si membrane, we observe a strong deviation from the diffusion

model as the TG period decreases. The deviation from the diffusion model is

attributed to presence of phonons with MFP longer than the TG period. In this case,

the contribution of phonons with long MFP is reduced compared to the diffusion

model resulting in a smaller decay rate. This indicates the wide distribution of

phonon MFPs in GaAs. In fact, we observe the deviation from Fourier law occurring

at even longer TG periods than in the Si membrane (up to 10 um at room

temperature). Using the expression in eq 3.10 we can calculate the thermal

diffusivity as a function of TG period using the first-principles results from [Luo] and

compare with our experimental measurements. The experimentally determined

diffusivity along with calculated diffusivity for each grating period is shown in fig

3.11.
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fig 3.11 Thermal diffusivity collected as a function of grating period from 2.5 itm to 10 pm. Data at

295 K and 425K show evidence of non-diffusive thermal transport. Theoretical curves use

calculations from [Luo] show good agreement with experimental data.

Data from bulk GaAs at room temperature and elevated temperature show evidence

of non-diffusive thermal transport on micron length scales. Comparison with

theoretical calculations, confirm the broad nature of the MFP distribution in bulk

GaAs. These experiments demonstrate the capability to observe non-diffusive effects

in reflection mode TG measurements. The next section will detail the attempts to

observe non-diffusive effects in materials relevant for thermoelectric devices.

3.4.4 Results for promising TE materials (PbTe and Bi2 Te3 )

The broad distribution of phonon MFPs in semiconductors has been observed

experimentally with the TG technique in Si and GaAs. Indeed, first-principles

calculations show that roughly 50% of heat is carried by phonons with MFP > 1 jim

at room temperature. These calculations are relatively simple for materials such as

Si and GaAs, but it is much more difficult to calculate the phonon MFP distribution in

materials with complex crystal structures such as promising thermoelectric (TE)

materials. TE materials typically have a very low intrinsic thermal conductivity as

thermal conduction in TE devices degrades performance [Tian13]. Strategies to

reduce the thermal conductivity involve alloying and nanostructuring by
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introducing a high concentration of defects and grain boundaries. The highest

thermoelectric performance has been achieved in highly nanostructured materials

[ChenO3]. To aid in the design of more efficient TE materials it would be useful to

determine the MFPs of heat carrying phonons in relevant materials. The calculated

MFP distribution for a variety of materials is presented fig 3.12 adapted from

[Tian13].
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fig 3.12 Taken from [Tian13]. Thermal conductivity accumulation calculated for a variety of
semiconductors.

Looking at the curve for PbTe, a promising TE material, the MFP distribution is

centered at a much shorter MFP than silicon. This is not surprising since PbTe has a

low thermal conductivity at room temperature -2 W/mK, compared to 148 W/mk

for silicon. The low thermal conductivity can be attributed to strong anharmonic

potentials in PbTe leading to a large degree of phonon-phonon scattering and

shorter phonon MFPs [Delairell]. As we demonstrated previously, the TG

technique is well suited to investigate length dependent thermal conductivity. If the

TG period is on the same length scale as the phonon MFP, the TG decay rate deviates

from the predictions of Fourier's Law and the result can be observed as a decrease

in the effective conductivity.
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We made TG measurements on two potential TE materials, PbTe and Bi2Te3. The

single crystal bulk PbTe was obtained from Oak Ridge National Laboratories and

was polished on one side. The Bi2Te3 sample was cleaved along the C-axis to provide

a surface with good optical quality. Preliminary measurements of the thermal

conductivity of PbTe and thermal diffusivity of Bi2Te3 are presented in fig 3.13
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fig 3.13. (Left) Thermal conductivity for single crystal PbTe for grating periods of 1 -4 [m. At large
grating period the thermal conductivity is in good agreement with the literature value of - 2 W/mK
[Tianl2] (right) Thermal diffusivity for Bi2Te 3. The long grating period limit is in good agreement
with the literature value for thermal diffusivity of 0.01 cm2 /s

At long TG periods the measured thermal conductivity of PbTe approaches the

literature value of 2 W/mK [Tianl2]. The same is true for Bi2Te3 with the thermal

diffusivity approaching the literature value of -0.01 cm2/s [Satterthwaite]. For both

PbTe and Bi2Te3 we observe a decrease in the thermal conductivity as the grating

period gets smaller. This is a surprising result as the mean free path distribution for

these materials is dominated by short MFP phonons [Tian12, Wang]. The

measurements were carried out in open air and since the materials have such a low

conductivity, it is possible that the air contributes to the thermal decay signal and

modifies the measured decay. Both data sets were fit with the surface temperature

solution but the ambipolar diffusion constants are not well known for our materials

and thus it is possible electron diffusion could influence the measured signal

altering the decay rate. To obtain more useful results on TE materials it would be

best to measure the samples in an evacuated cryostat to eliminate the contribution
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from air. In addition, measurements at low temperature where the MFPs that

contribute to thermal transport are longer will provide more conclusive results on

observing non-diffusive effects in TG measurements in promising TE materials.

3.5 Summary

In this chapter we introduced thermal transport measurements using the TG

technique for both transparent and opaque samples. When the transient grating

period is long compared to the MFP of heat carrying phonons, the transport is

diffusive and the decay rate of the period thermal profile scales as the TG

wavevector squared. When the grating period becomes comparable to the phonon

MFP the TG decay rate deviates from the diffusion model due to the onset of non-

diffusive transport. Non-diffusive transport has been observed in a 400 nm Si

membrane and in bulk GaAs at room temperature for TG Periods of -5 mm and 10

mm respectively. These results indicate the large role of long MFP phonons in

thermal transport at room temperature. Our results are in agreement with first-

principles calculations of phonon MFPs, and confirms the broad nature of the MFP

distribution for Si and GaAs where calculations indicate that phonons with MFP

>1um account for 40% and 25% of the thermal conductivity respectively. TG

measurements are useful for observing the onset of non-diffusive behavior but it is

challenging to extract useful quantitative information of phonon MFPs due to the

limited length scales achievable (1-50 pm). The next section will detail an approach

using thin films to extract the full MFP distribution from thermal conductivity

measurements.
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Chapter 4
Recovering Phonon MFP Contributions to Thermal
Transport

4.1 Introduction
In chapter 3 we demonstrated that the MFPs of phonons that contribute to thermal

transport in non-metallic crystals at room temperature are much larger than

expected based on text book values of the average MFP. Indeed first principles

calculations of thermal conductivity demonstrate the broad nature of the

distribution of phonon MFPs [Ward, Esfarjani10], but further experimental

validation of the calculations is needed. One experimental approach to determining

the phonon MFP is to directly measure the frequency dependent phonon lifetime.

This can be achieved with a variety of techniques including inelastic scattering of

neutrons [Ma], X-rays[Shukla], and visible light[Rozas], or by laser-generated

coherent phonons [Maznevl3b, Cuffe13]. Direct measurements of phonon lifetimes

are limited by the resolution of the instrument in the case of neutrons and X-rays or

by the difficulty of generating high-frequency coherent phonons. For example, in

silicon phonon lifetimes have been measured up to 100 GHz [Daly], but phonons

thought to contribute significantly to thermal transport have frequencies above 1

THz [Esfarjanil0].

Other experiments for determining phonon MFPs measure the thermal conductivity

over a range of thermal length scale by varying the diameter of the optical spot

[Minnichl1], the spacing of a periodic interference pattern [Johnsonl3], the width

and spacing of a metal line or dot pattern [Siemens, Hoogeboom-Pot,] or the

frequency of a modulated light source [Regner13]. The heat flux of phonons with

MFP longer than the imposed thermal length scale is smaller than predicted by the

Fourier law, resulting in a reduced effective thermal conductivity, which is

determined using the heat diffusion equation. The reduced thermal conductivity as a

function of length scale provides information on which phonons contribute to the

thermal transport. The difficulty in determining the MFP distribution comes from
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modeling the relationship between MFP and heat flux reduction, typically called the

suppression function. Simplistic approximations are often made that cut off the

contribution of phonons with MFP over a certain value, typically the experimental

length scale. Other approaches involve solving the Boltzmann transport equation for

the specific experimental geometry. This is challenging since some geometries

involve multiple thermal length scales and the presence of metal transducer layers

which complicate the interpretation non-diffusive measurements. Even experiments

with analytical solutions to the BTE, such as the TG technique [Johnson13,

Maznevl3], are limited to relatively long thermal length scales by the optical

interference pattern, typically on the micrometer length scale.

In this chapter we present an alternative method for determining the phonon MFP

from measurements of thermal conductivity. Rather than using observations of non-

diffusive thermal transport, we make measurements of diffusive thermal transport

in nanoscale membranes. The scattering of phonons at the boundaries of the

membranes reduces the phonon MFPs in the membrane resulting in a reduction of

the thermal conductivity based on the thickness of the film. Nanoscale membranes

also offer access to length scales on the order of 10 nm [Shchepetov].

This chapter will begin by discussing measurements of in-plane thermal

conductivity of silicon membranes with thicknesses ranging from 15 nm to 1500

nm. Then we discuss phonon boundary scattering in the membrane and the Fuchs-

Sondheimer suppression function. Then, the experimental measurements are

compared to similar experiments from the literature as well as first principle

calculations. Next, we present the reconstruction of the room temperature MFP

distribution, and conclude with measurements on nanoscale membranes at low

temperatures. The majority of this chapter aside from the low temperature

measurements is contained in [Cuffe15].
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4.2 In-plane thermal conductivity of Si membranes
The in-plane thermal conductivity of a series of silicon membranes was measured

using the TG technique described in chapter 2. The thickness of the silicon

membranes ranged from 15 nm to 1518 nm . The membranes were fabricated from

150 mm silicon-on-insulator(SOI) wafers using techniques common for processing

wafers for MEMS [Shchepetov]. The top silicon layer is thinned by repeated

oxidation and removal of oxide until the layer reaches the desired thickness. Then,

using a combination of wet and dry etching the substrate and buried oxide are

etched away leaving free standing layers with an area of -500 Rm x 500 Rm. The

thickness of each membrane was measured using a reflectometer achieving an

accuracy of better than 1 nm [Cuffe14].

a Pump beams

Probe Reference

Signal

Reference

b
1.0 - -- 17.5 nm

100 nm
-- 1.5 ptm

0.5
C

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Time (4s)

fig 3.1 Taken from [Cuffe] a) illustration of the TG geometry. Experimental details are presented in
chapter 2. b) Representative time traces for silicon membranes of thickness 1515 nm (blue) 100 nm
(red) and 17.5 nm (green). The slower decay for thinner membranes indicates a reduction in the
thermal conductivity. The dashed line indicates a fit to the 1D heat diffusion equation
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The optical penetration depth of silicon at wavelengths of 515 nm and 532 nm is

just over 1 [tm with the absorbance of each membrane determined by Fabry-Perot

effects, i.e. multiple reflection of the light inside the membrane [Chivez14].

Although the multiple reflections can significantly increase the absorption the

maximum absorption was determined to be no greater than 0.65. As a result the

membranes can be measured in the transmission TG geometry. In this geometry the

light uniformly deposits heat throughout the depth of the membrane and the

resulting thermal transport is one-dimensional in the plane of the film. A schematic

illustration of the measurement and representative time traces for membranes with

thickness 17.5 nm, 100 nm and 1518 nm are presented in fig 3.1. A visual

comparison of the time traces in fib 3.1b shows an increase in the decay time for

thinner membranes. This indicates a reduction in the thermal conductivity of the

sample due to phonon scattering at the boundaries of the membrane. Phonon

boundary scattering will be discussed in more detail in the next section.

The time traces are analyzed by fitting to an exponential decay (the solution to the

1D heat diffusion equation with a periodic heat source as described in chapter 3).

The decay rate y is related to the thermal diffusivity a by, y = aq2 , where q is the TG

wavevector. As we noted in chapter 3, if the product of the TG wavevector and

phonon MFP becomes larger than 1, or the MFP is long compared to the thermal

length scale, the thermal transport becomes non-diffusive. In the non-diffusive

regime the decay rate no longer scales as q2 and the calculated diffusivity is reduced.

To obtain an accurate thermal diffusivity, we perform measurements with long TG

periods to assure purely diffusive transport. TG measurements were performed

with periods ranging from 11 to 21 tm for all membranes. The extracted thermal

diffusivities as a function of TG period are presented in fig 3.2a. Over the range of

grating periods measured, there was no discernable change in the value of the

diffusivity, indicating diffusive thermal transport. The conductivity for each

membrane was calculated as k = aC where C = 1.64 x 106 J m-3 K- is the volumetric

heat capacity of silicon [Shanks]. The heat capacity was taken as constant for all
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membrane thicknesses because at room temperature the density of states shows no

significant deviation from the bulk [Huang, Chavez12]. The thermal conductivity as

a function of thickness is presented in fig 3.2b. The error bars indicate the

uncertainties from the experiment and analysis. The largest source of error came

from laser induced heating of the membrane. The magnitude of the error was

estimated by repeating the measurements with twice the pump and probe powers.

The pump was found to have no significant effect while double the probe power

reduced the determined diffusivity by roughly 5%. The full error analysis can be

found in [Cuffe14]
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fig 4.2 a)Thermal diffusivities as a function of TG period extracted from exponential fits of time traces
measured on silicon membranes with a range of thicknesses from 15 nm to 1518 nm. b) Thermal
conductivity as a function of membrane thickness, determined by averaging over the values at each
grating period.

For all membranes we notice a significant deviation of the thermal conductivity

from the bulk. The 15 nm membrane showed a reduction to 15% of the bulk value

and the 1518 nm membrane showed a reduction to 75% of the bulk value. The

reduction of the thermal conductivity for large membranes is another clear

indication of the large contribution of long MFP phonons to thermal transport in Si.

The relationship between the phonon MFP and the membrane thickness is

determined by the scattering of phonons at the surfaces of the membrane.
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4.3 Phonon boundary scattering
The reduction of the in-plane conductivity in thin films was originally solved for

electrical conductivity in metal films in the mid 1900's by [Fuchs] and [Sondheimer].

The derivation uses the Boltzmann transport equation and splits the phonon

distribution into two components, which interact with the top and bottom surfaces

of the film. When phonons interact with the surface they will be either specularly

reflected or diffusely scattered. Specular reflection conserves the in plane

component of the phonon wavevector and reverses the out of plane component,

while diffuse scattering randomizes both components of the wavevector. A

specularity parameter p is used to describe the fraction of phonons that have

specular reflection from the surface, where p = 0 corresponds to completely diffuse

scattering. In reality, the specularity parameter requires detailed knowledge of the

surface roughness and the wavelength dependence of wave scattering off rough

surfaces, both of which are complicated [Ogilvy]. Recently there has been progress

on this front, with calculations of the specularity parameter under two

approximations [Maznevl4b]. When the roughness has a correlation length smaller

than the wavelength of the phonon, p oc k 4 where k is the phonon wavevector, the

familiar dependence found in Rayleigh scattering. When the correlation length is

long, known as the Kirchhoff approximation, p oc k2 which matches the form found

in solid state physics textbooks [Ziman]. For silicon at room temperature most of the

heat is carried by phonons with wavelength <6 nm [Esfarjanil0]. In addition, recent

photo-acoustic experiments at sub-THz frequency in silicon membranes indicate

that diffuse boundary scattering for thermal phonons is a good approximation

[Maznevl5]. However, at low temperatures where relevant phonon wavelengths are

much longer, a wavelength dependent specularity parameter is required [Ziman,

Ogilvy].

For diffuse scattering at the interfaces the in-plane thermal conductivity of the

membrane is [ChenOS],
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(Omax

kmem = fCVS (bulk AUkd (4.1)

0

where w is the phonon frequency, C., is the volumetric heat capacity, v is the group

velocity, Abulk is the phonon MFP in the bulk material, d is the membrane thickness

and S(Abulk/d) is the heat flux suppression function [Fuchs, Sondheimer]. The

suppression function describes how much the contribution of a given phonon mode

with MFP Abulk is reduced by diffuse boundary scattering in a membrane with

thickness d and has the following form,

S( - A +f (A1( -1)exp d t (4.2)
\ d =} 8 d+2 d )\t3 t5) Abulk

where t is a parameter describing the propagation direction of the phonons. The full

derivation of the in plane conductivity for phonons is presented elsewhere

[Cuffe14]. The suppression function with diffuse boundary scattering is presented in

fig 4.3.
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fig 4.3 Fuchs-Sondheimer suppression function plotted as a function of membrane

thickness d over the phonon MFP A for diffuse scattering at the surfaces.

From figure 4.3 we see the broad range of phonon MFPs that contribute to the in-

plane transport. This is in contrast to the reduction of the MFP in a thin rod where
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Casimir predicted that the MFP is limited by the diameter of the rod [Casimir]. In a

membrane, the extra dimensionality results in a significant contribution of phonons

with MFP much longer than the membrane thickness even with diffuse boundary

scattering.

4.4 Comparing experiment to theory
To aid in performing the calculation in eq 4.1 we can perform a change of variables

to express the thermal conductivity in the membrane as a function of MFP.

kmem = K ulkS (Aulk) dAbUlk (4.3)
0

where, KAbuk = - s Cv Abu is the differential MFP distribution as shown

in fig 3.2. Using the calculations from [EsfarjanilO] we calculate the thermal

conductivity of the silicon membrane as a function of the membrane thickness. The

experimental data and theoretical curve are presented in fig 4.4.
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Fig 4.4 Thermal conductivity of Si membranes as a function of thickness d. The theoretical curve was
calculated from eq. 4.3 using MFP distributions obtained from [Esfarjanil0].

We see good agreement between the theoretical predictions and our experimental

data, demonstrating the ability of first principles calculations to accurately calculate

thermal conductivity without any fitting parameters.
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In fig 4.5 we present our experimental results along with measurements of thermal

conductivity in thin silicon films from the literature [Chavez14, Hao, Aubain10,

Aubain1l, Asheghi, Ju, Liu]. The previous measurements come from both supported

and unsupported films but the large error bars have made it difficult to compare

these results to the theory. TG measurements on Si membranes demonstrate the

ability to accurately measure the thermal conductivity over a wide range of

thicknesses with one technique.
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fig 4.5 Thermal conductivity of Silicon membranes as function of thickness comparing the TG

measurements with a number of other measurements from the literature. Theoretical curve

calculated using eq 4.3 based on the first principles MFP distribution from [Esfarjani] (red) and the

MFP distribution from [Holland].

4.5 Reconstructing the MFP distribution
In the previous section we demonstrated that the thermal conductivity of thin films

can be determined using first principles calculations of the phonon MFP distribution

and the Fuchs-Sondheimer suppression function. We could also look at the inverse

problem, determining the MFP distribution from the measured thermal conductivity

and the suppression function. We can write eq 4.3 in terms of the accumulative

thermal conductivity(presented in red in fig 3.2) and normalizing to the bulk value

for thermal conductivity we obtain the expression in eq 4.4.
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kme 00dS ( Abulk
jem = kacc (Abulk) dAbd dAbulk, (.
0

Here kacc(Ac) = fA14 Ka lkdAbulk, is the cumulative thermal conductivity which

describes how much phonons with MFP up to Ac contribute to the thermal

conductivity. Inverting this expression to obtain kacc is an ill-posed problem, but

Minnich et. al. developed a way to extract kacc by imposing constraints [Minnich14].

They used an algorithm following a mathematical procedure called convex

optimization to find the smoothest function that monotonically increases from 0 to 1

and still satisfies eq 4.4. The reconstruction result is shown in fig 4.6 showing very

good agreement with first principles calculations from [EsfarjanilO] and MD

simulations from [Henry]. Our extracted cumulative thermal conductivity is also

compared with the Holland model [Holland].
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fig 4.6 Reconstructed cumulative thermal conductivity or the phonon MFP distribution for silicon
presented with recent calculations and the Holland model. The shaded grey area indicates the
uncertainty in the reconstruction using the error bars in the experimental measurements.

The reconstruction result presented here is the first experimental determination of

the bulk MFP distribution of any material. This is enabled by knowledge of the

suppression function for the well-defined experimental geometry of in plane

transport in thin slabs. This method has the potential to be extended to many other
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materials as the suppression function applies only to the sample geometry. This

provides the ability to determine the MFP distribution in materials where accurate

calculations are not possible.

4.6 Low temperature measurements in a 200 nm Si membrane
The reconstruction technique offers the possibility to experimentally determine the

phonon MFP distribution. A natural extension is to use this technique to explore the

temperature dependence of the MFP distribution. This is especially useful because

calculating the MFP distribution at low temperatures is difficult because it requires

a large calculation cell to accurately account for the large contribution from low

frequency, long MFP phonons. As a result, low temperature calculations are

unreliable [Esfarjanil0].

Here we present temperature dependent measurements of thermal diffusivity in a

200 nm Si membrane using the TG technique. The experimental technique is

presented in chapter 2 and the temperature was controlled using a Janis ST-100

cryostat. Liquid nitrogen was used to cool the samples and a Lakeshore 301

temperature controller was used to stabilize the temperature. The thermal

diffusivity as a function of TG period at a number of different temperatures is

presented in fig 4.7.

2.4
0

0 80K
2.0 k 090K

0 

00 0 100K U 1.6 v 120K
0% * 150K

> 00 A 200K
$ 1.2 - 250K

! v 294K

S0.8 -S08A A A A A A A

I-0.4 -

0.0 -
10 15 20

Grating Spacing (km)

fig 4.7 Thermal diffusivity of a 200 nm membrane as a function of TG period for temperatures

ranging from 80K to 294K.
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At temperatures close to room temperature, the thermal diffusivity is independent

of the grating period indicative of diffusive thermal transport. This is consistent

with the reduction of the phonon MFP in the membrane due to diffuse scattering at

the boundaries. At low temperatures the thermal diffusivity is reduced for short

grating spacings. This indicates that at low temperatures long MFP phonons are

contributing to thermal transport in the membrane. The contribution of long MFP

phonons (>10 Rm) is surprising since a significant reduction in the MFP is expected

due to diffuse scattering at the membrane boundaries. We have previously

mentioned that the specularity of the membrane boundaries will be wavelength

dependent. It is likely that at low temperatures, where long wavelength phonons

contribute significantly to thermal transport, a completely diffuse scattering picture

is inaccurate.

We can calculate the thermal conductivity with first principles MFP distributions

using similar approaches to those presented previously. But for our low

temperature measurements we need to account for boundary scattering and the

heat flux suppression due to the grating periodicity. The thermal conductivity in a

membrane with thickness d as a function of grating wavevector q is presented in eq

4.5.

kmem(q) = f KAbulkS d )A (qS ( d ) Abulk) dAbulk (4.5)
0

Here S is the Fuchs-Sondheimer suppression function shown in eq 4.2, and A is the

suppression function for the grating period shown in eq 3.9. We make a crude

approximation in which the phonon MFPs that contribute to the grating decay are

first modified by the membrane which is why the factor S A1ulk) Abulk appears

inside the expression for A. We use temperature dependent MFP distributions

calculated from first principles to calculate the thermal conductivity in the

membrane, courtesy of Keivan Esfarjani and Austin Minnich. The thermal

conductivity is converted to thermal diffusivity by a = k/pcp so that we can easily

compare with our experimental measurement. The temperature dependent
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volumetric heat capacities were obtained from the literature [Flubacher]. The

theoretical results for a specularity parameter of p=O, along with the experimental

data, are presented in figure 4.8. Our results indicate that the diffuse boundary

scattering approximation does not work at low temperatures where long MFP

phonons no longer scatter diffusely at the membrane boundaries. In addition, at 80K

the measured diffusivity does not level out. In order to accurately determine the

thermal conductivity at low temperature using the TG technique, a much longer

grating spacing is required. This is a surprising result considering the largest grating

period is a hundred times larger than the thickness of the membrane.
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fig 4.8 Thermal diffusivity of a 200 nm Si membrane as a function of grating period. Experimental
points are measured with the TG technique and the theory curves are results from first principles
calculations of the MFP distribution at low temperatures by Keivan Esfarjani and Austin Minnich.

4.7 Summary

In this chapter we presented thermal conductivity measurements of silicon

membranes for a wide range of thicknesses. The high accuracy of the measurements

and wide range provide a significant improvement over previous measurements

from the literature. Our results show good agreement with first principles

calculations, providing more evidence of the broad nature of the MFP distribution in

silicon. Using the known suppression function and the experimental measurement

results, we applied convex optimization to reconstruct the MFP distribution. The
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experimentally determined MFP distribution shows good agreement with

theoretical models. Our approach opens up possibilities to determine the MFP

distribution in materials where it cannot be easily calculated. Finally, we present

preliminary measurements of the thermal diffusivity in a 200 nm membrane at low

temperatures. The results indicate that the diffuse scattering approximation doesn't

work well at low temperatures and a wavelength dependent specularity parameter

is needed.
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Chapter 5
Surface Acoustic Waves in Granular Media

5.1 Introduction
Granular media are assemblies of discrete solid particles. Sand, perhaps the most

ubiquitous granular material, is composed of small particles of rocks. Granular

media are host to a number of interesting linear and non-linear phenomena

[Hinrichsen, Nesterenko, Theocharis]. Wave behavior in granular media is of

particular interest because the interaction between the discrete particles is highly

non-linear[Hertz]. Granular media can exhibit the properties of gasses, liquids and

solids, but can also enter jammed states, where particles get trapped out of

equilibrium [Hinrichsen]. Ordered granular media, sometimes called granular

crystals, are analogous to a solid crystal but instead of atoms locked in a lattice

structure through microscopic interactions, the granular particles form an ordered

lattice where contact between particles is described by the Hertzian contact model.

Typical studies on granular crystals have been performed with relatively large

particles, 1 mm - 10 mm [Hinrichsen, Nesterenko, Theocharis], but there have been

limited studies of granular crystals with -1 um particles. Particles with dimensions

on the single micron scale are particularly interesting due to the increased role of

adhesion, or Van der Waals forces, between the particles. This chapter will begin

with an introduction to contact mechanics and discuss the role of adhesion in

particle interactions. Then, we will cover surface acoustic waves and how we

experimentally generate and detect them. Finally, we will use interaction between

SAWs and a 2D array of particles to study the behavior of microscale contacts.

5.2 Contact mechanics and adhesion

In the late 1800's Heinrich Hertz studied the interaction between two elastic bodies

[Hertz]. Hertz discovered that the stiffness of the contact depends on the applied

force between them. Consider for example a sphere in contact with an elastic half

space. If a force is applied to the sphere, both the sphere and the substrate will

deform. The applied force F can be related to the displacement as,
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F = KR1/ 2 a3/ 2  (5.1)

where K = [3/4 (((1 - vs2)/Es) + ((1 - vi2)/E1))]'is the effective modulus with E,

and vs the elastic modulus and Poisson's ratio for the spheres and E1 and vi the

elastic modulus and Poisson's ratio for the substrate, R the radius of the sphere, and

a the displacement from the equilibrium position. The area of the contact depends

on the radius of the sphere and the applied force as a = V-Rd. A schematic

illustration of the contact and the force vs. displacement curve are shown in fig 5.1
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a U

0 
1

0

0
Displacement a

Fig 5.1 (left) Schematic illustration of Hertzian contact between an elastic sphere and an elastic half
space. (right) Force-displacement curve for a Hertzian contact compared to a linear spring.

The Hertz model works well for large particles (>1mm), but as the particle

dimension decreases, adhesive forces become significant and can't be neglected.

Adhesion forces scale with the radius of the particle, whereas gravitational forces

scale as the radius cubed [Israelachvili]. For example, the adhesion force between a

1 tm particle and a substrate is over a million times larger than the force of gravity.

There are a number of models that have been used to describe the added adhesive

interaction [Bhushan]. We will discuss the DMT model, detailed by Muller, Derjaguin

and Toporov in their 1983 paper [DMT, Pashley]. The DMT model assumes that the

nature of the contact between the sphere and substrate remains the same as in the

Hertz model but additional attraction between the sphere and the substrate

(adhesion) occurs outside the contact area. In the DMT model the force can be

related to the displacement as,
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FDM_ = KR1/2ca3/ 2 - 21TwR (5.2)

where the additional term on the right accounts for the adhesive interaction, and w

is the work of adhesion. A schematic illustration of the DMT model along with the

force vs. displacement curve are presented in fig x. At zero applied force there is a

finite slope in the force vs. displacement curve rather than no slope, as in the Hertz

model. The finite slope at zero force gives a stiffness to the contact, which now

behaves as a spring. It is also interesting to see the curve drops below zero force

stemming from the attractive nature of the adhesion force. The force at which the

sphere detaches from the surface is called the pull-off force. The pull-off force is the

central interaction in many scanning probe measurements such as AFM and has

been widely studied [Israelachvili].

2
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F r -DMT Adhesion Spring

R
0 Loss of Contact

Linearized

S-1 Adhesion Stiffness

-t.5 -1 -0.5 0 0.5 1a - a0
Normalized Displacement a 0

fig. 5.2 (left) Schematic illustration of a sphere in contact with a substrate with added adhesion

outside of the contact area (right) Force vs. Displacement curve for a sphere adhered to a substrate

under the DMT model compared to a linear spring.

Within the picture of the contact behaving as a mass on a spring we can define the

resonance frequency of the oscillation as

0 0,DMT =: 
2 7f0,DMT = K2D MT (5.3)

where K2,DMT is the linearized stiffness at equilibrium displacement given by

K2,DMT = (3/2)(2wR2K2)1/3, and m is the mass of the sphere. This assumption is
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only valid when the frequency of the sphere's motion is lower than the vibrational

modes of the sphere and the sphere behaves as a rigid body. Given an impulse force

normal to the sphere, the sphere will oscillate at this frequency, and the motion will

remain normal to the surface. There are likely other resonances from rocking

motion or even shear motion, but we will focus on the normal motion. The vertical

vibrational motion, called the axial contact resonance, is the target of the

experiments that we present in this thesis. To probe the axial contact resonance of

micron sized spheres we will use surface acoustic waves (SAWs) generated by the

TG technique.

5.3 SAW generation and detection

Surface acoustic waves are waves that propagate along the surface of a material. A

common type of acoustic wave, the Rayleigh wave, has a combination of longitudinal

and shear motion, resulting in displacement parallel to and perpendicular to the

surface respectively. The vertical motion generated by the Rayleigh wave provides

the driving force to excite the axial motion of a sphere on the surface of the material.

The TG technique is well suited for generation and detection of surface acoustic

waves and has the ability to generate SAWs with a wide range of frequencies. When

the two short excitation pulses are crossed at the surface of a highly absorbing

material, the stress caused by fast thermal expansion generates counter-

propagating surface acoustic waves with wavelength determined by the period of

the interference profile L given in eq 2.1. The surface ripple caused by the SAW

diffracts an incident probe beam, which is combined with a reference beam for

heterodyne detection as is described in Chapter 2. All the experiments we

performed on microspheres used a glass substrate coated with an aluminum film of

thickness 100-200nm. We typically generate SAWs by crossing the beams on the

aluminum film from the backside, through the transparent glass substrate. A typical

time trace taken at 32.5 tm and its Fourier transform can be seen in fig 5.3. The

oscillations in the time trace correspond to the SAW and the offset from the baseline

and decay come from the spatially periodic heating of the aluminum film and
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subsequent thermal diffusion. The Fourier transform of the time trace returns the

frequency components of the oscillatory signal. The low frequency peak in the

Fourier transform corresponds to the Rayleigh wave, with frequency equal to the

Rayleigh velocity divided by the TG period. The peak at higher frequency comes

from a surface-skimming longitudinal wave, which is particularly strong because we

probe through the depth of the substrate. The frequency of the longitudinal wave

matches the expected frequency calculated using the longitudinal speed of sound in

the substrate and the TG period.
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fig 5.3 (left) Heterodyne signal obtained from SAWs generated on a Al film on a glass substrate with a

TG period of 32.5 urm (right) Fourier transform of the SAW signal showing the Rayleigh peak at 105

MHz and surface-skimming longitudinal wave at 185 MHz.

5.4 Wave behavior in a monolayer of microspheres

5.4.1 Experiment

To study the axial contact resonance of micron sized spheres we will investigate

SAW propagation in a 2D array of spheres. The full experimental details, as well as

theory, are presented in [Boechler], but we will introduce the essential components

here. The hexagonally packed monolayer of 1.08 tm spheres is formed using a

"wedge-shaped cell" in a convective self-assembly technique [Sun, Canalejas]. The

monolayer was deposited on a 1.5 mm thick fused silica substrate coated with a 0.2

Rm aluminum film. Surface acoustic waves were generated with the TG technique by

focusing on the aluminum film through the substrate. Images of the monolayer as

well as a schematic diagram of the TG geometry are presented in Fig 5.4. To
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measure the dispersion of the system, TG time traces were taken as a function of

SAW wavevector from 0.12 - 0.83 im-' (50 Rm - 7.5 ptm wavelength). A

representative data set is shown in fig 5.5 at a wavevector of 0.46 [m-1. The time

dependence of the diffracted TG signal is shown in (a) and (b) for SAW generation

on the bare substrate and on the monolayer of spheres respectively. It is

immediately obvious that there is a significant change to the signal when the SAW is

generated on the monolayer region due to the coupling between the axial contact

vibration and the surface motion. A Fourier transform of the time data returns the

frequency components in the on-spheres and off-spheres data, and is presented in

fig 5.5 (c) and (d) with logarithmic and linear representation respectively. Looking

at fig 5.5 (c) we can see the spectra of the SAW on the substrate in black, with two

peaks corresponding to the Rayleigh wave (low frequency) and longitudinal wave

(high frequency). The SAW in the monolayer is plotted in red, showing the

appearance of an additional peak. The longitudinal peak is unchanged while the

Rayleigh wave peak has been split into two peaks. The full dispersion of the system

is plotted in Fig 5.6. The black markers correspond to data taken on the bare

substrate with the three black lines corresponding to the wave speeds in fused

silica, cL = 5968 m/s for longitudinal, CT = 3764 m/s for transverse, and CR 3409

m/s for the Rayleigh velocity, calculated using the numerical solution to the

Rayleigh equation [Ewing]. We also accounted for the change in Rayleigh velocity

due to the aluminum layer but found that the deviation was small, around 1% lower,

and so was neglected for this analysis [Boechler]. The red markers correspond to

data taken on the monolayer region, which display "avoided crossing" behavior

between the Rayleigh wave and the axial contact resonance of the microspheres.

The lower branch starts out resembling the SAW but approaches a horizontal

asymptote at the resonance frequency. The upper branch resembles the SAW at high

wavevectors and approaches a horizontal asymptote at low wavevectors, but it

disappears after crossing the line corresponding to the transverse velocity of the

substrate because such modes are classified as leaky waves that radiate as shear
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waves into the substrate [Every, Mason]. The solid red lines correspond to our

theoretical model detailed in the next section.

fig 5.4 Taken from [Boechler] (a) SAW interacting with the axial contact vibration of spheres.

Notations consistent with theory in the text. (b) Photo of sample. (c)Microscope image of monolayer

showing hexagonal close packing. (d) Schematic diagram of TG geometry.
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Fig 5.5 Taken from [Boechler] Normalized time traces taken on the bare substrate (a) and on a

monolayer of 1.08 jm spheres (b) with a wavevector of 0.46 tm-1. Fourier transform spectra

comparing on (red) and off sphere (black) plotted with a log scale (c) and linear scale (d). The marks

indicate the chosen peak positions presented for the full wavevector range in Fig 5.6.
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fig 5.6 Taken from [Boechler] Dispersion relations for substrate (black) and monolayer of spheres
(red). The points indicate peak positions taken from the Fourier transforms at each wavevector.

5.4.2 Theory

The model for SAW propagation in a monolayer of microspheres is adapted from

[Kosevich, Baghai-Wadji, Garova] and will follow the derivation in [Boechler] but

here we present a Green's function approach to arrive at an identical result. A

schematic illustration of the model is shown in fig 5.4(a), where we treat the

substrate as an elastic half-space, and the surface of the substrate is covered by an

array of oscillators. The oscillators represent the contacts between the

microspheres and the substrate in the DMT model. The contact is treated as a linear

spring, with stiffness K2, connecting a microsphere with mass m to the substrate. The

motion of the oscillators is described by the equation for a harmonic oscillator as,

mZ + K2 (Z - uz,O) = 0 (5.4)

where Z is the displacement of the oscillator relative to the surface, and uz,o is the

displacement of the substrate surface induced by the SAW. The spheres apply a

force normal to the surface of the substrate, yielding the following boundary

conditions at z = 0:

_ K2 (Z - uzO) =0 (5.5)
A
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where ozz and orz are components of the elastic stress tensor and A = (V'3D 2/2) is

the area of the unit cell for the hexagonally packed monolayer. Since the acoustic

wavelength used in the experiment is much larger than the sphere diameter, we use

an effective medium approximation to obtain the boundary conditions. This

approximation allows us to treat the normal stress of the microsphere contact

spring as the applied force divided by the contact area. Assuming a traveling wave

solution for the surface oscillators, Z = ZOexp(iwt - ikx), and substituting into

equation 5.4 gives the following result.

Z= ( Z2 ) (5.6)

where wo is the resonance frequency of the axial contact vibration obtained from the

DMT model and shown in eq 5.3. Substituting the resulting Z into the boundary

conditions (eq 5.5) results in new stress boundary conditions at z =0,

K2 / C22 uz,o
Ozz 0 (5.7)

A ~w 2 
X2

To determine the dispersion relation of the system we can use a Green's function

approach. In the Fourier domain, the Green's function, relates the surface

displacement and the stress as,

ftz,o =(w, k) zz (5.8)

where C(o, k) is the surface Green's function for an elastic half space. The surface

Green's function for an isotropic half space is given by [Maradudin, Eguiluz],

2 1/2

) 1 (k C ) (5.9)
G(dopk) = 14 R(kL

PCT R(k)

where p = 2.2 g/cm 3, is the density of the fused silica substrate and R(k) is the

Rayleigh determinant,

2 1/2 2 IL/2 2 )2

R(k) = 4k 4  - ) - -k 4 (2 - (5.10)

By substituting eq 5.8 into eq 5.7 and using the Green's function and Rayleigh

determinant, we can recover the dispersion relation as,
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(o2 2 1) 2 2 -4(1) 02 - 1/2 ( C2 )1/2
-A) 22 -4 1- 1 k2CL2

m a 4  2 1/2 (5.11)

Apck k2c)

The numerical solution of the dispersion equation is plotted in red in fig 5.6. On the

left hand side of eq 5.11, the expression in brackets describes the Rayleigh wave and

the expression in parentheses is the resonance of the surface oscillators. The right

hand side of the equation describes the coupling between the Rayleigh wave and the

surface oscillators. The magnitude of the coupling will depend on m, p and A, while

the resonance frequency, i.e. the position of the avoided crossing, will depend on m

and K2. Using a least squares minimization algorithm, we fit the numerical

dispersion relation to the experimental data, with the resonance frequency as the

only free parameter. From the fit to the experimental data in fig 5.6 we recover a

resonance frequency offo =wo/2n= 215 MHz. The mass of the microsphere was

calculated using a density ps = 2.0 g/cm 3, which results in a contact stiffness K2 = 2.4

kN/m.

The real solutions of the dispersion relation have a phase velocity w/k, less than the

velocity of the shear wave CT. All other solutions result in imaginary roots, leading to

the upper branch disappearing at co = cTk, matching the experimental results. Modes

with imaginary solutions are called leaky modes, which radiate into the substrate as

shear waves and don't appear in the signal.

Using eq 5.6 we can estimate the relative displacement of the spheres Z and the

substrate uz,o. The displacement of the substrate for this experiment is 8.3 pm,

which is calculated based on the pulse energy and the thermoelastic properties of

the aluminum film and the substrate [Boechler]. For the lower branch, we see that

the surface displacement is roughly equal to the displacement of the oscillators. As

the lower branch flattens out and approaches the resonance frequency, the

displacement of the spheres becomes much larger than the surface displacement.
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This is confirmed by comparing measurements on the backside to those performed

on the front, or with the lasers directly on the spheres. The front side measurement

is more sensitive to the displacement of the spheres as the light interacts with the

spheres directly. A comparison of the front side and backside measurements is

shown in Fig 5.7, clearly demonstrating the larger amplitude of the peak

corresponding to the lower branch in the front side measurement. Above the

resonance frequency, on the upper branch, the displacement of the spheres is much

smaller than the displacement of the surface. Although the displacement of the

spheres is larger than the displacement of the surface on the flat part of the lower

branch, the displacement is still much smaller than the equilibrium displacement

ao = (21rR1/2/K) 2 11 = 0.44 nm calculated from the DMT model [Boechler].
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fig 5.7 Taken from the supplementary information of [Boechler]. Fourier spectra of TG

measurements with a period of 7.5 tm taken of the front (blue) and back (red) of the microsphere
monolayer.

The resonance frequency of the axial vibration of the spheres can be estimated using

the DMT model by determining the stiffness of the contact given by K2,DMT =

(3/2)(2iwR2K2)1/3. The work of adhesion, between the oxidized aluminum surface

and the silica spheres is w = 0.094 J2/m [Lide], giving K2 = 1.1 kN/m and a resonance

frequency offo = 140 MHz. There are other motions of the spheres, such as a lateral
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motion with calculated frequencyfi = 129 MHz, and a rocking motion with

calculated frequencyfr = 9.1 MHz, but no signatures of these motions were seen in

our signals, which might be a result of the close packing of the spheres [Boechler,

Vittorias, Murthy Peri]. The relatively large discrepancy between our data and the

DMT model could be explained by a larger work of adhesion than is presented in the

literature, or uncertainties in the contact model. Indeed there has been a great deal

of trouble in using the DMT model to predict the behavior of nanoscale contacts

measured with atomic force microscopy (AFM) [Israelachvili]. AFM measures the

pull-off force, which doesn't provide all the necessary information to accurately test

adhesion models. In our measurement we obtain the contact stiffness directly from

the resonance frequency, thus providing a more straightforward comparison to

adhesion models in the limit of small displacements. A natural extension of this

work is to use SAWs with larger amplitude to probe the anharmonic response of the

axial contact providing additional information about adhesion. It is worth noting

that the calculated resonance frequency from another common contact model, the

JKR model shows only a 5% difference from that of the DMT model, suggesting that

there may be other factors that affect the resonance frequency of the microsphere

contact [JKR, Boechler].

5.5 Summary

In this chapter we introduced the Hertz model for contact between a sphere and an

elastic half-space. When the sphere becomes small, attractive forces (adhesion)

between the sphere and substrate become significant and cause a deformation of

the sphere and substrate around the contact area. To account for adhesion we

discussed the DMT model, where the contact area remains the same as in the Hertz

model but the attractive forces act outside the contact area. To test adhesion

models, we investigated the interaction between SAWs and a monolayer of micron

sized spheres. We observed a classic avoided crossing in the dispersion relation of

the system at the resonance frequency of the axial contact. This system provides a

natural platform to study the linear and non-linear behavior of microscale contacts.
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Chapter 6
Mechanical Properties of Microsphere Structures

6.1 Introduction
A monolayer of microspheres provides an interesting platform to investigate the

wide range of linear and non-linear dynamics present in microscale contacts. Even

though adhesive forces are the dominant interaction between small particles, there

is no definitive model to describe the interaction [Bhushan]. In the previous chapter

we determined the dispersion properties and contact resonance frequency and

compared the results to the DMT model showing good agreement (within a factor of

two). Our results suggest a wide range of further experiments including

characterization of environmental (e.g. humidity) and structural (e.g. particle size

and surface roughness) effects, development of SAW control possibilities such as

waveguiding and filtering, and exploration of nonlinear and linear responses. By

exploring the wide range of environmental and structural factors that influence the

axial contact resonance frequency we can gain insight into the fundamental nature

of the adhesive interaction. In addition, demonstrating SAW control in the linear and

nonlinear regimes will indicate the usefulness of a monolayer of microspheres for

applications in SAW devices. This final chapter presents preliminary results

showing progress in these directions and indicates the steps needed for more

controlled experiments and a more detailed analysis.

6.2 Variability of adhesion conditions
6.2.1 Sample-to-sample variations
In our experiments the characterization of adhesion in the microsphere monolayer

is based on the measurement of the resonance frequency of the axial contact. There

are many factors that could affect the resonance frequency, including variations in

the mass of the spheres, local adhesion conditions and roughness of the surface. It is

also possible that interparticle interactions, not accounted for in our model, could

play a role [Boechler, Tournat]. To begin testing for some of these factors, we

measured the SAW dispersion on different samples and compared SAW traces at
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many spots on the same sample. All the monolayer samples were fabricated with

nominally identical particles, 1.08 mm silica spheres, on nearly identical substrates,

float glass slides coated with 100 nm of aluminum, obtained from the EMF

Corporation. The fabrication procedure is described in the previous chapter and is

discussed in [Boechler]. The Fourier transforms of TG data with a period of 9.0 Rm

are presented in fig 6.1 for four different samples.
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Fig 6.1 FFTs of time domain data collected at a TG period of 9.0 jm for four different microsphere
monolayer samples. (Left) Spectra of the split Rayleigh peaks. (Right) Close-up of the lower branch
peaks.

Three of the samples show almost the same spectra with only small shifts in peak

position. The EMF May20 sample has a large change in the peak frequency as well as

a much wider peak width. The only difference between the samples is the

preparation procedure of the substrate. For EMF May20 the treatment was as

follows: rinse with deionized (DI) water, place in 30% H 202 solution for 1 hour, then

rinse with acetone followed by isopropanol and finishing with DI water. The other

three samples had a slightly different procedure: place in an acetone bath for 30

min, transfer to an isopropanol bath for 30 min, rinse with DI water, submerge in

H202 for varying times at a temperature of 150 - 200 *C, place in DI water bath and

rinse. For EMF Nov18 and EMF Samp5 the H 202 treatment times were 5 min and for

EMF Sampi the treatment time was 1 hour. Based on the similarity of the treatment

procedures, we would not expect such a large difference in the spectra. Although we

have no definitive explanation for the disparity, the slight differences in the
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treatment procedures might offer possible explanations. The EMF May20 sample

was only rinsed with acetone and isopropanol while the other three samples were

soaked. Submerging the substrate in solvent for a long period of time would ensure

that any organic residue was removed. Therefore, it is possible that the large change

in the resonance frequency in the EMF may20 sample could be a result of surface

contamination. Another difference in the preparation is the temperature of the H 202

treatment. High temperature H 202 accelerates the oxidation of the aluminum

surface and can result in a different roughness of the surface. A higher surface

roughness has been linked with a lower value of the contact stiffness for spheres on

a substrate [Cheng, Fuller]. On the other hand, a larger surface roughness likely

causes each sphere to experience a different contact interaction, resulting

heterogeneous broadening of the peak.
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Fig 6.2 FFTs of time data collected at a TG period of 9.0 [m showing the lower branch peak of the

SAW dispersion in two different monolayer samples. Five traces at different locations were collected

for each sample.

For three of the samples presented above, we observed small variations in the

resonance frequency. To determine whether this variation is significant, we tested

the variability of the resonance frequency within one monolayer. Measurements

from 5 different locations on the monolayer of EMF Sampi and EMF Samp5 are

presented in fig 6.2.
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Although there is significant noise, the data show a clear separation of the peaks

between the two samples. By finding the frequency of the maximum of the peak, we

can develop some simple statistics to illustrate the variability of the samples. For

sample 1 the average peak frequency is 180 MHz with a standard deviation of 2.5

MHz and for sample 5 the average peak frequency is 189 MHz with a standard

deviation of 2 MHz. These results indicate that inhomogeneities within one

monolayer sample likely contribute to the width of the peak and not to the observed

differences between samples.

6.2.2 Changing humidity
Another possible contribution to the frequency of the axial contact resonance of the

microspheres is the humidity at the time of the measurement. In humid

environments a thin layer of water adheres to the surfaces of objects [Duran]. Due

to the small size of the sphere-substrate contacts, adhered water fills the contacts

and creates "water bridges", which act to increase the contact stiffness. To test the

impact of water bridges in our experiments we compared the SAW dispersion on a

monolayer of spheres in three distinct environments: in vacuum, under ambient lab

conditions and in a 100% humid environment. All the measurements were carried

out inside a Janis ST-100 cryostat. For measurements in vacuum, the chamber was

pumped down using an Edwards rotary pump, typically obtaining pressures around

10 mtorr. The chamber was then opened up to allow the ambient air to fill the

chamber and equilibrate for 48 hours. Finally, a small cup of water was placed in the

bottom of the cryostat and was allowed to equilibrate for 48 hours, assuming this

was sufficient time to obtain 100% humidity. Spectra for each of the environmental

conditions are presented in fig 6.3 for a grating period of 11.5 pm.
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Fig 6.3 FFT magnitude of TG data collected at period of 11.5 j~m for three different humidity
conditions no humidity (red), low humidity (green), high humidity (blue). The frequency of the upper
and lower branch peaks increase as a function of the humidity of the environment

A clear blue shift in the upper and lower branch peak positions is observed

indicating a stiffening of the axial contact. The full dispersion relations were fit with

the numerical results from eq 5.11. The resonance frequencies were determined to

be 217 MHz, 224 MHz, and 227 MHz for the vacuum, ambient air, and the humid

environment respectively. This is consistent with the presence of water bridges at

higher humidity conditions as the added attractive force increases the stiffness of

the axial contact resulting in an increase of the resonance frequency. Although we

see a clear trend, measurements of the percent humidity are necessary to compare

with models describing the added attractive forces due to water bridges [Duran].

We see a 5% difference in the measured resonance frequency between spheres in

the evacuated environment and the humid environment. The small shift in the

resonance frequency indicates that humidity is not a dominant factor in determining

the stiffness of the contact, but the noticeable peak shift indicates this platform

could be used as a humidity sensor.

In summary we observed differences in the resonance frequency of the axial contact

of 1.08 tm silica spheres, due to sample fabrication and the humidity of the
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environment. To fully understand what properties affect the axial contact

resonance, systematic studies varying conditions of the sample should be

performed. For example, it would be informative to measure samples with different

values of the RMS surface roughness. A characterization of what physical

parameters of the sample, such as surface roughness, sphere roughness, sphere

porosity and thickness of the alumina layer, influence the resonance frequency is

essential before we can accurately model the work of adhesion. With this

information we can make more direct comparisons to adhesion models and

investigate the linear and nonlinear properties of adhesion up to the point at which

the spheres detach from the substrate.

Once we have mastered sample fabrication, there are a number of interesting ways

to investigate samples with different adhesive forces. For example, silica spheres

coated with a small molecular functional group, such as an amine group (NH 2), are

commercially available. The added functional group will alter the forces between

the sphere and substrate, changing the measured frequency without significantly

altering the other properties of the spheres, such as mass and radius. A

demonstration of this effect would open the door to a wide range of possible

applications for molecular sensing. For example, small spheres coated with proteins

and other biologically active groups are available. Then, by exposing the array to a

molecule that interacts with the functional group, the adhesion conditions would

change and a shift in the resonance frequency would be observed. The small shifts

observed so far indicate the sensitivity of the technique to varying adhesion

conditions.

6.3 500 nm Spheres

Another way to test adhesion based contact models is by looking at the scaling

behavior as a function of the particle diameter. For example, both the DMT model

and the JKR model predict that the resonance frequency should scale as R-7/6[DMT

,JKR]. Guillet et. al. used optical interferometry to measure the vibrational modes of

isolated gold spheres on a substrate, with R ranging from 90 nm to 900 nm [Guillet].
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They compared the fundamental breathing mode of the spheres to the axial mode

and found that the data were consistent with the theoretical prediction of fo 0c

fJ" wherefb, is the frequency of the fundamental breathing mode andfo is the

frequency of the axial contact vibration.

As we mentioned in the previous chapter, there are many potential differences

between a single isolated sphere and an array of spheres. To test these predictions

we fabricated an array of 500 nm spheres using the same convective self-assembly

technique presented in [Boechler]. The SAW dispersion was measured with the TG

technique for grating wavevectors ranging from 0.1 - 3.5 rim'. The dispersion

relation and numerical fit are presented in fig 6.4.
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Fig 6.4 SAW dispersion in a monolayer of 518 nm spheres resulting in a resonance frequency of the

axial contact of 718 MHz. The experimental data (open points) are plotted along with the numerical

fits solid lines for upper branch (red) and lower branch (blue) and longitudinal wave (grey). The

black line indicates the Rayleigh velocity of the float glass substrate of 3141 m/s and the grey dotted

line corresponds to longitudinal velocity of 5711 m/s. The black dotted line is a guide to eye

indicating the approximate position of the resonance frequency.
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Using the procedure presented in chapter 5 we can estimate the resonance

frequency of 518 nm spheres using the DMT model, which results in a frequency of

331 MHz. The numerical fit returns a resonance frequency of 718 MHz, which is

more than two times the frequency predicted by the DMT model. Since we noted

previously that our experimental results deviate from the DMT model, we can still

test the scaling behavior by predicting the new frequency based on our measured

frequency of 215 MHz for 1.08 mm spheres. In this case, for 518 nm spheres the

scaling behavior predicted by the DMT model results in a frequency of 506 MHz,

significantly lower than the observed value. The reason for large discrepancy is yet

unexplained. We observed significant sample-to-sample variations in the 1.08 [m

sphere samples and it is plausible that the same variability exists here. Although

sample-to-sample variability is a possible explanation, the variation we observed

previously is not large enough to explain the high frequency observed in the 518 nm

spheres. In addition, as the sphere gets smaller the contact area also decreases

which could increase the influence of surface roughness effects. The measured

dispersion from 518 nm spheres highlights the need for additional experiments to

explain the puzzling observations and test adhesion based contact models.

6.4 Microsphere waveguides
The observed avoided crossing in the monolayer of microspheres occurs for SAW

wavelengths much larger than the particle size. As a result, this platform has

similarity with a class of materials called "locally resonant metamaterials." The

properties of these metamaterials have been presented in the literature for

macroscopic systems [LiuOO, Lemoult]. For example, Lemoult et. al. demonstrated

sub-wavelength focusing of broadband sound waves using an array of soda cans,

which behave as local acoustic resonators. Other examples demonstrate band gaps

for surface waves formed from the vibrational resonance of micron sized pillars

[Achaoui]. The local contact resonance in the monolayer of microspheres should

also exhibit interesting wave control effects such as a thin strip of spheres acting as

a waveguide for SAWs.

96



Here we present a study of TG measurements on a 6 tm wide strip of microspheres

aimed at demonstrating waveguiding effects. The process for fabrication of the

waveguides is detailed in [GanThesis]. Briefly, aluminum coated glass slides are

covered with a photoresist polymer. Using photolithography, a 1 cm long trench is

created with the desired width. The convective self-assembly technique is employed

to deposit the microspheres in the trench and the remaining photoresist is removed.

Structures as small as one particle wide can be fabricated with this technique

[GanThesis].

Measuring a thin structure required a modification of the laser spot sizes. By using

perpendicular cylindrical lenses with focal length 70 cm and 8 cm, the probe spot

was reduced to 90 [m by 30 [m 1/e 2 intensity radius. A pump spot size of 325 mm

by 45 mm 1/e2 intensity radius was achieved using a 10 cm cylindrical lens. The

average power of the quasi-cw probe beam was 7.25 mW and the pump pulse

energy was 0.25 [tJ. A CCD image of the waveguide and the laser spots are shown in

fig 6.5. The waveguide appears bright due to scattering of incident light from a lamp

used to enhance the optical image.

figure 6.5 (Top) CCD image showing 6 [tm microsphere wave guide and interference pattern of TG
excitation pulses. (bottom) CCD image of the overlap of the excitation spot and the waveguide
structure.
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In the experiments, the laser spot was translated toward and over the 6 [Lm

waveguide structure and TG traces were collected in increments of 2 iim translation.

The TG period was 11.5 [tm (q = 0.55 [tm'). The spectra are shown in fig 6.6 where

each trace is offset to indicate the incremental movement of the spot. When the spot

is far away from the structure, we observe a peak corresponding to the Rayleigh

wave in the substrate. As the spot approaches the structure, a new peak appears at a

lower frequency than the Rayleigh wave, just above 250 MHz. The new peak due to

the microsphere waveguide extends for tens of microns above and below the

structure. The additional peak is present for 25 of the traces corresponding to a

translation length of around 50 [tm, consistent with a probe spot width of -60 [tm.

Small signatures of the Rayleigh wave in the substrate remain while directly on the

structure as the spot is larger than the waveguide structure. Interestingly, the

additional peak, which should correspond to the resonance mode doesn't split as

would be expected from measurements on an extended monolayer structure. To

investigate this observation, we measured the dispersion of the structure.
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fig 6.6 Fourier transforms of TG time data. The spot was initially located below the waveguide
structure and each trace moving up was taken at 2 [im increments until the spot had fully cleared the
structure.

98



The dispersion was measured by aligning the TG spot directly on top of the

waveguide using a CCD camera, as shown in fig 6.5. TG data were collected as a

function of wavevector from 0.3 to 0.85 [tm-1. The spectra for a selection of the

wavevectors are presented in fig 6.7 along with spectra on the substrate as a

comparison.
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fig 6.6 Representative spectra for TG measurements on a 6 stm wide waveguide of 1.08 Rm silica

spheres for on waveguide (color) and off waveguide (black). The wavevectors shown are 0.84 im-1

(a), 0.63 jtm-1 (b), 0.47 tm-1 (c) and 0.35 [m-1 (d).

At higher wavevectors the spectra show additional peaks below the Rayleigh

frequency. Based on calculations of the waveguide dispersion [Kumar] in a 15 Rm

waveguide, the lowest order waveguide mode has a similar dispersion to that of the

perfect crystal while the upper branch disappears. The lower branch of the

waveguide dispersion matches the Rayleigh wave at low wavevector and

approaches the resonance frequency at high wavevector, the only difference being

that the peak frequencies are slightly blue shifted. According to the calculations, the

additional peaks corresponding to the lower branch should not appear above the

resonance frequency. At a TG wavevector of 0.84 tm-1, the peak resembling the

lower branch has a frequency significantly higher than the resonance frequency of
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the axial contact (around 220 MHz). Thus, it is unclear whether the additional peaks

arise from the axial contact resonance. One possible explanation is that residual

photoresist from the fabrication process is interfering with the contact and causing

a strong bond between the substrate and the sphere. In this case, the waveguide

would behave as a solid structure and cause a downshift in the Rayleigh wave

frequency due to mass loading. A mass loading type response would not be limited

by the resonance frequency as expected for the axial contact. Although we see a

clear change in the spectra due to the waveguide structure, it is unclear if the

changes are caused by the axial contact resonance or by other factors, namely

unremoved polymer from the fabrication process. Experiments on cleaner

waveguide structures would clarify these results.

6.5 SAW filtering
An alternative approach to demonstrating wave control using microspheres is to

create a SAW filter. SAW filters have a wide range of applications in

microelectronics and signal processing [Campbell]. A microsphere based SAW filter

resembles a waveguide structure, but the SAWs propagate perpendicular to the

structure and are attenuated before passing through. A tapered strip, roughly 60 -

120 ptm wide, was fabricated using a monolayer of 1.02 [tm polystyrene (PS)

spheres and a microcontact printing technique. The fabrication of the PS monolayer

was adapted from [Vogel]. Briefly, PS microspheres were dispersed in a 50-50

water-ethanol solution. After adding sodium dodecyl sulfate a monolayer of spheres

selfassembled at the water-air interface and were then lifted out using a glass

substrate coated with aluminum [Khanolkar]. To create the strip, a

polydimethylsiloxane (PDMS) stamp was created by placing two blocks of PDMS on

a glass slide with a separation of -100 [tm using a mechanical stage. The stamp was

pressed onto the monolayer area and the spheres attached to the PDMS. Once the

stamp was removed only spheres in the area between the two PDMS blocks

remained on the substrate. The strip was slightly tapered due to the difficulty of

achieving a high degree of parallelism between the two PDMS blocks. An image of

the strip courtesy of Morgan Hiriawa is shown in fig 6.7
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fig 6.7 Optical microscope image of the tapered strip under 5x (left) and 50 x (right) magnification.

By generating a SAW on one side of the structure and detecting it on the other, we

can measure the attenuation caused by the strip of microspheres. This can be

achieved by offsetting the pump and probe spots of the TG technique. TG

measurements with offset spots have been demonstrated previously in the

literature [Maznev98]. Since we image the optical phase mask onto the sample,

offsetting the pump and probe spots that are incident on the phase mask results in

offset spots on the sample. We offset the spots simply by translating the pump beam

on the phase mask so that there was roughly 500 [im between the edges of the

spots. TG measurements for a wide range of wavevectors were carried out with the

strip between the spots and with no spheres between the spots called on-strip and

off-strip respectively. (Note that neither the excitation nor the probe beams

irradiated the microsphere strip, but the SAW generated by the excitation beams

traverses the strip in the "on-strip" measurements and only traverses the bare

substrate in the "off-strip" measurements.) TG time traces for three different

wavevectors are presented in fig 6.8
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fig 6.8 Time traces comparing SAW propagation on substrate (off-strip) and SAW transmission
through the strip (on-strip) for three TG periods.

In each trace we see two wavepackets, the first corresponding to the longitudinal

wave and the second corresponding to the Rayleigh wave. The longitudinal

wavepacket arrives at the probing region earlier due to its higher group velocity.

The wavepackets have a Gaussian temporal profile matching the Gaussian spatial

profile of the optical excitation spot. Comparing the on-strip and off-strip

measurements we observe a reduction in the amplitude of the Rayleigh wavepacket

and no change in the longitudinal wavepacket. When the frequency of the Rayleigh

wave matches the frequency of the axial contact resonance (13.5 [tm grating period)

the Rayleigh wavepacket disappears completely. We performed a full set of TG

measurements off and on strip, for TG periods ranging from 24.5 [Im to 7.5 [tm. To

get a finer spacing between TG periods we implemented the angled phase mask

approach detailed in section 2.6. In addition to the normal incidence measurements

we collected data at phase mask angles of 150, 20* and 25' for grating periods 9 tm,

10 Rm, 11.5 [tm, 13.5 tm and 15.5 rim. Fourier transforms of the on-strip data

presenting only the Rayleigh wave peak for each trace are shown in fig 6.9.
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Fig 6.9 Rayleigh wave peaks from on-strip TG measurements demonstrating the frequency

dependent attenuation due to a strip of microspheres. The legend on the right indicates the TG

period in micrometers.

The dip between 200 MHz and 275 MHz is caused by attenuation of the SAW due to

the axial contact resonance of the microspheres. A resonance frequency of 235 MHz

was determined by measuring the dispersion with overlapped spots inside the strip.

The large attenuation could be a result of many effects. The avoided crossing creates

an acoustic band gap between the upper and lower branch. If the SAW frequency is

sufficiently narrow to fit within the band gap, there should be 100% reflection of the

wave. There is also a large impedance mismatch between due to the difference in

phase velocity between the SAW in and out of the structure. The impedance

mismatch contributes to the reflection even outside the band gap. In modes that

generate a large displacement in the spheres (the modes near the resonance

frequency) there may also be higher attenuation due to the heterogeneities in the

contact. The attenuation from inhomogeneities is further increased by the low

group velocity near the resonance, visualized as the flat lower branch in the

dispersion relation (fig 5.6 and 6.4). In similar experiments performed on

microsphere strips fabricated with the photoresist technique (not presented here)

we did observe a reflection in the TG signal, although this reflection could be a result

of residual photoresist rather than the contact resonance. The absence of a
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reflection in the current experiment could be explained by the apparent disorder of

the edge of the strip seen in fig 6.7. The disordered structure will scatter the SAW so

no reflection reaches the probing region.

The attenuation coefficient as a function of frequency was calculated by comparing

the magnitude of the off strip and on strip Fourier peaks with the following

expression,

Attenuation coefficient = Lon
Ron Loff

where R is the magnitude of the Fourier peak for the Rayleigh wave, L is the

magnitude of the Fourier peak for the longitudinal wave, and on and off refer on-

strip and off-strip measurements respectively. The magnitude of the longitudinal

wave was included in this way to account for any changes in the magnitude of the

signal due to changes in alignment between on-strip and off-strip measurements.

The ratio of the longitudinal magnitudes was between 0.85 and 1.1 for all traces

indicating only small variations in alignment. The attenuation coefficient as a

function of frequency is presented in fig 6.10
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fig 6.10 Attenuation coefficient as a function of frequency of SAW propagation through a -100 [rm
strip of PS spheres.

The maximum attenuation occurs at a frequency slightly above the resonance

frequency of 235 MHz. The two lowest points are not true measurements of the
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attenuation since there was no discernable Rayleigh wave signature in the data, as

seen in in the middle row of fig 6.8. Rather they show an upper limit of the

attenuation since we used the magnitude of the noise at the expected frequency for

the calculation.

The frequency dependent attenuation induced by a strip of microspheres opens the

door for applications in SAW filtering. Since the frequency of maximum attenuation

is dependent on the axial contact resonance and thus on adhesion, we can create

filters with tunable frequencies through in situ variations of adhesion. It would also

be possible to create switches by sending a high amplitude SAW to knock off the

spheres, eliminating attenuation while they are in the air. Then, once the spheres

settled back on the surface, the attenuation would return to normal. The relatively

simple fabrication and small scale of microsphere monolayer makes this platform

appealing for microelectrical mechanical devices.

6.6 Nonlinear dynamics

The Hertz contact, the primary interaction in granular crystals, is inherently non-

linear, but so far our measurements have all remained in the linear regime. The non-

linearity of granular crystals has been observed for much larger particles but has yet

to be explored for micron sized particles [Theocharis, Gantzounis, Bonanomi]. Here

we present our observations of a nonlinear response in a monolayer of 1.08 mm

silica spheres. Measurements were performed on a monolayer of microspheres with

a TG period of 15.50 Rm by increasing the laser fluence each time up to the damage

threshold. The resulting time traces were all normalized to account for the increase

in signal with laser fluence. The Fourier transforms of the time data are presented in

fig 6.11 showing the upper and lower branch of the dispersion.
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Fig 6.11 FFTs of the fluence dependent measurements of SAW propagation in a monolayer of 1.08
mm silica spheres.

If the axial contact resonance were completely linear than we would expect no

change in the shape or position of the peaks. The observed changes to the spectra as

a function of laser fluence confirm the nonlinearity of the axial contact. The most

noticeable effect is the change in the relative amplitudes of the lower branch and

upper branch peaks. At low fluence the amplitude of the lower branch peak is higher

than the amplitude of the upper branch. As the fluence increases, the relative

amplitude of the lower branch decreases while that of the upper branch increases.

In addition, there is a slight shift of the peak positions of both the upper and lower

branches to lower frequencies. These observations are consistent with a down shift

in the resonance frequency upon large amplitude excitation [Bonanomi,

Theocharis09]. The change in relative amplitude is also indicative of the softening of

the contact. As the resonance frequency decreases it moves farther from the

excitation frequency and the excitation is less efficient at exciting the sphere motion.

As a result, the signal from the sphere motion, namely the low frequency peak in the

spectra, decreases in amplitude. The experiment presented here demonstrates the

nonlinear nature of the microscale contact and provides the groundwork to quantify

a nonlinear model for a monolayer of microspheres.
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6.7 Summary
In this chapter we presented experiments that highlight the sensitivity of the axial

contact resonance of an array of microspheres to varying environmental conditions.

We saw a significant change in the resonance frequency between samples with

slightly different fabrication steps, and a dependence of the frequency on the

humidity of the atmosphere. Future experiments with controlled parameters will

help to model quantitatively the factors that determine the resonance frequency. In

addition, dispersion measurements on 500 nm spheres showed a much higher

resonance frequency than predicted by adhesion models. We demonstrated that a

-100 [tm strip of microspheres fully attenuates SAWs near the resonance

frequency, showing the potential for using microspheres as SAW filters in

microelectronic devices. Finally we demonstrated the nonlinearity of the microscale

contact opening up possibilities for many future nonlinear studies.
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