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We report a measurement of the time-dependent CP asymmetry of B̄0 → Dð�Þ
CPh

0 decays, where the light
neutral hadron h0 is a π0, η, or ω meson, and the neutral D meson is reconstructed in the CP eigenstates
KþK−, K0

Sπ
0, or K0

Sω. The measurement is performed combining the final data samples collected at the
ϒð4SÞ resonance by the BABAR and Belle experiments at the asymmetric-energy B factories PEP-II at
SLAC and KEKB at KEK, respectively. The data samples contain ð471� 3Þ × 106 BB̄ pairs recorded by
the BABAR detector and ð772� 11Þ × 106 BB̄ pairs recorded by the Belle detector. We measure the CP
asymmetry parameters −ηfS¼þ0.66�0.10ðstatÞ�0.06ðsystÞ and C ¼ −0.02� 0.07ðstatÞ � 0.03ðsystÞ.
These results correspond to the first observation of CP violation in B̄0 → Dð�Þ

CPh
0 decays. The hypothesis

of no mixing-induced CP violation is excluded in these decays at the level of 5.4 standard deviations.

DOI: 10.1103/PhysRevLett.115.121604 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh

In the standard model (SM) of electroweak interactions,
CP violation arises from an irreducible complex phase
in the three-family Cabibbo-Kobayashi-Maskawa (CKM)
quark-mixingmatrix [1]. TheBABAR andBelle experiments
have establishedCP violating effects in theBmeson system
[2–5]. Both experiments use their measurements of the
mixing-induced CP violation in b → cc̄s transitions [6,7]
to determine precisely the parameter sinð2βÞ≡ sinð2ϕ1Þ
(BABAR uses β andBelle usesϕ1, hereinafter β is used). The
angle β is defined as arg ½−VcdV�

cb=VtdV�
tb�, whereVij is the

CKM matrix element of quarks i, j.
A complementary and theoretically clean approach to

access β is provided by B̄0 → Dð�Þ0h0 decays, where h0 ∈
fπ0; η;ωg denotes a light neutral hadron. These decays are
dominated by CKM-favored b → cūd tree amplitudes.
CKM-disfavored b → uc̄d amplitudes carrying different
weak phases also contribute to the decays, but are sup-
pressed by VubV�

cd=VcbV�
ud ≈ 0.02 relative to the leading

amplitudes. An interference between the decay amplitudes
without and with B0 − B̄0 mixing emerges if the neutral D
meson decays to a CP eigenstate DCP. Neglecting the

suppressed amplitudes, the time evolution of B̄0 → Dð�Þ
CPh

0

decays is governed by β [8]. Because only tree-level
amplitudes contribute to B̄0 → Dð�Þ0h0 decays, these
decays are not sensitive to most models of physics beyond
the standard model (BSM). However, the measurement of
the time-dependent CP violation enables testing of the
measurements of b → cc̄s transitions [6,7] and provides a
SM reference for the BSM searches in the mixing-induced
CP violation of b → s penguin-mediated B meson decays
[9–12]. Any sizable deviation in the CP asymmetry of

B̄0 → Dð�Þ
CPh

0 decays from processes involving b → cc̄s
or penguin-mediated b → s transitions would point to
BSM. Such deviations could, for example, be caused by

unobserved heavy particles contributing to loop diagrams
in b → cc̄s or b → s penguin transitions [13].

An experimental difficulty in the use of B̄0 → Dð�Þ
CPh

0

decays arises from low B and D meson branching
fractions [Oð10−4Þ and Oð≤10−2Þ, respectively] and low
reconstruction efficiencies. Previous measurements per-
formed separately by the BABAR and Belle Collaborations
were not able to establish CP violation in these or related
decays [14–16].
In this Letter, we present a measurement of the time-

dependent CP violation in B̄0 → Dð�Þ
CPh

0 decays. For the
first time, we combine the large final data samples collected
by the BABAR and Belle experiments. This new approach
enables time-dependent CP violation measurements in the
neutral B meson system with unprecedented sensitivity.
The time-dependent rate of a neutral B meson decaying

to a CP eigenstate is given by

gðΔtÞ ¼ e−jΔtj=τB0

4τB0

f1þ q½S sinðΔmdΔtÞ

− C cosðΔmdΔtÞ�g; ð1Þ

where q ¼ þ1ð−1Þ represents the b-flavor content when
the accompanying B meson is tagged as a B0 (B̄0) and Δt
denotes the proper time interval between the decays of the
two B mesons produced in an ϒð4SÞ decay. The neutral B
meson lifetime is represented by τB0, and the B0 − B̄0

mixing frequency byΔmd. Neglecting the CKM-disfavored

decay amplitudes in B̄0 → Dð�Þ
CPh

0 decays, the SM predicts
S ¼ −ηf sinð2βÞ and C ¼ 0, where ηf is the CP eigenvalue
of the final state, and S and C, respectively, quantify
mixing-induced and direct CP violation [17].
This analysis is based on data samples collected

at the ϒð4SÞ resonance containing ð471� 3Þ × 106 BB̄
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pairs recorded with the BABAR detector at the PEP-II
asymmetric-energy eþe− (3.1 on 9 GeV) collider [18] and
ð772� 11Þ × 106 BB̄ pairs recorded with the Belle detector
at the KEKB asymmetric-energy eþe− (3.5 on 8 GeV)
collider [19]. At BABAR (Belle) theϒð4SÞ is produced with
a Lorentz boost of βγ ¼ 0.560 (0.425), allowing the
measurement of Δt from the displacement of the decay
vertices of the two B mesons. The BABAR and Belle
detectors are described in Refs. [20,21].
Reconstructed tracks of charged particles are considered

as kaon and pion candidates. Kaons are identified using the
particle identification techniques described in Refs. [20,21].
Photons are reconstructed from energy deposits in the
electromagnetic calorimeters; the energy of photon candi-
dates is required to be at least 30 MeV. Combinations of
two photons are considered as π0 meson candidates if
the reconstructed invariant mass is between 115 and
150 MeV=c2. Candidate η mesons are reconstructed in
the decay modes η → γγ and πþπ−π0. The invariant mass
is required to bewithin20 MeV=c2 of the nominalmass [22]
for η → γγ candidates, and within 10 MeV=c2 for
η → πþπ−π0 candidates. For each photon in the η → γγ
decay mode a minimal energy of 50 MeV is required.
For ω mesons the decay mode ω → πþπ−π0 is recon-

structed with invariant mass required to be within
15 MeV=c2 of the nominal mass [22]. Neutral kaons are
reconstructed in the decay mode K0

S → πþπ−, with invari-
ant mass required to be within 15 MeV=c2 of the nominal
mass [22]. The requirements exploiting the K0

S decay
vertex displacement from the interaction point (IP)
described in Refs. [15,23] are applied. Neutral D mesons
are reconstructed in the decay modes to CP eigenstates
DCP → KþK−, K0

Sπ
0, and K0

Sω. The invariant mass is
required to be within 12 MeV=c2 of the nominal mass [22]
for DCP → KþK− candidates, within 25 MeV=c2 for
DCP → K0

Sπ
0 candidates, and within 20 MeV=c2 for

DCP → K0
Sω candidates. We reconstruct D�0 mesons in

the decay mode D�0 → D0π0, and the invariant mass must
be within 3 MeV=c2 of the nominal mass [22].
Neutral B mesons are reconstructed in the CP-even

(ηf ¼ þ1) final states B̄0 → DCPπ
0 and DCPη (with

DCP → K0
Sπ

0, K0
Sω), B̄0 → DCPω (with DCP → K0

Sπ
0),

B̄0 → D�
CPπ

0 and D�
CPη (with DCP → KþK−), and in the

CP-odd (ηf ¼ −1) final states B̄0 → DCPπ
0, DCPη, DCPω

(with DCP → KþK−), and B̄0 → D�
CPπ

0 and D�
CPη (with

DCP → K0
Sπ

0) [24].
Neutral B mesons are selected by the beam-energy-

constrained mass Mbc ≡mES ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE�

beam=c
2Þ2 − ðp�

B=cÞ2
p

(BABAR uses mES and Belle uses Mbc, hereinafter Mbc is
used) and by the energy difference ΔE ¼ E�

B − E�
beam,

where E�
beam denotes the energy of the beam, and p�

B
and E�

B are the momentum and energy of the B meson
candidates, evaluated in the eþe− center-of-mass (c.m.)

frame. The selected regions are 5.2 GeV=c2 < Mbc <
5.3 GeV=c2 and −100MeV<ΔE< 100MeV, except for

B̄0 → Dð�Þ
CPπ

0 decays, where −75 MeV < ΔE < 100 MeV
is required to exclude tails from partially reconstructed
B− → Dð�Þ0ρ− decays peaking at ΔE ≈ −250 MeV.
In B̄0 → D0ω and in D0 → K0

Sω decays, the ω vector
mesons are polarized. The angular distribution of ω →
πþπ−π0 decays is exploited to discriminate against back-
ground. The quantity cos θN is defined as the cosine of the
angle between the neutral B meson direction and the
normal to the πþπ−π0 plane in the ω meson rest frame.
A requirement of j cos θN j > 0.3 is applied.
After applying the above selection requirements, the

average multiplicity of reconstructed B̄0 → Dð�Þ
CPh

0 candi-
dates in an event is 1.3. In case of multiple B meson
candidates in an event, one candidate is selected using a
criterion based on the deviations of the reconstructed Dð�Þ
and h0 meson masses from the nominal values. The
probability for this method to select the correct signal is
82% (81%) for BABAR (Belle).

In B̄0 → Dð�Þ
CPh

0 decays, the dominant source of back-
ground originates from eþe− → qq̄ ðq ∈ fu; d; s; cgÞ con-
tinuum events. This background is suppressed by using
neural network (NN) multivariate classifiers that combine
information characterizing the shape of an event [25].
The observables included in the NNs are the ratio R2 of
the second to the zeroth order Fox-Wolfram moment, a
combination of 16 modified Fox-Wolfram moments [26],
the sphericity of the event [29], and cos θ�B, where θ

�
B is the

angle between the direction of the reconstructed B meson
and the beam direction in the c.m. frame. The NN selection
reduces the background by 89.3% (91.8%) and has a signal
efficiency of 75.5% (74.3%) for BABAR (Belle).
The signal yields are determined by unbinned maximum

likelihood fits to theMbc distributions. In the fits, the signal
component is parametrized by a Crystal Ball function [30]
and the background component is modeled by an ARGUS
function [31]. The experimental Mbc distributions and fit
projections are shown in Fig. 1. The signal yields are
summarized in Table I.
The time-dependent CP violation measurement is per-

formed using established BABAR and Belle techniques for
the vertex reconstruction, the flavor tagging, and the
modeling of Δt resolution effects (see Refs. [6,7,32–35]),
and is briefly summarized below. The proper time interval
Δt is given as Δz=cβγ, where Δz is the distance between
the decay vertices of the signal B meson and of the
accompanying B meson. The B̄0 → Dð�Þ

CPh
0 signal decay

vertex is reconstructed by a kinematic fit including
information about the IP position. For Belle, an iterative
hierarchical vertex reconstruction algorithm following a
bottom-up approach starting with the final state particles
is applied, while for BABAR the vertex reconstruction
includes simultaneously the complete B meson decay
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tree including all secondary decays. In the kinematic fits,
the invariant masses of π0, η, ω, and DCP candidates are
constrained to their nominal values [22]. The decay vertex
and the b-flavor content of the accompanying B meson
areestimatedfromreconstructeddecayproductsnotassigned
to the signal B meson. The b-flavor content is inferred by
flavor-tagging procedures described in Refs. [6,34]. The
applied algorithms account for different signatures such
as the presence and properties of prompt leptons, charged
kaons, and pions originating from the decay of the accom-
panying B meson, and assign a flavor and an asso-
ciated probability. Selection requirements on the quality of
the reconstructeddecayverticesand theΔtmeasurementsare
applied.
The CP violation measurement is performed by maxi-

mizing the log-likelihood function

lnL ¼
X
i

lnPBABAR
i þ

X
j

lnPBelle
j ; ð2Þ

where the indices i and j denote the events reconstructed
from BABAR and Belle data, respectively. The probability
density function (PDF) describing the Δt distribution for
BABAR is defined by

PBABAR ¼
X
k

fk

Z
½PkðΔt0ÞRkðΔt − Δt0Þ�dðΔt0Þ; ð3Þ

and for Belle by

PBelle ¼ ð1 − folÞ
X
k

fk

Z
½PkðΔt0ÞRkðΔt − Δt0Þ�dðΔt0Þ

þ folPolðΔtÞ; ð4Þ

where the index k represents the signal and background
PDF components. The symbol Pk denotes the PDF describ-
ing the proper time interval of the particular physical
process, and Rk refers to the corresponding resolution
function. The fractions fk are evaluated on an event-by-
event basis as a function of Mbc. Belle treats outlier events
with large Δt using a broad Gaussian function in the PDF
component Pol with a small fraction of fol ≈ 2 × 10−4,
while BABAR includes outlier effects in the resolution
function. The signal PDF is constructed from the decay rate
in Eq. (1), including the effect of incorrect flavor assign-
ments and convolution with resolution functions to account
for the finite vertex resolution. The models of the Δt
resolution effects at BABAR and Belle follow different
empirical approaches and are described in detail in
Refs. [6,33]. The background PDFs for BABAR and
Belle are composed of the sum of a Dirac delta function
to model prompt background decays and an exponential
PDF for decays with effective lifetimes. The background
PDF is convolved with a resolution function modeled as the
sum of two Gaussian functions. The background param-
eters are fixed to values obtained by fits to the events in the
Mbc < 5.26 GeV=c2 sidebands.
The combined BABAR and Belle measurement is per-

formed by maximizing Eq. (2) for events in the
5.27 GeV=c2 < Mbc < 5.29 GeV=c2 signal region. The
values of τB0 and Δmd are fixed to the world averages
[22]. The free parameters in the fit are S and C. The result is

−ηfS ¼ þ0.66� 0.10ðstatÞ � 0.06ðsystÞ;
C ¼ −0.02� 0.07ðstatÞ � 0.03ðsystÞ. ð5Þ

The linear correlation between −ηfS and C is −4.9%.
Through comparison of the log-likelihood of the fit to the
distribution from an ensemble test performed with input
from the data distributions, a p-value of 0.46 is obtained.
The flavor-tagged proper time interval distributions and
projections of the fit are shown in Fig. 2.
The evaluation of the systematic uncertainties in the

CP violation parameters follows standard approaches of
the BABAR and Belle experiments described in detail in
Refs. [6,7,35]; the results are summarized in Table II.
For the vertex reconstruction, the sources of systematic
uncertainties include the applied constraints and selection
requirements on the vertex fits of the signal B meson and
the accompanying B meson, and on the Δt fit range. These
contributions are estimated by variations of the constraints
and selection requirements. The systematic uncertainties
due to the misalignment of the silicon vertex detectors are
estimated by Monte Carlo (MC) simulations. For BABAR,
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(a) BABAR
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FIG. 1. The Mbc distributions (data points with error bars) and
fit projections (solid line) of B̄0 → Dð�Þ

CPh
0 decays for (a) BABAR

and (b) Belle. The dashed (dotted) lines represent projections of
the signal (background) fit components.

TABLE I. Summary of B̄0 → Dð�Þ
CPh

0 signal yields.

Decay mode BABAR Belle

B̄0 → DCPπ
0 241� 22 345� 25

B̄0 → DCPη 106� 14 148� 18
B̄0 → DCPω 66� 10 151� 17
B̄0 → D�

CPπ
0 72� 12 80� 14

B̄0 → D�
CPη 39� 8 39� 10

B̄0 → Dð�Þ
CPh

0 total 508� 31 757� 44
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the uncertainty of the z scale is estimated by variations of
the z scale and corresponding uncertainties. For Belle, a
possible Δt bias is estimated using MC simulations. The
systematic uncertainties due to the Δt resolution functions,

the parameterization of the Δt background PDF, the
calculation of the signal purity, the flavor-tagging, and
the physics parameters τB0 and Δmd are estimated by
variation of the fixed parameters within their uncertainties.
Fit biases are estimated using large samples of MC-
simulated signal decays. The contribution of backgrounds
that have the same final states as the reconstructed B̄0 →
Dð�Þ

CPh
0 decay modes and that can peak in the Mbc signal

region is estimated using D meson mass sidebands on data
and using generic BB̄ MC samples. These backgrounds
account for less than 8% of the signal and consist mainly
of flavor-specific decays such as partially reconstructed
B− → Dð�Þ0ρ− decays. The systematic uncertainty due to
this peaking background is estimated usingMC simulations
in which the peaking background is modeled, and the
nominal fit procedure, which neglects this peaking back-
ground, is applied. The effect of interference between
b → cūd and b̄ → ūcd̄ decay amplitudes of the accom-
panying B meson is estimated using MC simulations that
account for possible deviations from the time evolution
described by Eq. (1) [36]. Possible correlations between
BABAR and Belle are accounted for in the evaluation of the
contributions due to the physics parameters, the peaking
background, and the tag-side interference. In the MC
studies described above, the largest deviations are assigned
as systematic uncertainties. The total systematic uncer-
tainty is the quadratic sum of all contributions.
The statistical significance of the results is estimated

using a likelihood-ratio approach by computing the change
in 2 lnL when the CP violation parameters are fixed to
zero. The effect of systematic uncertainties is included by
convolution of the likelihood distributions. No significant
direct CP violation is observed. The measurement excludes
the hypothesis of no mixing-induced CP violation in

B̄0 → Dð�Þ
CPh

0 decays at a confidence level of 1–6.6 × 10−8,
corresponding to a significance of 5.4 standard deviations.
The analysis is validated by a variety of cross-checks.

The same measurement is performed for B̄0 → Dð�Þ0h0

decays with the CKM-favored D0 → K−πþ decay mode.
These decays provide a kinematically similar, high-
statistics control sample. The result agrees with the
assumption of negligible CP violation for these decays.
Measurements of the neutral B meson lifetime using

the control sample and B̄0 → Dð�Þ
CPh

0 decays yield τB0 ¼
1.518� 0.026ðstatÞ ps and τB0 ¼ 1.520� 0.064ðstatÞ ps,
respectively, in agreement with the world average τB0 ¼
1.519� 0.005 ps [22]. All measurements for the control

sample and for B̄0 → Dð�Þ
CPh

0 decays have also been
performed for data separated by experiment and by decay

mode, and yield consistent results. The results for B̄0 →

Dð�Þ
CPh

0 decays separated by experiment are sinð2βÞ ¼
0.52� 0.15ðstatÞ for BABAR and 0.83� 0.15ðstatÞ for
Belle, and the results separated by the CP content of the

TABLE II. Summary of systematic uncertainties for the time-
dependent CP violation measurement in B̄0 → Dð�Þ

CPh
0 decays

(in units of 10−2).

Source S C

Vertex reconstruction 1.5 1.4
Δt resolution functions 2.0 0.4
Background Δt PDFs 0.4 0.1
Signal purity 0.6 0.3
Flavor-tagging 0.3 0.3
Physics parameters 0.2 < 0.1
Possible fit bias 0.6 0.8
Peaking background 4.9 0.9
Tag-side interference 0.1 1.4

Total 5.6 2.5
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FIG. 2 (color online). The proper time interval distributions
(data points with error bars) for B0 tags (red) and B̄0 tags (blue)

and the CP asymmetries of B̄0 → Dð�Þ
CPh

0 decays for (a)–(b)
BABAR and (c)–(d) Belle for candidates associated with high-
quality flavor tags. The solid lines show projections of the sum of
signal and background components in the fit, while the hatched
areas show only the background components.
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final states are sinð2βÞ ¼ 0.52� 0.15ðstatÞ for CP-even
and 0.80� 0.15ðstatÞ for CP-odd.
In summary, we combine the final BABAR and Belle data

samples, totaling more than 1 ab−1 collected at the ϒð4SÞ
resonance [19,37], and perform a simultaneous analysis
of the data collected by both experiments. We observe for
the first time CP violation in B̄0 → Dð�Þ

CPh
0 decays driven

by mixing-induced CP violation. We measure sinð2βÞ ¼
0.66� 0.10ðstatÞ � 0.06ðsystÞ. This result agrees within
0.2 standard deviations with the world average of
sinð2βÞ ¼ 0.68� 0.02 [38] measured from b → cc̄s tran-
sitions, and is consistent with the measurements of b → s
penguin-mediated B meson decays [9–12] at current
precision. The presented measurement supersedes the
previous BABAR result for B̄0 → Dð�Þ

CPh
0 decays [15].
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