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Abstract. We study an infinite horizon game in which pairs of players connected in a

network are randomly matched to bargain over a unit surplus. Players who reach agreement

are removed from the network without replacement. The global logic of efficient matchings

and the local nature of bargaining, in combination with the irreversible exit of player pairs

following agreements, create severe hurdles to the attainment of efficiency in equilibrium.

For many networks all Markov perfect equilibria of the bargaining game are inefficient,

even as players become patient. We investigate how incentives need to be structured in

order to achieve efficiency via subgame perfect, but non-Markovian, equilibria. The analysis

extends to an alternative model in which individual players are selected according to some

probability distribution, and a chosen player can select a neighbor with whom to bargain.

JEL Classification Numbers: C7, D6.

Keywords: networks, bargaining, efficiency, random matching, decentralized markets,

stochastic games.

1. Introduction

In many markets buyers and sellers need to be in specific relationships in order to trade.

A relationship may be defined by the possibility of production or assembly of a customized

good (e.g., manufacturing inputs) or the provision of a specialized service (e.g., technical

support). Relationships may also encode transportation costs, social contacts, technological

compatibility, joint business opportunities, free trade agreements, etc. In such markets trans-

actions take place through a network of bilateral relationships. The structure of the network

determines the nature of competition, the set of feasible agreements, and the potential gains

from trade. As attested by Jackson (2008) in a recent book on social and economic networks,
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the influence of the network structure on trading outcomes in non-cooperative decentralized

settings is a largely unexplored topic. The present paper and Manea (2011) attempt to fill

this gap for two distinct strategic environments using non-cooperative models of decentralized

bilateral bargaining in networks.

We consider these issues in a simple and natural setting in which bilateral bargaining

opportunities arrive at random. The model’s basic structure is in the spirit of models of

search (Pissarides (1979), Diamond (1982), Mortensen (1982), Rogerson, Shimer and Wright

(2005)) and of bargaining in markets (Rubinstein and Wolinsky (1985, 1990), Gale (1987)).

Our modeling strategy is to focus on the role of network structure—and in that spirit we

allow for quite general networks—while keeping other elements of the model relatively simple.

The setting is as follows. We consider a network in which each pair of players connected

by a link can jointly produce a unit surplus. Different trading processes may be associated

with a given network structure. We consider two classes of processes, both of which generate

infinite horizon discrete time bargaining games. In the first model, in each period a link is

selected according to some probability distribution, and one of the two matched players is

randomly chosen to make an offer to the other player specifying a division of the unit surplus

between themselves. If the offer is accepted, the two players exit the game with the shares

agreed on. If the offer is rejected, the two players remain in the game for the next period.

Bargaining proceeds to the next period on the subnetwork induced by the set of remaining

players. We assume that all players have perfect information of all the events preceding any

of their decision nodes in the game. The players have a common discount factor.

In the second model we assume that players, rather than links, are selected probabilistically

and that a selected player can activate a link with any of his neighbors. Once the link is

activated, either player is chosen with equal probability to propose a share exactly as in the

former model. Apart from this difference in the matching technology, the two models are

identical. The models are of independent substantive interest, and their consideration yields

as a side benefit a robustness check on the constructions we develop.

We can think of the models as a stylized account of the interaction between agents who

have idiosyncratic supply and demand for some type of good or service. For instance, a

particular contractor may have a process for sale (e.g., battery production) that only works

for a subset of the firms in an industry (laptop manufacturing). Another contractor’s process
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Figure 1. Dynamic efficiency

may only work for another subset and so on. In contrast to network structures that have

received much attention in earlier related work, in our setting some agents may act as both

buyers and sellers for other agents in the network. In this context one may ask: How are

the relative strengths of the firms affected by the pattern of compatibilities (that is, the

network structure)? Which partnerships are possible in equilibrium and on what terms? Is

an efficient allocation of the processes achievable in equilibrium?

In general, whether or not some particular market mechanism is efficient is a central

question in economics. This issue has received much attention in the context of models of

decentralized trade in markets with random matching. What can be said in our model? In

our setting the structure of the network determines a maximum number of feasible matches

or total surplus that can be attained by a central planner. In order to achieve the maximum

total surplus, some pairs of connected players may need to refrain from reaching agreements

in various subgames. This requires that agreements arise only across specific “efficient”

links, and that particular players be “saved” to trade with some players who might oth-

erwise become isolated. The latter aspect of the model is crucial: efficiency entails global

consideration of the entire network structure whereas bilateral interactions are, of course,

local. A further problem is that the notion of efficiency is dynamic and history dependent.

Whether a link is efficient or not depends upon what links have already been removed (as a

result of earlier agreements). This makes it difficult to attain efficiency and also complicates

the welfare analysis of equilibria.

These issues are illustrated by the network in Figure 1. The maximum total surplus of

3 units in this network can be achieved by two efficient matchings: {(1, 2), (3, 4), (5, 6)}
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and {(1, 6), (2, 3), (4, 5)}. The link (2, 4) does not belong to any efficient matching, thus

an agreement between players 2 and 4 is inefficient. All other links are part of efficient

matchings, and hence an agreement across any of these links at the initial stage does not

preclude a welfare maximizing outcome. However, prior agreements across some efficient

links may turn formerly efficient links into inefficient ones. For instance, both links (1, 2)

and (4, 5) are efficient in the initial network, but if one of them is removed as a result

of an agreement between the corresponding players, the other becomes inefficient in the

subnetwork which remains. In general, along histories that involve only efficient agreements,

the inefficiency of a link at some stage is perpetuated at all later stages, while links that are

initially consistent with efficiency may become inefficient in the future.

Consider now the 4-player network illustrated in Figure 2, which will be discussed in detail

later. In this network efficiency requires that player 1 reach agreement with player 2, and

player 3 with player 4, resulting in the maximum total surplus of two units. In particular,

it is not efficient for player 2 to reach agreements with players 3 or 4. Consider the game

induced by this network where each link is equally likely to be selected for bargaining as long

as no agreement has been reached. We first examine Markov perfect equilibria (MPEs). In

our setting, the natural notion of a Markov state is given by the network induced by players

who did not reach agreement, along with nature’s selection of a link and a proposer.

One can show that for every discount factor there is a unique MPE in which agreement

obtains with (conditional) probability 1 across every link. Then with probability 1/2 one

of the inefficient links (2, 3) and (2, 4) is selected for bargaining in the first period, and

yields an agreement that leaves the other two players disconnected. In this event players do

not coordinate their agreements to generate a total surplus of two units, and only one unit

of surplus is created on the equilibrium path. Thus the (unique) MPE in this example is

inefficient, even asymptotically as players become patient.

Might we attain efficiency via the use of non-Markovian strategies? The answer to this

question is far from clear as has been hinted at by the discussion above regarding the tension

between the global structure of efficiency and the local nature of bilateral interactions. This

issue is particularly acute because if a pair of agents consummates an inefficient trade then

they disappear from the network and are thus immune to any future sanctions. Nevertheless,

we are able to show how incentives may be structured in order to achieve efficiency. Our
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Figure 2. Asymptotically inefficient MPEs

equilibrium construction, of necessity, entails (subgame perfect) non-Markovian behavior

and the use of punishments and rewards.

Players who resist the temptation to reach inefficient agreements are rewarded by their

neighbors, and players who do not conform to the rewarding procedure are punished via

the threat of inefficient agreements that result in their isolation. The exact design of the

incentives is delicate because of the evolving nature of the network structure as punish-

ments and rewards are underway. The analysis entails showing precisely when and how the

ultimate sanction, which prescribes the isolation of “deviators” from the network, can be

implemented, while maintaining incentives in subgames that arise in the process of delivering

the punishment.

These issues arise, albeit in a very manageable way, even in the relatively uncomplicated

example of Figure 1. In that network, the presence of the inefficient link (2, 4) enables

players 2 and 4 to extract “rewards” (relative to a more symmetric split) from players 1

and 3, and respectively 3 and 5. (Such rewards are necessary in order to prevent players 2

and 4 from reaching an inefficient agreement with each other.) Punishing player 1 for not

rewarding 2 entails inducing players 5 and 6, and then 2 and 4, to reach agreements. This

sequence of agreements isolates player 1 from the network. It may be necessary to “force”

an agreement between players 5 and 6 along the latter punishment path via the following

threat: if 5 and 6 fail to reach agreement when matched to bargain with each other, then

player 5 will eventually be isolated (in some contingencies). In turn, the isolation of 5 may

be implemented by incentive compatible agreements across the links (1, 6) and (2, 4), in the

event that these links are selected for bargaining.
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Since the network structure evolves as players reach agreements and links are removed, our

bargaining game is not a repeated game but a stochastic game. While there has been earlier

analysis of general classes of stochastic games—for example, Dutta (1995)—the results from

this literature do not apply to our setting. In particular, Dutta assumes that the feasible

payoffs are independent of the initial state. This assumption is robustly violated in our

setting, since players who reach agreement are permanently removed from the network.

The irreversible evolution of the network structure as play proceeds makes it difficult

to check incentives. For that reason, our approach is to build as much as possible on an

implicitly defined Markov strategy. As MPEs may be inefficient, we consider an MPE of a

modified game which differs from the original game primarily in that it prohibits inefficient

agreements. This automatically accounts for most of the relevant incentives in the original

game. The incentives to deviate that arise from the modifications of the original game are

the only ones we need to address via explicit constructions of rewards and punishments.

The reward and punishment paths are calibrated to the network under consideration. As

remarked in the conclusion, many aspects of this argument are new and potentially useful

in other network or, more generally, stochastic game settings.

We now turn to some related literature. Properties of MPEs in our main model are

of independent interest. We explore these in a companion paper (Abreu and Manea 2009).

Another related paper, Manea (2011), assumes that players who reach agreement are replaced

by new players at the same positions in the network. Thus the network structure is stationary.

In the current paper, by contrast, the evolution of the network plays a central role.

There is an extensive literature on bargaining in markets starting with Rubinstein and

Wolinsky (1985). Important subsequent papers include Gale (1987), Binmore and Herrero

(1988), and Rubinstein and Wolinsky (1990). The network structure underlying these models

of bargaining in markets is very particular. Specifically, all agents belong to one of two

groups, buyers or sellers, and every buyer is connected to every seller. In consonance with

the results obtained in this literature, for such networks, the payoffs in any MPE of our

bargaining game converge to the competitive equilibrium outcome as players become patient.

However, our interest here is in arbitrary networks. As we demonstrate, for some networks,

even efficiency may be unattainable in an MPE (in the patient limit).
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Polanski (2007) considers a related model in which the matching technology is fundamen-

tally different and efficient matchings are guaranteed by assumption. Kranton and Minehart

(2001) and Corominas-Bosch (2004) also study trade in networks, but their models are based

on centralized simultaneous auctions. In contrast to the preceding papers, we focus on de-

centralized bargaining. Further discussion and additional references can be found in Manea

(2011).

The rest of the paper is organized as follows. Section 2 introduces the main model. In

Section 3 we establish the existence of asymptotically efficient equilibria. Section 4 extends

the analysis to the alternative model, and Section 5 concludes.

2. Framework

Let N denote the set of n players, N = {1, 2, . . . , n}. A network is an undirected

graph H = (V,E) with set of vertices V ⊂ N and set of edges (also called links) E ⊂

{(i, j)|i 6= j ∈ V } such that (j, i) ∈ E whenever (i, j) ∈ E. We identify the links (i, j) and

(j, i), and use the shorthand ij or ji instead. We say that player i is connected in H to

player j if ij ∈ E. We often abuse notation and write i ∈ H for i ∈ V and ij ∈ H for ij ∈ E.

A player is isolated in H if he has no links in H. A network H ′ = (V ′, E ′) is a subnetwork

of H if V ′ ⊂ V and E ′ ⊂ E. A network H ′ = (V ′, E ′) is the subnetwork of H induced

by V ′ if E ′ = E ∩ (V ′ × V ′). We write H 	 V ′′ for the subnetwork of H induced by the

vertices in V \ V ′′. We assume that for every network H with a non-empty set of links there

is an associated probability distribution over links (pij(H))ij∈H with pij(H) > 0,∀ij ∈ H.

No additional constraints are imposed on the function p for a given H or across subnetworks

H.

Let G be a fixed network with vertex set N . A link ij in G is interpreted as the ability

of players i and j to jointly generate a unit surplus.1 Consider the following infinite horizon

bargaining game generated by the network G. Let G0 = G. Each period t = 0, 1, . . ., if the

set of links of Gt is empty, then the game ends; otherwise, a single link ij in Gt is selected with

probability pij(Gt) and one of the players (the proposer) i and j is chosen randomly (with

equal conditional probability) to make an offer to the other player (the responder) specifying

a division of the unit surplus between themselves. If the responder accepts the offer, the two

1We do not exclude networks in which some players are isolated.
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players exit the game with the shares agreed on. If the responder rejects the offer, the two

players remain in the game for the next period. In period t + 1 the game is repeated with

the set of players from period t, except for i and j in case period t ends in agreement, on the

subnetwork Gt+1 induced by this set of players in G. Hence Gt+1 = Gt 	 {i, j} if players i

and j reach an agreement in period t, and Gt+1 = Gt otherwise. All players share a discount

factor δ ∈ (0, 1). The bargaining game is denoted Γδ(G).

We assume that each player has perfect information of all the events preceding any of his

decision nodes in the game. We restrict our attention to subgame perfect Nash equilibria

of Γδ(G). We are also interested in Markov perfect equilibria (MPEs). These are subgame

perfect equilibria in strategies in which after any history, future behavior only depends on

the network induced by the remaining players, the link selected by nature, and the identity

of the proposer.

In Abreu and Manea (2009) we establish the existence of MPEs. We refer the reader

to that paper for (the formal proof and) an intuitive account of the main elements of the

argument.

Proposition 1. There exists a Markov perfect equilibrium of the bargaining game Γδ(G).

3. Asymptotically Efficient Equilibria

Fix a network G̃. We introduce some concepts for the purpose of studying the welfare

properties of subgame perfect equilibria of the bargaining game Γδ(G̃) for high δ. A match

of G̃ is a subnetwork of G̃ in which every player has exactly one link. The maximum total

surplus of G̃, denoted µ(G̃), is the maximum number of links in a match of G̃. An efficient

match of G̃, generically denoted by M̃ , is a match with µ(G̃) links. A link is G̃-efficient if

it is included in an efficient match of G̃, and G̃-inefficient otherwise. A player is always

efficiently matched in G̃ if he is included in every efficient match of G̃. The following

simple observation is used repeatedly below.

If ij is a G̃-inefficient link then i and j are always efficiently matched in G̃.2

2For a proof by contradiction, suppose that ij is G̃-inefficient and i is not always efficiently matched in G̃.
Then there is an efficient match M̃ of G̃ that does not include i. Another efficient match M̃ ′ of G̃ can be
obtained by deleting j’s link in M̃ (if any) and adding the link ij to M̃ . But ij ∈ M̃ ′ implies that ij is
G̃-efficient, a contradiction.
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A set of players ˜̃N in G̃ is G̃-efficiently closed if for any G̃-efficient link lm, the set {l,m}

is either contained in ˜̃N or disjoint from ˜̃N .

We measure the welfare of an equilibrium σ∗δ(G̃) of Γδ(G̃) as the sum of expected utilities

of all players in that equilibrium, denoted W (σ∗δ(G̃)). Since each player can only be involved

in one transaction, each transaction yields a unit surplus, and only connected pairs of players

can transact, for every δ ∈ (0, 1) and any equilibrium σ∗δ(G̃) of Γδ(G̃), the welfare W (σ∗δ(G̃))

cannot exceed µ(G̃). For δ ∈ (0, 1), a family of equilibria (σ∗δ(G̃))δ∈(δ,1) corresponding to

the games (Γδ(G̃))δ∈(δ,1) is asymptotically efficient if limδ→1W (σ∗δ(G̃)) = µ(G̃).

To generate the maximum total surplus µ(G̃) in Γδ(G̃) as players become patient, pairs

of players connected by links that are inefficient in the induced subnetworks in various

subgames need to refrain from reaching agreements. However, providing incentives against

agreements that are collectively inefficient is a difficult task. Some players may be concerned

that passing up bargaining opportunities may lead to agreements involving their potential

bargaining partners which undermine their position in the network in future bargaining

encounters. Indeed, one can easily find networks for which all MPEs of the bargaining game

are asymptotically inefficient as players become patient.

The network G4 illustrated in Figure 3, with a uniform probability distribution describ-

ing the selection of links for bargaining, induces the simplest bargaining game that does

not possess asymptotically efficient MPEs. In Abreu and Manea (2009) we prove that for

every δ ∈ (0, 1), the game Γδ(G4) has a unique MPE. In the MPE agreement occurs with

probability 1 across every link selected for bargaining in the first period. The limit MPE

payoffs are found to be 11/56 ≈ .196 for player 1, 5/8 = .625 for player 2, and 19/56 ≈ .339

for players 3 and 4. The limit MPE welfare is 11/56+5/8+2×19/56 = 3/2, which is smaller

than the maximum total surplus µ(G4) = 2. The set of MPEs is not asymptotically efficient

because, for every δ ∈ (0, 1), in the unique MPE of Γδ(G4), with probability 1/2 one of the

Γδ(G4)-inefficient links (2, 3) and (2, 4) is selected for bargaining in the first period, leading

to an agreement that leaves the other two players disconnected. In this event players do not

coordinate their agreements in order to generate the maximum total surplus of two units,

and only one unit of surplus is created on the equilibrium path.
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Figure 3. Asymptotically inefficient MPEs for the bargaining game on G4

We seek to show that for every network structure G the bargaining game Γδ(G) admits

asymptotically efficient equilibria. For this purpose, we introduce a new bargaining game,

Γ̄δ(G), which is a modification of the benchmark bargaining game Γδ(G) that in equilibrium

“prohibits” agreements across inefficient links in any subgame by adding a fine of −1 to the

regular payoffs of any player involved in such an agreement. In addition, due to the details

of our overall equilibrium construction, for particular subnetworks that may be induced by

subgames, if certain efficient links and proposers are chosen, Γ̄δ(G) “imposes” agreements

in equilibrium via fining the proposer with a payoff of −1 in case his offer is rejected. In all

other respects Γ̄δ(G) is identical to Γδ(G).

It is clear that the artificial payoff modifications induce the desired disagreements and

agreements in any equilibrium of Γ̄δ(G). In the event that G has multiple efficient matchings,

our definition of Γ̄δ(G) does not preclude any of these matchings from emerging as the

outcome of a sequence of agreements that do not involve fines. The key idea is to employ

MPEs of Γ̄δ(G) in the construction of non-Markovian asymptotically efficient equilibria for

Γδ(G) based on rewards and punishments.

The following concept is necessary for the definition of Γ̄δ(G) (and for the rest of the

equilibrium construction). A network G̃ is perfect if in G̃ all non-isolated players are

always efficiently matched.3 In the modified bargaining game Γ̄δ(G) generated by the

network G, the moves of nature and the strategies of the players are identical to those in

the original game Γδ(G). Only the payoff functions are modified in particular situations as

follows. Suppose that the players remaining in the game at time t induce the network Gt

and that the link ij is selected for bargaining, with i being chosen to make an offer to j. If j

3For example, the network G4 is perfect, while the one obtained by removing the link (3, 4) from G4 is not.
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accepts the offer and ij is Gt-inefficient then i and j obtain the shares agreed on minus 1. If

j rejects the offer and ij is Gt-efficient, and in addition the conditions (1) Gt is perfect and

(2) j has a Gt-inefficient link are satisfied, then i receives a time t payoff of −1.4

As in the case of the benchmark bargaining game Γδ(G), a Markov perfect equilibrium

for the modified bargaining game Γ̄δ(G) is defined as a subgame perfect equilibrium in

strategies that only condition on each history of past bargaining encounters through the

network induced by the remaining players after that history. Trivial modifications to the

proof of Proposition 1 (Abreu and Manea 2009) show existence of MPEs for Γ̄δ(G).

For each δ ∈ (0, 1), fix an MPE σ̄∗δ(G) of Γ̄δ(G). Due to the artificial payoff modifications

defining Γ̄δ(G), it must be that under σ̄∗δ(G), in any subgame that induces the network G̃,

disagreement occurs across G̃-inefficient links, and agreement obtains across G̃-efficient links

where the responder has a G̃-inefficient link if G̃ is perfect. In this sense σ̄∗δ(G) “prohibits”

agreements in the former situations and “imposes” agreements in the latter. Let G be the

set of subnetworks of G induced by the players remaining in any subgame of Γ̄δ(G) (on or

off the equilibrium path). The following definitions apply for all subnetworks G̃ ∈ G. Let

(σ̄∗δi (G̃))i∈G̃ be the MPE of Γ̄δ(G̃) determined by σ̄∗δ(G) in a subgame of Γ̄δ(G) where the

remaining players induce the network G̃, and (v∗δi (G̃))i∈G̃ be the payoffs yielded by σ̄∗δ(G̃).

We refer to the latter as the G̃-quasi-Markov payoffs.5 Denote by p∗δij (G̃) the probability

of an agreement between i and j in Γ̄δ(G̃) under σ̄∗δ(G̃).

Definition 1, Lemma 1, and Proposition 2 below, concerning limit equilibrium agreements

and payoffs in various subgames of Γ̄δ(G) under σ̄∗δ(G), are used in the construction of

asymptotically efficient equilibria for Γδ(G).

Definition 1. A sequence of discount factors (δα)α≥0 with limα→∞ δα = 1 is well-behaved if

the sequences (p∗δαij (G̃))α≥0 and (v∗δαk (G̃))α≥0 converge as α→∞ for every link ij and player

k in G̃ and for all G̃ ∈ G.

A sequence of discount factors that converges to 1 is well-behaved if the payoffs and

agreement probabilities under σ̄∗δ(G) across all subgames of Γ̄δ(G) converge for δ along the

4With this payoff modification some players may receive non-zero payoffs in more than one period. However,
this cannot happen in equilibrium.
5Note that the “quasi-” qualification alludes to the modification of the bargaining game from Γδ(G̃) to Γ̄δ(G̃),
and not to any alteration in the Markov solution concept.
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sequence. The statements of Lemma 1 and Proposition 2 below, as well as Lemmata 2-6 in

Appendix A, apply to each (fixed) subnetwork G̃ ∈ G and every (fixed) well-behaved sequence

of discount factors (δα)α≥0. The corresponding limits of (v∗δαi (G̃))α≥0 and (p∗δαij (G̃))α≥0 as

α→∞ are denoted by v∗i (G̃) and p∗ij(G̃), respectively.6 The proofs appear in Appendix A.

Lemma 1. Suppose that ˜̃N is a G̃-efficiently closed set of players who are not all isolated

in G̃. Then there exist two players i, j ∈ ˜̃N with ij ∈ G̃ and p∗ij(G̃) = pij(G̃).

The interpretation of the equality p∗ij(G̃) = pij(G̃) from Lemma 1 is that when i and j

are matched to bargain in the first period of Γ̄δα(G̃), they reach agreement almost surely as

α → ∞. We obtain the corollary below by setting ˜̃N equal to the set of vertices of G̃ in

Lemma 1.

Corollary 1. Suppose that G̃ is a network with a non-empty set of links. Then there exists

a link ij ∈ G̃ such that p∗ij(G̃) = pij(G̃) > 0.

Remark 1. The definition of the modified bargaining game and the iterative application of

Corollary 1 lead to the conclusion that for any π < 1, there exists an integer T such that

the limit probability as α→∞ that Γ̄δα(G) ends and an efficient matching of G arises in T

(or fewer) periods exceeds π. It follows that

lim
α→∞

∑
i∈N

v∗δαi (G) = µ(G).

Thus a family of equilibria (whose existence we intend to establish) of Γδα(G) yielding the

payoffs v∗δα(G) (for sufficiently large α) must be asymptotically efficient.

The next result establishes that players who are always efficiently matched in G̃ are rela-

tively strong in Γ̄δ(G̃), in the sense that their limit G̃-quasi-Markov payoffs are greater than

or equal to 1/2.

Proposition 2. Suppose that player i is always efficiently matched in G̃. Then v∗i (G̃) ≥ 1/2.

If additionally G̃ is a perfect network, then v∗i (G̃) = 1/2.

We are now prepared to state and prove the main result.

6Note that the Bolzano-Weierstrass theorem implies that any sequence of discount factors converging to 1
has a well-behaved subsequence (relevant for the aforementioned results).
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Theorem 1. There exists δ so that for δ > δ the bargaining game Γδ(G) admits an equi-

librium σ∗δ(G) with expected payoffs identical to the G-quasi-Markov payoffs v∗δ(G). The

family of equilibria (σ∗δ(G))δ∈(δ,1) is asymptotically efficient.

If the first part of the theorem were not true, then we could find a well-behaved sequence of

discount factors (δα)α≥0 converging to 1 such that Γδα(G) does not admit an equilibrium with

expected payoffs v∗δα(G) for any α ≥ 0 (see footnote 6). Fix such a sequence, and denote

the limits of (v∗δαi (G̃))α≥0 and (p∗δαij (G̃))α≥0 as α→∞ by v∗i (G̃) and p∗ij(G̃), respectively, for

all relevant i, j, G̃. In the proof below, we obtain a contradiction by constructing a strategy

profile σ∗δα(G) which, for sufficiently large α, constitutes an equilibrium of Γδα(G) with

expected payoffs v∗δα(G).

For each α ≥ 0, σ∗δα(G) is based on the MPE σ̄∗δα(G) of the modified bargaining game

Γ̄δα(G). By definition σ̄∗δα(G) satisfies the incentive constraints for Γ̄δα(G), and we wish to

exploit this fact in our equilibrium construction for Γδα(G). However, Γ̄δα(G) differs from

Γδα(G) in subgames with induced subnetwork G̃ by payoff modifications that in equilibrium

(1) “prohibit” agreements across G̃-inefficient links;

(2) “impose” agreements, when G̃ is perfect, across G̃-efficient links where the responder

has a G̃-inefficient link.

If the equilibrium σ∗δα(G) is to be constructed “on top of” σ̄∗δα(G) we need to modify the

latter in a non-Markovian fashion to make disagreement incentive compatible in case (1) and

agreement incentive compatible in case (2) without recourse to artificial payoff modifications.

We achieve this by rewarding players for resisting “tempting” offers across inefficient links

and conversely by punishing the particular players who do not conform to the prescribed

rewarding procedure or do not achieve imposed agreements as the case might be.

Consider four players h, i, j, k such that ij is G̃-inefficient and there is an efficient match of

G̃ that contains the links ih and jk. Such configurations are central to the proof of Theorem

1. Assume for the moment that h, i, j, k are the only players not isolated in G̃. Note that

h and k are not linked in G̃ because ij is G̃-inefficient. Hence an agreement between i and

j would leave h and k isolated. Our equilibrium construction for Γδα(G̃) requires that if i

makes a tempting offer to j then j refuses (point (1) above), and if k is selected to make an

offer to j in the next round then k gives j a reward (relative to v∗δαj (G̃)). We incentivize k to
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reward j via the following threat. If k does not provide the prescribed reward and the link ij

is selected for bargaining in the subsequent round then i and j forge an agreement. Lemma

7 in Appendix A shows that δα(v∗δαi (G̃) + v∗δαj (G̃)) < 1, so in the absence of punishments

and rewards relative to the G̃-quasi-Markov payoffs, players i and j have incentives to follow

through with their threat. If the link ij is not selected in the next round, then play reverts

to the pre-deviation regime, which (if followed) leads to the quasi-Markov payoffs. Of course,

an agreement between i and j imposes a severe loss on k (isolation yields zero payoff), which

outweighs the modest gift he was originally supposed to give j.7

However, the approach sketched above is difficult to implement in general as h, i, j, k may

be embedded in a complex, larger network G̃. We demonstrate that a particular series

of equilibrium agreements trims G̃ down to a perfect network that contains h, i, j, k. Our

construction relies on Proposition 2, which implies that in the game Γδα(G̃) the temptation

(relative to the G̃-quasi-Markov payoffs) of an agreement between i and j—measured by

1− δα(v∗δαi (G̃) + v∗δαj (G̃))—and the reward for j in excess of δαv
∗δα
j (G̃) sufficient to deter the

agreement vanish as α→∞. Furthermore, rewards and punishments are administered only

in subgames where all players have limit quasi-Markov payoffs of 1/2 as α → ∞. Hence it

suffices to reward j and punish k only along some histories which arise with positive limit

probability. The role of “imposed” agreements (point (2) above) is to ensure that k makes

an acceptable offer to j following these histories regardless of whether i tempted j. Then i

cannot manipulate the distribution over agreements by making unacceptable offers to j that

are tempting with respect to j’s quasi-Markov payoff and does not have incentives to set off

the reward procedure using such offers.

It remains to show that it is possible to punish k with isolation if he does not offer j the

prescribed reward. This is implemented by further trimming the network down to a situation

where h, i, j, k are the only non-isolated players. Finally, we need to provide incentives

for agreements across links that are trimmed to facilitate k’s isolation and for “imposed”

agreements. We achieve this by a similar process of isolating the relevant deviator, who

is now cast in the role of player k above and so on, with the continuing threat of new

deviators replacing old deviators. The exact design of punishment and reward paths and the

7As usual, it is sufficient to consider one-shot incentives to deviate.
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verification of equilibrium incentives are delicate and account for much of the complexity of

the argument, to which we turn next.

Proof. After any history that induces a particular network G̃, the constructed equlibrium

may fall into one of three types of regimes. In the default regime for G̃ behavior conforms

to σ̄δα(G̃). The i tempted j regime for G̃ rewards a player j in case he rejects a tempting

offer (relative to his G̃-quasi-Markov payoff) from i when ij is a G̃-inefficient link. The

j punishes k regime for G̃ penalizes player k and benefits player j (relative to their

corresponding G̃-quasi-Markov payoffs) in case k refuses to follow some behavior prescribed

by either of the three regimes (e.g., rewarding j in the i tempted j regime for G̃ or reaching

an imposed agreement with j in the default regime for G̃). The definitions of the latter two

regimes are restricted to sets of G̃, i, j and respectively G̃, j, k left to be specified.

Set

ε :=

(
min

lm∈H∈G

plm(H)

2

)n/2
.

We later argue that the payoffs delivered by the three regimes are as follows. The de-

fault regime for G̃ yields payoffs identical to the G̃-quasi-Markov payoffs v∗δα(G̃). The i

tempted j regime for G̃ delivers a payoff greater than 1/2 + ε3 to j for large α and a

payoff identical to the G̃-quasi-Markov payoff v∗δαi (G̃) to i. The j punishes k regime for

G̃ provides payoffs smaller than 1/2− ε2 to k and larger than 1/2 + ε2 to j for large α.

In our construction, first period play is according to the default regime for G. The

default regime is, in equilibrium—i.e., when players do not deviate—an absorbing regime.

Consequently strategies in the default regime for G̃ determine a distribution over bargaining

outcomes in Γδα(G̃) identical to the distribution induced by the MPE σ̄∗δα(G̃) in Γ̄δα(G̃) and

yield payoffs equal to the G̃-quasi-Markov payoffs v∗δα(G̃). Moreover, in the default regime,

deviations other than those arising in the cases (1) and (2) above are ignored. That is, they

do not result in a change of regime. These facts greatly simplify the checking of incentives

below.

In the default regime for G̃ strategies are as follows. Suppose i is selected to make an

offer to j. If ij is G̃-efficient, then the regime specifies that i and j behave according to the

first period strategies induced by σ̄∗δα(G̃) in Γ̄δα(G̃). If in addition G̃ is perfect and j has a

G̃-inefficient link (corresponding to the “imposed” agreements from case (2) above) and an
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offer from i smaller than δαv
∗δα
j (G̃) is rejected by j, then play switches to the j punishes

i regime for G̃. If ij is G̃-inefficient with v∗i (G̃) + v∗j (G̃) > 1, then the regime specifies

that i offer 0 and j accept only offers greater than δαv
∗δα
j (G̃). If ij is G̃-inefficient with

v∗i (G̃) + v∗j (G̃) ≤ 1 (effectively corresponding to the “tempting” circumstances of case (1)

above), then the regime specifies that i offer 0 and j accept only offers greater than or equal

to δα(1/2 + ε3); following any offer from i in the interval (0, δα(1/2 + ε3)) rejected by j play

switches to the i tempted j regime for G̃. The two new regimes are defined below.

Players do not have incentives to make one shot deviations in Γδα(G̃) from the behavior

prescribed by the default regime for G̃ in bargaining encounters for which no action can lead

to an exit from the regime. To see this, recall that σ̄∗δα(G̃) is an MPE of Γ̄δα(G̃) with payoffs

v∗δα(G̃), and compliance with the default regime for G̃ also yields payoffs v∗δα(G̃). For large

α, this includes the case of G̃-inefficient links ij with v∗i (G̃) + v∗j (G̃) > 1. For such i and

j, player j’s response is optimal because rejection of any offer leads to the default regime

for G̃, where his continuation payoff is δαv
∗δα
j (G̃). Player i does not have incentives to make

an acceptable offer because any agreement would obtain him less than 1− δαv∗δαj (G̃), while

disagreement leads to the default regime for G̃ where his continuation payoff is δαv
∗δα
i (G̃).

The condition v∗i (G̃) + v∗j (G̃) > 1 implies that 1− δαv∗δαj (G̃) < δαv
∗δα
i (G̃) for large α.

We next address incentives in Γδα(G̃) for the default regime for G̃ in bargaining encounters

that lead to transitions away from the regime. Consider first the case in which i is “forced” to

make an acceptable offer to j (i.e., G̃ is perfect, ij is G̃-efficient, and j has a G̃-inefficient link).

Note that σ̄∗δα(G̃) must specify that i offer δαv
∗δα
j (G̃) to j and j accept with probability 1 any

offer at least as large. By Proposition 2, since G̃ is a perfect network, limα→∞ δαv
∗δα
j (G̃) =

1/2. For large α, player j has incentives to follow the behavior prescribed by the default

regime for G̃ since rejection of offers smaller than δαv
∗δα
j (G̃) leads to the j punishes i

regime for G̃ with payoff larger than 1/2+ε2, while rejection of offers greater than or equal

to δαv
∗δα
j (G̃) yields the default regime for G̃ payoff of δαv

∗δα
j (G̃). For large α, player i has

incentives to follow the behavior prescribed by the default regime for G̃ because offers larger

than or equal to δαv
∗δα
j (G̃) are accepted, while smaller offers are rejected leading to the j

punishes i regime for G̃ with payoff smaller than 1/2− ε2.

Consider now the case in which i is selected to make an offer to j, when ij is G̃-inefficient

with v∗i (G̃) + v∗j (G̃) ≤ 1. As ij is G̃-inefficient, i and j are always efficiently matched in G̃,
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and thus v∗i (G̃), v∗j (G̃) ≥ 1/2 by Proposition 2. Consequently, v∗i (G̃) = v∗j (G̃) = 1/2. For

large α, player j has incentives to reject any offer in (0, δα(1/2 + ε3)) from player i, since by

rejecting such offers j obtains a discounted payoff greater than δα(1/2+ε3) in the i tempted

j regime for G̃. Player j has incentives to accept offers greater than or equal to δα(1/2+ε3)

from i because rejection of such offers results in a continuation payoff of δαv
∗δα
j (G̃), which is

less than δα(1/2+ε3) for large α. Player i cannot (strictly) benefit from making unacceptable

offers to j that trigger the i tempted j regime for G̃ since his expected payoff in that

case is δαv
∗δα
i (G̃). Also, i does not have incentives to make acceptable offers to j for large α

because δαv
∗δα
i (G̃) > 1− δα(1/2 + ε3).

The i tempted j regime for G̃ is defined for ij ∈ G̃ ∈ G such that ij is G̃-inefficient

with v∗i (G̃) = v∗j (G̃) = 1/2. For such i, j, G̃, Lemma 4 from Appendix A establishes the

existence of a sequence of links l1m1, . . . , ls̄ms̄ in G̃ 	 {i, j}, with associated subnetworks

G̃s := G̃	{l1,m1, . . . , ls−1,ms−1}, such that p∗lsms(G̃s) = plsms(G̃s) for s = 1, . . . , s̄ and G̃s̄+1

is perfect. Clearly, j is always efficiently matched in G̃s̄+1 and must have a G̃s̄+1-efficient

link to a player k ( 6= i). We add the link ls̄+1ms̄+1 with ls̄+1 = k,ms̄+1 = j to the sequence.

Player j is rewarded by player k in period s̄ + 1 of the regime only if nature selects ls to

make an offer to ms in period s of the regime for each s = 1, . . . , s̄ + 1. The reward path

is described by the history where in period s, ls offers δαv
∗δα
ms (G̃s) for s ≤ s̄, ls̄+1 = k offers

δα(1/2 + ε2) to ms̄+1 = j for s = s̄+ 1, and player ms accepts the offer in each case. For any

first instance s of the regime in which the play of nature or of players ls and ms deviates

from the reward path in ways different from the ones emphasized below, strategies revert to

the default regime for the corresponding subgame.

In the i tempted j regime for G̃ strategies are as follows. Suppose ls is selected to

make an offer to ms in period s of the regime. For all s ≤ s̄, players ls and ms behave

according to the first period strategies induced by σ̄∗δα(G̃s) in Γ̄δα(G̃s). Then behavior on

and off the reward path is identical to play in the corresponding default regime. Thus ls and

ms have incentives to follow the prescribed behavior in period s of the i tempted j regime

for G̃ because they have in the default regime for G̃s.

Period s̄ + 1 of the regime specifies that ls̄+1 = k offer δα(1/2 + ε2) and ms̄+1 = j accept

only offers at least as large. If k makes an offer smaller than δα(1/2 + ε2) that j rejects, then

k is punished by switching to the j punishes k regime for G̃s̄+1 (the regime is well-defined
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because ij is G̃s̄+1-inefficient and jk is G̃s̄+1-efficient). For large α, it is optimal for k to

offer δα(1/2 + ε2) to j and for j to reject smaller offers because rejection of offers smaller

than δα(1/2 + ε2) leads to the j punishes k regime for G̃s̄+1 with discounted payoffs below

δα(1/2− ε2) < 1− δα(1/2 + ε2) for k and above δα(1/2 + ε2) for j. Player j has incentives to

accept offers greater than or equal to δα(1/2 + ε2) for large α because rejecting such an offer

would leave him with a limit payoff of 1/2 in the default regime for G̃s̄+1 (by Proposition 2,

as G̃s̄+1 is perfect).

The reward path and the strategies for the i tempted j regime for G̃ are constructed

so that under this regime the distribution over pairs reaching agreement for any subgame is

identical to the one in the corresponding default regime,8 and the only agreement reached on

different terms in the two regimes involves j and k on the reward path. Hence, as desired,

all players different from j and k, in particular i, receive payoffs equal to their corresponding

G̃-quasi-Markov payoffs.

For large α, the i tempted j regime for G̃ delivers a payoff greater than 1/2+ε3 to j for

the following reasons. As α→∞, the limit payoff of j is 1/2 + ε2 along the reward path of

the regime, which realizes with limit probability (strictly) larger than ε,9 and identical to the

corresponding limit quasi-Markov payoffs of at least 1/2 along any other path. The latter

fact is true since j is always efficiently matched in G̃, and also in the subnetwork induced

by any subgame off the reward path, where players behave according to the corresponding

default regime. By Proposition 2, j receives limit quasi-Markov payoffs of at least 1/2 in

such subgames.

The j punishes k regime for G̃ is defined for perfect networks G̃ ∈ G for which jk

is G̃-efficient and there exists i such that ij is G̃-inefficient. In such cases, let h denote i’s

match in an arbitrary efficient match of G̃ that includes the link jk. For the given h, i, j, k, G̃,

Lemmata 5 and 6 in Appendix A construct a sequence of links in G̃	 {h, i, j, k}

l1m1, . . . , ls1ms1 , ls1+1ms1+1, . . . , ls2ms2 ,

8Note the relevance for this conclusion of “forcing” k to make an acceptable offer to j in Γ̄δα(G̃s̄+1).
9The length of the reward path is smaller than n/2, and conditional on reaching period s − 1, the reward
path proceeds to the next period with a probability of at least p∗δαlsms(G̃s) − plsms(G̃s)/2, whose limit as
α→∞ is plsms(G̃s)/2 (Lemma 4), which is greater than or equal to minlm∈H∈G plm(H)/2.
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with associated subnetworks G̃s := G̃ 	 {l1,m1, . . . , ls−1,ms−1}, satisfying the following

conditions:

(1) lsms is G̃s-efficient for s = 1, . . . , s2

(2) ms has a G̃s-efficient link to i or j for s = 1, . . . , s1 (corresponding to Lemma 5)

(3) p∗lsms(G̃s) = plsms(G̃s) for s = s1 + 1, . . . , s2 (corresponding to Lemma 6)

(4) all players different from h, i, j, k are isolated in G̃s2+1.

Let s̄ := s2 + 1. We add the link ls̄ms̄ with ls̄ = j,ms̄ = k to the sequence.

Player k is punished by player j in period s̄ of the regime only if nature selects ls to make an

offer to ms in period s of the regime for each s = 1, . . . , s̄. The punishment path is described

by the history where in period s nature selects ls to make an offer to ms, and ls offers

min(1 − δαv∗δαls
(G̃s), δαv

∗δα
ms (G̃s)) for s = 1, . . . , s1; ls offers δαv

∗δα
ms (G̃s) for s = s1 + 1, . . . , s2;

and finally, ls̄ = j offers 1/2 − ε. The offers are accepted by ms in each case. For any first

instance s of the regime in which the play of nature or of players ls and ms deviates from

the punishment path in ways different from the ones emphasized below, strategies revert to

the default regime for the corresponding subgame.

In the j punishes k regime for G̃ strategies are as follows. Suppose ls is selected

to make an offer to ms in period s of the regime. For s = 1, . . . , s1, the regime specifies

that ls offer min(1 − δαv∗δαls
(G̃s), δαv

∗δα
ms (G̃s)) and ms accept any offer at least as large. By

definition, ms has a G̃s-efficient link to either i or j. Suppose that ms is G̃s-efficiently

linked to j (a similar construction of the strategies is needed when j is replaced by i). To

account for ms’s non-default response behavior, the punishment regime specifies that if an

offer from ls greater than or equal to min(1− δαv∗δαls
(G̃s), δαv

∗δα
ms (G̃s)) is rejected by ms, then

ms is penalized by switching to the j punishes ms regime for G̃s (the regime is well-defined

because ij is G̃s-inefficient and jms is G̃s-efficient). The optimality of ls’s offer of min(1 −

δαv
∗δα
ls

(G̃s), δαv
∗δα
ms (G̃s)) to ms given ms’s response strategy and of ms’s rejection of smaller

offers are immediately checked.10 By construction, G̃s is a perfect network, which coupled

with the second part of Proposition 2 implies that limα→∞min(1−δαv∗δαls
(G̃s), δαv

∗δα
ms (G̃s)) =

1/2. For large α, player ms has incentives to accept offers from ls greater than or equal to

10As mentioned earlier, for scenarios that are not explicitly discussed here, in particular for ones in which
ls offers ms less than min(1 − δαv∗δαls

(G̃s), δαv∗δαms (G̃s)), play reverts to the default regime for the resulting
subgame.
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min(1−δαv∗δαls
(G̃s), δαv

∗δα
ms (G̃s)) since his payoff in the j punishes ms regime for G̃s is smaller

than 1/2− ε2.

For s = s1 + 1, . . . , s2, the j punishes k regime for G̃ specifies that players ls and ms

behave according to the first period strategies induced by σ̄∗δα(G̃s) in Γ̄δα(G̃s). Incentives

for players ls and ms to follow the prescribed behavior are provided as in the default regime

for G̃.

Recall that all players different from h, i, j, k are isolated in G̃s̄ and that ij is G̃s̄-inefficient.

Consequently, h and k are not connected in G̃s̄. There are 4 possible link configurations that

players h, i, j, k may induce in G̃s̄, depending on which subset of the links ik and jh is

included in G̃s̄. One key observation proved by Lemma 7 in Appendix A and used below is

that in each of the four cases δ(v∗δi (G̃s̄) + v∗δj (G̃s̄)) < 1 for every δ ∈ (0, 1).

For the link ls̄ms̄, with ls̄ = j and ms̄ = k, the punishment regime specifies that j

offer 1/2 − ε and k accept any offer at least as large. Suppose that k rejects an offer

greater than or equal to 1/2− ε. For this deviation, the equilibrium specifies that if nature

selects i to make an offer to j next period, then i offers δαv
∗δα
j (G̃s̄) and j accepts any

offer at least as large; if j is selected to make an offer to i the strategies are analogous.

By Lemma 7, δα(v∗δαi (G̃s̄) + v∗δαj (G̃s̄)) < 1, so players i and j have incentives to reach

agreement with respect to the G̃s̄-quasi-Markov payoffs. If i and j are not matched to

bargain with each other or they deviate from the described strategies then play reverts to

the default regime for the subsequent subgame. Thus k is punished by isolation (hk /∈

G̃s̄) in the event that the link ij is selected for bargaining, which occurs with probability

pij(G̃s̄) > 2 (minlm∈H∈G plm(H)/2)n/2 = 2ε.11 As α → ∞, the limit payoff of k is 0 along

the one-period isolation path and 1/2 along any other path (Proposition 2). Hence k’s limit

expected payoff conditional on rejecting offers greater than or equal to 1/2 − ε from j is

1/2(1 − pij(G̃s̄)) < 1/2 − ε. The optimality of j’s offer of 1/2 − ε to k given k’s response

strategy and of k’s rejection of smaller offers are immediately checked (similarly to footnote

10).

For large α, the j punishes k regime for G̃ delivers payoffs smaller than 1/2− ε2 to k

and larger than 1/2 + ε2 to j for the following reasons. As α → ∞, the limit payoffs of j

and k are 1/2 + ε and respectively 1/2 − ε along the punishment path, which realizes with

11Indeed, n ≥ 4 and minlm∈H∈G plm(H)/2 < 1/2 wherever the punishment regime is defined.
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limit probability greater than ε (by an argument similar to footnote 9), and identical to the

corresponding limit quasi-Markov payoffs of 1/2 along any other path. The latter is true

since G̃ is perfect, and so is any subnetwork induced by subgames off the punishment path,

where players behave according to the corresponding default regime. By Proposition 2, j

and k receive limit quasi-Markov payoffs of 1/2 in such subgames.

The constructed strategies yield payoffs v∗δα(G) and satisfy all the equilibrium require-

ments in Γδα(G) for sufficiently large α. This contradiction with our initial assumption

completes the proof of the first part of the theorem. For the second part, note that the

constructed family of equilibria is asymptotically efficient by Remark 1. �

4. An Alternative Matching Technology

Thus far we assumed that bargaining proceeds via the probabilistic selection of links.

A natural alternative assumption is that individual players are selected according to some

probability distribution and a selected player i is free to activate a link with any of his

neighbors j. Once the link ij is activated, either i or j is chosen with equal probability to

propose a share, exactly as in the earlier model.

This alternative matching procedure may be more appealing in certain environments. For

example, one might have in mind a situation in which individual players are probabilistically

endowed with a bargaining opportunity and then proceed to contact a partner to realize

and negotiate over this opportunity. The links model, on the other hand, may be thought

of as one in which bargaining opportunities are particular to the joint capabilities of a pair

of players. Investigation of such an alternative model is of interest in itself and also allows

one to examine the robustness of the various equilibrium constructions we have developed

above.

To be specific, we analyze a model in which (a single) player i in the network G̃ is selected

to activate a link with probability pi(G̃). We assume that the latter probability is strictly

positive if and only if i is not isolated in G̃, and place no further restriction on the function

p for a given G̃ or across subnetworks G̃. Apart from the new matching technology (as

described here and above) all aspects of the model are exactly as before. We denote by Λδ(G̃)

the bargaining game generated by the network G̃, the selection function p, and the common

discount factor δ. The associated modified bargaining game, denoted Λ̄δ(G̃), is defined as
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in Section 3.12 The variables σ̄∗δ(G̃), v∗δi (G̃), p∗δij (G̃) are analogously derived from an MPE

σ̄∗δ(G) of Λ̄δ(G). Well-behaved sequences of discount factors (δα)α≥0 and the corresponding

limits v∗i (G̃) and p∗ij(G̃) as α→∞ are specified as in Definition 1.

The goal is to develop a parallel analysis for this new model. It turns out that the earlier

equilibrium constructions carry over with minimal changes in most instances. We sketch

the new proofs focusing on the parts that are significantly different. The statements of

Propositions 1 and 2, and Theorem 1 remain unaltered. Many of the proofs are essentially

unchanged. The modifications necessary for the new results are outlined in Appendix B.

5. Conclusion

Networks are ubiquitous in economic and social contexts and have been the subject of

extensive inquiry (Jackson (2008) offers an excellent overview). However, there has been

little analysis of decentralized trade in networks. Such models provide a natural framework

to investigate the connection between network structure, feasible agreements, the possibility

of efficient trade, and the division of the gains from trade. The present paper, along with

Manea (2011) and Abreu and Manea (2009), represents an initial step in this direction.

From an abstract perspective, our model is one of a stochastic game in which the set of fea-

sible payoffs changes irreversibly with the underlying state. There are no general results, not

even asymptotic ones, for such games. In our setting efficiency entails global (network) con-

siderations, whereas interactions and incentives are inherently local. Furthermore deviators

may, by reaching agreement, exit the game, thereby evading future punishment. This creates

a tension between individual optimization and global efficiency. We show how, nevertheless,

efficiency can be attained in (non-Markovian) equilibrium in such environments.

Our approach to the problem involves a variety of novel elements including the definition

of a modified game and the use of its MPEs as a non-constructive element in a larger

equilibrium construction, for which only a small set of incentives needs to be explicitly

addressed. Explicitly specifying any equilibrium is difficult in our setting and it is convenient

to be able to revert as much as possible to equilibrium constructs whose existence follows

from general arguments. The construction of rewards and punishments is constrained by,

12There is an important difference in the way imposed agreements work. If ij is G̃-efficient and i has a
G̃-inefficient link, then j is fined for making an offer that is rejected by i only when i activates the link ij.
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and indeed carefully customized in a canonical way to, the network under consideration. All

these ideas should prove useful in specifying particular (for instance, efficient) equilibria in

other network or, more generally, stochastic game settings.

Appendix A. Proofs for the First Model

Proof of Lemma 1. We proceed by contradiction. Suppose that ˜̃N is a G̃-efficiently closed

set of players who are not all isolated in G̃ such that p∗ij(G̃) < pij(G̃) for all i, j ∈ ˜̃N with

ij ∈ G̃. Fix an efficient match ˜̃M of the subnetwork induced by the set of players ˜̃N in the

network G̃. By assumption, µ( ˜̃M) ≥ 1. Since p∗ij(G̃) < pij(G̃),∀ij ∈ ˜̃M , for sufficiently large

α we have p∗δαij (G̃) < pij(G̃), ∀ij ∈ ˜̃M .

Note that the inequality p∗δαij (G̃) < pij(G̃) implies that disagreement arises with positive

probability under σ̄∗δα(G̃) when i and j are matched to bargain with each other in the first

period of Γ̄δα(G̃). Suppose without loss of generality that i makes an offer that j rejects

with positive probability. Player i’s continuation payoff in the event of a rejection is at most

δαv
∗δα
i (G̃).13 In the MPE σ̄∗δα(G̃), player j must accept any offer δαv

∗δα
j (G̃) + ε (ε > 0) with

probability 1. Hence making such an offer would leave i with a payoff of 1− δαv∗δαj (G̃)− ε.

To preclude any profitable deviation for i, we need to have δαv
∗δα
i (G̃) ≥ 1 − δαv∗δαj (G̃) − ε

for all ε > 0, which implies that δαv
∗δα
i (G̃) ≥ 1− δαv∗δαj (G̃).

The arguments above establish that, for sufficiently large α,

δα(v∗δαi (G̃) + v∗δαj (G̃)) ≥ 1,∀ij ∈ ˜̃M.

Adding up the inequalities above across all links in ˜̃M we obtain∑
ij∈ ˜̃M

δα(v∗δαi (G̃) + v∗δαj (G̃)) ≥ µ( ˜̃M).

As ˜̃N is G̃-efficiently closed, it follows that the players in ˜̃N can only reach agreements with

one another under σ̄∗δα(G̃). Since every player in ˜̃N can only be involved in one agreement,

and each agreement yields a unit total surplus, it must be that∑
k∈ ˜̃N

v∗δαk (G̃) ≤ µ( ˜̃M).

13This step takes into account the possibility that i may be fined for failing to reach an agreement with j in
the first period of Γ̄δα(G̃).
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Therefore,∑
k∈ ˜̃N

v∗δαk (G̃) ≤ µ( ˜̃M) ≤
∑
ij∈ ˜̃M

δα(v∗δαi (G̃) + v∗δαj (G̃)) ≤
∑
k∈ ˜̃N

δαv
∗δα
k (G̃).

Since δα ∈ (0, 1), we need that
∑

k∈ ˜̃N
v∗δαk (G̃) = µ( ˜̃M) = 0. This contradicts µ( ˜̃M) ≥ 1. �

Lemma 2 below, on which some of the preliminary results hinge, necessitates a review of the

Gallai-Edmonds decomposition theorem [10]. This is a graph theoretical result concerning

the structure of efficient matchings. The following partition of the set of vertices Ñ of the

network G̃ is essential for the result. The set of players under-demanded in G̃, denoted

U(G̃), consists of the players that are not always efficiently matched in G̃. The set of players

over-demanded in G̃, denoted O(G̃), consists of the players that are connected to at least

one underdemanded player. The set of players perfectly matched in G̃, denoted P (G̃),

consists of the players that are not under-demanded or over-demanded in G̃.14 Formally,

U(G̃) = {u|∃ efficient match M̃ of G̃, u /∈ M̃}

O(G̃) = {o|∃u ∈ U(G̃), uo ∈ G̃}

P (G̃) = Ñ \ (U(G̃) ∪O(G̃)).

We only state the contents of the Gallai-Edmonds decomposition theorem necessary for our

proofs.

Theorem 2 (Gallai-Edmonds). For every efficient match M̃ of G̃, for every o ∈ O(G̃) there

exists u ∈ U(G̃) such that uo ∈ M̃ . The sets P (G̃) and U(G̃)∪O(G̃) are G̃-efficiently closed.

Denote by Û(G̃) the set of players in U(G̃) that are not isolated in G̃. Thus Û(G̃) = ∅

(Û(G̃) 6= ∅) means that G̃ is (not) perfect.

Lemma 2. Suppose that v∗i (G̃) + v∗j (G̃) ≥ 1 for all G̃-efficient links ij. Then v∗o(G̃) = 1 for

all o ∈ O(G̃).

Proof. Let M̃ be an efficient match of G̃. By hypothesis,

(A.1) v∗i (G̃) + v∗j (G̃) ≥ 1, ∀ij ∈ M̃.

14The terms under-demanded, over-demanded, and perfectly matched were coined in [3] and [16].
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Adding up the inequalities A.1 across all links in M̃ , we obtain

(A.2)
∑
ij∈M̃

v∗i (G̃) + v∗j (G̃) ≥ µ(G̃).

However, note that the constraints on the production technology imply that

(A.3)
∑
k∈G̃

v∗k(G̃) ≤ µ(G̃).

The inequalities A.1-A.3 can be satisfied only if they all hold with equality. Therefore,

v∗i (G̃) + v∗j (G̃) = 1,∀ij ∈ M̃(A.4)

v∗u(G̃) = 0,∀u /∈ M̃.(A.5)

The argument above shows that v∗i (G̃) + v∗j (G̃) = 1 for every G̃-efficient link ij (by

definition, every G̃-efficient link is part of an efficient match of G̃) and v∗u(G̃) = 0 for every

u ∈ U(G̃) (by definition, for every u ∈ U(G̃) there exists an efficient match of G̃ that does

not cover u).

Fix o ∈ O(G̃) and let M̃ be an efficient match of G̃. By the Gallai-Edmonds decomposition

theorem, there is a u ∈ U(G̃) such that uo ∈ M̃ . As argued above, v∗u(G̃) = 0 and v∗u(G̃) +

v∗o(G̃) = 1. Hence v∗o(G̃) = 1. �

Proof of Proposition 2. If for some network G̃ ∈ G with Û(G̃) = ∅, v∗i (G̃) ≥ 1/2 for all i

that are always efficiently matched in G̃, then v∗i (G̃) = 1/2 for all such i. Indeed, this is a

consequence of the production technology constraint
∑

i∈G̃ v
∗δα
i (G̃) ≤ µ(G̃),∀α ≥ 0, which

in the limit as α→∞ becomes
∑

i∈G̃ v
∗
i (G̃) ≤ µ(G̃). Hence it suffices to prove the first part

of the proposition.

For a contradiction, let G̃ be a counterexample to the first part of the proposition with

the least number of vertices. Then there is a player in G̃ who is always efficiently matched

in G̃ with limit G̃-quasi Markov payoff less than 1/2. Let l and h be a minimizer and

respectively a maximizer of the limit payoffs of players always efficiently matched in G̃, i.e.,

v∗l (G̃) ≤ v∗j (G̃) ≤ v∗h(G̃), ∀j /∈ U(G̃). By assumption, v∗l (G̃) < 1/2. Let π′ denote the limit

probability as α→∞ that an agreement not involving l occurs in the first period of Γ̄δα(G̃)

under σ̄∗δα(G̃). We reach a contradiction in 4 steps.
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Step 1. v∗i (G̃ 	 {j, k}) ≥ 1/2 for all i ( 6= j, k) always efficiently matched in G̃ and every

G̃-efficient jk; if G̃ is perfect the condition holds with equality in all cases

By the minimality of the counterexample G̃, for any G̃-efficient link jk, if player i is always

efficiently matched in G̃	 {j, k} then v∗i (G̃	 {j, k}) ≥ 1/2. Then the first part of the step

follows from the observation that for any G̃-efficient link jk, a player who is always efficiently

matched in G̃ is also always efficiently matched in G̃ 	 {j, k}. The second part requires an

argument similar to the one showing that the first part of the proposition implies the second.

Step 2. l has at least two G̃-efficient links

Since l is always efficiently matched in G̃, there exists m such that lm is G̃-efficient.

Suppose that l is not G̃-efficiently linked to any player different from m. As l is always

efficiently matched in G̃, it must be that the link lm is part of every efficient match of G̃.

Thus lm also constitutes m’s unique G̃-efficient link. Hence l and m are only G̃-efficiently

linked to each other and bargain together in every subgame of Γ̄δ(G̃). Since l and m form

a G̃-efficiently closed set, Lemma 1 implies that p∗lm(G̃) = plm(G̃) > 0, which in turn leads

to v∗l (G̃) + v∗m(G̃) = 1. It can be easily argued that v∗δαl (G̃) = v∗δαm (G̃) for all α, so v∗l (G̃) =

v∗m(G̃) = 1/2, a contradiction.

Step 3. a contradiction is obtained if G̃ is perfect

Consider a deviation for player l from the first period behavior under σ̄∗δαl (G̃) to offering

slightly more than v∗h(G̃) to every player and rejecting every offer from any player. Regardless

of whether l needs to obtain some imposed agreements, the considered offers are accepted

under σ̄∗δαl (G̃) for large α because every player in G̃ has a limit payoff of at most v∗h(G̃).15

By Step 1, as G̃ is perfect and l is always efficiently matched in G̃, player l enjoys limit

payoffs of 1/2 following an agreement in Γ̄δα(G̃) not including him. The deviation yields the

following equilibrium requirement in the limit

v∗l (G̃) ≥ π(1− v∗h(G̃)) + π′
1

2
+ (1− π − π′) v∗l (G̃),

15Recall that h is defined as a maximizer of the limit G̃-quasi Markov payoffs among the players always
efficiently matched in G̃. Since G̃ is perfect, all non-isolated players are always efficiently matched in G̃.
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where π denotes the probability that player l is the proposer in the first period of Γ̄δα(G̃)

(π′ is defined in the preamble of the proof). As v∗l (G̃) < 1/2 and π > 0, it must be that

(A.6) v∗l (G̃) ≥ 1− v∗h(G̃), with strict inequality if π′ > 0.

Let π′′ and π′′′ denote the limit probabilities as α → ∞ that, under σ̄∗δα(G̃), in the first

period of Γ̄δα(G̃) player h makes an offer that is accepted and an agreement not involving

h occurs, respectively. In the former situations h obtains limit payoffs of at most 1− v∗l (G̃)

(by an argument analogous to footnote 15), while in the latter h enjoys limit payoffs of 1/2

by Step 1. Hence

v∗h(G̃) ≤ π′′(1− v∗l (G̃)) + π′′′
1

2
+ (1− π′′ − π′′′) v∗h(G̃),

or equivalently,

(A.7) (π′′ + π′′′)v∗h(G̃) ≤ π′′(1− v∗l (G̃)) + π′′′
1

2
.

Note that π′′ + π′′′ > 0 by Corollary 1. If π′ > 0 then 1/2 > v∗l (G̃) > 1 − v∗h(G̃) by

A.6, hence v∗h(G̃) > max(1 − v∗l (G̃), 1/2), leading to a contradiction in A.7. If π′′′ > 0 then

v∗h(G̃) ≥ 1−v∗l (G̃) (A.6) and A.7 imply v∗h(G̃) ≤ 1/2, and hence v∗l (G̃) ≥ 1/2, a contradiction.

Therefore, π′ = π′′′ = 0, so the limit probability of an agreement that does not involve

both l and h is 0. By Corollary 1, it must be that l and h share a G̃-efficient link and

p∗lh(G̃) > 0. Moreover, A.7 and π′′ > 0, π′′′ = 0 imply that v∗l (G̃) + v∗h(G̃) ≤ 1. By Step

2, l has another G̃-efficient link to a player m 6= h. As π′′′ = 0, we need p∗lm(G̃) = 0. If

v∗m(G̃) < v∗h(G̃) then v∗l (G̃) + v∗m(G̃) < v∗l (G̃) + v∗h(G̃) ≤ 1, which contradicts p∗lm(G̃) = 0.

If v∗m(G̃) = v∗h(G̃) then we can replace h with m in the argument above to conclude that

p∗lm(G̃) > 0, contradicting p∗lm(G̃) = 0.

Step 4. a contradiction is obtained if G̃ is not perfect

By Step 1, l enjoys limit payoffs of at least 1/2 following an agreement in Γ̄δα(G̃) not

involving him. A deviation by l from the first period behavior under σ̄∗δαl (G̃) to avoiding

every agreement yields the following limit equilibrium requirement16

v∗l (G̃) ≥ π′
1

2
+ (1− π′) v∗l (G̃).

16There are no imposed agreements in Γ̄δα(G̃) because G̃ is not perfect.
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As v∗l (G̃) < 1/2, we need π′ = 0. Thus p∗ij(G̃) = 0 for all i, j 6= l. It follows that

v∗i (G̃) + v∗j (G̃) ≥ 1 for all G̃-efficient ij with l /∈ {i, j}.

Fix a player m such that lm is a G̃-efficient link. Since π′ = 0, a deviation by l from

the first period behavior under σ̄∗δαl (G̃) to offering (slightly more than) δαv
∗δα
m (G̃) to m and

avoiding other agreements, yields the following limit equilibrium requirement,

v∗l (G̃) ≥ plm(G̃)

2
(1− v∗m(G̃)) +

(
1− plm(G̃)

2

)
v∗l (G̃),

which implies that v∗l (G̃) + v∗m(G̃) ≥ 1. This shows that

v∗i (G̃) + v∗j (G̃) ≥ 1 for all G̃-efficient ij with l ∈ {i, j}.

Therefore, all hypotheses of Lemma 2 are satisfied, so v∗o(G̃) = 1 for all o ∈ O(G̃).17 Since

v∗l (G̃) < 1/2 < 1, it must be that l /∈ O(G̃). Also, by assumption, l /∈ U(G̃). There need

to be players in U(G̃) ∪ O(G̃) who are not isolated in G̃ (G̃ is not perfect). By the Gallai-

Edmonds decomposition theorem, U(G̃)∪O(G̃) is a G̃-efficiently closed set. Then Lemma 1

implies that there exist i, j ∈ U(G̃) ∪ O(G̃) such that p∗ij(G̃) = pij(G̃) > 0. We have i, j 6= l

because l /∈ U(G̃) ∪O(G̃). This contradicts π′ = 0.

The series of contradictions above completes the proof as outlined in the preamble. �

Lemma 3. Suppose that Û(G̃) 6= ∅, i /∈ U(G̃) and v∗i (G̃) = 1/2. Then v∗g(G̃) ≥ 1/2 for every

g such that ig is a G̃-efficient link. If additionally lm is a G̃-efficient link with l,m 6= i and

p∗lm(G̃) > 0 then v∗i (G̃	 {l,m}) = 1/2.

Proof. Since G̃ is not a perfect network, there are no “imposed” agreements in Γ̄δα(G̃).

Deviations by i from the first period behavior under σ̄∗δαi (G̃) to avoiding agreements with

all players different from g and

• offering g (slightly more than) δαv
∗δα
g (G̃)

• making an unacceptable offer to g

17We emphasize that the arguments above do not prove that v∗o(G̃) = 1 for all o ∈ O(G̃) in general. The
latter conclusion has been obtained via a series of counterfactuals used in the proof by contradiction.
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yield the following equilibrium requirements

v∗δαi (G̃) ≥
∑
lm

p∗δαlm (G̃)δαv
∗δα
i (G̃	 {l,m}) +

pig(G̃)

2
(1− δαv∗δαg (G̃))

+

(
1−

∑
lm

p∗δαlm (G̃)− pig(G̃)

2

)
δαv

∗δα
i (G̃)

v∗δαi (G̃) ≥
∑
lm

p∗δαlm (G̃)δαv
∗δα
i (G̃	 {l,m}) +

(
1−

∑
lm

p∗δαlm (G̃)

)
δαv

∗δα
i (G̃),

where summations are over the set {lm|lm is G̃-efficient, with l,m 6= i}. For all G̃-efficient

links lm with l,m 6= i, we have that i /∈ U(G̃	{l,m}) since i /∈ U(G̃). Thus v∗i (G̃	{l,m}) ≥

1/2 by Proposition 2. As v∗i (G̃) = 1/2 and v∗i (G̃	 {l,m}) ≥ 1/2 for all G̃-efficient links lm,

when we take the limit α→∞, the first inequality leads to v∗g(G̃) ≥ 1/2 and the second to

v∗i (G̃	 {l,m}) = 1/2 for all G̃-efficient links lm with p∗lm(G̃) > 0. �

Lemma 4. Suppose that ij is a G̃-inefficient link with v∗i (G̃) = v∗j (G̃) = 1/2. Then there

exists a sequence of links l1m1, . . . , ls̄ms̄ in G̃ 	 {i, j} with the following properties, where

G̃s := G̃	 {l1,m1, . . . , ls−1,ms−1},

(1) for s = 1, . . . , s̄, lsms is G̃s-efficient, and p∗lsms(G̃s) = plsms(G̃s);

(2) G̃s̄+1 is perfect.

Proof. We construct the sequence iteratively. Suppose that we constructed l1m1, . . . , ls−1ms−1,

and that the goal has not been attained by step s− 1, i.e., Û(G̃s) 6= ∅. Assume additionally

that v∗i (G̃s) = v∗j (G̃s) = 1/2. Clearly, ij is G̃s-inefficient, thus i, j /∈ U(G̃s). The definitions

below identify the next link in the sequence, lsms.

As i and j are always efficiently matched in G̃s with v∗i (G̃s) = v∗j (G̃s) = 1/2, Lemma 3

implies that v∗k(G̃s) ≥ 1/2 for all k connected by G̃s-efficient links to i or j. Hence,

v∗l (G̃s) + v∗m(G̃s) ≥ 1 for all G̃s-efficient lm with {i, j} ∩ {l,m} 6= ∅.

Suppose that there is no G̃s-efficient link lm in G̃s	{i, j} with p∗lm(G̃s) = plm(G̃s). Then

v∗l (G̃s) + v∗m(G̃s) ≥ 1 for all G̃s-efficient lm with {i, j} ∩ {l,m} = ∅.

Thus all hypotheses of Lemma 2 are satisfied by G̃s. Hence v∗o(G̃s) = 1 for all o ∈ O(G̃s).

Then i, j /∈ O(G̃s) because v∗i (G̃s) = v∗j (G̃s) = 1/2 6= 1. As argued above, i, j /∈ U(G̃s).
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There need to be players in U(G̃s)∪O(G̃s) who are not isolated in G̃s because Û(G̃s) 6= ∅.

By the Gallai-Edmonds decomposition theorem, U(G̃s)∪O(G̃s) is a G̃s-efficiently closed set.

Then Lemma 1 implies that there exists a G̃s-efficient link lsms with ls,ms ∈ U(G̃s)∪O(G̃s)

such that p∗lsms(G̃s) = plsms(G̃s). Note that lsms ∈ G̃s	{i, j} because i, j /∈ U(G̃s)∪O(G̃s).

The link lsms is added to the sequence. The construction can be iterated if G̃s+1 is not perfect

because p∗lsms(G̃s) = plsms(G̃s) > 0 and Lemma 3 lead to v∗i (G̃s+1) = v∗j (G̃s+1) = 1/2. �

Lemma 5. Suppose that G̃ is a perfect network such that ij is G̃-inefficient and jk is G̃-

efficient. Let h be i’s match in an arbitrary efficient match of G̃ that includes the link jk.

Then there exists a sequence of links l1m1, . . . , ls̄ms̄ in G̃ 	 {h, i, j, k} with the following

properties, where G̃s := G̃	 {l1,m1, . . . , ls−1,ms−1},

(1) for s = 1, . . . , s̄, lsms is G̃s-efficient, and ms has a G̃s-efficient link to either i or j;

(2) the set of players in G̃s̄+1 	 {h, i, j, k} is G̃s̄+1-efficiently closed.

Proof. The construction proceeds iteratively as in Lemma 4. Let M̃ denote an efficient match

of G̃ that includes the links ih and jk. Suppose that we constructed l1m1, . . . , ls−1ms−1 in

M̃ , and that the goal has not been attained by step s − 1, that is, the set of players in

G̃s 	 {h, i, j, k} is not G̃s-efficiently closed. The definitions below identify the next link in

the sequence, lsms, also from M̃ .

By construction, ij is G̃s-inefficient, thus i and j are always efficiently matched in G̃s.

Suppose that there are no players in G̃s 	 {h, i, j, k} that have G̃s-efficient links to either i

or j. Then each of i and j can only have G̃s-efficient links to h or k (ij is G̃s-inefficient).

Since i and j are always efficiently matched in G̃s, it must be that in every efficient match

of G̃s each of the players h and k is matched to one of the players i and j. Thus {h, i, j, k}

is G̃s-efficiently closed, which leads to a contradiction with the assumption that the set of

players in G̃s 	 {h, i, j, k} is not G̃s-efficiently closed.

We established that there is a player ms in G̃s 	 {h, i, j, k} that has a G̃s-efficient link to

either i or j. Let ls be ms’s match in M̃ (ms is not isolated in G̃ as it is connected to i or

j, thus it is always efficiently matched in G̃ because G̃ is perfect). The link lsms is added to

the sequence. �
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Lemma 6. Suppose that the set of players in G̃ 	 {h, i, j, k} is G̃-efficiently closed. Then

there exists a sequence of links l1m1, . . . , ls̄ms̄ in G̃	{h, i, j, k} with the following properties,

where G̃s := G̃	 {l1,m1, . . . , ls−1,ms−1},

(1) for s = 1, . . . , s̄, lsms is G̃s-efficient, and p∗lsms(G̃s) = plsms(G̃s);

(2) all players different from h, i, j, k are isolated in the network G̃s̄+1.

Proof. The sequence with the desired properties can be constructed by making repeated use

of Lemma 1. �

Lemma 7. Let G̃ ∈ G be such that only the players h, i, j, k are not isolated in G̃ and ij is a

G̃-inefficient link. Then players i and j have incentives to reach agreement with respect to the

G̃-quasi-Markov payoffs for every discount factor δ, i.e., δ(v∗δi (G̃) + v∗δj (G̃)) < 1,∀δ ∈ (0, 1).

Proof. We proceed by contradiction. Suppose that there exist G̃ satisfying the hypotheses

and δ ∈ (0, 1) such that δ(v∗δi (G̃) + v∗δj (G̃)) ≥ 1. Without loss of generality, assume that

v∗δi (G̃) ≥ v∗δj (G̃). To simplify notation, we write v∗δ and p∗δ for the payoff vector v∗δ(G̃) and

the agreement probability vector p∗δ(G̃), respectively.

Since ij is G̃-inefficient, every efficient match of G̃ contains two links. Suppose that there

is a unique G̃-efficient match in which i is matched to l and j to m ({l,m} = {h, k}).18

Then Γ̄δ(G̃) has a unique MPE, in which agreements are obtained only across the links il

and jm, and conditional on either link being selected for bargaining agreement occurs with

probability 1. The G̃-quasi-Markov payoffs satisfy v∗δi = v∗δl < 1/2 and v∗δj = v∗δm < 1/2,

contradicting the assumption that δ(v∗δi + v∗δj ) ≥ 1. Then it must be that G̃ admits more

than one efficient match. This means that G̃ contains all the links within the set {h, i, j, k}

except for hk.19

For each quadruple of parameters x, y, z, t ∈ [0, 1] with x + y + z + t < 1, we define the

following function cx,y,z,t : R4 → R4 (here the components of a vector v ∈ R4 are labeled in

18The link ij cannot belong to the match because it is G̃-inefficient.
19G̃ does not include the link hk because ij is G̃-inefficient.
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order by i, j, h, k, i.e., v = (vi, vj, vh, vk)),

cx,y,z,ti (v) = x(δvi + 1− δvh)/2 + y(δvi + 1− δvk)/2 + (z + t)δ/2 + (1− x− y − z − t)δvi

cx,y,z,tj (v) = z(δvj + 1− δvh)/2 + t(δvj + 1− δvk)/2 + (x+ y)δ/2 + (1− x− y − z − t)δvj

cx,y,z,th (v) = x(δvh + 1− δvi)/2 + z(δvh + 1− δvj)/2 + (y + t)δ/2 + (1− x− y − z − t)δvh

cx,y,z,tk (v) = y(δvk + 1− δvi)/2 + t(δvk + 1− δvj)/2 + (x+ z)δ/2 + (1− x− y − z − t)δvk.

It is easy to check that each such function is a contraction with respect to the sup norm on

R4, and hence has a unique fixed point. Two functions from this family play an important

role in our analysis, those obtained by setting x = p∗δih , y = p∗δik , z = p∗δjh, t = p∗δjk and x =

p∗δih + p∗δjh, y = p∗δik + p∗δjk, z = t = 0. For simplicity, we denote the corresponding functions by

f and g, respectively.

By definition, v∗δ is the unique fixed point of f .20 Intuitively, g shifts weight from the

terms corresponding to first period agreements that j reaches with h and k to the analogous

terms for i. We compare v∗δ to the unique fixed point of g, denoted u∗δ. First note that

v∗δh = fh(v
∗δ) ≥ gh(v

∗δ) and v∗δk = fk(v
∗δ) ≥ gk(v

∗δ) because v∗δi ≥ v∗δj .

We next argue that v∗δi = fi(v
∗δ) ≤ gi(v

∗δ), by proving that

p∗δih(δv∗δi + 1− δv∗δh )/2 + p∗δjhδ/2 ≤ (p∗δih + p∗δjh)(δv
∗δ
i + 1− δv∗δh )/2

p∗δik (δv∗δi + 1− δv∗δk )/2 + p∗δjkδ/2 ≤ (p∗δik + p∗δjk)(δv
∗δ
i + 1− δv∗δk )/2.

Since the two inequalities are analogous, we only establish the former. If p∗δjh = 0, there is

nothing to prove. Suppose that p∗δjh > 0. Since there is agreement between j and h with

positive probability p∗δjh in an MPE of Γ̄δ(G̃) with payoffs v∗δ, it must be that δ(v∗δj +v∗δh ) ≤ 1.

The latter inequality, coupled with the initial assumption that δ(v∗δi + v∗δj ) ≥ 1, leads to

v∗δi ≥ v∗δh . Then (δv∗δi + 1 − δv∗δh )/2 ≥ 1/2 > δ/2, which immediately implies the first

inequality.

20When evaluated at an MPE with payoffs v∗δ, the system of equations f(v∗δ) = v∗δ does not assume
(despite appearances to the contrary) that player l accepts an offer from player m with the same probability
that m accepts an offer from l. In fact, these events have equal probabilities (plm(G̃)/2 or 0, respectively)
unless δ(v∗δl +v∗δm ) = 1. In the latter case l’s payoff does not depend on the composition of the probability of
agreement withm because, conditional on the link lm being selected for bargaining, l receives his continuation
equilibrium payoff δv∗δl regardless of the identity of the proposer.
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The inequalities v∗δh ≥ gh(v
∗δ), v∗δk ≥ gk(v

∗δ), v∗δi ≤ gi(v
∗δ), along with the definition of g,

can be used to prove inductively that

v∗δh ≥ gh(v
∗δ) ≥ . . . ≥ g

[a]
h (v∗δ)

v∗δk ≥ gk(v
∗δ) ≥ . . . ≥ g

[a]
k (v∗δ)

v∗δi ≤ gi(v
∗δ) ≤ . . . ≤ g

[a]
i (v∗δ)

for all a ≥ 1, where g[a] denotes the function obtained by iterating g with itself a times.

Since g is a contraction with fixed point u∗δ, we need lima→∞ g
[a](v∗δ) = u∗δ. Taking the

limit a→∞ in the inequalities above we obtain v∗δh ≥ u∗δh , v
∗δ
k ≥ u∗δk , v

∗δ
i ≤ u∗δi . In particular,

v∗δh +v∗δk ≥ u∗δh +u∗δk . Summing up the equations defining the fixed points of f and g, we can

easily show that v∗δi +v∗δj +v∗δh +v∗δk = u∗δi +u∗δj +u∗δh +u∗δk . It follows that v∗δi +v∗δj ≤ u∗δi +u∗δj .

Solving the linear system defining u∗δ, we get

u∗δi + u∗δj =
1

1− δ + δs

(
2(1− δ)2 + 3δs

3δ
− 2(1− δ)2(1− δ + δs)(4(1− δ) + 3δs))

12δ(1− δ)(1− δ + δs) + 9δ3r(s− r)

)
,

where r := p∗δih + p∗δjh, s := p∗δih + p∗δjh + p∗δik + p∗δjk. Note that

2(1− δ)2(1− δ + δs)(4(1− δ) + 3δs))

12δ(1− δ)(1− δ + δs) + 9δ3r(s− r)
> 0,

hence

u∗δi + u∗δj ≤
2(1− δ)2 + 3δs

3δ(1− δ + δs)
,

which leads to

δ(u∗δi + u∗δj ) ≤ 2(1− δ)2 + 3δs

3(1− δ) + 3δs
< 1.

Then δ(v∗δi + v∗δj ) ≤ δ(u∗δi + u∗δj ) < 1, a contradiction with our initial assumption. �

Appendix B. Proofs for the Second Model

B.1. Changes for Lemma 1. The conclusion of Lemma 1 has to be changed to “Then

there is a player in ˜̃N who conditional on being selected to activate a link (but unconditional

on the selection of the proposer) reaches an agreement with limit probability 1.” The proof

follows the same steps.
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B.2. Changes for Proposition 2. Three modifications are necessary for the proof of

Proposition 2. First, in Step 3, the inequality π′′ + π′′′ > 0 follows from the new state-

ment of Lemma 1.

Second, also in Step 3, the claim that “if v∗m(G̃) < v∗h(G̃) then v∗l (G̃) + v∗m(G̃) < v∗l (G̃) +

v∗h(G̃) ≤ 1, which contradicts p∗lm(G̃) = 0” does not hold for every player m 6= h who is

G̃-efficiently linked to l, but must be true for some m ∈ M := arg min{k|kl is G̃-efficient} v
∗
k(G̃),

if the achieved minimum is less than v∗h(G̃). Indeed, min {v∗k(G̃)|kl is G̃-efficient} < v∗h(G̃)

and v∗l (G̃) + v∗h(G̃) ≤ 1 imply h /∈M and v∗l (G̃) + v∗m(G̃) < 1 for every m ∈M . For large α,

it must be that under σ̄∗δαl (G̃) player l activates a link with some m ∈M when selected and

reaches an agreement with conditional probability 1. This contradicts π′′′ = 0 since h /∈M .

Third, in Step 4, the set of inequalities v∗i (G̃) + v∗j (G̃) ≥ 1 for all G̃-efficient ij with

l /∈ {i, j} can no longer be derived directly from the condition π′ = 0. However, π′ = 0

still leads to v∗l (G̃) + v∗m(G̃) ≥ 1 for all m such that lm is G̃-efficient. To obtain the former

set of inequalities in the alternative model, we proceed by contradiction. Suppose that ij

minimizes v∗i (G̃)+v∗j (G̃) among all G̃-efficient ij with l /∈ {i, j} and that the minimized value

is less than 1. If i and l share a G̃-efficient link, then v∗i (G̃) + v∗l (G̃) ≥ 1 > v∗i (G̃) + v∗j (G̃),

so v∗l (G̃) > v∗j (G̃).21 As in the previous paragraph, for large α, under σ̄∗δαi (G̃) player i must

reach agreements with a set of players who have limit payoffs equal to v∗j (G̃) with probability

1 conditional on being selected to activate a link. Player l cannot belong to the latter set

since v∗l (G̃) > v∗j (G̃) if il is G̃-efficient. This leads to a contradiction with π′ = 0.

B.3. Changes for Theorem 1 and Lemmata 4 and 6. We note that in the current

model we only know that p∗lm(G̃) > 0 in contexts where we earlier correctly asserted that

p∗lm(G̃) = plm(G̃). In fact it may be directly checked that the weaker hypothesis suffices for

the required conclusions both in the original model and the current one. In particular, the

statements and proofs of Lemmata 4 and 6, along with their application to the equilibrium

construction, need to be modified using this remark. Moreover, the definition of ε in the

proof of Theorem 1 has to be changed to reflect the new (strictly positive) limit probabilities

of rewards and punishments.

21Note that the inequality v∗l (G̃) > v∗j (G̃) is not ruled out by l’s definition if j is not always efficiently
matched in G̃.
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The proof of the new Lemma 4 necessitates an argument similar to the one sketched above

for Step 4 of Proposition 2.

After particular histories the equilibrium construction of Theorem 1 requires that when

a link lm is selected, player m is penalized relative to his payoffs in the default regime.

Depending on the context, this comes up in cases when m is chosen as the proposer or as

the responder. In the current model this occurs only if player l is selected and activates

the link lm and m plays the proposer or responder role, as the case may be in the initial

construction.

As in the original model, it is important that in the i tempted j regime for G̃ the

distribution over pairs reaching agreement for any subgame is identical to the one in the

corresponding default regime, so that i receives a payoff equal to his G̃-quasi-Markov payoff.

In the current model this is achieved by specifying that when j is selected to activate a link in

the last stage (s̄+ 1) of the i tempted j regime for G̃, he uses the probability distribution

over G̃s̄+1-efficient links given by σ̄∗δαj (G̃s̄+1) and receives the reward δα(1/2 + ε2) from each

player with whom he activates a link.

The equilibrium specification needs to be adapted to the alternative model in the case of

Lemma 5 links lsms as follows. When nature selects ls on the punishment path, he activates

the link lsms and, if chosen to be the proposer, offers min{1−δαv∗δαls
(G̃s)}∪{δαv∗δαk (G̃s)|kls is

G̃s-efficient} to ms.

Finally, the series of agreements on the path of the punishment regime leads to a network

G̃s̄ where only h, i, j, k are not isolated. To ease notation, we write G̃ for G̃s̄ and (ph, pi, pj, pk)

for (ph(G̃s̄), pi(G̃s̄), pj(G̃s̄), pk(G̃s̄)) henceforth. At this stage, the punishment regime specifies

that when nature selects j, he activates the link jk, and if chosen as the proposer, he offers

1/2− ε to k. In this situation k accepts only offers that are greater than or equal to 1/2− ε.

We provide incentives for k to accept such offers via the threat of an agreement between

i and j occurring in the next period with limit probability of at least min(pi, pj). The

agreement isolates k. As α→∞, the limit payoff of k is 0 when isolated and 1/2 otherwise.

If ε < min(pi, pj)/2 then player k has incentives to accept offers greater than or equal to

1/2−ε from j for large α since his limit payoff conditional on rejecting such offers is at most

1/2(1 − min(pi, pj)). In every circumstance not considered here play reverts to the default
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regime for the corresponding game. The optimality of j’s decision to activate the link jk

and offer 1/2− ε to k, and of k’s rejection of smaller offers are immediately checked.

It remains to implement the threat of isolating k by incentivizing either i or j to activate

the link ij and obtain an agreement. We need to consider several cases, covering all possible

realizations of G̃ and (ph, pi, pj, pk). Suppose first that there is a unique G̃-efficient match

in which i is matched to l and j to m ({l,m} = {h, k}).22 Then Λ̄δα(G̃) has a unique

MPE, in which players i and l (j and m) only activate the link il (jm) and reach immediate

agreement conditional on being selected for bargaining. The G̃-quasi-Markov payoffs are all

smaller than 1/2 and satisfy v∗δαi (G̃) = v∗δαl (G̃) T v∗δαj (G̃) = v∗δαm (G̃) iff pi + pl T pj + pm.

To fix ideas, assume that pi + pl ≥ pj + pm. The punishment regime specifies that when k

deviates from the prescribed strategy, i activates the link ij if selected in the next period.

Conditional on the activation of the link ij, depending on the selection of the proposer, i

and j offer each other δαv
∗δα
j (G̃) and δαv

∗δα
i (G̃), respectively, and accept only offers that

are at least as large as the recommended ones. If i is not selected to activate a link or i

and j deviate from the described strategies then play reverts to the default regime for the

subsequent subgame. Player i has incentives to activate the link ij and offer δαv
∗δα
j (G̃) to

j because 1− δαv∗δαj (G̃) ≥ max(1− δαv∗δαh (G̃), 1− δαv∗δαk (G̃), δαv
∗δα
i (G̃)). The optimality of

the rest of the constructed strategies is straightforward.

However, if G̃ admits more than one efficient match, it is possible that neither i nor j has

incentives with respect to the G̃-quasi-Markov payoffs to activate the link ij and reach an

agreement. Note that there are multiple G̃-efficient matchings only if G̃ contains all the links

within the set {h, i, j, k} except for hk.23 For such networks G̃, the threat of an agreement

between i and j that isolates k relies directly on modifications of MPEs for Λδα(G̃) (rather

than Λ̄δα(G̃)). This last ingredient for the equilibrium construction in the alternative model

is supplied by the following result.

Lemma 8. Let G̃ ∈ G be a network with the set of links given by {hi, hj, ij, ik, jk}. Then

for each α, there exists a subgame perfect equilibrium of Λδα(G̃) in which players i and j

reach an agreement with probability greater than or equal to min(pi(G̃), pj(G̃)) and player k

receives a payoff u∗δαk (G̃) satisfying lim supα→∞ u
∗δα
k (G̃) ≤ 1/2−min(pi(G̃), pj(G̃))/2.

22The link ij cannot belong to the match because it is G̃-inefficient.
23G̃ does not include the link hk because ij is G̃-inefficient.
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Proof. We distinguish between three cases. Consider first the case max(ph, pi, pj, pk) ≤ 1/2.

Then Λδα(G̃) admits an MPE in which the link ij is never activated, players mix between

activating their G̃-efficient links such that each player has total probability 1/2 of bargaining

and reaching an agreement in the first period, and all players have identical payoffs. A

subgame perfect equilibrium, which may be employed to threaten k with a probability pi+pj

of isolation, is obtained from this MPE by modifying i’s and j’s first period strategies to

activate the link ij and reach an agreement (according to the terms that proposers and

responders agree to in the MPE).

Consider next the case pi > 1/2. Then there exists an MPE of Λδα(G̃) in which players

h, k, and j have identical payoffs, which are smaller than i’s payoff. In this equilibrium player

i mixes between activating all his links, players h and k activate their respective links with j,

and player j mixes between activating the links jh and jk. The probability that i activates

the link ij converges to 0 as α→∞. Another subgame perfect equilibrium is obtained from

the MPE described above by modifying i’s first period strategy to activate the link ij and

obtain an agreement (on the same terms as in the MPE) with probability 1 conditional on

being selected to activate a link. The later equilibrium may be used as a threat to isolate k

with probability pi. The case pj > 1/2 can be treated similarly.

Finally, we consider the case ph > 1/2. In this situation Λδα(G̃) admits an MPE in which

players h and k have the largest and smallest payoffs, respectively, and players i and j have

identical payoffs. In this equilibrium both players h and k mix between activating their links

with i and j, and players i and j only activate their respective links with k. Agreement

is obtained in each case. Another subgame perfect equilibrium is obtained from the MPE

by modifying h’s and k’s first period strategies to activate their respective links with i and

reach agreements (on the same terms as in the MPE) with probability 1 conditional on

being selected to activate links. Clearly, in this equilibrium players h and k enjoy the same

payoffs as in the MPE, but it can be shown that j’s payoff becomes lower than k’s. We can

construct yet another equilibrium by translating the strategies in the latter equilibrium one

period forward and setting the first period strategies optimally given the continuation payoffs

conditional on first period disagreement. The new equilibrium may be used to threaten k

with a probability pi of isolation. Indeed, player i activates the link ij with probability 1

when selected by nature in the first period because j has the lowest continuation payoff and
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i prefers to reach an agreement with j rather than pass up the bargaining opportunity.24

The case pk > 1/2 is analogous. �
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