MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Measuring the Usability and Capability of
App Inventor to Create Mobile Applications

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Xie, Benjamin, Isra Shabir, and Hal Abelson. "Measuring the Usability and Capability
of App Inventor to Create Mobile Applications.” 2015 ACM SIGPLAN Conference on Systems,
Programming, Languages and Applications: Software for Humanity (SPLASH) (October 2015).

As Published: http://2015.splashcon.org/event/promoto2015-measuring-the-usability-and-
capability-of-app-inventor-to-create-mobile-applications

Publisher: Association for Computing Machinery (ACM)]
Persistent URL: http://hdl.handle.net/1721.1/98913

Version: Author’s final manuscript: final author’'s manuscript post peer review, without
publisher’'s formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

I I I .
I I Massachusetts Institute of Technology

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/98913
http://creativecommons.org/licenses/by-nc-sa/4.0/

Measuring the Usability and Capability of
App Inventor to Create Mobile Applications

Benjamin Xie

Isra Shabir

Hal Abelson

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139, USA

{bxie, ishabir, hal} @mit.edu

Abstract

MIT App Inventor is a web service that enables users with little to
no previous programming experience to create mobile applications
using a visual blocks language. We analyze a sample of 5,228 ran-
dom projects from the corpus of 9.7 million and group projects by
functionality. We then use the number of unique blocks in projects
as a metric to better understand the usability and realized capabil-
ity of using App Inventor to implement specific functionalities. We
introduce the notion of a usability score and our results indicate
that introductory tutorials heavily influence the usability of App
Inventor to implement particular functionalities. Our findings sug-
gest that the sequential nature of App Inventor’s learning resources
results in users realizing only a portion of App Inventor’s capabili-
ties and propose improvements to these learning resources that are
transferable to other programming environments and tools.

Categories and Subject Descriptors H.1.2 [User/Machine Sys-
tems]: Human factors

Keywords Mobile Computing, Computer Science Education,
Quantitative Study, End-User Programming, Visual Languages

1. Introduction

MIT App Inventor is an environment that leverages a blocks-based
visual programming language to enable people to create mobile
apps for Android devices [1]. An App Inventor project consists of a
set of components and a set of program blocks that enable the func-
tionality of these components. Components include items visible on
the phone screen (e.g. buttons, text boxes, images, drawing canvas)
as well as non-visible items (e.g. camera, database, speech recog-
nizer, GPS location sensor). The app is programmed using Blockly,
a visual blocks-based programming framework [2]. Figure 1 shows
the program blocks for an app to discourage texting while driving.
When a text is received, a default message is sent back in response
and the received text is read aloud.

There have been two main versions of App Inventor. App In-
ventor Classic (also known as App Inventor 1) was released in 2009
and ran its blocks editor in a separate Java application. In late 2013,
App Inventor 2 (AI2) was released; the blocks editor now runs in a
web browser. This research focuses on App Inventor 2 data [3].

App Inventor is taught to a broad audience, ranging from grade
school to college students. Reports on courses taught depict App
Inventor being used to create very diverse apps. These apps range
from programs that discourage texting while driving, to apps that
track school buses [4], to apps that organize community service
cleanups [5]. The pattern we observe is that App Inventor enables
“situated computing” [6]. This quarter-century old concept sug-
gests that the convergence of computing, connectivity, and content

when .MessageReceived

- number
- Y Texting1 -~ i Message ~ JJUME '™ ariving now. Il text you later! Jg
£ Textingd ~ | PhoneNumber ~ JRCIIE 1 1] number ~ |
call EEETFIED .SendMessage
Tl TexiToSpeechi ~ J= 3
message [(o) join | * SEMGETELERETY "
[} "1 messageTex - |

Figure 1. Blocks for an App Inventor 2 project that automatically
respond to texts received with a predefined message and reads the
received text aloud.

enables users to harness computing to bridge the gap between in-
tentions and actions. App Inventor allows people to leverage their
mobile devices and solve everyday problems they encounter.

App Inventor also has copious resources for self-learners, typi-
cally in the form of self-contained tutorials. A survey of 129,130
self-selected App Inventor users found that 73% of respondents
used App Inventor at home, suggesting a significant portion of App
Inventor users learn to use the service on their own and not in a
formal learning environment. The App Inventor resources page in-
cludes 26 tutorials ranging from beginner level to advanced [7].
These tutorials involve creating an entire functioning app from start
to finish. Each tutorial typically focuses on either introducing a
new component (such as a canvas or GPS integration) or additional
functionality for a previously introduced component.

To date, over 3.5 million users from 195 countries have created
over 9.7 million apps with the MIT App Inventor service [1].

2. Objective

The goal of this paper is to evaluate the usability and capability of
App Inventor to create apps of differing functionality by analyzing
the apps created with App Inventor. We define usability as the ease
of use of the App Inventor service to create an app. We define
capability as the extent of App Inventor potential that is realized
by users to implement certain functionality.

A guiding principle to the creation of a programming environ-
ment is the idea of a ”low floor, high ceiling” [8]. That is, the en-
vironment must be usable enough such that beginners can easily
create a basic yet functioning program (low floor), but also have ex-
tensible capabilities such that advanced users can also benefit (high
ceiling). We are particularly interested in comparing the usability
and capability of App Inventor for creating apps of differing func-
tionality.

We analyze a random sample of projects and group them based
on the types of components used in the app. We then look at both

the number of unique blocks in projects. We then evaluate how
well suited the App Inventor environment is to creating apps with
various functionalities.

In this paper, we explain our technical approach of extracting
information from raw project data, filtering and grouping projects,
and comparing the grouped projects given our metrics. We then
discuss our findings in the context of the App Inventor service and
its teaching resources.

3. Related Work

Prior to this work, analysis of App Inventor Classic data has been
done by [9]. Some of the notable findings:

e Nearly 50% of users do not have a single block or component
in any of their projects.

® 30% of all apps have no blocks and are therefore static and have
no behavior.

® 51% of procedures are never called or only called once.

This data indicates that a large number of App Inventor Classic
projects were never completed. It was suggested that a major con-
tributing factor is the usability of the service. Whereas App Inven-
tor 2 is a single-page web service, App Inventor Classic required
the deployment of an external Java service to program the app. The
high proportion of projects without blocks motivated the usability
changes of the blocks in App Inventor 2.

An environment that leverages a blocks-based programming
language very similar to App Inventor’s is Scratch. Scratch enables
users to create interactive stories, games, and animations [10]. One
research study on Scratch examined trends in user participation in
Scratch [11]. This study categorized the Scratch blocks into five
categories (Loops, Booleans, Operator, Broadcasts, and Variables)
to illustrate different programming concepts in Scratch. Projects
were differentiated according to the number of blocks of each type
they contained.

Another study on Scratch examined the progression of users’
programming skills [12]. This quantitative analysis of elementary
programming skills included measurements of “breadth,” the range
of different features people used, and “depth,” the amount with
which people used these features. Scratch’s 120 different program-
ming primitives were grouped into 17 categories and the total num-
ber of distinct categories of primitives in each project measured its
breadth. The total number of primitives per animation measured a
project’s depth. Our metric of the total number of unique blocks in
a project is similar to those used in this study.

An environment that enables users to develop mobile applica-
tions directly from their mobile devices is TouchDevelop. A field
study of end-user programming on mobile devices was conducted
with the objectives including measuring users’ progress with de-
veloping TouchDevelop scripts [13]. Researchers found that 71.3%
of users learned a few features about the environment initially and
then stopped learning new features. To encourage more continuous
learning, researchers suggested providing an adaptive tutoring sys-
tem that recommends tutorials similar to the kind of script a user
is developing and avoids tutorials that cover features users already
know. As discussed later in the paper, our findings suggest that App
Inventor may also have a similar situation where users tend to only
learn a subset of features available to them.

4. Technical Approach

We extracted features from a random sampling of App Inventor
2 projects. We grouped projects based on their functionality by
considering the components they contain. We then measured the
total number of unique blocks (NOUB) in the projects to determine

the intricacy they exhibit. Finally, we examined the distribution of
the NOUB in each group to answer our research question.

4.1 Data Source

Our source data is 5,228 App Inventor 2 projects selected at random
from the total corpus of 8.3 million projects. We used Pandas, a
Python data analysis library, for our data processing [14].

Of the 5,228 projects sampled:

o At least 16.4% (859 projects) are recreations of App Inven-
tor tutorials. These recreations of the step-by-step tutorials
were identified by matching project names. We considered only
the 26 tutorials from the MIT App Inventor website, although
many other tutorials made by other groups and individuals exist
[15][16]. Projects that are recreations of the tutorials found on
the MIT App Inventor website are filtered out of our dataset.

21% (1,107 projects) are certainly static; that is, they are guar-
anteed to be apps that have no behavior and never change state.
If a project has no components, then there is nothing the user
can interact with or for the app to do, so the project must be
static. For an app to be interactive and have behavior, in addi-
tion to at least one component, it must also have at least two
blocks: One to handle an event and one to respond to that event.
Figure 2 shows an example of a simple action from two blocks.
No functionality can occur with fewer than two blocks. We say
an app is certainly static if it either has no components or has
fewer than two blocks.

when Click

do cal Play

Figure 2. The simplest app behavior requires at least two blocks:
An event handler and a resulting action. Here, a sound is played
when a button is pressed.

We choose to filter out the certainly static projects as well as
projects that are recreations of tutorials, so our analysis was run
over the remaining 3,289 projects. While we can guarantee that
the removed projects are static, we cannot guarantee the remaining
projects have behavior, as their blocks may not be connected in
a manner that allows for any behavior. Further improvements to
filtering apps are discussed in the conclusion. For the purpose of
analysis, we assume the remaining 3,289 projects have behavior
and are not recreations of tutorials.

4.2 Feature Extraction

We focus primarily on quantitative features for our analysis, partic-
ularly the number of each type of component in a project, and the
number of each type of block. This information exists in the source
code of the projects.

Features Extracted from Projects:

e Project Name

e Username (anonymized)

e Number of Components by Type
e Number of Blocks by Type

4.3 Grouping Projects

We use the components within a project to group them by function-
ality. The palette in App Inventor organizes components by func-
tionality, or behavior, and places each group in its own “drawer”
(Figure 3). Because the palette neatly organizes components by

functionality into categories , we use it to define our groups. If
an app has components from multiple palette drawers, it may be
categorized in multiple groups, as explained later in this section.

Palette
User Interface
Layout
Media
Drawing and Animation
Sensors
Social
Storage
Connectivity

LEGO® MINDSTORMS®

Figure 3. The palette groups components into categories. We use
these categories to group projects by functionality.

We follow the palette drawers to define our groups, with two no-
table changes: Disregarding the entire ”Layout” component drawer
and the sound and clock components.

Layout components are removed because they do not add addi-
tional functionality and are therefore irrelevant for our groupings.
These components only enable users to change the arrangement of
an app’s visual components. Our emphasis is to group projects by
their functionality, not their appearance or design.

The sound and clock components are removed to improve the
differentiation between functionality groups. The sound component
plays a sound whenever the user specifies. Examples include play-
ing a “meow” when an image of a cat is pressed and playing a fa-
mous speech in a historical quiz app. The clock component enables
apps to keep track of time. Uses for this vary from keeping time in
a stopwatch app to periodically moving a sprite in a game app. Be-
cause the sound and clock components have such broad uses, they
do not help differentiate apps’ behaviors between groups and are
also excluded in the consideration of functionality groups.

We categorize the 3,289 apps into eight groups. Basic apps only
contain User Interface components. Apps in the Media, Drawing,
Sensor, Social, Storage, Connectivity, and Lego groups contain at
least one component from that respective drawer in the palette. This
categorization allows for overlap, as projects that contain compo-
nents from multiple palette drawers are placed in multiple groups.
For example, a project that uses both Bluetooth (connectivity) and
Twitter (social) components would be grouped as both a Connec-
tivity and Social app. The exception is the Lego group, which we
deem to be an exclusive group because of the specificity of the
components. Lego components are solely for integration with Lego
Mindstorms [17]; if a project contains a Lego component, it is only
grouped as Lego, regardless of other components it may contain.

Reiterating, Basic and Lego groups are disjoint from other
groups and each other. Other groups may overlap. Table 1 pro-
vides a description of each group, the condition for a project to be
in that group, and example apps and components from each group.

We use the components to group projects and the blocks to
measure the intricacy of them.

4.4 Measuring Programmatic Intricacy

We define the intricacy of an App Inventor project as a measure-
ment of the skill involved to create an app as evidenced by the
blocks used. A more intricate app tends to either use more com-
ponents or use blocks corresponding to these components more ef-
fectively.

Table 1. Functionality Groupings

Group Description of | Condition | Example

Name App Functionality Components
{Example App}

Basic Basic user inter- | Only Button, Im-
face functionality | User age, Label,
{Splits bill | Interface | Notifier,
amongst certain | Compo- Textbox
number of people} | nents

Media Playing/recording | At least | Camera,

audio or video | 1 media | Text-

{Click on picture | com- ToSpeech,
of politician to | ponent VideoPlayer,
hear their famous | (ex- MusicPlayer
speech} cluding

”sound”)

Drawing Use screen as can- | At least 1 | Canvas, Ball,
vas for drawing | drawing ImageSprite
{Draw on picture | compo-
of cat} nent

Sensor Response to | At least | Accelerometer
phones’ sensors | 1 sensor | Sensor, Lo-
{Shake phone to | com- cation
roll a die} ponent Sensor,

(ex- NearField
cluding (NFC)
“clock’)

Social Communication At least | Texting,
via phone or web | 1 social | Twitter,
{Click on a per- | compo- PhoneCall
sons picture to call | nent
or text them}

Storage Saving informa- | At least | TinyDB,
tion {Add items | 1 storage | Fusiontables
to grocery list and | compo- Control, File
save list} nent

Connectivity | Networking with | At least | ActivityStarter
other apps and | 1 con- | Bluetooth-
phones {Get latest | nectivity Client, Web
stock quotes from | compo-
web} nent

Lego Control Lego | Atleast 1 | NxtDrive,
Mindstorm kits | lego com- | NxtLight-
{Remote con- | ponents Sensor

trol for Lego
Mindstorm NXT
robot}

Code reuse is a particular focus in our measure of intricacy. For
example, consider the case where two functionally similar projects
exist and Project A copies the same code in three locations whereas
Project B defines a procedure and calls that procedure three times.
We argue Project B is more intricate as it leverages code reuse
in the form of procedures. Project A has a greater number of
blocks, but Project B has a greater number of unique blocks with
the block to define a procedure and the block to call a procedure
included. A project that appropriately uses a procedure rather than
copying blocks shows evidence of greater computational thinking
and therefore greater intricacy[18], even if the resulting apps have
identical functionality.

We measure programmatic intricacy of App Inventor projects
by looking at the NOUB that exist in the project. We choose the
NOUB instead of the total number of blocks so the measure of
intricacy is not affected by redundant code. This metric is consistent
with previous analysis of Scratch, which has a similar yet simpler
scripting language [11] [12].

5. Results

We show the division of the projects into groups then show the
distribution of the number of unique blocks (NOUB) in projects of
each group.

5.1 Grouping

After grouping projects by functionality, we find that 78.1% of
projects can be categorized into a single group, with the remainder
of the projects being categorized into multiple groups. The 3,289
projects were categorized into 4,282 groups; on average, a project
fit into 1.3 groups. Figure 4 shows the division of projects into
groups.

Based on the distribution of projects into the groups, we hy-
pothesize a correlation between this distribution and App Inven-
tor tutorials. Due to the simplicity of functionality that defines the
group, the Basic group is the largest. Over half of the App Inven-
tor beginner tutorials involve the creation of a drawing app [7] and
we see that the Drawing group is the second largest group. These
observations suggest that the large number of drawing apps users
create are projects that are very similar in functionality to tutorials.
The Lego group is the smallest, containing only 0.7% (27 projects)
of the data. One likely explanation is the additional hardware re-
quirement (Lego Mindstorm kits) to use an app grouped as Lego.
Another is that there are no official tutorials for Lego projects, so
users do not have a way to learn how to use the Lego components.
We hypothesize that the number of projects in each functionality
group correlates with the number of functionally similar tutorials
available. We further address this in our Discussion section.

drawing

connect

social
storage

sensor

lego

media basic

Figure 4. Size of Functionality Groups. 78.1% of projects are
categorized into exactly one group, with the others categorized
across multiple groups.

5.2 Number of Unique Blocks

We plot the distribution of the NOUB in each group and compare
these subsets of projects to each other and to the entire set of
projects. Figure 5 and Table 2 show the NOUB for projects within

each group, as well as the distribution for all projects ("All” in
Figure 5).

Each subset and the entire set of projects exhibits a positive
skew, suggesting that each group contains a few outlier projects that
have a significantly greater NOUB and are likely well-developed
apps.

The Storage group has the greatest median NOUB, the widest
distribution, and contains the project with the most unique blocks,
suggesting that apps that utilize storage functionality tend to be
the most advanced and intricate. This could be because storage
components often require structures such as lists and loops to
leverage its more advanced functionality. An example would be
using a loop to iterate over the keys and values in a database
(TinyDB) component and saving values into a list.

The wide lower quartile and narrow overall distribution of the
Lego group suggests its capabilities are more limited. The Lego
group has a wide lower quartile (lower whisker in Figure 5) rela-
tive to its narrow distribution, suggesting that even a simple project
involving Lego components requires more unique blocks to create.
The narrow distribution and low median for the Lego group sug-
gests that the capability to create Lego apps is limited. The need
for more unique blocks to create even a simple app with Lego com-
ponents and the limited functionality of these apps suggests that
developing these apps is not as intuitive and therefore more diffi-
cult.

Because 21.9% of projects fit into multiple groups, one project
can be represented in multiple plots. This is most evident in the
outliers. The greatest outlier is a password keeper app with 56
unique blocks in it; it is categorized as a Storage, Connectivity, and
Media app because it has components of each of those types.

60

50

.
@

| hgi

-
@

Number of Unique Blocks
w
(=)

— W [+~ — - o © s}
—) c U © o Y — —
© o = [— 0 [he] wn
— = c 9} = — 7] @
o © = o) 5 o
- o o] 0
n -]

Functionality Group

Figure 5. Distribution of Number of Unique Blocks by Function-
ality Group

6. Discussion

We critique our use of the number of unique blocks as a metric
for measuring intricacy and analyze the intuitiveness of creating
different types of apps with App Inventor. We then relate this
discussion on usability and capability to App Inventor tutorials.

6.1 Analysis of Metric

When measuring the intricacy of projects, our challenge is to ensure
that project categories do not bias our metrics. That is, our measure-
ment of app intricacy is not affected simply because apps include a
specific component and hence fall under a certain group. We want

Table 2. Summary Statistics for the Number of Unique Blocks by Group

‘ all ‘ storage drawing connect. social ‘ sensor ‘ lego ‘ media ‘ basic
med. 7 14 11 10 8 7 6.5 5 6
mean 9.17 15.40 11.29 12.34 10.19 9.80 7.86 8.14 9.17
std. dev. 7.11 9.61 6.83 8.79 8.73 7.43 4.86 | 6.94 5.80
max (w/o out- | 26.5 38.0 31.0 335 29.0 29.0 17.5 23.0 20.5
liers)
outliers 90 11 6 14 10 12 1 26 41

to measure apps solely according to the intricacy exhibited by the
blocks. We argue that our metric of the NOUB is not dependent on
the functionality of the app and is therefore a generalizable metric
of programmatic intricacy.

Because App Inventor provides a custom block for each func-
tionality of a component, the NOUB in a project is not directly de-
pendent on its components. App Inventor is event-driven, meaning
the programming of App Inventor involves responding to an action,
or event, from a component. Each component has its own unique
blocks to handle events, get and set attributes of the component,
and call component functions. Because of this, using one com-
ponent instead of another does not inherently change the NOUB
in a project. App Inventor blocks respond to events, get/set at-
tributes, and trigger component actions. Because of App Inventor’s
component-specific blocks, the NOUB in a project is a suitable
metric to measure the intricacy of projects.

when Click
<[TN SoundClick ~ Pt

PaintColor ~ BN

7% Canvasi ~ B
S

Figure 6. Component-Specific Blocks. The button component has
a block to handle being pressed, the sound component has a block
to play a sound, and the canvas component has block to set the
color.

Because the NOUB does not systematically vary according to
the components used in the projects, we find this metric suitable
for our analysis.

6.2 Considering Control Constructs

Another metric used in previous research with blocks-based lan-
guages for measuring programmatic skill is the measuring the num-
ber of “control constructs” evident in a project [19]. To measure the
existence of control constructs in the context of App Inventor, we
would specifically assess the number loops, lists, conditionals, pro-
cedures, and/or variables used in apps with different functionality.
This metric was considered but we find that it is too dependent on
the functionality of the app to be used. For example, Storage apps
frequently utilize lists as temporary storage between the app and
the database, whereas drawing apps typically involve a canvas for
the user to draw on and rarely have a purpose for lists. Because our
focus is on comparing different functionality groups, measuring the
number of specific control constructs is not appropriate because dif-
ferent constructs lends themselves towards different functionalities.

6.3 Usability

We define a group to have high usability if it does not require
many different blocks to create a simple project. If a group has high
usability, we expect many projects to be categorized into that group.
We define the usability score of a group as the number of projects in

the group divided by the median number of unique blocks for that
group. The results for the different groups are depicted in Figure 7.

250

200

Score

150

100

Usability

50

bo
@
—

media
basic

social.

Sensor

@
storage -

drawing

connect -

Functionality Group

Figure 7. Usability Score (Ratio of the Number of Projects to
Median Number of Unique Blocks) of Functionality Groups

Apps in the Basic group have the highest usability score and
are therefore the easiest to learn. This is not surprising because we
narrowly define the Basic group to contain apps that only use user
interface components. The Drawing and Media groups also have
high usability scores. This is likely because the tutorials heavily
focus on creating Drawing apps and Media apps. We argue that the
usability score is influenced by the beginner tutorials and address
this later in the Discussion section.

6.4 Capability

We focus our discussion on realized capability, or the maximum
potential of App Inventor that users actually reach. We are not
referring to the ”true” capability of App Inventor, the capability that
is technically possible but in practice almost never implemented by
users.

To assess the realized capabilities for App inventor to create
apps of certain functionalities, we are interested in the projects in
each group that have the greatest intricacy (greatest NOUB). It is
these projects that best reflect the capability of App Inventor to ac-
complish certain functionality. We choose to look at the maximum
NOUB in each group excluding outlier projects. This (non-outlier)
maximum is the end of the upper whiskers in Figure 5 and also
shown in Table 2. We argue that these apps best represent the capa-
bility realized by App Inventor users.

A greater maximum NOUB correlates with the ability to use
App Inventor to create apps that have more advanced functionality.
Having the least capability are Lego apps, with the narrowest dis-
tribution and lowest maximum NOUB. On the highest end of the

spectrum are Storage apps which leverage databases or tables to
persist data.

We see that apps with the greatest capability tend to connect
and extend the app to other functionality on a mobile device or
with the web. Storage and connectivity apps have the greatest
maximum NOUB so we say these groups have the greatest realized
capability. Storage apps connect to some form of data persistence
(database, table, file). Connectivity apps connect with other apps
on the phone, utilize Bluetooth, and connect with the web APIs.
What is interesting is that Social apps connect to other features
in the phone (contact list, texting, etc.) or with social media such
as Twitter, yet their realized capabilities are lower. This could be
a result of a lack of learning resources relating to this particular
functionality limiting the known capability of the group, which we
discuss next. In general though, we see that the apps with the most
realized capability tend to connect to the web and other apps and
services. This opportunity for extensibility while maintaining the
scaffolding that is the App Inventor environment is critical to an
environment that fosters computational thinking [20].

6.5 Relation to Learning Resources

The close correlation between usability scores and the order of App
Inventor tutorials suggests that users build apps based on knowl-
edge from the tutorials that they complete. On the App Inventor
website, tutorials are displayed as a list in sequential order, starting
with Beginner tutorials and ending with Advanced tutorials (Fig-
ure 8). Table 3 shows the number of projects that were found to
be tutorial recreations as well as the number of tutorials for each

group.
Tutorial Level

Beginner Tutorials: Short Videos to get started Basic
With these beginner-friendly tutorials, you will leam the basics of programming apps for Android,

Follow these four short videos and you'll have three working apps to shaw for itl After building

the starter apps, which will take around an hour, you can move on o extending them with more

functionality, or you can start building apps of your own design. Get started now with Video 1 (5

minutes).

Hello Purr for App Inventor 2 Basic
Hello Purr is the Hello World tutorial for App Inventor. This simple exercise takes you through the very basics of App

Inventor. In a very short time yos a picture of a cat on it, and then program the button so that

when it is clicked a ‘meaw" sound plays. This version of the tutonal is for use with App Inventor 2.

ill create a button

Magic &-ball for App Inventor 2 Basic
This introductory module will guide you through building a “Magic 8-Ball" app with App Inventor 2. When activated, your

&-ball will deliver one of its classic pradictions, such as "It is decidedly so” or “Reply hazy, try again.” At first you activate

the 8-Ball by clicking a button. If you are using a device (rather than the emulator) you can add in an accelerometer

component so that the 8-Ball makes a new prediction whenever the deviee is shaken. Note: This tutorial can be used in

place of Hella Purr since it initially has the same functionality, and then goes on to the extend that functionality. This

version of the tutorial is for use with App Inventor 2

MoleMash for App Inventor 2 Basic
In tne arcade game Whac-a-Mole TM , 2 "mole’ paps up at random positions on a playing field, and the user score points

by hitling the mole with a mallet. This is a similar game that uses the touchscreen. This tutorial introduces: image sprites,

timers, and procedures.

PaintPot (Part 1) for App Inventor 2 Basic
PaintPot lets you scribble in different colors by touching the screen to draw dots and lines. Goncepts introduced in this

project include: Canvas components for drawing; event handlers that take arguments, including touch and drag events;

and Arangement companents for cantrolling screen layout. Part 2 extends the project to draw dots of different sizes, as

an introduction to global variables. Variation: PaintPic extends this app to use the camera component o take a new

picture for drawing upon. This version of the tutorial is for use with App Inventor 2,

PaintPot (Part 2) for App Inventor 2 Basic
This is a continuation of Paint Pot (Part 1). Be sure to complete that tutorial before attempting this ane.

PicCall for App Inventor 2 Basic
PicCall illustrates how to create applications that use the phane's functionality. This application lets you select people.
from your contact list and display their pictures. When you press a picture picture, the phone calls that person.

Get the Gold for App Inventor 2 Intermediate
By building the Get The Gold App you will get practice with setting visibility, using Clock components and Timers, and

detecting collisions in App Inventor. You'll program an application that has a pirate ship whose goal is to collect all the

gold on the screen.

Paint Pot Extended with Camera (A12) Intermediate
This version of Paintpot allows you to draw irles and lines on a picture you take with your camera. You'll learn about the
Canvas component, drawing, color, and the Camera component.

Mole Mash 2 with Sprite Layering for App Inventor 2 Intermediate
MoleMash? provides an alternative implementation of the classic boardwalk game that demonstrates how ta use the

Advanced features in the Blocks Editor and how to layer Sprites.

12 3 next last»

Figure 8. App Inventor tutorials are displayed in sequential order
despite the fact that content of tutorials often do not build off each
other.

Most users tend to start with the beginner tutorials, but the
number of tutorials followed until users create their own original

projects varies. The earlier a tutorial appears in the sequence on the
website, the more users will use it. We see Drawing, Media and
Sensor apps appear as beginner tutorials; these groups also account
for most of the tutorial recreations and have the highest usability
scores. There are no Lego tutorials, and the very low usability score
reflects that. Although there are six tutorials involving Storage
functionality, they are classified as Intermediate and Advanced, so
there are fewer recreations of these tutorials. The Connectivity and
Social groups also have a low usability score and few projects
recreate these tutorials. We observe that lower usability scores
correlate to groups that have fewer tutorial recreations; the farther
along a tutorial exists in the sequence, the fewer times it will be
recreated.

Table 3. Number of Apps that are Tutorial Recreations {Number
of Tutorials} by Functionality Group and Difficulty Level

Tutorial Difficulty
Beginner Intermediate Advanced Total
Groups All 683 {9} 95 {10 } 54 {7} 832 {26}
Storage 0{0} 5{1} 48 {5} 53 {6}
Connectivity 0 {0} 9{1} 26 {2} 35 {3}
Drawing 447 {4} 70 {5} 54{2} 522 {11}
Social 0{0} 6{1} 0{0} 6{1}
Sensor 142 {2} 040} 35 {4} 177 {6}
Lego 040} 040} 040} 0{0}
Media 198 {2} 4{3} 0{0} 202 {5}
Basic 81 {1} 1 {1} 040} 92 {2}

This correlation between the number of tutorial recreations and
the usability scores for a given functionality suggests that users
build off the knowledge from tutorials when creating an app. The
relationship between few tutorial recreations for groups and low us-
ability scores suggests that if users do not learn a concept directly
from a tutorial, they tend to have trouble generalizing knowledge
from other tutorials. Therefore, users tend not to create apps that
are functionally different from completed tutorials. This is trou-
blesome as [13] noted that 71.3% of users of the TouchDevelop
environment tended to learn only a few features initially and not
seek to learn more later. We observe that users do not complete
enough tutorials to gain a thorough understanding to create apps of
differing functionality with App Inventor, so there exists a need to
make tutorials more available and the knowledge from them more
generalizable.

To better prepare users to create apps with more diverse func-
tionality, we propose changes to the App Inventor learning re-
sources to ensure tutorials are more accessible and contain more
transferrable knowledge. We consider the following changes to
App Inventor tutorials:

e Avoid Pre-Defined Paths for Tutorials: As of now, App Inventor
tutorials exist as a list where tutorials often do not build off of
knowledge from previous ones. So, we suggest that tutorials be
offered in such a way that users do not feel obligated to follow
an unnecessary predefined “path” when recreating tutorials. In-
stead, users should be more inclined to select tutorials relevant
to their interests.

Organizing Learning Resources: Because learning resources
tend to be separate from each other on the MIT App Inventor
website, users may not know where to go when they encounter
a problem, or they may not even know given resources exist.
For example, concept cards, which explain specific concepts
and do not teach the creation of full apps, can serve as quick
references for users [21]. They are placed with the teaching
resources on the App Inventor website, entirely separate from

tutorials. Ensuring that users have a centralized and organized
point to access resources would better support users.

Modularize Tutorials to Focus on Functionality: App Inventor
tutorials focus on how to develop a functioning app. The need
we find on the forums is help on how to accomplish specific
functionalities, such as persisting a high score in a game or
sharing data across multiple screens [22]. Having a 5-10 minute
tutorial on "How to use Lists” rather than an hour tutorial that
records a list of addresses and views them on Google Maps
("Map It: Displaying Locations on a Google Map,” the only
tutorial with lists), enables users to succinctly learn the specific
functionality they are in question about.

Leverage the Community Gallery: The App Inventor gallery
is a recent addition to App Inventor which enables users to
share their projects and “remix”” and build off of projects other
users shared [23]. With this, App Inventor learning resources no
longer need to show the creation of apps from blank, completely
new projects. Instead, they can look to well-built apps shared
by the community and highlight ones that other users can learn
from and build off of.

Adaptive Tutorials: Suggested in a similar context by [13], an
adaptive tutoring system would recommend resources relevant
to what the user is creating and avoid concepts already learned
or implemented. This would enable users to monitor their own
progress and give them a more holistic perspective of the func-
tionalities offered with App Inventor environment.

7. Conclusion

In this paper, we evaluate the usability (low floor) and capability
(high ceiling) of App Inventor, a web-based environment that en-
ables users to create mobile apps with a visual blocks based pro-
gramming language. From our sample of 5,228 apps, we filtered
out certainly static apps and apps that are recreations of our tuto-
rials and grouped the remaining apps by similar functionality. We
then measured the number of unique blocks for projects in each
group and compared the groups.

Our critical findings: (1) There exists a strong correlation be-
tween the usability and the number of tutorial recreations for a
given functionality group; (2) users tend to follow tutorials sequen-
tially and therefore often do not complete more than beginner tu-
torials; (3) users tend to develop apps that are functionally similar
to completed tutorials; (4) apps with the greatest realized capabil-
ity tend to connect to other functionality on a mobile device or with
the web (external databases, APIs, etc.). These findings suggest that
the realized capabilities of App Inventor are limited by the provided
learning resources. We provide a list of recommendations for im-
proving these resources for end-users. These recommendations are
not specific to the App Inventor environment and are transferable
and applicable to other programming environments and tools that
have online resources.

The existence of non-functional projects and recreations of tuto-
rials in our dataset offer opportunities for future work. While we fil-
tered out projects that were certainly static by ensuring all projects
had the minimum number of components and blocks, there still
exist projects in our dataset that do not have any functionality. Dis-
regarding blocks that are not connected to other blocks and compo-
nents with no programmed functionality would better filter out the
non-functional projects. And although we filter out projects that are
recreations of tutorials by matching project names, a more robust
method of identifying projects that are merely recreations would
improve the dataset. We could also focus analysis on specific ad-
vanced structures more closely tied with computational thinking
such as iterators and procedures, as defined by [24]. Finally, there

is promise in analyzing user and temporal data, investigating how
users and their apps develop over time.

Acknowledgments

We thank Jeffery Schiller (MIT App Inventor) for helping collect
the data, Ilaria Liccardi (MIT) and Franklyn Turbak (Wellesley
College) for helping guide the analysis, and Aubrey Colter (MIT
App Inventor) and Nicole Zeinstra (MIT) for significantly helping
proofread this paper.

This research is funded by the MIT EECS - Google Research

and

Innovation Scholarship as part of the 2014-15 MIT Supe-

rUROP Program.

References

[1]

[2]

[3]

[4

=

[5

—_

[6

=

[7

—

[8

—_

[9

—

[10]

[11]

[12]

[13]

[14]

MIT App Inventor — Explore MIT App Inventor, 2015. URL
http://appinventor.mit.edu/explore. last accessed 14-May-2015.

Blockly, 2015. URL https://developers.google.com/blockly/. last
accessed 10-April-2015.

Franklyn Turbak, David Wolber, and Paul Medlock-Walton. The
Design of Naming Features in App Inventor 2. 2014 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC),
2014. . URL http://dx.doi.org/10.1109/vlhcc.2014.6883034. last
accessed 29-April-2015.

Franklyn Turbak. Mobile Computational Thinking in App Inventor
2, 2014. URL http://cs.wellesley.edu/ tinkerblocks/RIC14-talk.pdf.
Slides of a talk given to CSTA-RLApril 10, 2014, Rhode Island
College, RI.

David Wolber, Harold Abelson, and Mark Friedman. De-
mocratizing Computing with App Inventor. SIGMOBILE
Mob. Comput. Commun. Rev., 18(4):53-58, 2015. . URL
http://dx.doi.org/10.1145/2721914.2721935. last accessed 1-May-
2015.

Anatole V Gershman, Joseph F McCarthy, and Andrew E Fano.
Situated Computing: Bridging the Gap Between Intention and
Action. In Wearable Computers, 1999. Digest of Papers. The Third
International Symposium on, pages 3-9. IEEE, 1999.

Tutorials for App Inventor 2, 2015. URL
http://appinventor.mit.edu/explore/ai2/tutorialsd41d.html. last
accessed 14-May-2015.

Shuchi Grover and Roy Pea. Computational Thinking in K-12 A
Review of the State of the Field. Educational Researcher, 42(1):
38-43,2013.

Johanna Okerlund and Franklyn Turbak. A Preliminary
Analysis of App Inventor Blocks Programs, 2013. URL
http://cs.wellesley.edu/ tinkerblocks/VLHCC13-poster.pdf. Poster
presented at the IEEE Symposium on Visual Languages and Human-
Centric Computing (VLHCC 2013), Sept 17, San Jose, CA.

Scratch, 2015. URL http://scratch.mit.edu. last accessed 01-Aug-
2015.

Deborah A Fields, Michael Giang, and Yasmin Kafai. Programming in
the Wild: Trends in Youth Computational Participation in the Online
Scratch Community. In Proceedings of the 9th workshop in primary
and secondary computing education, pages 2—11. ACM, 2014.

Christopher Scaffidi and Christopher Chambers. Skill Progression
Demonstrated by Users in the Scratch Animation Environment.
International Journal of Human-Computer Interaction, 28(6):383—
398, 2012.

Sihan Li, Tao Xie, and Nikolai Tillmann. A Comprehensive Field
Study of End-User Programming on Mobile Devices. In Visual
Languages and Human-Centric Computing (VL/HCC), 2013 IEEE
Symposium on, pages 43-50. IEEE, 2013.

Python Data Analysis Library, 2015. URL http://pandas.pydata.org/.
last accessed 5-May-2015.

[15] Course in a Box. URL
http://www.appinventor.org/content/CourselnABox/Intro. This
is a series of video tutorials. Online; last accessed 29-April-2015.

[16] App Inventor Tutorials. URL http://www.imagnity.com/tutorial-
index. Series of tutorials with pictographic explanations. Online;
last accessed 04-May-2015.

[17] Lego Group. URL http://www.lego.com/en-
us/mindstorms/?domainredir=mindstorms.lego.com.

[18] Mark Sherman, Fred Martin, Larry Baldwin, and James
DeFlippo. App Inventor Project Rubric - Compu-
tational Thinking through Mobile Computing. URL
https://nsfmobilect.files.wordpress.com/2014/09/mobile-ct-rubric-
for-app-inventor-2014-09-01.pdf.

[19] Sid L Huff, Malcolm C Munro, and Barbara Marcolin. Modelling and
Measuring End User Sophistication. In Proceedings of the 1992 ACM

SIGCPR conference on Computer personnel research, pages 1-10,
1992.

[20]

(21]

[22]

[23]

[24]

Alexander Repenning, David Webb, and Andri Loannidou. Scalable
Game Design and the Development of a Checklist for Getting
Computational Thinking into Public Schools. In Proceedings of
the 41st ACM technical symposium on Computer science education,
pages 265-269. ACM, 2010.

MIT App Inventor. App Inventor Concept Cards. URL
http://appinventor.mit.edu/explore/resources/beginner-app-inventor-
concept-cards.html. last accessed 15-May-2015.

MIT App Inventor Discussion Forum, 2015.

URL https://groups.google.com/forum/!categories
/mitappinventortest/specific-programming-issues. last accessed
01-Aug-2015.

MIT App Inventor Blog, 2015. URL
http://appinventor.mit.edu/explore/blogs/josh/2015/05/18.html.

last accessed 01-Aug-2015.

Mark Sherman and Fred Martin. The Assessment of Mobile
Computational Thinking. Journal of Computing Sciences in Colleges,
30(6):53-59, 2015.

