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Analysis and Productivity Improvement of an Automated Material Handling
System through Simulation

By Willow Primack

Submitted the MIT Sloan School of Management on May 8, 2015 in Partial Fulfillment of the requirements for

the Degrees of Master of Business Administration and Master of Science in Mechanical Engineering

Abstract

As Amazon.com has grown, the company has invested in warehouse systems similar to those
traditionally found in manufacturing. These systems are a complex and interconnected set of
manned work processing stations linked together by conveyance. This thesis examines one such
system, arranged as a set of parallel single piece workflow lines joined by a central computerized
sorter that route work between lines, and examines the effect of sorter algorithms and line
capacity on production output. Work studies, interviews, and a practical experiment suggest a
deterioration in the feedback provided to the central sorter for work routing.

A Monte Carlo simulation model of the system further supports this hypothesis, suggesting that
system throughput is 11.7% lower than a system that perfectly routes work to line in a pull
fashion. While perfect routing is not practically feasible, the thesis then explores two routing
heuristics designed around starvation response and dynamic capacity analysis, which simulation
suggest may yield a 6.73% increase in throughput. In doing so, the thesis provides a case study
on process improvement using simulation to characterize a complicated mechanical production
system that is otherwise analytically intractable.

Thesis Supervisor: Brian Anthony
Title: Director, Master of Engineering in Manufacturing Program and Principal Research
Scientist, Department of Mechanical Engineering, Massachusetts Institute of Technology

Thesis Supervisor: Zeynep Ton
Title: Adjunct Associate Professor of Operations Management, Massachusetts Institute of

Technology
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Chapter 1 - Introduction to Amazon.com and Automated Materiel Handling Systems

1.1 Amazon.com Background

Since its 1994 inception as an online bookstore, Amazon.com has undergone dramatic expansion

and growth into a leading retailer for online commerce. Throughout this period of growth, the

company has held convenience, reliability, and customer experience as core priorities. Over the

past nine years, the company has particularly emphasized and expanded its "Amazon Prime"

customer subscription program, offering customers free two day shipping on orders. This service

has increased individual customer consumption and expectations. As stated in the company's

2013 Annual Report, "Customers love Prime... On a per customer basis, Prime members are

ordering more items, across more categories, than ever before" [1].

With the growth of revenue, delivery requirements, and the breadth of inventory, the company

has expanded and differentiated its fulfillment center network. This growth in operations

presents a significant management challenge: "As we continue to add fulfillment and warehouse

capability or add new businesses with different fulfillment requirements, our fulfillment network

becomes increasingly complex and operating it becomes more challenging" [1]. The company

has invested in more than 50 new warehouses since 2010, with a particular eye towards

shortening delivery times by locating warehouses near metropolitan centers [2]. A typical large

Amazon.com warehouse may have a floor space of 1.0-1.2 million square feet and employ

between 1,000 to 1,500 employees [3]. The company is also expanding outbound capability

through the development of a network for postal injection and a special USPS contract for

Sunday deliveries [3]. This expansion has helped meet the demands of the company's

continuous and dramatic annual growth in net sales, as shown in Figure 1-1.
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Amazon Net Sales (Millions of Dollars), 2004-2013

$74,452.00

$61,093.00

$48,077.00

$34,204.00

$24,509.00

$19,166.00
$14,835.00

$10,711.00
$6,921.00 $8,390.00

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Figure 1-1: Amazon.com annual net sales [1].

With the increasing scale and growth of warehouse operations the company has looked to new

systems and technology for inventory handling and storage. The most dramatic of these

investments has been the acquisition of Kiva Systems, a maker of robotic inventory systems [4].

Amazon has also invested internally in the development of automated materiel handling systems

[2]. These systems are comprised of a series of conveyance and scanners that route items to

manned workstations for processing. This paper focuses on the in-depth analysis of the software

logic, metrics, and efficiencies of a particular automated materiel handling system, developing

methods to characterize losses, build better controls, and achieve greater worker job satisfaction.
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1.2 Problem Statement

Automated material handling systems are flow systems with multiple manned stations linked

together by conveyance and limited buffer space. Amazon systems often rely on adjustable

capacity in order to meet spikes in demand [5]. A workstation may at different times be manned

by multiple associates, or given partial attention by a single associate. These spikes in demand

are associated not only with a daily ordering and shipping cycle [5], but also significant

seasonality. In 2014, Amazon.com hired 80,000 temporary associates for fulfillment center

operations [6], expanding the available labor pool by more than a third. Many operational

parameters of automated material handling systems are often unknown, given the complexity of

interconnection within the system, particularly how achieved throughput compares to a

theoretical optimum, which may not be derivable from observed parameters. Computerized

algorithms for sorting work interact with the physical flow of material. This thesis forms an

inquiry into how well existing system software performs to avoid workflow problems, an

analysis of how this performance compares to a theoretical optimum, and development of

heuristics to correct workflow problems.

Starvation and blockage of workstations is a particular concern for efficient operation of the

system. Starvation is defined as a period in which a workstation does not have the materiel inputs

needed to do work; blockage is defined as a period in which a workstation cannot send an item to

the next station because the buffer between stations is full. Automated material handling systems

often utilize single piece workflow, in which workstations process one item at a time instead of

batches of similar items. Single piece workflow provides a quality advantage over batching

methods, measured in this case by first-time-correct item placement into inventory or into a

customer order. Single piece workflow also allows for problem identification and response by
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managers, an important capability for system improvement [7]. Buffer space is at a premium

within these systems, as the physical space occupied by conveyance competes with valuable

inventory for floor space. Given these factors, starvation and blockage of workstations has the

very real ability to inhibit productivity. While starvation and blockage mechanics can sometimes

be derived analytically through queuing theory, certain problems are analytically intractable due

to system complexity or the presence of non-Markovian arrival times and processing

distributions. As this is the case for the studied system, this thesis will turn to simulation of

queue state transitions to characterize losses from starvation and blockage.

Starvation and blockage also has the potential to frustrate workers and reduce job satisfaction.

Amazon workers are evaluated by the quality and quantity of the work they produce. Starvation

and blockage problems present impediments to worker productivity that workers may perceive to

be out of their individual control. This paper will address psychological factors of satisfaction

within these factory-like automated material handling systems in the context of traditional

Amazon culture, and recommend adjustments based on mechanical evaluation of these systems.

1.3 Methodology

In order to explore the issues raised in the problem statement, this paper will first provide an

analysis of the system, comprised of four parts:

1. An overview of the system's physical connections and characterize the distribution of work

processing rates.

2. And assessment of worker time studies in order to obtain a sense of the occurrence of

starvation and blockage.
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3. An examination of the software logic of the system, delving into the mechanics of how it

routes materiel and whether it operates as a pull or push process and under which conditions.

4. A Monte Carlo random variable simulation modelling system behavior to characterize

theoretical efficiency compared to ideal productivity.

The paper will next examine the effect of these losses on worker morale and the management

challenges that may arise. The paper will then make recommendations for new metrics and

software logic to reduce the effects and occurrence of starvation and blockage within the

automated materiel handling system, and simulate the expected outcomes of implementing these

heuristics. In doing so, this paper serves as a research case study in the applied analysis and

improvement of complex mechanical systems that integrate automation with human labor.
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Chapter 2 - System Overview

2.1 System Description

The automated material handling system studied for this paper is located in a large fulfillment

center in Southern California. Similar systems are in use throughout the Amazon.com fulfillment

center network, with variations adapted to different types of items and processes. The system

receives items, scans them into a computer system, processes the items, and consolidates the

items into batches for further processing. Throughout the flow of items through the system, items

are examined for damage and matched to a computer database for inventory verification. The

single piece workflow of the system is critical to reduction of defects. The conveyance of the

system brings items to workers, allowing workers to perform their receiving and processing tasks

from one location.

Figure 2-1: Conveyance, trays, and items in an automated material handling system
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Items arrive at the system entrance and are stored in a large communal buffer. These items are

received into the system at manned workstations (induction stations) and placed on orange trays,

shown in Figure 2-1, to be transported through the system conveyance. Items are routed to a

central sorter, which sends items to individual manned processing stations. Multiple batches at

once can be assigned to each processing station. If an item is part of an existing batch, it is

directed to the processing station that holds the batch (processing stations). If the item is the first

of a new batch, the sorter uses an algorithm to decide which processing station to make an

assignment to (see Section 2.2 for details).

At the processing stations, items are removed from the conveyance trays and placed by batch in a

large buffer for further processing at downstream stations (batch stations). Each processing

station is linked to one or more batch stations that serve the processing station exclusively. The

orange conveyance trays, now empty from the processing station, are recirculated to the

induction stations. Each processing station is exclusively linked to a single induction station,

with the processing to induction link referred to as a line. These linkages are shown in Figure 2-2

for a system with two lines (2-line).

The actual work done at stations will vary between system based on the overarching design and

purpose. In the system studied for this paper, workers at induction stations pick items out of

crates, scan the items, place the items in orange conveyance trays, then trigger motors to send the

orange tray and contained item to the sorter. Associates at processing stations pick items out of

orange trays and place them into physical lots selected by the computer system.
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Line 1

Induction ------...................... Processing Batch

Input Sorter Output

Induction ---...................... Processing -> Batch

Line 2

- - - - >Flow of Items

Key ..........---- >Flow of Empty Trays

-FFlow of Items in Trays

Figure 2-2: 2-Line automated material handling system linkages.

The buffers leading into processing stations are very short, as are the buffers for empty trays

between processing and induction stations. This thesis will assume that these buffers can store 20

full and empty trays respectively, although this quantity varies by system configuration. An

induction station is starved if either items or empty trays are not available in its two input

buffers. A processing station is starved if full trays are not available in its sole input buffer and is

blocked if the empty tray buffer leading to the paired induction station is full of empty trays. If a

station is full or blocked, it temporarily halts work. For the purposes of this paper, the sorter is

assumed to have an infinite processing rate, such that induction stations are never blocked. The

potential location of starvation and blockage in a 2-line system is shown in Figure 2-3.
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Processing to Processing to
Induction Input Induction BuJfer Batch Buffer
Buffer (Small -20 (Large - 200
(Tety Large) Rays) Items)

Induction --------------------- Processing Batch

Processing Input Buffer \

Input Sorter (Small - 20 Tays) Output
If buffer emptv, if
Processing is starved /

Induction .--.--.--.- - -- -Processing > Batch

If buffer
emptY, If bqjffr If buJf]r
Induction is emptv, Aull
starved Induction is Processing

starved is blocked

IfProcessing Input Buffer is full, trays and items designatedfor the
processing station recirculate through the sorter system without being
reassigned

Figure 2-3: 2-line system buffers and potential starvation, blockage, and recirculation.

While the flow of items and trays through the system is most easily visualized through the 2-Line

diagram above, the system can contain many more lines to suit the needs of a particular purpose

within the fulfillment center. A diagram for a 5-line system is shown in Figure 2-3. The system

considered in this paper will be assumed to be a 20-line system.
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Induction ...................... Processing Batch

Induction ...... ".. -..... Processing -> Batch

/O / Induction . .. ................. . Processing - Batch

Input Sorter Output

Induction ".... . ........ Processing -> Batch

Induction .... . ......... Processing -> Batch

Induction ...................... Processing Batch

- - - - >Flow of Items
Key -------------->Flow of Empty Trays

-,Flow of Items in Trays

Figure 2-4: 5-line automated material handling system linkages. As with the 2-line system, lanes

send inducted items on trays to the sorter for distribution to processing stations, linking the

parallel lanes.

If the individual buffers for full trays leading into processing stations are full, having 20 trays

and items present, trays assigned by the sorter are placed instead in the recirculation loop, a

limited capacity communal overflow buffer described in Figure 2-4. If the recirculation loop is at

capacity, items are rejected from the system ad must be processed into their batches by hand, a

processes that is labor-expensive. Estimating how many items will be rejected from the system

under particular conditions is important to understanding system efficiency.
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Recirculation Loop - A shared oveiflow holding buJJer for
all Processing Input buffers. 200 tray capacity.

SSol-ter

Processing Input Bzuffer Processing Input Buffer
20 tray capacity. 20 rycaay202 trh ycapacit

Processing Processing

If an individual If an individual Processing Input Buffer has 20
Processing Input Buffer trays, the sorter is blocked fom sending trays into
has less than 20 trays, it the buffer Trays are placed on the recirculation loop
does not use recirculation. and routed to the station once the buffer is not full.

Figure 2-5: Recirculation loop behavior allows flexibility to handling volatility in the short

processing input buffers.

The recirculation loop serves two important purposes. If the arrival rate of trays to an individual

processing station is lower than the rate at which the station processes items, the queue leading

into the station will have a finite expected value, L, and achieve steady-state. In a given moment

of time the queue can be larger than the expected value based on variance in arrival and

processing. The recirculation loop attempts to absorb both the excess queue from variance and

any component of the expected value greater than the individual processing station input queue.

If making the modeling assumption that the input buffers of processing stations can be modeled

as queues with infinite capacity, the length of the recirculation loop imposes a practical limit on

the viability of this assumption. Queue length is therefore important for assessing the real-world

suitability of a model.

If the arrival rate of trays to an individual processing station equals or exceeds the processing

rate of the station, the queue leading into the station will not reach steady state, and will grow

18



infinitely over time. If this rate condition is temporary, the recirculation loop can absorb the

lengthening queue until rate conditions change and the queue can achieve steady state. This

capability is critical to dealing with spikes in demand. During periods of high demand, stations

can also receive additional staffing; while proving inefficient returns on labor, this overstaffing

can increase capacity. Both of these flex capabilities in dealing with demand spikes are critical to

Amazon.com systems, as discussed in previous case studies in on Amazon.com systems dealing

with volatility [5].

2.2 Sorter Algorithm for New Batches

As described in the previous section, items arriving at the automated materiel handling system

are either part of an open batch already assigned to a processing station, or are the first item in a

new batch that must be assigned to a processing station. All subsequent items in the batch that

will arrive at the entry queue to the system will be directed to the processing station where the

batch is assigned. Items do not arrive in a coherent batch sequence; if an item from a particular

batch has just arrived, there may be many items from other batches that arrive before the next

item in the particular batch.

When evaluating where to place a new batch, the algorithm considers several different

parameters. These parameters are prioritized, with the most important parameters first. The sorter

implements these priorities as follows:

1. Check to see if each processing station is active. If only one station is active, assign the order

to that station, otherwise go to Step 2.
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2. Check to see if each processing station has an appropriate storage space in the large buffer

between the processing station and the batch station. Choose the lane with the most

appropriate storage space, otherwise go to Step 3. This factor is assumed to be irrelevant for

the studied system, in which item sizes are similar for almost all orders.

3. Assess each processing station for the number of items incoming to the station from

incomplete batches with its processing-batch buffer. Assign the new order to the station with

the least number of incoming items by this metric. This step can be disabled through

parameter settings; if it is, go to Step 4.

4. Assess each processing station for the number of available batch slots in the processing-batch

buffer. Assign the new order to the station with the most available space in its outgoing

buffer.

Steps 3 and 4 almost always determine the placement of items. Step 3 attempts to balance

workload between all processing stations. Analysis of the system will assess the results of this

load balancing given the variance in the functional work rates between workers assigned to the

processing stations. Step 4 seeks to place items based on the status of the outbound buffer from

the processing station leading to the batch station, as shown in Figure 2-5. Analysis of this logic

will assess whether this results in a push or pull system, and the efficiency that results.

Recommendations resulting from the analysis will compare the performance of these two

existing options and consider further alternatives.
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Chapter 3 - Analysis

3.1 Background on Queuing

As the system contains buffers fed by work arrival and depleted by work processing, it is

necessary to review the mechanics of queues prior to conducting a specific analysis of the

system. A queue is a line or backlog of work that can form leading into workstation providing a

service or process. In the context of queues, N designates the number of stations servicing a

single queue, X designates the average arrival rate of work over time, pi designates the average

processing rate of a station over time, and p designates the utilization ratio as defined as p =

N*y. The property k designates the capacity of the system, both within the queue and the items

being processed by stations [8].

One sort of very well understood queue is an M/M/1 queue, the notation indicating that arrival

times are Markovian, processing times are Markovian, and 1 station services the queue. Item

arrival and processing distributions within this system are negative exponential distributions with

probability density function (PDF) and cumulative density function (CDF) as a property of time

of f(t) = A * e -1tand F(t) = 1 - e~A*t for t ;> 0 respectively [8]. these distributions are

characteristic of random event occurrence over time, with the low probability long waiting

periods representing rare events [8]. In the context of item processing, these rare events may be

items that are heavy, damaged, or require special handling, occupying the station for periods that

separate clumps of common items. Negative exponential distributions are memoryless,

unchanged in shape by elapsed time. With X=.2, for example, there would be an 18. 1%

probability of an arrival within the first second at which the queue and station stood empty. If

several seconds had passed in waiting without an arrival, there would still be an 18.1%
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probability that there would be an arrival in the next seconds following the time spent waiting. In

other words, time spent waiting is not recorded by the system for the purpose of future outcomes.

Given this memoryless property of the arrival and processing of items, the only relevant

information needed to fully characterize the system and the probability of future events is the

current number of items in the system, both in the queue and the single item being processed by

the workstation. The system can thus be modeled as a Markov chain [9]. For an M/M/1 system

with capacity k=4, the Markov chain can be modeled as per Figure 2-1. The numbers inside the

circular states represent the total number of items in the system.

0 1 2 3 4 1 X(Discards)

Figure 3-1: Markov states and transitions of an M/M/1 system with capacity k=4.

If the utilization ratio of an M/M/1 queue is less than 1, i.e. if A P, the queue achieves steady-

state [7]. The average length of the queue, Lq, will have a finite expected value. Of course, at a

given instant, the queue length may not equal Lq. Items enter the system in clumps instead of a

steady flow, given the negative exponential distribution of time between arrivals. The probability

that the system will have a certain number of items present at steady-state is stated as Px where x

is the number of items. The sum of all these steady-state probabilities is one: Z= Px = 1 [8].

Po is the state at which no items are being processed or in queue and that Pk is the state in which

the queue capacity is full. Po and Pk are therefore the fractions of a given block of time that the

workstation will respectively be starved or be blocking new work from entering the queue. Once

the steady-state probabilities are known, they can be used to predict lost work to starvation and
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blockage. If the arrival rate into a queue is X=30 items per hour, and Pk=15%, we would expect

X*Pk= 4.5 items per hour to be rejected from the system due to blockage.

The steady-state probabilities of an M/M/1 system can be solved by writing a series of steady-

state equations for transitions between states, resulting in k equations. Combined with the

summation equation, the number of equations will match the number of steady-state

probabilities, allowing for solution as a system of equations. The steady-state probabilities of an

M/M/1 system with k capacity and a utilization ratio p are P(x) = T [9].
.P k+1

Calculating Po and Pk for a system with capacity of k=21 yields the following results for

progressive utilization ratios, as per Figure 2-2.

Starvation and Blockage Potential in an M/M/1 system with k=21
- - - System Empty System Full

0.6

0.

L:J
o 0.

LJ 4

-c0.3

0.2

CL

0.

0
0

LL

Starvation decrease almost linearly
with increasing p before reaching a
point of diminishing returns

Blockage increases non-linearly
with utilization ratio

.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Utilization Ratio, p

Figure 3-2: Plots of empty and full steady-state probabilities as a function of utilization ratio for

an M/M/1 k=21 system, resulting in system starvation or blockage of the upstream stations.
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As p approaches one, steady-state probabilities for both a full and empty system converge to

4.54%. Even when the rate of work arrival into an M/M/l system of finite queue length

approaches the rate at which the system can process items, the variance in arrival and processing

ensures that there will still be starvation within the system, forming a theoretical constraint.

Managers must therefore expect some level of starvation and blockage for workstations and

optimize utilization ratios to produce the best productivity for the system as a whole [8].

Variation reduction can reduce these factors.

When considering a system with a very large input buffer, it may be reasonable to model it is as

an M/M/1 system with infinite queue capacity. As before, the condition for steady-state is p<l.

The steady-state probability of no items being present in the system at a given time is:

PO = 1 - p [9]

While this expression for starvation time is simple, in a practical sense we must consider the

average length of the queue, Lq, that will form. Lq is given by:

p2
Lq = [9]

The queue length therefore increases in a non-linear fashion, approaching infinity as p

approaches one, as per Figure 2-3. If a queue length of Lq=20 is desired, the percent of time

spent in starvation, PO, will equal 4.56%. While the system cannot fill and block the upstream

station, at particular times the queue length will exceed Lq, requiring large buffers.
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Queue Length in a M/M/1 System with Infinite Capacity
200

180

160

140

120

100

80

60

40

20

0
0.75 0.8

Asymtotic behavior as p approaches
one; averare queue length and wait
time approaches infinity

Non-linear increase queue length
and wait time as p increases

0.85 0.9 0.95

Utilization Ratio, p

Figure 3-3: Plot of average queue length as a function of utilization ratio in a M/M/1 system

with infinite capacity.

The time required for item processing and arrival does not always follow distribution that is

exponential, altering the fundamental memoryless processing property of previous examples. If a

process is a composite of tasks each of which require an amount of time corresponding to an

independent exponential distribution, the overall distribution of the process by definition will

follow a Gamma distribution. This sort of behavior occurs when considering the arrival or

processing of a batch of items. C.W. Zhang et al. (2007) propose a using a Gamma distribution

control chart to monitor the processing times of non-standard items on a manufacturing line, for

instance [10]. Other common non-memoryless queues may have deterministic elements in their

processes, particularly as influenced by standard work or a reliable mechanical process. These

components can sometimes be separated to simplify analysis. For example in their discussion of

transfer line decomposition, B. Xia et al. (2012) assume that manufacturing processes are
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deterministic, but subject to exponential breakdown and repair [11]. The analysis of state

transitions in queues with non-memoryless properties in both arrival and processing is difficult

and often very specific in utility, as the queues with non-memoryless arrival and processing can

generally not be modeled effectively using Markov chains [8]. Simulations in this case may

therefore provide a more practical means of analysis, although the M/M/1 results discussed in

this section are analytically useful as rough guidelines for what sort of starvation and blockage to

expect within the system.

3.2 Effects of Sorter Logic and Hypothesis

As discussed in Section 2.2, there are two algorithms that the system's central sorter can use to

route work to production lines, activated by different parameters within the sorter script. One

assigns work based on available space within the buffer between processing and batch stations.

The other script attempts to balance work arrival rate uniformly across all lines. This section will

consider the effect of these two algorithms on system performance.

The algorithm that assigns work based on the availability of space within the processing-batch

buffer appears to produce a contrary response to variations in the rate of the processing station.

Consider a single line with a batch station that operates at a fixed rate. Let the processing station

operate at a particular initial work rate. The steady-state condition of the buffer will tend to

produce a particular initial arrival rate in response. After a couple of hours, the associate

manning the processing station gets tired and slows down. With the batch station still operating

at the same rate, the number of batches in the processing-batch buffer will tend to decrease and

more space will become available in the buffer. The sorter will tend to assign more batches to the
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line, raising the item arrival rate: a decrease in capacity triggers the routing of additional work.

Over the entire system, this effect is consistent; if all batch stations work at the same pace,

slower processing stations will tend to receive more work than fast ones.

The space-available processing-batch buffer algorithm is ideally suited to a particular purpose

within the observed system. Batch stations are very flexible in terms of manning, and the most

labor intensive of the three types of stations. A management strategy for the system is to

minimize the number of associates working in the batch stations by dynamically re-assigning

batch associates to lines with many items in the processing-batch buffer throughout the course of

operations. As a heavily staffed batch station depletes a buffer, the empty buffer space pulls

work from the sorter to the line.

This strategy has hidden costs in terms of management attention and the movement of associates.

The strategy is also limited in terms of productivity maximization, as processing stations form

the mechanical bottleneck of the system and are less scalable with staffing. Dynamically

reassigning batch associates leads to inconstant arrival rates of work to the processing stations

throughout the course of operations, and therefore wastes capacity within the bottleneck. This

thesis must therefore focus on the other algorithm for uniform work between lines in order to

consider the throughput optimization.

The algorithm that attempts to direct a uniform arrival rate to each production line is also based

on batches within the processing-batch buffer and the items designated for those batches. The

feedback response is therefore much less agile than a pull system based on the processing

stations' input buffers. The system operates as a pull system if faster lines can complete batches

more rapidly than others; this will not be the case, however, if the arrival rate of items to the

processing station becomes the primary factor dictation production rate. Observed production
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rates over the course of a week suggest that the average production rate of associates follows a

bell shaped distribution with a coefficient of variation of 9%, as shown in Figure 3-1. This level

of variation suggests that the sorter feedback mechanism may operate differently for low

capacity and high capacity stations.

Individual Rate Population Sample

3-

3 0

2 S0

0
>

Figure 3-4: Distribution of average production rates of induct and processing associates by line

over the course of a week, 266 observations. Actual rate data is proprietary to Amazon.com.

If a line has less capacity than the arrival rate of items, the line's production rate will be equal to

capacity, which will influence the rate of batch completion and hence the rate at which new work

is draw to the line. This is a negative feedback system designed around the principle that the

stations' capacity "pulls" work to the station. If the line has a higher capacity than arrival rate,

the production rate will be the arrival rate itself, forming a break in feedback that does not pull

work based on the line's capacity. Queueing theory discussed in Section 3.1 states that the arrival

rate of items to stations will always be lower than station capacity for a finite average queue

length. The hypothesis formed from examining this software logic and flow system is therefore

that the maiority of lines, which must necessarily have finite average ciueue lengths due to the
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physical constraints of buffers and recirculation, will end up with little or no pull effect from the

sorter, essentially receiving a random arrival rate unrelated to line capacity. Only very low

capacity lines will experience pull response as their queues build. Furthermore, the material flow

of the system described in Section 2.1 dictates that sorter output is defined, on average, by

overall line output and vice versa as orange carrier trays loop through the system. It can therefore

be surmised that the overall output of the system can never greatly exceed the output of the

lowest capacity lines, as explored in the next section. This hypothesis forms the basis of inquiry

for the thesis.

3.3 Practical Experiment

The hypothesis stated in Section 3.2 need not hold true over the short term. If work-in-progress is

available within each buffer, stations can for a short time operate at their individual capacity. As

work-in-progress becomes exhausted, however, station outputs will match the arrival rate of

work and the hypothesis should exert itself according to the pattern speculated in Figure 3-2.

New Sorter
Sorter Output Output

Rates
Without work- continue to
n-progress, all collapse

bottleneck towards the
+- -- tain lowest

compact into individual
the meanrate

4.........Transforms to:

Bottleneck Bottleneck
Capacity Capacity

Figure 3-5: Hypothetical collapse of work arrival (and line output) towards the average capacity

and continued collapse towards the lowest capacity over time.
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This behavior suggests an easy practical experiment to test the plausibility of the hypothesis.

During the course of a normal work day, the system manager added additional personnel to the

system bottleneck, raising system capacity and randomly setting the capacity of each individual

line. Under these conditions, the hypothesis suggests that there will be a short period of high

production followed by a collapse in output.

The observed results of this experiment match expectations, as per Figure 3-3. The system

achieved a higher than normal rate of production for approximately thirty minutes, then

decreased in productivity by 18% over the course of the next thirty minutes, stabilizing just

above the capacity predicted by the historical rates of the slowest associates. These results

support the hypothesis and provide behavior to look for in a system model, but remain anecdotal

and without enough detailed examination of lines.

Production Results of Bottleneck Expansion Experiment
1

0.95 Baseline predicted by historical rates
> of associates in slowest lane.

0 0.85
00.85

0.8

CL 0.7

2 15 30 45 60 75 90

Minutes Since Start of Experiment

Figure 3-6: Observations from practical experiment in bottleneck adjustment.
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3.4 Work Studies and Interviews

Extending the search for anecdotal evidence to a more detailed level involved a time study of

individual stations and interviews with managers (with consent for use in this paper). The time

studies were conducted through direct observation of two experienced associates working at

processing and induction stations, each over the course of an hour. These stations were in two

separate lanes. All associate actions were recorded by the observer with corresponding times

noted by an internal computer clock, achieving a detailed record of actions. On this particular

day, each induction associate worked at two adjacent stations, and induction formed the system

bottleneck. The induction associate spent 17% of his time starved for work, including time spent

moving between the stations in response to the depletion of one or the queue. The processing

associate spent 12% of his time blocked by the processing-induction buffer and 6% of his time

starved for work by the sorter. These values, shown in Figure 3-4, are once again anecdotal, but

demonstrate that there are considerable losses within the system to starvation and blockage at the

level of individual lanes. That these losses are so much higher than the 4.56% starvation time

discussed in Section 3.1 for a model M/M/1 infinite capacity queue with average queue length of

20 suggests that the lines studied are operating far below the optimal productivity suggested by

the limits of their physical space.

31



Figure 3-7: Time study results of hour-long observations of an induction and processing station.

Interviews with managers confirm that this behavior suggest that this level of starvation and

blockage is common. One manager's assistant stated that some associates would spend up to

30% of their time idle during some operational periods as a result of starvation, blockage, and

mechanical problems. A senior manager stated that this idle time was frustrating for associates,

and that the system required intensive engagement from the managers to address associates'

concerns.

Interviews with a shift manager and a system manager described a system behavior that provides

further support for the hypothesis that sorter behavior leaves untapped system potential. During

shifts with high demand, when processing formed the system bottleneck, they manually fed

empty trays to the processing-induction buffer, alleviating the starvation of induction stations

from the bottleneck. This process temporarily boosted the work sent from induction to the sorter,

and hence the arrival rate of work to the processing stations. System output would temporarily

increase, then drop off as per the practical experiment discussed in the previous section. This

behavior demonstrates that there is likely untapped capacity within the system bottleneck that is

being limited by work arrival rates and sorter behavior.
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3.5 Processing Time Data Analysis

In order to move beyond anecdotal evidence and estimate the parameters of lost production

potential, it is necessary to examine the processing data from induction, processing, and sorter

routing in order to characterize their distributions. Data was collected from all stations within the

system over the course of several typical hours of operation on different days. This data recorded

the second at which item processing was completed by each station. This second-long

measurement has a lower than ideal granularity, but patterns are still observable for modelling.

Both induction and processing were characterized by a high kurtosis and strong positive skew.

Observation of the stations indicated that this distribution was formed from a near-deterministic

component dictated by standardized work and mechanical constraints and the long right-ward tail

characterized by rare "problem events," such as items that are heavy, damaged, or have incorrect

computer information. Amazon.com emphasizes characterization of problem events and finding

standardized solutions; most common problems are solved rapidly. Each of these distributions

can therefore be modeled as the compound of a deterministic component, designated as D

seconds, and a distribution adding a long rightward tail offset D seconds from zero.

The sample distribution of time for items to go through induction is very sharp peaked and has a

very thin tail. A deterministic and exponential model does not provide a good fit. Using an offset

gamma distribution with D=1 and shape parameter a=.0825 (fit by minimization of sum of

square residual error) provides a better model, as shown in Figure 3-5. The rate parameter p will

vary for individual station's mean induction time, pt, such that P([t) = [ D. The cumulative

distribution functions Fi(t) is therefore given as:
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Figure 3-8: Sample and model CDF of times between completed inductions. Specific timing data

is proprietary to Amazon.com

The sample distribution of time for items to go through processing is less extreme than the

induction distribution, having a less sharp peak and thicker tail. It can be modeled using an offset

exponential distribution with a deterministic component of D=3 and a rate component equal to t-

D, where p. is the mean processing time for an individual station. This model is shown in Figure

3-6. The CDF is therefore:

t 0 fort 3
FI(t, 1) 1 - e(,_D)*t fort > 3
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Figure 3-9: Sample and model CDF of times between completed processing. Specific timing data

is proprietary to Amazon.com

The main sorter routes work to individual lanes in a distribution that follows a negative

exponential curve; this is as expected as a most items arriving at the sorter are part of an existing

order that will be located at a fundamentally random station. The distribution does include,

however, gaps at static intervals after sending an item during which no items are sent to the same

lane. Items bound for a particular line arriving at the sorter within these gaps are placed in the

line's recirculation overflow instead. The random agitation this behavior cases may help provide

agitation to arrival rates, keeping the system from fully collapsing as predicted by the hypothesis.

While the model could attempt to treat this distribution as a general distribution, the same effect

may be achieved by treating the distribution as memoryless and randomly assigning an

appropriate portion of items recirculation overflow during the first pass through the sorter.
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3.6 Analysis Conclusion

This chapter postulated that the sorter algorithm that attempted to balance work between lanes

will inadvertently deteriorate the productive capacity of the system based on the configuration of

materiel flow. A practical experiment and interviews with managers provided anecdotal evidence

for this behavior. While work studies confirmed that levels of starvation and blockage could

exceed 15% at stations even within the system bottleneck; further interviews suggest that this

may be commonplace. Analysis of data on the passage of items through induction and processing

stations, as well as sorter routing to individual lines, suggest logically sound cumulative

distribution functions for models. Given that item processing distributions for processing and

induction are not memoryless, the system can be described as an interconnected set of non-

Markovian queues, and is analytically intractable. A Monte Carlo simulation that models the

behavior of individual lines and the system as a whole by randomly exploring state transitions

will provide a practical means of model experimentation.
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Chapter 4 - Simulation and Results

4.1 Overview of Simulation Methods

A Monte Carlo simulation is a virtual experiment used to study a system [8]. The simulation first

creates a computerized model of the system, defining the relevant connections and interactions

for study. The system is then stimulated by input, the virtual arrival of material or jobs driven by

random variables. Processing of items within the system, and hence the relevant queuing

behavior, is also driven by random variables. In the context of the queues discussed previously in

Section 3.1, the simulation effectively records each state and uses random variables to drive state

transitions. By running the simulation over a long period of time, system parameters - such as

work output, average queue length, and starvation and blockage periods - can be experimentally

estimated.

Simulations are a powerful tool when dealing with systems that are too mathematically

complicated to solve analytically, or when a level of detail is required about specific parameters

that cannot be provided through analytical understanding. Simulations are useful for estimating

the theoretical sensitivity of the system to design parameters, and can be used to explore design

decisions for a new system by trial and error [8]. The ultimate goal of simulation is develop

actionable estimates and upper and lower bounds to support decisions, which may include

consideration of "worst case scenarios" generated by the system [12]. Simulations are sensitive

to arbitrary initial conditions, the effects of which must be accounted for when considering

results [12].

As an example of the application of these limitations and goals within a warehouse and

manufacturing context, Huang et al. (2008) proposes a Monte Carlo simulation to sample
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possible outcomes of volatile customer demand and use the resulting parameter estimates to

explore different smoothing capacity management strategies [13]. Lee et al. (2013) proposes the

use of Monte Carlo methods to evaluate specific risk and costs of quality control strategies,

allowing for planning and justification of management decisions [14]. Betterton and Cox (2012)

model synchronous transfer lines otherwise intractable to analysis, and suggest that Monte Carlo

simulations may be a fruitful and underutilized tool for characterizing complex production lines

[15]. These papers are part of a much larger body of literature applying Monte Carlo techniques

to manufacturing processes, and this paper forms a continuation of this work in examining a

modem warehouse material handling system.

When designing a simulation, it is necessary to use random variables to mimic the distributions

of work arrival and processing. Random number generators typically output a uniform

distribution between zero and one, or U[0, 1]. As most cumulative distribution functions (CDF)

of random variables increase continuously between zero to one, an inversion of the CDF

provides a simple way of randomly sampling system behavior [12]. For example, let a process V

be a random variable characterized by an exponential distribution as a function of time and a rate

parameter of X. As per Section 3.1, the CDF of V is FV(t) = 1 - e 4*t. Let R be a uniform unit

random variable, R=U[0,1]. Substituting R into the expression for the CDF and solving for t

yields:

ln(l - R) _In(R )
t = - = - [12 - modified format]

Through using a random number generator, we can now sample values of the time process V

takes. This method can also be used for more complicated distributions. If there is both a

deterministic and an exponential component to the process, the fixed deterministic time is added
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to the inverse exponential sampled time. An Erlang distribution can be sampled as the aggregate

of a number of exponential samples equal to the Erlang distribution's shape parameter [12].

These composition methods allow for the simplification of otherwise complicated distributions.

As simulations track the experimental events over time, it is necessary to determine how the

simulation runs its internal clock. The simulation can advance the clock by a fixed window

interval, then check what events happened within this time window [8]. This method may lose a

level of detail if the order of events within a window is significant. This problem can be

counteracted by selecting a fixed interval that is small compared to the arrival and processing

rates, minimizing the chances of multiple events within an interval that could interfere with one

another, but doing so is computationally expensive. The simulation can also use the occurrence

of events to move the clock forward [8]. The simulation determines which event will occur next

in time using random sampling. Time is advanced to this next event. This simulation has the

advantage of tracking only one state change within the system at a time, providing a high level of

detail for sequential interactions between events. The advancement of time to each must be

accounted for in all non-memoryless distributions regardless of the whether the simulation is

fixed interval or event driven.

4.2 Monte Carlo Simulation Model

A Monte Carlo simulation model for the automated material handling system allows estimation

of parameters of interest, specifically the portion of theoretically optimal throughput achieved for

the system and throughput, starvation, and queue length for lines of varied capacity. This

simulation will focus on the hypothesis, described in Section 3.2, that the system's sorter logic
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exhibits push behavior for lines that do not have particularly low capacity, degrading the

throughput of high capacity lines compared to their potential.

The simulation is a fixed-interval model of stochastic processes that operates by tracking the

state of the system, i.e. the number of trays, items, and batches in each line. The fixed interval

length is one second. This is the longest interval that guarantees that no station will complete

multiple items in a single interval, based on the deterministic component of distributions

modeled in Section 3.5. Preventing the simulation of multiple item processing from a single

station eliminates most of the error associated with the sequences of actions within intervals.

The average rate, JPN, of each processing station N is set using an independent random variable

following a normal distribution. Based on the distribution of rates observed in Section 3.2, the

coefficient of variation for this distribution is 9%. Based on benchmarked and observed rates,

processing rates are on average 76% of induction rates. As the experiment is mainly concerned

with interactions between lines, the average rate for each induction station is set using a fixed

ratio to its paired induction station: pfN = gPN / 76%. A control test using randomly assigned

induction rates according to a normal distribution produced essentially the same results as this

method, but with more variation in stochastic outcome. The rates set for each station dictate the

cumulative distribution function (CDF) of their work distributions as described in Section 3.5.

Because the gamma distribution for induction work is difficult to invert directly, the CDF is

instead solved as a discretized inversion table for reference by the script during model

initialization.

As per the system description given in Chapter 2, processing-induction buffers have a capacity of

20 units. Sorter-processing buffers are treated as infinite, given the availability of recirculation

loop overflow, but the average queue length is relevant to the physical limitations of the system
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and must be recorded. These buffers are initialized with 15 items present at the start of

simulation. The influence of these initial conditions will be explored in the next section.

The buffer capacity between processing and batching will be modeled as having a capacity of

180 batches, with each having 50 batches to start. Each batch will be considered to have an

average of four items needed for completion. To model sorter logic, a random 25% of items will

be designated as opening a new batch; this batch will be assigned to the line with the least

batches, or randomized between the lines with the least batches. Items not opening new batches

will belong to a batch that already exists. These items will be assigned to a line randomly, with

the exclusive probability of assignment to a line equal to the number of incomplete batches in

that line divided by the total number of incomplete batches. To represent the closure of batches,

items that go through the processing station will have a 25% chance of removing a batch from

the line, representing batch completion for the purpose of sorter routing.

An important simplifying assumption is that items are instantaneously transmitted from

induction through the sorter. There is a real time travel and queuing process, but as the items

move through the sorter continuously at very high volume, this assumption preserves the reality

that the sorter processing rate is not the bottleneck but instead dictated by the arrival of items

from induction. It is also assumed that induction stations cannot be starved for items arriving at

the system, but only for empty trays, as the focus of the model is on the internal interactions

between stations.

Each run of the simulation is a virtual period of time with the same initial conditions. The run

starts with the setting of initial conditions, then follows the following steps:
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1. For all stations that do not have a "next action" time set and that are not starved or blocked,

use an independent uniform random variable and the inversion of the work CDF to find the

integer interval in which the station's next action will occur.

2. Advance the simulation clock one interval.

3. Resolve state changes resulting from induction actions. For each station account for non-

integer times within the interval so as not to distort the next action calculation. Track the number

of completed items in this interval and reduce the input buffer state of stations taking actions.

4. For all completed items in the interval, make sorter line assignments. If an independent

uniform unit random variable is less than 25%, send the item to a line with the least open batches

and create a new batch within that line, otherwise randomly send the item to a line as weighted

by open batches.

5. Resolve state changes resulting from processing actions. For each station account for non-

integer times within the interval so as not to distort the next action calculation. For each item

processed, if an independent uniform unit random variable is less than 25%, remove a batch from

the line. For stations taking actions, reduce the input buffer state and add to the processing-

induction buffer with the linked induction station.

6. Record state data. If the simulation time is less than the set length of the simulation, return to

step one.
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4.3 Discussion of Results

Simulation results provides support for the hypothesis that system productivity is inhibited by

sorter logic that does not provide sufficient feedback to pull work reliably to high capacity lines.

Throughput was 11.9% lower than a "perfect pull" benchmark, in which the sorter always sent

work to the line with the least items present in the sorter-processing buffer; this benchmark is not

realistic to implement due to the need to assign items in batches. Average queue length did not

indicate potential problems with exhausting recirculation capacity.

Prior to discussing detailed results, it is first necessary to consider the simulation's match to real-

world behavior and possible distortions caused by initial conditions, as discussed in Section 4.1.

Given the evenness of batches and work-in-progress in the initial condition, it would be

reasonable to expect the same peaking of production and drop-off in output found in the real

world system during the practical experiment discussed in Section 3.3. The simulation does in

fact mimic this general behavior. Figure 4-1 displays the average incremented outputs of 40

simulated 3-hour runs are shown as a function of virtual time. The drop from peak is much more

gradual than the real-world system, which may be because of the perfectly even initial conditions

of the simulation. Since the study is concerned with steady-state and since real world conditions

will never be as even as the model, to reduce distortions from the initial conditions the results

will only deal with state data following two hours of simulation, and the simulation will be set

for four hour runs.
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Average Simulated Production as a Percent of Highest Level Over Time
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Figure 4-1: Average simulated productivity
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With that stipulation in mind, the overall outcome of the simulations is that the model achieved

on average over 60 runs a steady-state production rate equal to 86.2% of system capacity, with a

t-distribution 95% confidence interval of +/- .1% (sample variance=.000722). The perfect pull

benchmark yielded 11.7% higher production at 96.5% of theoretical capacity, which is close to

the limits suggested for intra-line queueing behavior in Section 3.1.1 It is statistically

indistinguishable than a "no-feedback push" benchmark, in which the sorter assigns items

completely at random. This push benchmark achieved of 85.3% (sample variance=.000973); a

two-sample t-test with a significance level of 0.05 yields no evidence that the model results are

1 The performance of this benchmark produces a lower starvation than suggested for a M/M/ 1
queue with infinite capacity and an average queue length of 20 items. This is because the time
distributions of item handling for processing and induction have a lower coefficient of variance
than an exponential distribution, on account of the deterministic component and, for induction,
the thin right-hand tail of the distribution.
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different from the push benchmark (T = 1.63 < t = 2.00, n=60). While these results demonstrate

that the model underperforms an ideal pull and no statistical benefit over a random system, an

examination of individual line behavior is required for exploring causality with respect to the

hypothesis and potential solutions.

Examining the individual lines from the 60 simulation runs in order to examine the production

output of lines as a function of capacity reveals a distribution with two distinct regions separated

by an inflection point, shown in Figure 4-2. For this part of the analysis, all 1200 lines were

aggregated into a single data set rather than separated by runs. For relatively low capacity

stations, there is clear increase in output based on capacity; a least squares fit single factor

regression suggests a marginal return of 0.93 items produced per single unit of capacity over

time. This regression carries an R2 value of 61.0%, suggesting variation in output, but the

increase of output to capacity is statistically significant by F-test (p <<0.05). Beyond the

inflection point, the distribution opens in a funnel shape which characterizes 86.8% of the

simulated lines. The funnel appears to bulge in the middle; this is an artifact of using normal

distributions to generate line capacities, as the relatively low number of very high capacity lines

thins the spread of the funnel. An F-test on regression produces no statistical evidence of

increased production as a result of increased capacity within this region for a significance level

of .05 (p=. 199); the lack of evidence that capacity improves throughput for the majority of lines

supports the hypothesis. By contrast, the perfect pull system produces linear returns to

throughput from capacity increase throughout the range of lines capacities as shown in Figure 4-

3. These result suggests that pull behavior of the model breaks down beyond low values of line

capacity.
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Simulated Production Output by Line as a Function of Capacity By Line
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Figure 4-2: Simulated output by line as a function capacity using sorter logic; from 60

simulation runs with 20 lines each. Linear returns to capacity break down past inflection point.
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Figure 4-3: Simulated output by line as a function capacity using pull benchmark; from 60

simulation runs with 20 lines each. Linear returns are constant across capacity range.
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The hypothesis is also supported by processing station starvation data by line as a function of

capacity, as shown in Figure 4-4. Higher stations, as defined by the same inflection point noted

above, tend to have higher starvation (p << 0.001), but with high variance from a linear model

(R2 = 61.2%). These highest simulated starvation percentages are higher than those observed in

Section 3.4 work studies and in line with descriptions given by manager interviews. Given that

the background queuing theory suggests starvation of slightly more than 4.5% is the minimum

sustainable amount for the system's physical constraints, higher percentages indicate

inefficiencies within the system bottleneck.

Model: Simulated Percent of Time Spent Starved by Line as a Function of Capacity
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Figure 4-4: Simulated starvation by line as a function capacity using sorter logic; from 60

simulation runs with 20 lines each. Starvation rises with capacity, indicating feedback

breakdown.

The opportunity for improvement suggested by the model parameters may be potentially larger

than suggested by the data above. Although the model assumed that associates' capacities at
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different stations are a normal distribution with a coefficient of variation of 9%, several system

and manning configurations exist that result in a much higher level of variation between line

capacities. The model is sensitive to variation in line capacity, resulting in a non-linear decrease

in throughput as variation between line capacity increases. The results of 10 sets of 60 simulation

runs testing this sensitivity are shown in Figure 4-5. These results also support the hypothesis,

which states that low capacity lines drive down system output due to the looping nature of

material flow through the system. Having identified and characterized this opportunity to

improve production, heuristics discussed in the next section will help improve sorter response to

line capacity and raise throughput of high capacity lines.

Sensitivity of Production Output to Variation Between Lines at Bottleneck
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Figure 4-5: Sensitivity of model to variation in line capacity. Higher variation reduces

production.
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4.4 Heuristics for Modifications

New heuristics that modify the sorter's assignment of batches to lines can improve throughput by

reducing line starvation. This section discusses two heuristics whose combined effect reduces

starvation within the model by more than 50% and improves overall throughput by 6.73% over

the model of current sorter behavior. These modifications may come at a cost, as reducing

starvation increases queue length and may strain system capacity.

Both heuristics override the sorter's default behavior of trying to balance the number of orders in

each line, each having a particular random chance of "stealing" each a batch assignment from a

line that would otherwise receive the batch under the default algorithm and reassigning the batch.

The first heuristic steals batch assignments from lines with lower than median starvation and

randomly assigns them to lines with higher than median starvation. This heuristic improves

short-term pull response, sending more work to lines with immediate need. The second heuristic

steals batch assignments from lines with lower than mean estimated capacity and randomly

assigns them to lines with higher than mean estimated capacity. This heuristic anticipates station

production rates and attempts to prevent high capacity lines from experiencing more starvation.

The starvation and capacity heuristics are set over a dynamic evaluation period of duration T. As

individual associates do get moved between stations and slow down or speed up their work

throughout the course of operations, a short dynamic evaluation period is sensible to preserve

flexibility and response. The model discussed in this section uses T = 5 minutes. Sensors

embedded in the real system are capable of detecting discrete item processing (IN) and station

starvation (SN) for each station N, which can be recorded during the evaluation period for real-

world implementation.
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The first metric uses the starvation parameter, S, directly. As system variance suggests there will

be periods in which most stations will experience no starvation, using a median of S to

categorize stations is needed to avoid flooding at one or two starving stations with all the new

batches; since the algorithms steals from lines with lower than median starvation, it will have no

effect if the median starvation is zero. Capacity estimates must account for starvation time,

otherwise will be subject to the same random variation of arrival rates that break down feedback

in the current sorter algorithm. The appropriate starvation corrected capacity estimator is

therefore CE(N) = -(N) . Since it is reasonable based on Section 3.2 to expect capacity to

follow a normal distribution, using the mean to categorize stations is appropriate.

The chances of each heuristic overriding the batch balancing algorithm are parameters that will

likely need fine tuning to each individual system. For the model, implementing only the first

heuristic with a 50% override chance improves throughput by 4.6% and reduces starvation by

33.4% over the current algorithm. The production output of a line compared to its seeded

capacity, shown in Figure 4-6, is much more linear than Figure 4-2 for the current algorithm, but

still shows funnel behavior for high capacity lines.
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First Heuristic Only: Simulated Line Output as a Function of Capacity
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Figure 4-6: The first heuristic targets lines experiencing starvation. Behavior is more

linear than the unmodified algorithm, output still increases in variability as capacity increases.

Introducing the second heuristic with a 50% override chance and reducing the first

heuristic to a 30% mutually exclusive override yields a system that is mostly reacting to

starvation or balancing towards line capacity. Production is raised to 92.0% of theoretical

capacity, an increase of 6.73% percent over the current algorithm. This increase is statistically

significant, as evaluated over 80 simulation runs through two sample t-test with a significance

level of .05 (T = 17.7 > t = 1.99). Starvation is reduced by 50.4% on average. Comparing

production to capacity shows correction of the funnel behavior in Figure 4-7, indicating an even

distribution of the starvation as shown in Figure 4-8. Regression analysis indicates that there is a

significant positive slope (p <0.001); increased line capacity now realizes output gains. The R2

value of 0.84 indicates that the system behavior is mostly linearized, but still has some variance.

Eliminating batch balancing behavior entirely weights starvation too heavily on low capacity

lines and leads to a decrease in production by comparison to the settings described above.
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Combined Heuristics: Simulated Line Output as a Function of Capacity
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Figure 4-7: Addition of both heuristics to the sorter logic create a linear pull system,

increasing system production and decreasing starvation.

Combined Heuristics: Simulated Percent of Time Spent Starved by Line as a Function
of Capacity

0.25

00c 0.2

.. : * - .:

.. . - * .. *.. -, ..G*,- o. , . --

*.0 0.6. -.

0.05 *

CL0 3 0

0.7 0.8 0.9 1 11 1.2 1.3

Line Capacity as a Percent of Average Capacity

Figure 4-8: Capacity targeting heuristic evens the amount of starvation across levels of

line capacity; starvation is no longer concentrated in high capacity lanes as in Figure 4-4.

By providing a stronger pull formulation, the heuristic modified algorithm also reduces the losses

resulting from variation in the capacity of lines, as shown in Figure 4-9. As variation in line
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capacity increases, the production benefits of the heuristics increase. Unfortunately, there is a

cost to implementation. As discussed in Section 3.1, with decreased starvation time comes

increased queue length. The combined heuristics almost double queue length for system with a

coefficient of variation of line capacity of 9%, potentially overloading the recirculation capacity

of the system. Implementation may require reducing the effect of the first heuristic to allow more

starvation or expanding the system's processing station buffers. Heuristic parameters will need to

be adjusted for each system to match the physical limits of available space; simulation can

therefore estimate the shadow price of additional buffer capacity with respect to system output.

Modifed Model: Sensitivity of Production Output to Variation Between
Lines at Bottleneck
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Figure 4-9: The heuristic modified model outperforms the original model in throughput

at every level of variance between line capacities. The gain of switching to the modified model is

increased when dealing with high variation.
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As tested through simulation, the proposed heuristics to reorient sorter behavior into a pull

system may raise productivity by 6.73% or more, and can be tailored to the physical constraints

of real-world system. It is recommended that Amazon.com consider implementation of these

heuristics to raise productivity. These changes should also improve the predictability of the

system, eliminating the volatility over time noted in Section 3.3. There are also potentially

important personnel management implications to the company that may results from

implementation, which will be discussed in the next chapter.
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Chapter 5 - Management Considerations

5.1 Amazon.com Fulfillment Center Culture and Challenges

This chapter will provide an overview of Amazon.com's fulfillment center culture and examine

how that culture can clash with the current automated material handling system. The heuristics

proposed in the previous chapter, if implemented, would alter the automated material handling

system, allowing lines to pull work from the sorter based on their throughput. These changes

would have a considerable positive impact on the associates within the system.

Amazon.com has a strong fulfillment center culture focused on providing the best possible

customer experience. This culture is reflected not only in the symbols and messages throughout

the facility, but in the actual behavior of managers and associates. Late customer orders are

treated as a serious problem, the focus of extensive scrutiny on the part of managers.

Experienced associates working in fulfillment centers internalize these values and consider how

actions on their part affect customer experience.

Pressured evaluation is another core component of fulfillment center culture. Associates are

evaluated periodically on their work output, as evaluated by production per logged work hours.

While work quality is also evaluated and given importance, the output metrics take on an

important symbolic significance. Workers compare their rates to each other, talk about "making

rate" throughout their shift, and are conscious of the relative difficulty of meeting rate

benchmarks in different jobs. After each break, individual rates are posted on bulletins for

associates to read over. Benchmarks for each job are prominently displayed at each station.

During a recent software rollout, one piece of associate feedback was that the software should be

modified to show rate in real-time.
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Figure 5-1: Amazon "Box Man "figure holds a poster quoting Amazon. Com founder Jeff Bezos

on the integral importance of putting customers first.

This sort of cultural pressure has a profound influence on fulfillment center associates. During

the peak of the retail season, Amazon.com hires a large quantity of temporary associates. Some

of them will dislike the fulfillment center culture and leave at the end of the season. Those who

enjoy working under pressure in a demanding environment will be a better cultural fit and be

inclined to seek permanent employment. Experienced associates with good cultural alignment

will be promoted as process guides and managers who will, sustaining the same ideas, priorities,

and symbols that led them to commit to the company.
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This culture is well suited to traditional warehouse functions. Without automation, an associate

picking items out of inventory will be given a list of items to retrieve. How much work she

produces in a given period will be determined by how well she knows the warehouse, how fast

she walks between items, and how efficiently she can carry out standard work. The associate will

be inclined to feel an internal locus of control, perceiving that her actions directly affect her rate,

and thus her job security and promotion opportunities. Unfortunately, this rate driven culture is

problematic to transfer to automated systems.

As shown in previous chapters, automated material handling systems can generate significant

starvation and blockage periods in which an associate is unable to perform work. The utilization

ratio of each worker, is practically constrained by the degree of variance in the arrival and

processing of material and by the length of the available buffer. Even with perfectly algorithms,

associates in an automated material handling system will spend a noticeable amount of time idle,

and this problem is magnified in a system in which higher rate capability does not result in

higher throughput.

This idle time is particularly frustrating for associates subject to the pressure to meet rate

benchmarks so prominent in Amazon culture. If an associate has had a bad day early in the

evaluation period and feels motivated to try and make up this difference by working particularly

fast the next day, she will be unable to do: the work arrives at the pace dictated by the system

around her. Workers accordingly tend to develop an external locus of control, perceiving that

performance outcomes are not substantively affected by their own actions. While one might

realistically point out that a traditional picker faces hard physical limitations on how fast she can

move between items, and that these limitations are effectively equivalent to waiting on

conveyance, the perception of self-determination is critically altered. Within the current system,
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simulation results described in Section 4.2 suggest that this idle time is in fact concentrated

amongst the fastest and most efficient associates. There is not necessarily any improvement in

rate through being able and willing to work faster, and the most exceptional and skilled workers

may become the most frustrated.

Interviews with managers running automated material handling systems revealed that a

substantial amount of the managers' time went into providing responses and reassurances to

associate grievances related to being unable to make rate. Managers who had also worked in

traditional warehouse functions felt that two very different skillsets were needed between the

types of systems: a decentralized sort of control and support for traditional functions versus a

more intense personal engagement with associates in automated systems. One manager described

the associate morale in a particular system as a "pressure cooker" of negative attitudes. These

problems of misalignment between culture pressure and the mechanical properties of automated

systems may have a deleterious effect on Amazon.com's ability to recruit culturally aligned

associates.

One option to consider is a holistic cultural shift away from individual performance metrics

towards team performance metrics. Several metrics for overall throughput and quality of a shift

are used for planning and review by fulfillment center managers; could these replace the function

of individual performance metrics? A skilled floor manager, familiar with the operations of the

process, could determine underperforming lines in a shift where performance was lower than

expected and counsel the underperforming associates. This solution is tempting given the

underlying variation in queuing mechanics and the additional complexity of ensuring

coordinated operations with upstream and downstream processes.
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Ignoring individual performance metrics, however, may lead to problems of equitability and

intra-team dynamics. In a meta-analysis of incentive effects on work performance, Garbers and

Konradt (2014) suggest that team incentives most closely correlate with increased performance

when the work tasks are complex and incentives are split equitably by contribution rather than

equally [16]. In a particular study of cooperative and non-cooperative team incentives, Young et

al. (1993) found that for a processes in which tasks were not closely interdependent, an equally

shared incentive can actually lead to decreased performance [17]. While there is a definite

difference between performance incentives and job retention, the same psychological dynamics

would likely play a role. Without the use of individual performance data to drive assessment of

associates, there is also the potential for managerial favoritism of the appearance thereof to

further exacerbate negative team dynamics. With these considerations, it is instead recommended

to adapt the sorter system to better suit Amazon.com's existing fulfillment center culture.

5.2 Potential Improvements

With the implementation of the heuristics proposed in Section 4.3, the sorter will automatically

direct work to lanes based on their level of starvation. These changes, combined with associate

education on what behavior to expect from the system, will likely reduce the frustrations of faster

associates. By working more rapidly, associates will draw more work to their stations and be

able to perform at a higher rate.

These measures alone, however, may not be sufficient to adapt the automated material handling

system into alignment with fulfillment center culture. As demonstrated through queuing theory

discussed in Section 3.1, it is theoretically impossible to reduce idle time below 4% given the
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physical queue space constraints of the system, and higher levels of idle time should be expected.

Even with the implementation of the project heuristics, which simulations in Section 4.3 suggest

may reduce starvation times in half from current levels, 5.4% starvation time on average should

be expected. Blockage time will vary based on how processing and induction associates are

matched to each other. Furthermore, random variations within the system ensure that some lanes

will experience much more starvation than others as shown in Figure 4-8.

One solution may be to alter the rate metric for associates within the automated material

handling system. Instead of being evaluated by work produced over a period of time, associates

could instead be evaluated based on the work produced only during the time in which their

stations are not starved or blocked. This metric would reward rapid work during the times an

associate can be working, separating this performance from lost throughput from system and

queuing effects.

This modified rate metric has alignment with fulfillment center culture. In the current system, a

processing station associate may feel frustrated and angry at an induction station associate

whenever the line becomes blocked along the processing-induction buffer. With the modified

metric, the processing associate may work rapidly knowing that he or she will cause blockage

and can use that time to rest. The induction associate will have work present and be motivated to

try to exhaust the buffer in order to enter starvation. The associates are placed in a tacit sort of

competition that incentivizes productivity and ultimately draws more work to the line through

the sorter. Each associate's rate performance is self-determined.

By evaluating associates only when they are able to work, the managers are also able to gain a

greater granularity of their workforce and system performance. The comparison between

associate rates and system throughput can be used as a metric to assess the efficiency of system
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operations: a collective estimate of losses to starvation and blockage. Managers also gain a better

measure of associate capability in order to match processing and induction associates with

compatible rates. Finally, associate rates can be directly compared to the distributions of item

processing items, allowing breakdown of time spent on standard work versus problem solving to

better target system improvement projects.

Some period of idleness may be needed to sustain associates' ability to work through the shift

without increased risk to safety, work quality, and morale. The metrics will encourage workers to

operate in short bursts of work to reach starvation or blockage, while the system responds by

adding work. Sorter behavior may need to be adjusted to allow more idleness into the system

while still weighting work towards high capacity lines.

Given these concerns, new associate work metrics and modification of the sorter for better pull

behavior may to alter the work experience of associates within the automated material handling

system to better align with fulfillment center culture of competition and excellence in individual

performance. As this culture is central to Amazon.com's recruitment and retention of skilled

associates, these recommendations have high potential to benefit the company and serve as an

example of aligning mechanical systems to a company's workforce management strategy.

While modification to an existing process may produce improvement, the considerations of

culture and incentives can form the basis for design of systems from the ground up. The system

could, for example, inherently pull better and eliminate starvation and blockage by eliminating

the link between individual processing and induction stations. These links are meant to keep the

flow of trays continuous and prevent a pile-up of empty trays at one end of the system; this result

could be achieved in a tray-less system or by having empty trays feed into a storage reservoir

instead of individual lines.
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Chapter 6 - Conclusion

6.1 Summary

This thesis examines a complex, interconnected warehouse system that bears resemblance to the

parallel single piece workflow lines of manufacturing facilities. Experiments with a system

model in a Monte Carlo simulation characterized software algorithm behavior compared to a

theoretical optimum, identifying opportunities for increased productivity. The results of this

experiment, while supported anecdotally through interviews, work studies, and a practical

experiment, were not available from existing metrics and sensor data nor understood in the level

of detail the simulation could provide. Further experiments tested heuristics designed to alter

how the system routed work, leading to increased simulated utilization and throughput. This

thesis therefore serves as a case study in the use of simulations to characterize and improve

throughput in complex manufacturing and warehouse systems.

While Monte Carlo simulations have been effectively applied to manufacturing systems

operations before, the characterization and optimization of new manufacturing-like warehouse

systems provides a powerful opportunity for an expanding company. Simulation was used to

explore a problem whose existence was known, but in which the extent of improvement

opportunity was unknown and further granularity was needed about system interactions. Such

simulations can be used as experimental avenues for potential software changes and design of

new systems, accelerating and reducing the cost of continuous improvement initiatives. The

methodology explored in this thesis is therefore relevant to companies interested in investment in

and refinement of material handling systems on a significant scale.
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This study also considers the intersection of fulfillment center culture, associate psychology, and

production systems. Experimental simulations identified potential system behaviors that could

degrade worker morale, and suggested improvements to system response and evaluation metrics

to re-align with cultural values and symbols. As warehouse systems more closely resemble

manufacturing systems, traditional warehouse management methods must be studied closely to

assure their effectiveness, either through adoption of manufacturing management methods or

engineering of systems to achieve cultural alignment.

The next step for the company to act on the findings of this thesis would be to set up a pilot

program to test the degree to which the simulation results are reflected in detail under actual

operational conditions. The first step would be to select a particular facility with an automated

materiel handling system. Facilities personnel within that facility should set the system to

provide data on the rates at which associates within the system experience starvation and

blockage, tracking specific associates by ID number. This data will form the baseline of the

experiment. The heuristics proposed for correcting system behavior should then be implemented

as a modification of the sorter script. After period of post-implementation data collection,

alterations in the starvation, blockage, and productivity of associates can be compared using a

paired t-test. If there is significant improvement in performance, the facility can proceed with

confidence to refine heuristics, implement appropriate metrics, and report best practices to the

fulfillment center network.
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6.2 Future Opportunities for Research

Several directions for further research suggest themselves. The most immediate and local is

implementation of project recommendations and a study of how well simulation predictions are

achieved within the real-world system. Response from this behavior can be used, in turn, to

improve the simulation and heuristics. The heuristics in the simulation are effective but simple,

categorizing lines into two categories for capacity and starvation for anticipatory and reactionary

feedback. A finer level of line categorization could perhaps further improve system response. A

further study could also consider tradeoffs between wait times for individual items and high

utilization levels.

While the simulation gave little consideration to the variation in capacity of induction stations,

intra-line queuing behavior may be a significant problem in many such parallel line set-ups. A

fruitful direction of inquiry might use the starvation and blockage corrected capacity metrics for

individual associates proposed in Section 5.2 for automated optimization. Simulation could be

used to determine the optimum intra-line capacity ratio. While the placement of associates to

achieve a collection of desired ratios can be characterized as linear optimization integer problem,

the scale of this problem may prove problematic to solve via simplex if managers require a fast

response. Simulated annealing may prove a viable way of generating robust near-optimal

solutions. As warehouses grow in scale and complexity, automated personnel management

systems will become increasingly important, and must focus both on gross and fine placement of

associates in functions and to individual stations.

Finally, this simulation focuses entirely on intra-system behavior, not considering batching

behaviors for system output or the channels bringing material into the system. Development of

wider scale warehouse simulations could study system to system interaction. This direction of
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inquiry may be useful in examining the integration of newer, manufacturing-similar systems with

traditional warehouse functions. Manufacturing systems often have physically dictated capacity

limitations that may scale poorly to volatility in demand. Models that anticipate issues with

system interactions across different and changing levels of demand may prove valuable for

warehouse planning and management.
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