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Abstract

Weather can cause problems for underground electrical grids by increasing the probability of serious “manhole events” such as

fires and explosions. In this work, we compare a model that incorporates weather features associated with the dates of serious

events into a single logistic regression, with a more complex approach that has three interdependent log linear models for weather,

baseline manhole vulnerability, and vulnerability of manholes to weather. The latter approach more naturally incorporates the

dependencies between the weather, structure properties, and structure vulnerability.
c© 2014 The Authors. Published by Elsevier B.V.
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1. Introduction

Every major power grid contains a “secondary” network that delivers power directly to customers. Since 2007,

we have worked with the Consolidated Edison Company of New York to derive statistical models for predictive and

causal analysis of events in the Manhattan secondary grid, which consists largely of underground electrical cables.

The sustainability problem we address is how to leverage existing offline data to assess the causes of events that lead to

major service interruptions. In previous work, we developed a process to integrate and extend raw unlabeled data from

distinct business units at Con Edison, then to apply a supervised ranking algorithm1 to rank nodes in the secondary

grid, where these are manholes and service boxes, in terms of their vulnerability to serious events in the following

year.2 Over time, we have noticed that the predictive accuracy of our models varies from year to year, in part because

of changes in Con Edison’s infrastructure and customer usage, but also very much due to changes in the severity of the

weather. Our focus here is to design a model that incorporates the dependence of structure vulnerability on weather

conditions that stress the secondary grid.

The Manhattan secondary grid consists of more than 40,000 underground electrical structures (manholes and ser-

vice boxes) that distribute power through a highly redundant mesh grid of mains cables that connect the structures to

each other, and service cables that connect customers (buildings) to the secondary grid. Our previous ranking models

yield a probability of a serious event for each structure based on a representation of structures in terms of the number
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Fig. 1. The conditional probability of a serious event (SE), given a history of serious events in the past three years (red line), or not (blue line).

and makeup of the cables they house, and their past history of involvement in events, from low-grade to serious ones.

A trouble ticket system documents events on the grid. Explosions and fires in structures are clearly serious events,

and are also relatively rare. Flickering lights in a building constitute a non-serious event. A smoking manhole can be

serious or non-serious. We have done considerable work to automatically identify a class of serious events based on

information from trouble tickets and other databases,3 based on a study where expert engineers classified events.4

The inspiration for the current work can be explained by reference to Figure 1. The axes are time (x-axis) and rate of

events (y-axis). The red line plots the probability that a structure will have a serious event, conditioned on whether the

structure had a serious event in the previous three years (P(S E|S E past 3 years)). The blue line represents the prob-

ability a structure will have an event, given no serious event in the previous three years (P(S E|No S E past 3 years)).

Because the red line is always above the blue line, prior history is a predictor of serious events. The ups and downs

of the red line show that likelihood of serious events varies considerably from year to year, and more so for structures

with a history of serious events. Con Edison engineers have observed that bad weather conditions, such as snowmelt

combined with salt, increase the rate of serious events. What is not clear is exactly which weather factors are most

stressful to the grid, and which features of underground structures make them more vulnerable to weather. Here we

present a tri-partite model that captures the dependencies between weather features, structure features pertaining to

their baseline vulnerability, and structure features that represent their enhanced vulnerability during bad weather.

2. Related Work

Machine learning (ML) techniques have been used to analyze power systems for over a decade.5,6 Our collaborators

have applied ML to the problems of smart grid control, 7 or preventive maintenance;8 other power problems addressed

through ML include power management,9 and microgrids.10 ML has also been applied to the problem of predicting

models for solar-power generation from weather data.11 We believe the present paper is the first attempt to model the

impact of weather on power interruptions.

3. Data and Feature Description

Our database of Emergency Control System (ECS) tickets from Con Edison includes over a decade of trouble

tickets for over thirty trouble types that represent events of interest. From the database, we compile triples (s, t, e) ∈
S × T × {0, 1} = D, where s is the structure identifier, t is the date by month and e is a boolean value to indicate

whether a structure s has a serious event during t. For example, triple (97429, 2001.8, 1) means structure “97429” had
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a serious event in August, 2001. ECS tickets are assigned trouble types. We developed a machine-learned classifier

to determine whether an event is serious, based on the ticket trouble type, language in the ticket, and structured

data associated with the ticket. 3 The experiments here use ECS tickets from 2000.1 to 2010.12 that refer to 46,729

secondary structures in Manhattan. This gives 46279 × 11 × 12 = 6, 168, 228 triples.

Underground structures are not discrete entities. They are underground rooms that cables pass through, and that

provide engineers with access to cable. Cables burn out and are replaced. To accommodate increased loads, additional

cable can be added. Over time, a structure can become packed with cable, which is a strong but not sufficient predictor

of serious events. In our previous work, we used four classes of features to model structure vulnerability: structure

(structure type, location and identifier), cable (e.g., function–meaning main or service; phase or neutral; amount of

cable; insulation material; year of installation), inspection, and electrical event features. At the time of this study, we

had delivered a ranking model to predict 2011 vulnerability derived from a preliminary phase of feature selection that

yielded 24 features. For convenience, we use the same 24 structure features here.

The weather features come from NYC open data and the National Climatic Data Center (NCDC). We derived 51

features to model monthly weather conditions, predominantly temperature and precipitation features based on domain

expert knowledge. Con Edison engineers have suggested that structures are more vulnerable to events when rainwater

or salt water (from melting ice and snow) leaks into them. Events also tend to occur during long periods of intense

heat, which increases use of air conditioning, and therefore load on the system.

4. Model Description

The main objectives of the model presented here are interpretability and generality. We want to understand which

aspects of weather are most stressful to the grid, and which properties of structures lead to increased incidence of

serious events in certain years (e.g., see 2003 in Figure 1). A flat linear model cannot capture the dependency between

parameters. We also want to understand the variation across years shown in Figure 1. Here we define a model that

captures the dependency between structure and weather features. Our experiments contrast this model with a baseline

logistic regression that uses the same features. We make the simplest possible non-trivial characterization of the

weather, namely that a year is either good (b = 0) or bad (b = 1). Define the probability of structure s having a serious

event (e = 1) or not (e = 0) at time frame t as P(e|s, t):

P(e|s, t) =
1∑

b=0

P(e, b|s, t) =
1∑

b=0

P(e|s, b, t)P(b|t). (1)

The first term defines the probability that a structure s has a serious event in a good or bad time frame. The underlying

assumption is that whether a structure has a serious event can be predicted not only by its physical properties (location,

connectivity, density of cables), but also by the severity of temporal conditions (b). Then P(b|t) defines the probability

that t is “bad.” We use log-linear models for the weather features and structure features. Define our model parameter

θ = {W+,W−,V, bias, Int, Int+, Int−} as:

P(e = 1|s, t, b = 1) = Φ+(s, t) =
exp(W+

′F(s, t) + Int+)

1 + exp(W+
′F(s, t) + Int+)

P(e = 1|s, t, b = 0) = Φ−(s, t) =
exp(W−

′F(s, t) + Int−)

1 + exp(W−
′F(s, t) + Int−)

P(b = 1|t) = Φ(t) =
exp(V′F(t) + bias(t) + Int)

1 + exp(V′F(t) + bias(t) + Int)

(2)

where F(t) = [ f1(t), f2(t), · · ·] is the feature vector of weather on time t and V = [v1, v2, · · ·] is the vector of the

corresponding coefficients. From the definition, we can see that the lengths of W+ and W− correspond to the number

of structure features. The length of V is the number of weather features. The bias is the month-specific weight. In

practice, we append the “1” indicator and month indicator to the input feature vectors and calculate bias, Int, Int+
and Int− together with the regular coefficients. Then the probability P(e, b|s, t) is from two binomial distributions:

P(e, b|s, t) = P(e|s, t, b)P(b|t) = Φb(s, t)e(1 − Φb(s, t))1−eΦ(t)b(1 − Φ(t))1−b. (3)
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4.1. The Expectation-Maximization Algorithm for Fitting our Model

We maximize our Q function as shown in Equation 4. The formulas here are presented without regularization

terms for simplicity. In our experiment, to assist with feature selection, we use L1 (Lasso) regularization to control

the parameters. The terms τ will be explained in E-step.

Q(θ) =
∑

(s,t,e)∈D

1∑

b=0

τbe
st

(
e logΦb(s, t) + (1 − e) log(1 − Φb(s, t)) + b logΦ(t) + (1 − b) log(1 − Φ(t))

)
(4)

TheD here is defined in Section 3.

E-step: The prior distribution P(b|s, t, e) is defined by:

τ11
st = P(b = 1|e = 1, s, t) =

Φ+(s, t)Φ(t)
Φ+(s, t)Φ(t) + Φ−(s, t)(1 − Φ(t))

τ01
st = P(b = 0|e = 1, s, t) =

Φ−(s, t)(1 − Φ(t))
Φ+(s, t)Φ(t) + Φ−(s, t)(1 − Φ(t))

(5)

The other two priors can be computed from the above priors: τ10
st = 1 − τ11

st , τ00
st = 1 − τ01

st

M-step: For parameter V, as there is no closed form solution for the equation
∂Q
∂vi
= 0, we use gradient ascent as an

alternative approach. The derivative with respect to vi is:

∂Q
∂vi
=
∑

t

fi(t)

⎛⎜⎜⎜⎜⎜⎝
∑

s∈t+
τ11

st +
∑

s∈t−
τ10

st − NsΦ(t)

⎞⎟⎟⎟⎟⎟⎠ (6)

where (s, t) ∈ E+ ⇔ (s, t, 1) ∈ D. Ns is the total number of structures. As
∑

s∈t+
τ11

st +
∑

s∈t−
τ10

st − NsΦ(t) can be

computed before M-step, the computational cost for each iteration is O(len(V)). Similarly, the update rule for structure

parameters is:

∂Q
∂w+i

=
∑

s

⎛⎜⎜⎜⎜⎜⎝
∑

t∈s+
τ11

st (1 − Φ+(s, t)) fi(s, t) −
∑

t∈s−
τ10

st Φ
+(s, t) fi(s, t)

⎞⎟⎟⎟⎟⎟⎠

∂Q
∂w−i

=
∑

s

⎛⎜⎜⎜⎜⎜⎝
∑

t∈s+
τ01

st (1 − Φ−(s, t)) fi(s, t) −
∑

t∈s−
τ00

st Φ
−(s, t) fi(s, t)

⎞⎟⎟⎟⎟⎟⎠
(7)

where t ∈ s+ ⇔ (s, t, 1) ∈ D.

4.2. Prediction

A prediction in our problem consists of the list of structures ranked by their vulnerability in a given year y. The

vulnerability score of structure s in time t in our problem is given by P(e = 1|s, t). Given a ranked list for year y, the

position of the item with score v is defined by Posy(v). In our problem, the order of structure s in the list is Ordery(s).

Hence we have:

Ordery(s) = Posy(P(e = 1|s, y)) = Posy

⎛⎜⎜⎜⎜⎜⎜⎝
dec∑

m= jan

P(e = 1,m|s, y)

⎞⎟⎟⎟⎟⎟⎟⎠ = Posy

⎛⎜⎜⎜⎜⎜⎜⎝
dec∑

m= jan

P(e = 1|s,m, y)P(m|y)

⎞⎟⎟⎟⎟⎟⎟⎠

= Posy

⎛⎜⎜⎜⎜⎜⎜⎝
dec∑

m= jan

P(e = 1|s,m, y)

⎞⎟⎟⎟⎟⎟⎟⎠

(8)

The justification for the last equation is that P(m|y) is a unified distribution (1/12) that does not affect the order of

a structure. As the result, we can generate a by-year structure ranking based on the sum of the by-month structure

vulnerability.
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Table 1. General evalutaion results on 2010. The best value (or values, if tied) in each condition is in boldface.

Evaluation Structure Struture&Month Struture&Month&Weather EM-loglinear

Log-likelihood -6420.00 -6196.28 -6061.64 -6054.05
Entropy 966.05 1048.25 1032.12 1048.00

AUC 0.5973 0.5980 0.6001 0.6026
P@5% 0.0974 0.0999 0.0974 0.0999
P@10% 0.1608 0.1583 0.1644 0.1742
P@20% 0.2960 0.2984 0.3033 0.3033

5. Experiments

We trained two models on 2000-2008, using 2009 as a development (validation) set and 2010 as the test set. We

produced three baseline logistic regression models, each with a different feature set. The first uses only structure

features, the second adds a month indicator, which captures the inherent temporal bias in the domain for structures to

have bad events in winter and summer months. The third adds the weather features. Our EM model uses the same

set of features as the last baseline. Unsurprisingly, the log-likelihood of the logistic regression models increases with

additional features. The EM model with three embedded log-linear models has marginally better log-likelihood, so

the increase in interpretability we discuss below is not at the expense of model fit.

Table 1 shows the AUC scores for each model. We also calculate precision at the top 5%, 10% and 20%. Finally,

we calculate the entropy of each model to compare against the uniform distribution, whose entropy is 947.48.
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Fig. 2. Non-Zero coefficients of weather features ordered by absolute value for EM-Loglinear

6. Discussion

The benefit of the EM-loglinear model is its interpretability, which stems from having distinct representations for

weather (V), structure vulnerability independent of the weather (W−), and weather-induced structure vulnerability

(W+). Note that in principle, a flat logistic regression model could use product features such as ” f1=10 and weather

= bad” to produce an equally interpretable result. However, without the EM estimation that treats weather severity as

a hidden variable, we have no way to determine the values to assign to the product features. Also, features such as

” f1=10 and weather = bad” and “ f1=10 and weather = not bad” will be collinear if ” f1” has nothing to do with the

weather. For the EM model, we need consider collinearity only within structure features or within weather features.

A few structure features had opposite signs for the two models (W− and W+), a possible sign of collinearity. When

we increased the regularization parameter, however, we found the same relative trend for these coefficients, which

eliminates the collinearity concern. In this section, we discuss interpretation of the dependencies.

6.1. What features define weather associated with an increase in serious events?

In contrast to the linear regression, the EM-loglinear model can directly estimate weather severity based on the

likelihood of the data. Figure 2 shows the following weather features to be important:
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1. mcsit3h: Number of consecutive days (>=3) where the high temperature is around freezing (>5C and <5C) ().

2. wt22: Number of days with ice fog or freezing fog; the weather is wet but not cold.

3. dp05: Number of days at least 0.5 inches of precipitation

4. wt04: Number of days with ice pellets, sleet, snow pellets, or small hail. This is a negative feature. A possible

explanation is that the temperature is low enough to prevent ice from melting and entering the structures.

5. tsnw: Total snow fall, which can enter the structure if it melts.

6. wt18: Number of days with snow, snow pellets, snow grains, or ice crystals. Like 10 below, this corresponds to

cold and wet weather, but the precipitation includes ice.

7. mcsn3: Number of consecutive days(>=3) of snow. With continuing snow, the city continues to spread salt in the

streets. The combination of precipitation and salt causes problems in structures.

8. n3ch32: Number of consecutive days(>=3) of high temperature(>32C). A long period of high temperature can

correspond to increased load on structures due to constant use of air conditioning.

9. wt13: Number of days with mist.

10. wt17: Number of days with freezing rain.

Most of the features related to bad weather pertain to winter weather near but not below freezing, and to precipitation.

This accords well with reports from Con Edison engineers that the worst conditions are when there is precipitation

and water enters the structures, and when snow or ice mixed with salt melts into the structures. If the temperature is

well below freezing, then ice and snow do not melt, and the structures are unaffected.

The flat linear regression model can incorporates exactly the same weather features. Their relative importance,

however, cannot be inferred from the coefficients. Because the model is trained and regularized with structure features

and weather features together, the response does not directly represent weather severity.

6.2. What structure features increase the vulnerability given inclement weather?

In our past models, features for the number of cable conductors (individual cables) or cable sets (phases and

neutrals within a single bundle) show that more cables lead to greater vulnerability. The base cause of many events

is insulation breakdown, so these features are predictive because they represent number of locations for insulation
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Table 2. Ranked list of structure feature by W+ and W-

Structure Feature Order(W-) Order(W+) Order(W-)-Order(W+)

1. rmcn1dn. Ratio of the number of main conductors to one-degree neighbors 16 3 13

2. ethpc. Has been a trouble hole for non-serious events 24 12 12

3. nsph. Number of service phase cables 18 9 9

4. ntmths. Number of times mentioned as the trouble hole of serious events 19 13 6

5. eths. Has been a trouble hole for serious events 23 18 5

6. ntmpc. Number of times mentioned in non-serious events 22 17 5

7. isb. The structure is a service box 9 6 3

8. tnms. Number of main cable sets 5 2 3

9. n3tms. Number of times mentioned in serious events in the past 3 years 15 14 1

10. n3tmths. Number of times mentioned as the trouble hole of serious events in the past 3 years 17 16 1

11. mph. Number of main phase cables 1 1 0

12. rsn1dn. Ratio of number of sets to one-degree neighbors 4 4 0

13. nom1989 1998. Number of main cable sets entered from 1989 to 1998 11 23 -12

14. nscs1940 1949. Number of service cable sets entered from 1940 to 1949 10 20 -10

15. sln. Street lights neutral 12 21 -9

16. ntms. Number of times mentioned as serious 14 19 -5

17. hse1dn. Number of serious events on one-degree neighbors 3 7 -4

18. n1dn. Count of one-degree neighbors 2 5 -3

19. nom. Total number of (past and present) open mains 7 10 -3

20. nscs2000 2008. Number of service cable sets entered from 2000 to 2008 21 24 -3

21. n3tmpc. Number of times mentioned as precursor in the past 3 years 8 11 -3

22. bsph. Whether it has service phase cable 6 8 -2

23. n1dnsepc. One-degree neighbor has serious event or precursor event 13 15 -2

24. ssn500. The neutral service cable is size 500 Kcmll 20 22 -2

breakdown. Figure 3 shows the feature weights of W− (red), W+ (dark blue) and the baseline model (green). Table

2 describes each feature. The green bars in Figure 3 (the flat model) often fall between the coefficients for W+ and

W−, but not always. Features sometimes have high coefficents for all models (17 and 18 in Figure 3), and others are

important for weather-induced vulnerability (1, 7 and 8) or have strongly opposing influence for W+ and W− (12).

11. mph: The number of main phase (non-neutral) mains conductors is negative in both W+ and W−, with much

greater absolute value for W+. The negative correlation is unusual for cable density features. A testable interpretation

is that structures where relatively more of the cables are main phase are more likely to be critical manholes, a group

of structures that Con Edison prioritizes for maintenance and repair, due to their importance in the network.

7. isb and 8. tnms: These two features have high coefficients in both models, but much higher in W+. 7 is a boolean

indicator for service boxes, structures that have lower overall cable capacity on average, and that are more likely to

have service cables directly to customers. 8 is the number of cable sets (bundles; see above) of mains cables. An

interpretation of these two features combined with 11 would be that structures with many main phase and no service

cables are less likely to have serious events (critical manholes), while structures that are not critical manholes are

more vulnerable if they are service boxes, or if they have many sets of mains.

1. rmcn1dn: This feature, ratio of main conductors per one-degree neighbor, has a high positive coeffiecient in W+
and a relatively low one in W−. A structure’s one-degree neighbors are the structures it connects to directly by cable,

with no intervening structures. Most structures have only a few one-degree neighbors (2 to 3), but some have many.

High values indicate many cable conductors per immediate neighbor, and therefore, per duct. As mentioned above,

cable density features are generally predictive, which we attribute to more locations where insulation can break down.

That normalizing by the number of immediate neighbors is highly predictive only for W+ suggests an interpretation

that could be tested. Stressful weather conditions often lead to water or salt water seeping into the structure. It is

possible that water in the structure is more likely to cause a serious event the more opportunity it has to come into

direct contact with exposed conductor. This is perhaps more likely in a densely packed duct.

12. rsn1dn: Where 1 normalizes the number of conductors by one-degree neighbors, 12 normalizes the number of

sets (bundled main and neutral cables) by one-degree neighbors. Where 1 had positive coefficients in both models,

12 has opposite values: a positive coefficient for W− and a negative one for W+. Most often, one or two sets of
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cable are sufficient to connect any pair of immediate neighbors, but some structures are connected by many sets. This

feature indicates that with relatively more sets per neighbor, a structure is more likely to have a serious event in good

weather, and less likely in bad weather. One of our original motivations for the dependency model presented here

was to account for differences in performance of our original approach for years with many versus few events. That

this feature has opposite influence in the two models shows the need for separate models of baseline versus weather-

enhanced vulnerability. We suggest that baseline vulnerability represents factors that lead to insulation breakdown,

which happens slowly over time, and that more sets per neighbor may produce conditions in the structure that have a

steady impact on this process. Conversely, more sets per neighbor corresponds to more ducts per neighbor, which may

counteract the impact of water seeping into the structure, which otherwise has a short term impact on serious events:

the water may have more places to go, with a lower likelihood of coming into contact with exposed conductor.

Table 2 lists the 24 structure features, ordered by the difference in rank of the coefficient between the baseline

structure model (W−) and the weather-enhanced one (W+). Features that capture cable or insulation materials, such

as the year of installation of cables (e.g., 14. nscs1940 1949), and the grid configuration, such as count of one-degree

neighbors (18. n1dn), have higher weights under ordinary weather conditions than under bad weather conditions.

Features that are relatively higher when the weather is bad include cable density features, such as the ones discussed

above, and features pertaining to event history, such as 2. ethpc.

7. Conclusion

The modeling approach presented here separates the two phenomena of weather and structures, and models their

dependencies. This yields greater interpretability of the impact of weather versus structure features. It confirms and

adds detail to the intuition from Con Edison engineers that the winter weather conditions that stress the grid consist of

near-freezing temperatures combined with precipitation. Further, the two models for baseline structure vulnerability

and weather-induced vulnerability help account for the marked differences in vulnerability from year to year. The

results indicate that a structure’s baseline vulnerability has more to do with the time frame when cables were installed

(a proxy for the kinds of conductor and insulation materials). A structure’s increased vulnerability during bad weather

is associated with features representing its event history (the red curve in Figure 1) and how densely packed the

structure is with cable, as in our earlier models, but more subtly, how the cable is distributed, which was not evident

in our earlier models. Future work will focus on feature selection to improve prediction accuracy across years.
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